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Abstract

We introduce a new algorithm for fitting a Catmull-Clark subdivi-
sion surface to a given shape within a prescribed tolerance, based
on the method of quasi-interpolation. The fitting algorithm is fast,
local and scales well since it does not require the solution of linear
systems. Its convergence rate is optimal for regular meshes and our
experiments show that it behaves very well for irregular meshes.
We demonstrate the power and versatility of our method with ex-
amples from interactive modeling, surface fitting, and scientific vi-
sualization.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: Animation, CAD, Curves & Surfaces, Geometric
Modeling, Digital Geometry Processing, Subdivision Schemes,
Approximation, Quasi-Interpolation, Catmull-Clark

1 Introduction

Subdivision schemes provide efficient algorithms for the design,
representation and processing of arbitrary topology smooth sur-
faces [17]. Application settings range from industrial design and
animation to scientific visualization and simulation. A basic tech-
nique in any of these areas is the approximation of a desired sur-
face with a given surface. For example, scattered data interpolation
over arbitrary topology surfaces, approximation of complex iso-
surfaces arising in scientific visualization, or interactive freeform
surface editing. In particular the latter requires fast methods which
go beyond traditional control point manipulation and its sensitivity
to iso-parameter line and patch boundary layout.

In this paper we introduce a new method for fitting a subdivision
surface with details to a given shape. It generalizes the method of
quasi-interpolation to Catmull-Clark surfaces and enables efficient
approximation of a given shape to any desired accuracy. The basic
idea is to use local, weighted averages of samples of the desired sur-
face as control points. Detail coefficients (in the sense of a Lapla-
cian pyramid construction) are computed in a coarse to fine process
in the same way, and added only where the fit is not satisfactory.
In particular, no solution of global linear systems with an a priori
fixed set of coefficients is required [10]. Quasi-interpolation enjoys
an optimal order of convergence away from irregular vertices, mak-
ing it asymptotically as good as least-squares. Empirical tests show
that our method also performs well in the non-asymptotic regime.

Quasi-interpolation is useful for many data fitting tasks, particu-
larly when the level of detail varies over the data set. Objects such
as these, indicative of geometric modeling and scientific computing
applications, are shown in Figure 1. Each shape is a subdivision
surface with details computed using quasi-interpolation, whose fi-
delity to the actual object can be controlled to any desired precision.
The final representation is amenable to further manipulation by per-
forming successive local approximations on the same surface.

Figure 1: Fitting applied to examples from scientific computing and
geometric modeling. Each shape is a subdivision surface with de-
tails computed by quasi-interpolation.

Note that we do not address the correspondence problem. In-
stead we assume that a correspondence exists, i.e., a mapping from
the given surface to the desired surface, and focus on the rapid com-
putation of appropriate, adaptively chosen detail vectors to ensure
that a given error tolerance is met. In many settings such corre-
spondences exist naturally; for example, in direct manipulation dur-
ing interactive editing or in the evolution of an iso-surface in level
set methods for scientific computing. In other settings establishing
such mappings requires the full power of a parameterization algo-
rithm (e.g., [13]).

Related Work Fitting subdivision surfaces with details to exist-
ing data was the subject of work by Lee et al. [12] who used a sub-
division surface with displacement maps (i.e., single level details)
to fit scanned geometry using a costly global optimization method.
Earlier, Halstead et al. [10] described fitting of Catmull-Clark sur-
faces to a set of interpolation constraints. Neither approach scales
well, due to the size of the linear systems and their poor condi-
tioning, nor do they allow for local fitting. For complex fitting
tasks, such as an emboss or an iso-surface extraction, this quickly
becomes untenable. In contrast our approach is based on local op-
erations. Thus there is no linear system to solve, providing both
good scalability and local control.

Manipulation of subdivision surfaces in the editing setting has
been studied, e.g., by Zorin et al. [18], who described hierarchical
editing of Loop surfaces with details, while DeRose et al. [9] fo-
cused on Catmull-Clark surfaces and (semi-)sharp crease rules to
achieve a number of modeling effects. Both rely on control point
manipulation, requiring careful layout of patch boundaries and iso-
parameter lines. Placing arbitrarily shaped, curve-like features on
a Loop surface with details was addressed in [11] by fitting fine
level control points to a given profile, but without any accuracy
guarantees. Similarly, in the context of classical and hierarchical
spline methods, Conrad and Mann have shown how to use quasi-



interpolation for surface pasting [2] to achieve arbitrary place-
ment of features in interactive editing. Unfortunately their method
achieves only approximate continuity across pasting features. In
contrast we extend quasi-interpolation to subdivision surfaces with
details, which allows for a uniform treatment of local displacements
throughout the hierarchy and guarantees globally smooth results.

The generic problem of approximation of functions by subdi-
vision surfaces in the regular setting is a subject of study in ap-
proximation theory [4, 5, 6, 7, 8] where it is shown that quasi-
interpolation is asymptotically as good as least squares approxi-
mation. However, in the presence of irregular vertices, optimal
approximation methods are not yet known. In fact, even the op-
timal rate of approximation remains unknown [14]. Our algorithm
generalizes quasi-interpolation to Catmull-Clark surfaces (we use
the variant of Biermann et al. [1]) and extends earlier ideas applied
in the context of trimming for Loop surfaces [15]. While there is
currently no approximation theory for the irregular setting we find
empirically that the numerical accuracy of our method compares
very favorably with least-squares solutions.

2 Quasi-Interpolation

Before we review some basic facts about quasi-interpolation for
surfaces, we begin with a simple univariate example to explain the
difference between least-squares optimal approximation and quasi-
interpolation.

An Example Consider the univariate approximation problem
with uniform cubic B-splines. Given samples of a (sufficiently
smooth) function f , the least-squares method computes control
points for an optimal cubic spline with knots at the integers. This
requires the solution of a linear system whose size is proportional
to the number of knots. The approximation error can be reduced by
increasing the number of knots.

Instead, the following local method can be used. Let pi be the
control point at i and set

pi = −
1

6
f(i− 1) +

4

3
f(i) −

1

6
f(i + 1), ∀i ∈ Z. (1)

This is a local operator, therefore it cannot guarantee interpolation.
However, this quasi-interpolant is an exact interpolant whenever
f is a cubic polynomial. When knots (and samples) are taken at
denser intervals, i.e., the spacing h is decreased, the approximation
error converges to zero as O(h4), the same rate as for least-squares
approximation. In this sense quasi-interpolation is asymptotically
as good as least-squares approximation. We will see later on that
it also compares very favorably in the non-asymptotic regime, i.e.,
for a given finite h.

2.1 Quasi-Interpolation in Shift-Invariant Spaces

A PSI (Principal Shift Invariant) space is a space spanned by the
integer translates of one function [6, 7, 8]. We restrict our attention
to the case of a bivariate function Φ which is continuous and com-
pactly supported, e.g., the bicubic B-spline. The PSI space SΦ is
defined as the span of the integer translates of Φ,

SΦ = spanα∈Z2 {Φ(· − α)} .

A scale of spaces with increasing resolution is defined by

Sj
Φ = spanα∈Z2

n
Φ(2j · −α)

o
=
n
f(2j ·) | f ∈ SΦ

o
,

where j denotes the level (j = 0 is coarsest). As j increases,
the space Sj

Φ captures finer scales. For subdivision surfaces, the

underlying function Φ is refinable, namely, it can be written as a
combination of dilates and translates of itself. Therefore we have
Sj

Φ ⊂ Sj+1
Φ .

We measure the approximation error in the maximum norm,

‖f‖
∞

= maxx f(x), and denote bj(f) ∈ Sj
Φ as the best approxi-

mation to f from the space Sj
Φ. It can be shown that if SΦ contains

all of the bivariate polynomials of degree less than m+ 1, then for
every function f which has m+ 1 continuous and bounded deriva-
tives, we have

bj(f) − f

∞

= O
�
2−j(m+1)

�
, j → ∞, (2)

and we say that the scale of spaces Sj
Φ has approximation order

m + 1. The converse is also true: in order to get approximation
order m+ 1, SΦ has to contain all bivariate polynomials of degree
less thanm+1. In that sense Eq. (2) gives an optimal error estimate.

A quasi-interpolation operator Qj is defined by a locally sup-
ported mask (aβ)β∈Z2

, which is applied to samples of the given

function [4]. For j = 0, 1, . . ., Qj calculates a function in Sj
Φ that

approximates f ,

Qjf =
X

α∈Z2

0
�X

β∈Z2

aβf(2−j(β + α))

1
AΦ(2j · −α).

If the mask a contains only a few non-zero elements, then Qj com-
putes the coefficients of each basis function using a weighted aver-
age of only a small number of samples of f .

If a quasi-interpolation operator reproduces all polynomials π up
to and including degree m, i.e., Q0π = π then

Qjf − f

∞

≤ c2−j(m+1)‖f (m+1)‖∞
X

β

|aβ |, (3)

for all functions f that have m + 1 continuous derivatives, for
j = 0, 1, . . .. The constant c depends only on the support of the
mask a. Thus a quasi-interpolation operator can achieve the opti-
mal approximation order m + 1. The only condition is that Q is
exact for polynomials up to the maximal degree of polynomials in
the space SΦ. Fortunately, it is not difficult to construct such oper-
ators.

Although Qj uses only samples of the function, it can be shown
that Qjf converges to f not only in the maximum or l2 norms, but
also in Sobolev norms, i.e., derivatives of Qjf converge to deriva-
tives of f .

2.2 Quasi-Interpolants for Regular Meshes

For regular meshes, Catmull-Clark surfaces are exactly bicubic B-
spline surfaces. The corresponding PSI space is spanned by the
bicubic B-spline Φ with support in [−2, 2]2. That space con-
tains all cubic polynomials, but not all quartics. Therefore quasi-
interpolation must only be exact for cubic polynomials, m+1 = 4,
to achieve the optimal approximation order.

Quasi-interpolation stencils which are supported on the 1-ring of
a given vertex are simple to derive in the regular setting. Due to
symmetry we need to choose coefficients a, b, c (see Figure 2b) so
that the resulting stencil produces the proper B-spline control point
values for constant (p(x, y) = 1) and quadratic (p(x, y) = x2)
functions. Reproduction of linears and cubics will follow from
symmetry. These two requirements are satisfied for all simultane-
ous solutions of

1 = 4a+ 4b+ c

−1 = 12a + 6b.
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Figure 2: (a) The limit stencil for bicubic splines. (b) Notation
for coefficients for quasi-interpolation operators. (c) The quasi-
interpolation operator of our choice: Q = 2I − L. Note that the
stencils are not normalized.

Arbitrarily setting a = 0, for example, results in a stencil which re-
quires only 5 function evaluations. The minimum l1 norm solution,
which results in the least constants in Equation (3) is achieved for
b = 0. However, the natural generalization of the univariate setting
is given by the stencil in Figure 2c. To see this, observe that in the
univariate cubic B-spline setting (Eq. 1) we have weights

(−1/6, 8/6,−1/6) = (0, 2, 0) − (1/6, 4/6, 1/6),

which we may write as Q = 2I − L where I is the identity and L
is the limit stencil for cubic B-splines. The limit stencil for bicubic
B-splines is the tensor product of the univariate limit stencil (Fig-
ure 2a). We can now see that Figure 2c is equal to 2I − L. Even
though its l1 norm is not minimal we prefer it since it has an obvious
generalization to the irregular setting (see below).

2.3 A Heuristic for Irregular Meshes

Since there is no approximation theory for subdivision schemes
on irregular meshes, we tried different heuristics to extend quasi-
interpolation to irregular vertices. For all the masks we tried, we
found increased approximation error near the irregular vertices.
This comes as no surprise since Catmull-Clark subdivision surfaces
cannot even reproduce all quadratic functions at the irregular ver-
tices. With all trials yielding similar results, we chose a heuristic
that is simple to implement. Consider the quasi-interpolation oper-
ator in Figure 2c which can be written as twice the identity minus
the limit mask

Q = 2I − L. (4)

This formula carries over to the irregular setting, including com-
mon feature rules [1, 16], in a straightforward fashion. The identity
(I) for a given vertex in the control mesh is the stencil with 1 at
the given vertex and 0 at all other vertices. Limit stencils (L) are
known for all popular rules such as creases, boundaries, etc. (see
for example [1]). Together they define Q as above everywhere in
a control mesh with regular control points leading to the standard
stencil (Figure 2c).

To see why our quasi-interpolant in Equation (4) is a reasonable
choice, it is helpful to consider the approximation problem from a
different point of view. Given a control mesh that samples the target
surface Ω at points ωi ∈ Ω ⊂ R

3 , the usual interpolation problem is
to find p̄ such that ω̄ = Lp̄. The vectors ω̄ and p̄ hold the samples ωi

and the control points pi of the control mesh, respectively, while L
contains the limit operators for each of the control points. Ignoring
questions of rank for the moment, the interpolation problem may
be solved as p̄ = L−1ω̄. In general, L−1 is dense, making this
approach expensive. However, we can find an approximate solution
for L−1 as follows. Since L = I − (I − L) and ‖I − L‖ < 1, the
use of a Neumann series gives

L−1 =

∞X
i=0

(I − L)i = I + (I − L) + (I − L)2 + . . .

Using only the first two terms we find

L−1 ≈ 2I − L.

Hence Q as defined in Equation (4) amounts to a “first order ap-
proximation” of the inverse of the limit operator L. This provides
some theoretical insight into the good performance of our quasi-
interpolant in the irregular setting that is seen in our experiments.

3 The Surface Fitting Algorithm

The input to the fitting algorithm consists of a subdivision surface
sin with detail coefficients and the target surface which is given as
a function φ : sin → R

3 mapping every point on sin to a new point
in space. φ differs from the identity only in the local area of the
surface that is being fitted. The user also prescribes a collection of
mesh faces, A, that designate areas of the surface not to be modi-
fied. A tolerance on the distance between the target surface and the
approximation must also be provided1 .

We use Catmull-Clark subdivision surfaces with detail coeffi-
cients

pj+1 = Spj + dj+1, j = 0, 1, . . . ,

where S is the subdivision operator, pj are the control points of the
mesh at level j, and dj+1 are detail coefficients at level j + 1. Note
that this implies that detail coefficients are not critically sampled as
would be the case in wavelet constructions. Instead they are more
akin to what one would find in a Laplacian pyramid or MIP map.
Each control point is associated with some vertex v. For a subdi-
vision surface s and a vertex v at an arbitrary level of subdivision,
s(v) denotes the associated limit position. The point on the target
surface corresponding to v is φ(s(v)). Thus s and φ define a corre-
spondence between every vertex of the mesh at any level, and some
point on the target surface. The correspondence determines how the
target surface is sampled at the vertices, and therefore directly af-
fects the approximation error, which we control by adaptively sub-
dividing to increase the sampling density where necessary. Figure 3
shows the correspondence for a simple curve and a uniform cubic
B-spline as it is alternately fitted to the curve and subdivided.

Figure 3: The correspondence for a simple curve (thick line) and a
uniform cubic B-spline (thin line) is illustrated at the knot values by
the arrows. The B-spline is fitted to the curve at successively finer
resolutions to improve the sampling.

The quasi-interpolation operator (Eq. 4) can be applied to sam-
ples of the function, but we have observed smaller approximation
errors when applying it to the difference, φ(s) − s. We emphasize
that the smaller approximation errors are an empirical observation
and we are not aware of any theoretical justification. One nice side
effect of this approach is that it ensures zero details if the surface
already approximates the desired function, i.e., an interpolating so-
lution remains unchanged under this modified approach.

3.1 Adaptive Approximation

The adaptive approximation algorithm creates a sequence of sur-
faces sj for j = 0, 1, . . . , k that approach the target surface φ(sin)
starting from sin and stopping at level k when sk satisfies the ap-
proximation requirements. All of the surfaces have the same control
mesh as sin. The algorithm is initialized at level zero as follows:

1The user could also prescribe a tolerance on the difference between the

normal vectors of the target and approximating surface.
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1. Let V 0 be the collection of vertices at level 0 that do not in-
fluence the limit surface at any patch in A. Let B0 denote the
complement of A.

2. Set s0 := sin + Q0(φ(sin) − sin), i.e., for every vertex v in
V 0, p0(v) = p0(v) +Q0(φ(sin) − sin)(v).

For j = 0, 1, . . . do

1. Let Cj be the set of patches influenced by any v ∈ V j and let
Bj+1 := ∅.

2. For any patch in Cj ∪ Bj which fails the approximation cri-
terion, add its children to Bj+1 and stop if Bj+1 = ∅.

3. Let V j+1 be the vertices at level j + 1 that influence at least
one patch in Bj+1 but none in A.

4. Set sj+1 := sj +Qj+1(φ(sin) − sj), i.e., for every vertex v
in V j+1, dj+1(v) = Qj+1(φ(sin) − sj)(v).

The termination of the algorithm is controlled by the approxi-
mation criterion. However, the basic structure of the algorithm is
independent of the particular design of the criterion. For our ex-
amples, we sample the error over the given patch at a discrete set
of points, taken at vertices of its subpatches. The approximation is
deemed satisfactory when the error is within the provided tolerance.

3.2 Comparison of Least-Squares and Quasi-

Interpolation

Quasi-interpolation is optimal in the asymptotic sense in the regular
setting. However, a single level of quasi-interpolation does not give
a best approximation in any of the norms that are typically of in-
terest. To test the performance of quasi-interpolation we compared
it with a best approximation in the least-squares norm: given some
sin and a function φ, we calculated sl and sq by least-squares and
quasi-interpolation respectively. The least-squares norm is approx-
imated discretely at level 2 vertices as

E(s) = ‖s − φ(sin)‖2 =

0
�X

v∈V 2

|s(v) − φ(sin(v))|
2 /n

1
A

1/2

where n is the number of vertices. sl is defined as the minimizer of
E, while

sq = sin +Q0 (φ(sin) − sin) .

We repeat the experiment at increasingly finer resolutions, using
sq from the previous level as sin for quasi-interpolation at the next
finer resolution. For sl no initial surface is needed.

The results of our experiments are reported in Table 1 for a set
of functions z = f(x, y), (x, y) ∈ [−1, 1]2, chosen to examine
the behavior of the approximation under a variety of conditions: a
smooth function with decay at infinity (Fig. 4a); a smooth func-
tion with oscillations (Fig. 4b); a function with a C1 discontinu-
ity at the origin (Fig. 4c); and a function with a C1 discontinuity
along a curve (Fig. 4d). A regular grid with 10 divisions on [−1, 1]2

served as sin. Exemplary pseudo-color plots of the error are shown
in Fig. 5. The error near singularities decays faster for quasi-
interpolation, due to the local support of the stencil. The overall
rate of decay of the error for least-squares and quasi-interpolation
is the same. In the two cases of approximation to non-smooth func-
tions, quasi-interpolation yields an error which is very close to the
optimal least-squares error, demonstrating that the constants in the
error bound are indeed low.

We examined the behavior of the approximation in the irregular
setting for the function in Fig. 4a. A surface with k ≥ 3 regular

10 × 10 20 × 20 40 × 40

LSQ

QI
z = e−9(x2+y2)

1.067e-3

9.428e-3

3.103e-5

3.164e-4

1.545e-6

1.643e-5

LSQ

QI
z = sin(πx) sin(πy)

2.438e-4

7.832e-3

7.164e-6

5.507e-5

4.022e-7

5.680e-6

LSQ

QI
z =
p

x2 + y2
1.209e-3

1.674e-3

3.092e-4

6.394e-4

8.927e-5

1.688e-4

LSQ

QI
z = max(1/2 − x2 + y2, 0)

7.613e-3

1.153e-2

2.620e-3

3.771e-3

9.419e-4

1.345e-3

Table 1: Least-squares (LSQ) and quasi-interpolation (QI) errors.

Figure 4: (a) z = e−9(x2+y2) (b) z = sin(πx) sin(πy) (c) z =p
x2 + y2 (d) z = max(1/2 − x2 + y2, 0).

Figure 5: Exemplary pseudo-color plots of the error for least-
squares approximation (LSQ) and quasi-interpolation (QI) for
functions in Fig. 4a (left) and Fig. 4d (right) at resolution 40.

regions meeting at the origin was used for sin. The error over the
domain x2 + y2 ≤ 1 for the least-squares and quasi-interpolation
approximations is plotted in Fig. 6 for k = 3, . . . , 13. Exemplary
pseudo-color plots of the error are shown in Fig. 7.
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Figure 6: The quasi-interpolation and least-squares error plotted
on a logarithmic scale for irregular surfaces k = 3, . . . , 13.

Figure 7: Exemplary pseudo-color plots of the error for least-
squares approximation (LSQ) and quasi-interpolation (QI) of the
function in Fig. 4a for irregular surfaces k = 3 and k = 13.

The error near the irregular vertex grows as k increases. The
error at the irregular vertex scales as O(h2) since the surface does
not reproduce all quadratics there. However, the error is dominated
by the behavior away from the irregular vertex, where the surface
is regular. For this reason, the error increases less rapidly for the
quasi-interpolation approximation due to the local support of the
stencil. This is most apparent for large values of k.
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Figure 8: (a) An original Cyberware scan with 300k triangles. (b) A simple subdivision surface for a generic head. (c) Fit of the head in (b)
to the original data in (a). (d) Illustration of the depth of non-zero detail coefficients (hotter signifies finer scales). (e) Result of editing the
coarsest patch level (b). To achieve correct editing semantics all details were expressed in local coordinate frames during the edit. Otherwise
all detail computation are always performed in a world space coordinate frame.

4 Examples

We have applied our method of fitting subdivision surfaces to sur-
face modeling, data fitting, and scientific visualization. Statistics
for the featured models are given in Table 2. All calculations were
performed on an 600Mhz Intel Pentium III.

Model Base Polygons Base Vertices Max. Depth Details

fluidsim 98 109 3 8484

head 140 153 6 109022

jug 43 46 4 2060

pad 98 104 8 121362

perfume 6 8 8 31125

Table 2: Statistics for the fitting examples.

Cross-Section Editing Surfaces may be sculpted by modeling
with cross-sectional curves (Fig. 9). An initial curve is computed by
taking a cross-sectional slice of the model. The user then directly
manipulates the surface by shaping the curve to the desired profile.
The surface is deformed in a local region around the cross-section,
by blending with the profile curve using a C2 blend function that
goes to zero at a user-specified distance from the cross-section. At
the cross-section the profile curve is interpolated to high precision.
All manipulations were performed interactively.

Figure 9: Surface modeling with cross-section curves, illustrated
below each model.

Embossing Fine detail on the surface can be modeled in re-
lief with an embossing stencil (Fig. 10). The stencil is provided
by a bitmap that defines the height of the emboss. The surface
is deformed by projecting the stencil on the surface and quasi-
interpolating the associated height profile. The inset in Fig. 10

illustrates how the approximation adapts to features of varying de-
tail. This process is performed adaptively both on the surface and
in the bitmap to ensure that excessive refinement is not necessary.
Contrary to visual techniques such as bump mapping, we provide a
unified model for both fine and coarse geometric detail, suitable for
manufacturing purposes.

Figure 10: Fine surface detail is added by embossing. The inset
illustrates the local adaptation to varying detail (hotter signifies
finer scales).

Data Fitting Laser scanning allows very detailed objects to be
captured, but the data is typically far too complex to edit directly.
By fitting a simple subdivision surface to the scanned data, the ob-
ject can be manipulated much more intuitively while retaining its
intricate detail. We demonstrate this approach by fitting a sub-
division surface to laser scan data given as a dense triangle mesh
(300k triangles; Fig. 8a). The artist first constructs an initial subdi-
vision surface with a basic patch layout suitable for later animation
(Fig. 8b). Since the data was acquired by a cylindrical scan, we
used simple cylindrical coordinates for the correspondence2 . After
alignment, the system computes the detail coefficients to produce
the subdivision surface in Fig. 8c. The fit is adaptive in areas with
finer detail (“hotter” colors in Fig. 8d). Now the artist can ma-
nipulate the fully detailed model using the control points from the
original surface (Fig. 8e). The fit was computed in 6 seconds, to a
relative tolerance of 0.03%.

Scientific Visualization The rapid visualization of an evolving
physical system is helpful in simulation settings. Due to the fine
resolution of high fidelity simulations, I/O bandwidth off of highly
parallel machines is often a very constrained resource. Saving every
frame of a level set simulation, for example, may not even be possi-
ble. Subsequent processing of the time-varying volume data using
traditional methods, such as marching cubes iso-surface extraction
followed by decimation of the meshes, to adapt to available render-
ing resources is awkward and expensive, both in time and storage.
An alternative approach can be based on coarsely sampling an iso-
surface of interest, followed by hierarchical refinements where de-
sired. Using an appropriate correspondence to sample the data, we

2We switch to polar coordinates to resolve the singularity at the pole.
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construct a smooth surface at successively finer resolutions, subject
to time and memory restrictions. Figure 11 demonstrates this idea
in the case of a level set simulation of two fluids of differing density
mixing under gravity, shown by the interface between the fluids [3].
At the coarsest level, a base mesh is constructed from 109 sample
points. A naı̈ve algorithm that constructs a mesh from the sample
points themselves is demonstrated in Fig. 11a. Contrast this to the
surface which we can generate based on the same sample points
using quasi-interpolation (Fig. 11b). The surface is fit at finer res-
olutions as more sample points are taken in Fig. 11c-d. The final
surface in Fig. 11d was generated in 300ms. This example illus-
trates how the same data can be used to reconstruct the surface of
interest with a much higher quality using quasi-interpolation rather
than piecewise linear interpolation. This is especially evident at low
numbers of samples.

a b

c d

Figure 11: Visualization of a fluid simulation. a) A mesh con-
structed from the initial 109 sample points. b) Our surface, gen-
erated by fitting to the same sample points. Additional detail is
added to the surface after c) 1609 samples and d) 6353 samples.

5 Contributions and Outlook

We have presented an extension of quasi-interpolation (QI) to
Catmull-Clark surfaces with details, and used it as the basis for a
simple and effective approximation algorithm. Due to the locality
of QI, the proposed approximation scheme can be used to apply lo-
cal deformations to a surface at low computational cost and with a
guaranteed error tolerance. To demonstrate the power of these op-
erators we have given some examples of approximation based on
them.

Since QI does not involve the solution of linear systems, it is sig-
nificantly simpler and safer to use in comparison to other common
techniques, such as interpolation and least-squares. We reviewed
theoretical results about the optimality of QI, and added empirical
evidence showing that QI behaves very well in comparison to the
optimal least-squares method.

The appeal of our algorithm is its ability to generate a suitable
approximation of any shape that possesses an appropriate sampling
method, as demonstrated by our examples. Locality and the coarse-
to-fine fitting strategy enable many applications of this technique in

scientific simulation and visualization, which promise to be much
more efficient than traditional approaches (e.g., marching cubes ex-
traction followed by decimation).

In the area of geometric modeling our techniques allows the ef-
ficient creation of highly detailed features such as embosses or the
editing of cross-section curves without regard to alignment of patch
boundaries or iso-parameter lines. In this way QI offers an oppor-
tunity to abstract from the underlying representation during editing.
This should prove beneficial to geometric modeling user interfaces
which aim to abstract from the underlying representation.

In future work we hope to develop a theory for optimal approxi-
mation in the irregular setting and explore other applications of QI
in digital geometry processing.
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[11] KHODAKOVSKY, A., AND SCHR ÖDER, P. Fine Level Feature Editing for Sub-

division Surfaces. ACM Solid Modeling Symposium (1999), 203–211.

[12] LEE, A., MORETON, H., AND HOPPE, H. Displaced Subdivision Surfaces.

Proceedings of SIGGRAPH 2000 (2000), 85–94.

[13] LEE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L., AND DOBKIN,
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