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1. Introduction

The preferential attachment mechanism, in which edges and nodes are added to
the network based on probabilistic rules, provides an appealing description for
the evolution of a network. The rule for how edges connect nodes depends on
node degree; large-degree nodes attract more edges. The idea is applicable to
both directed and undirected graphs and is often the basis for studying social
networks, collaborator and citation networks, and recommender networks. Ele-
mentary descriptions of the preferential attachment model can be found in [5]
while more mathematical treatments are available in [2, 4, 21]. Also see [10] for
a statistical survey of methods for network data, [18] for consideration of statis-
tics of an undirected network and [24] for asymptotics of a directed exponential
random graph models. Limit theory for estimates of an undirected preferential
attachment model was considered in [6].

For many networks, empirical evidence supports the hypothesis that in- and
out-degree distributions follow a power law. This property has been shown to
hold in linear preferential attachment models, which makes preferential attach-
ment an attractive choice for network modeling [3, 4, 11, 12, 21]. While the
marginal degree power laws in a simple linear preferential attachment model
were established in [3, 11, 12], the joint regular variation (see [15, 16]) which is
akin to a joint power law, was only recently established [17, 19]. In addition, it
was shown in [22] that the joint probability mass function of the in- and out-
degrees is multivariate regularly varying. This is a key result as the degrees of
a network are integer-valued.

In this paper, we discuss methods of fitting a simple linear preferential at-
tachment model, which is parametrized by θ = (α, β, γ, δin, δout). The first three
parameters, α, β, γ, correspond to probabilities of the 3 scenarios for adding an
edge and hence sum to 1, i.e., α + β + γ = 1. The other two, δin and δout,
are tuning parameters related to growth rates. The tail indices of the marginal
power laws for the in- and out-degrees can be expressed as explicit functions
of θ (see (2.5) and (2.6) below). The graph G(n) = (V (n), E(n)), where V (n)
is the set of nodes and E(n) is the set of edges at the nth iteration, evolves
based on postulates that describe how new edges and nodes are formed. This
construction of the network is Markov in the sense that the probabilistic rules
for obtaining G(n + 1) once G(n) is known do not require prior knowledge of
earlier stages of the construction.

The Markov structure of the model allows us to construct a likelihood func-
tion based on observing G(n0), G(n0+1), . . . , G(n0+n). After deriving the like-

lihood function, we show that it has a unique maximum at θ̂ = (α̂, β̂, γ̂, δ̂in, δ̂out)
and that the resulting maximum likelihood estimator is strongly consistent
and asymptotically normal. The normality is proved using a martingale cen-
tral limit theorem applied to the score function. The limiting distribution also
reveals that (α̂, β̂, γ̂), δ̂in, and δ̂out are asymptotically independent. From these
results, asymptotic properties of the MLE for the power law indices can be
derived.
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For some network data, only a snapshot of the nodes and edges is available
at a single point in time, that is, only G(n) is available for some n. In such
cases, we propose an estimation procedure for the parameters of the network
using an approximation to the likelihood and method of moments. This also
produces strongly consistent estimators. These estimators perform reasonably
well compared to the MLE where the entire evolution of the network is known
but predictably there is some loss of efficiency.

We illustrate the estimation procedure for both scenarios using simulated
data. Simulation plays an important role in the process of modeling networks
since it provides a way to assess the performance of model fitting procedures in
the idealized setting of knowing the true model. Also, after fitting a model to real
data, simulation provides a check on the quality of fit. Departures from model
assumptions can often be detected via simulation of multiple realizations from
the fitted network. Hence it is important to have efficient simulation algorithms
for producing realizations of the preferential attachment network for a given set
of parameter values. We adopt a simulation method, learned from Joyjit Roy,
that was inspired by [1] and is similar to that of [20].

Our fitting methods are implemented in a real data setting using the Dutch
Wiki talk network [14]. While one should not expect the simple 5-parameter
(later extended to 7-parameter) linear preferential attachment model to fully
explain a network with millions of edges, it does provide a reasonable fit to the
tail behavior of the degree distributions. We are also able to detect important
structural features in the network through fitting the model over separate time
intervals.

Often it is difficult to believe in the existence of a true model, especially
one whose parameters remain constant over time. Allowing, as we do, a pref-
erential attachment model with only a few parameters and no possibility for
node removal may seem simplistic and unrealistic for social network data. Of
course, preferential attachment is only one mechanism for network formation
and evidence for its use in fields outside data networks is mixed [8, 9] and we
restrict attention to linear preferential attachment. Even imperfect models have
the potential to capture salient properties in the data, such as heavy-tailedness
of the in-degree and out-degree distributions, and to identify departures from
model assumptions. While maximum likelihood estimation is essentially the gold
standard for cases when the underlying model is a good representation of the
data, it may perform poorly in case the model is far from being appropriate.
In forthcoming work, we consider a semi-parametric estimation approach for
network models that exhibit heavy-tailed degree distributions. This alternative
estimation methodology borrows ideas from extreme value theory.

The rest of the paper is structured as follows. In Section 2, we formulate the
linear preferential attachment network model and present an efficient simulation
method for the network. Section 3 gives parameter estimators when either the
full history is known or when only a single snapshot in time is available. We test
these estimators against simulated data in Section 5 and then explore the Wiki
talk network in Section 6.
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2. Model specification and simulation

In this section, we present the linear preferential attachment model in detail
and provide a fast simulation algorithm for the network.

2.1. The linear preferential attachment model

The directed edge preferential attachment model [3, 12] constructs a growing
directed random graph G(n) = (V (n), E(n)) whose dynamics depend on five
non-negative real numbers α, β, γ, δin and δout, where α + β + γ = 1 and
δin, δout > 0. To avoid degenerate situations, assume that each of the numbers
α, β, γ is strictly smaller than 1. We obtain a new graph G(n) by adding one edge
to the existing graph G(n− 1) and index the constructed graphs by the num-
ber n of edges in E(n). We start with an arbitrary initial finite directed graph
G(n0) with at least one node and n0 edges. For n > n0, G(n) = (V (n), E(n)) is
a graph with |E(n)| = n edges and a random number |V (n)| = N(n) of nodes. If

u ∈ V (n), D
(n)
in (u) and D

(n)
out(u) denote the in- and out-degree of u respectively

in G(n). There are three scenarios that we call the α, β and γ-schemes, which
are activated by flipping a 3-sided coin whose outcomes are 1, 2, 3 with proba-
bilities α, β, γ. More formally, we have an iid sequence of multinomial random
variables {Jn, n > n0} with cells labelled 1, 2, 3 and cell probabilities α, β, γ.
Then the graph G(n) is obtained from G(n− 1) as follows.

• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈
V (n) \ V (n − 1) and an edge (v, w) leading from v to an existing node
w ∈ V (n − 1). Choose the existing node w ∈ V (n − 1) with probability
depending on its in-degree in G(n− 1):

P[choose w ∈ V (n− 1)] =
D

(n−1)
in (w) + δin

n− 1 + δinN(n− 1)
. (2.1)

• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n− 1) with
v ∈ V (n−1) = V (n) and w ∈ V (n−1) = V (n) and the existing nodes v, w
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are chosen independently from the nodes of G(n− 1) with probabilities

P[choose (v, w)] =
( D

(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)

)( D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)

)
.

• If Jn = 3 (with probability γ), append to G(n−1) a new node w ∈ V (n)\
V (n−1) and an edge (v, w) leading from the existing node v ∈ V (n−1) to
the new node w. Choose the existing node v ∈ V (n− 1) with probability

P[choose v ∈ V (n− 1)] =
D

(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)
. (2.2)

Note that this construction allows the possibility of having self loops in the
case where Jn = 2, but the proportion of edges that are self loops goes to 0 as
n → ∞. Also, multiple edges are allowed between two nodes.

2.2. Power law of degree distributions

Given an observed network with n edges, let Nij(n) denote the number of nodes
with in-degree i and out-degree j. If the network is generated from the linear
preferential attachment model described above, then from [3], there exists a
proper probability distribution {fij} such that almost surely

Nij(n)

N(n)
→ fij =:

pij
1− β

, n → ∞. (2.3)

Consider the limiting marginal in-degree distribution pini :=
∑

j pij . It is calcu-
lated from [3, Equation (3.10)] that

pin0 =
α

1 + a1(δin)δin
,

and for i ≥ 1,

pini =
Γ(i+ δin)Γ(1 + δin + a1(δin)

−1)

Γ(i+ 1 + δin + a1(δin)−1)Γ(1 + δin)

(
αδin

1 + a1(δin)δin
+

γ

a1(δin)

)
,

where

a1(λ) :=
α+ β

1 + λ(1− β)
, λ > 0.

Moreover, pini satisfies

pini :=

∞∑

j=0

pij ∼ Cini
−ιin as i → ∞, as long as αδin + γ > 0, (2.4)

for some finite positive constant Cin, where the power index

ιin = 1 +
1 + δin(α+ γ)

α+ β
. (2.5)
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Similarly, the limiting marginal out-degree distribution has the same property:

poutj :=

∞∑

i=0

pij ∼ Couti
−ιout as j → ∞, as long as γδout + α > 0,

for Cout positive and

ιout = 1 +
1 + δout(α+ γ)

β + γ
. (2.6)

2.3. Simulation algorithm

We describe an efficient simulation procedure for the preferential attachment
network given the parameter values (α, β, γ, δin, δout), where α+β+γ = 1. The
simulation cost of the algorithm is linear in time. This algorithm, which was pro-
vided by Joyjit Roy during his graduate work at Cornell University, is presented
below for completeness. Note that this simulation algorithm is specifically de-
signed for the case where the preferential attachment probabilities (2.1)–(2.2)
are linear in the degrees. A similar idea for the simulation of the Yule-Simon
process appeared in [20]. Efficient simulation methods for the case where the
preferential attachment probabilities are non-linear are studied in [1], where
their algorithm trades some efficiency for the flexibility to model non-linear
preferential attachment.

Using the notation from the introduction, at time t = 0, we initiate with
an arbitrary graph G(n0) = (V (n0), E(n0)) of n0 edges, where the elements of

E(n0) are represented in form of (v
(1)
i , v

(2)
i ) ∈ V (n0)×V (n0), i = 1, . . . , n0, with

v
(1)
i , v

(2)
i denoting the outgoing and incoming vertices of the edge, respectively.

To grow the network, we update the network at each stage from G(n − 1) to

G(n) by adding a new edge (v
(1)
n , v

(2)
n ). Assume that the nodes are labeled using

positive integers starting from 1 according to the time order in which they are
created, and let the random number N(n) = |V (n)| denote the total number of
nodes in G(n).

Let us consider the situation where an existing node is to be chosen from
V (n) as the vertex of the new edge. Naively sampling from the multinomial
distribution requires O(N(n)) evaluations, where N(n) increases linearly with
n. Therefore the total cost to simulate a network of n edges is O(n2). This is
significantly burdensome when n is large, which is usually the case for observed
networks. Algorithm 1 describes a simulation algorithm which uses the alias
method [13] for node sampling. Here sampling an existing node from V (n) re-
quires only constant execution time, regardless of n. Hence the cost to simulate
G(n) is only O(n). This method allows generation of a graph with 107 nodes on
a personal laptop in less than 5 seconds.

To see that the algorithm indeed produces the intended network, it suffices
to consider the case of sampling an existing node from V (n−1) as the incoming
vertex of the new edge. In the function Node Sample in Algorithm 1, we generate
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Algorithm 1: Simulating a directed edge preferential attachment network

Algorithm

Input: α, β, δin, δout, the parameter values; G(n0) = (V (n0), E(n0)), the
initialization graph; n, the targeted number edges

Output: G(n) = (V (n), E(n)), the resulted graph

t ← n0

while t < n do

N(t) ← |V (t)|
Generate U ∼ Uniform(0, 1)
if U < α then

v(1) ← N(t) + 1

v(2) ← Node Sample(E(t), 2, δin)
V (t) ← Append(V (t), N(t) + 1)

else if α ≤ U < α+ β then

v(1) ← Node Sample(E(t), 1, δout)

v(2) ← Node Sample(E(t), 2, δin)

else if U ≥ α+ β then

v(1) ← Node Sample(E(t), 1, δout)

v(2) ← N(t) + 1
V (t) ← Append(V (t), N(t) + 1)

E(t+ 1) ← Append(E(t), (v(1), v(2)))
t ← t+ 1

end

return G(n) = (V (n), E(n))

Function Node Sample

Input: E(t), the edge list up to time t; j = 1, 2, the node to be sample,
representing outgoing and incoming nodes, respectively; δ ∈ {δin, δout}, the
offset parameter

Output: the sampled node, v
Generate W ∼ Uniform(0, t+N(t)δ)
if W ≤ t then

v ← v
(j)
⌈W⌉

else if W > t then

v ←
⌈
W−t

δ

⌉

return v

W ∼ Uniform(0, n− 1 +N(n− 1)δin) and set

v ← v
(j)
⌈W⌉ 1{W≤n−1} +

⌈
W − (n− 1)

δin

⌉
1{W>n−1}.

Then

P (v = w) = P
(
v
(j)
⌈W⌉ = w

)
P (W ≤ n− 1)

+ P

(⌈
W − (n− 1)

δin

⌉
= w

)
P (W > n− 1)

=
D

(n−1)
in (w)

n− 1

n− 1

n− 1 +N(n− 1)δin
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+
1

N(n− 1)

N(n− 1)δin
n− 1 +N(n− 1)δin

=
D

(n−1)
in (w) + δin

n− 1 +N(n− 1)δin
,

which corresponds to the desired selection probability (2.1).

3. Parameter estimation: MLE based on the full network history

In this section, we estimate the preferential attachment parameter vector θ =
(α, β, δin, δout) under two assumptions about what data is available. In the first
scenario, the full evolution of the network is observed, from which the likelihood
function can be computed. The resulting MLE is strongly consistent and asymp-
totically normal. For the second scenario, the data only consist of one snapshot
of the network with n edges, without the knowledge of the network history that
produced these edges. For this scenario we give an estimation approach through
approximating the score function and moment matching, which produces pa-
rameter estimators that are also strongly consistent but less efficient than those
based on the full evolution of the network. In both cases, the estimators are
uniquely determined.

3.1. Likelihood calculation

Assume the network begins with the graph G(n0) (consisting of n0 edges)
and then evolves according to the description in Section 2.1 with parameters
(α, β, δin, δout), where δin, δout > 0 and α, β are non-negative probabilities. The
γ is implicitly defined by γ = 1 − α − β. To avoid trivial cases, we will also
assume α, β, γ < 1 for the rest of the paper. For MLE estimation we restrict the
parameter space for δin, δout to be [ǫ,K], for some sufficiently small ǫ > 0 and
large K. In particular, the true value of δin, δout is assumed to be contained in

(ǫ,K). Let et = (v
(1)
t , v

(2)
t ) be the newly created edge when the random graph

evolves from G(t− 1) to G(t). We sometimes refer to t as the time rather than
the number of edges.

Assume we observe the initial graph G(n0) and the edges {et}nt=n0+1 in the
order of their formation. For t = n0 + 1, . . . , n, the values of the following
variables are known:

• N(t), the number of nodes in graph G(t);

• D
(t−1)
in (v), D

(t−1)
out (v), the in- and out-degree of node v in G(t− 1), for all

v ∈ V (t− 1);
• Jt, the scenario under which et is created.

Then the likelihood function is

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1)
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=

n∏

t=n0+1

(
α

D
(t−1)
in (v

(2)
t ) + δin

t− 1 + δinN(t− 1)

)1{Jt=1}

×
n∏

t=n0+1

(
β
( D

(t−1)
in (v

(2)
t ) + δin

t− 1 + δinN(t− 1)

)( D
(t−1)
out (v

(1)
t ) + δout

t− 1 + δoutN(t− 1)

))1{Jt=2}

×
n∏

t=n0+1

(
(1− α− β)

D
(t−1)
out (v

(1)
t ) + δout

t− 1 + δoutN(t− 1)

)1{Jt=3}

(3.1)

and the log likelihood function is

logL(α, β, δin, δout| G(n0), (et)
n
t=n0+1) (3.2)

= logα

n∑

t=n0+1

1{Jt=1} + log β

n∑

t=n0+1

1{Jt=2} + log(1− α− β)

n∑

t=n0+1

1{Jt=3}

+
n∑

t=n0+1

log
(
D

(t−1)
in (v

(2)
t ) + δin

)
1{Jt∈{1,2}}

+

n∑

t=n0+1

log
(
D

(t−1)
out (v

(1)
t ) + δout

)
1{Jt∈{2,3}}

−
n∑

t=n0+1

log(t− 1 + δinN(t− 1))1{Jt∈{1,2}}

−
n∑

t=n0+1

log(t− 1 + δoutN(t− 1))1{Jt∈{2,3}}.

The score functions for α, β, δin, δout are calculated as follows:

∂

∂α
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=
1

α

n∑

t=n0+1

1{Jt=1} −
1

1− α− β

n∑

t=n0+1

1{Jt=3}, (3.3)

∂

∂β
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=
1

β

n∑

t=n0+1

1{Jt=2} −
1

1− α− β

n∑

t=n0+1

1{Jt=3}, (3.4)

∂

∂δin
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=

n∑

t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

−
n∑

t=n0+1

N(t− 1)

t− 1 + δinN(t− 1)
1{Jt∈{1,2}}, (3.5)
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∂

∂δout
logL(α, β, δin, δout| G(n0), (et)

n
t=n0+1)

=
n∑

t=n0+1

1

D
(t−1)
out (v

(1)
t ) + δout

1{Jt∈{2,3}}

−
n∑

t=n0+1

N(t− 1)

t− 1 + δoutN(t− 1)
1{Jt∈{2,3}}.

Note that the score functions (3.3), (3.4) for α and β do not depend on δin
and δout. One can show that the Hessian matrix of the log-likelihood for (α, β) is
positive definite. Setting (3.3) and (3.4) to zero gives the unique MLE estimates
for α and β,

α̂MLE =
1

n− n0

n∑

t=n0+1

1{Jt=1}, (3.6)

β̂MLE =
1

n− n0

n∑

t=n0+1

1{Jt=2}. (3.7)

These estimates are strongly consistent by applying the strong law of large
numbers for the {Jt}t≥n0+1 sequence.

Next, consider the first term of the score function for δin in (3.5), and we
have

n∑

t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

=

∞∑

i=0

1

i+ δin

n∑

t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

} .

Observe that
{
D

(t−1)
in (v

(2)
t ) = i, Jt ∈ {1, 2}

}
describes the event that the in-

degree of node v
(2)
t ∈ V (t− 1) is i at time t−1 and is augmented to i+1 at time

t. For each i ≥ 1, such an event happens at some stage t ∈ {n0+1, n0+2, . . . , n}
only for those nodes with in-degree ≤ i at time n0 and in-degree > i at time
n. Let Nij(n) denote the number of nodes with in-degree i and out-degree j at
time n, and N in

i (n) and N in
>i(n) to be the number of nodes with in-degree equal

to i and greater than i, respectively, i.e.,

N in
i (n) =

∞∑

j=0

Nij(n), N in
>i(n) =

∑

k>i

N in
k (n).

Then

n∑

t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

} = N in
>i(n)−N in

>i(n0), i ≥ 1.
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On the other hand, when i = 0,
{
D

(t−1)
in (v

(2)
t ) = 0, Jt ∈ {1, 2}

}
occurs for some

t if and only if all of the following three events happen:

(i) v
(2)
t has in-degree > 0 at time n;

(ii) v
(2)
t does not have in-degree > 0 at time n0;

(iii) v
(2)
t was not created under the γ-scheme (otherwise it would have been
born with in-degree 1).

This implies:

n∑

t=n0+1

1{
D

(t−1)
in (v

(2)
t )= 0,Jt∈{1,2}

} = N in
>0(n)−N in

>0(n0)−
n∑

t=n0+1

1{Jt=3},

since there are, in total,
∑n

t=n0+1 1{Jt=3} nodes created under the γ-scheme.
Therefore,

n∑

t=n0+1

1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

=

∞∑

i=0

1

i+ δin

n∑

t=n0+1

1{
D

(t−1)
in (v

(2)
t )=i,Jt∈{1,2}

}

=

∞∑

i=0

N in
>i(n)−N in

>i(n0)

i+ δin
−
∑n

t=n0+1 1{Jt=3}

δin
. (3.8)

Setting the score function (3.5) for δin to 0 and dividing both sides by n − n0

leads to

1

n− n0

∞∑

i=0

N in
>i(n)−N in

>i(n0)

i+ δin
− 1

δin(n− n0)

n∑

t=n0+1

1{Jt=3}

− 1

n− n0

n∑

t=n0+1

N(t− 1)

t− 1 + δinN(t− 1)
1{Jt∈{1,2}} = 0, (3.9)

where the only unknown parameter is δin. In Section 3.2, we show that the
solution to (3.9) actually maximizes the likelihood function in δin. Similarly, the
MLE for δout can be solved from

1

n− n0

∞∑

j=0

Nout
>j (n)−Nout

>j (n0)

j + δout
−

1
n−n0

∑n
t=n0+1 1{Jt=1}

δout

− 1

n− n0

n∑

t=n0+1

N(t− 1)

t− 1 + δoutN(t− 1)
1{Jt∈{2,3}} = 0,

where Nout
>j (n) is defined in the same fashion as N in

>i(n).
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Remark 3.1. The arguments leading to (3.8) allow us to rewrite the likelihood
function (3.1):

L(α, β, δin, δout| G(n0), (et)
n
t=n0+1)

= α
∑

n
t=n0+1 1{Jt=1} β

∑
n
t=n0+1 1{Jt=2} (1− α− β)

∑
n
t=n0+1 1{Jt=3}

×
n∏

t=n0+1

(t− 1 + δinN(t− 1))−1{Jt∈{1,2}} (t− 1 + δoutN(t− 1))−1{Jt∈{2,3}}

×
n∏

t=n0+1

[
∞∏

i=0

(i+ δin)
1{D

(t−1)
in

(v
(2)
t

)=i,Jt∈{1,2}}

∞∏

j=0

(j + δout)
1{D

(t−1)
out

(v
(1)
t

)=j,Jt∈{2,3}}
⎤
⎦

= α
∑

n
t=n0+1 1{Jt=1} β

∑
n
t=n0+1 1{Jt=2} (1− α− β)

∑
n
t=n0+1 1{Jt=3}

×
n∏

t=n0+1

[
(t− 1 + δinN(t− 1))−1{Jt∈{1,2}} (t− 1 + δoutN(t− 1))−1{Jt∈{2,3}}

δ
−1{Jt=3}

in
δ
−1{Jt=1}

out

]

×
∞∏

i=0

(i+ δin)
N in

>i(n)−N in

>i(n0)
∞∏

j=0

(j + δout)
Nout

>j (n)−Nout

>j (n0).

Hence by the factorization theorem, N(n0), (Jt)
n
t=n0+1, (N

in

>i(n)−N in

>i(n0))i≥0,
(Nout

>j (n)−Nout

>j (n0))j≥0 are sufficient statistics for (α, β, δin, δout).

3.2. Consistency of MLE

We remarked after (3.6) and (3.7) that α̂MLE and β̂MLE converge almost surely
to α and β. We now prove that the MLE of (δin, δout) is also strongly consistent.
Note that if we initiate the network with G(n0) (for both n0 and N(n0) finite),
then almost surely for all i, j ≥ 0,

N in
>i(n0)

n
≤ N(n0)

n
→ 0,

Nout
>j (n0)

n
≤ N(n0)

n
→ 0, as n → ∞,

and (n− n0)/n → 1. In other words, n0, N
in
>i(n0), N

out
>j (n0) are all o(n). So for

simplicity, we assume that the graph is initiated with finitely many nodes and
no edges, that is, n0 = 0 and N(0) ≥ 1. In particular, these assumptions imply
the sum of the in-degrees at time n is equal to n.

Let Ψn(·),Φn(·) be the functional forms of the terms in the log-likelihood
function (3.2) involving δin and δout respectively, normalized by 1/n, i.e.,

Ψn(λ) :=
∞∑

i=0

N in
>i(n)

n
log(i+ λ)− log λ

n

n∑

t=1

1{Jt=3}
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− 1

n

n∑

t=1

log (t− 1 + λN(t− 1))1{Jt∈{1,2}},

Φn(μ) :=

∞∑

j=0

Nout
>j (n)

n
log(j + μ)− logμ

n

n∑

t=1

1{Jt=1}

− 1

n

n∑

t=1

log (t− 1 + μN(t− 1))1{Jt∈{2,3}}.

The following theorem gives the consistency of the MLE of δin and δout.

Theorem 3.2. Suppose δin, δout ∈ (ǫ,K) ⊂ (0,∞). Define

δ̂MLE
in

= δ̂MLE
in

(n) := argmax
ǫ≤λ≤K

Ψn(λ), δ̂MLE
out

= δ̂MLE
out

(n) := argmax
ǫ≤μ≤K

Φn(μ).

Then these are the MLE estimators of δin, δout and they are strongly consistent;
that is,

δ̂MLE
in

a.s.−→ δin, δ̂MLE
out

a.s.−→ δout, n → ∞.

Proof of Theorem 3.2. We only verify the consistency of δ̂MLE
in since similar

arguments apply to δ̂MLE
out . Define

ψn(λ) := Ψ′
n(λ) =

∞∑

i=0

N in
>i(n)/n

i+ λ
−

1
n

∑n
t=1 1{Jt=3}

λ

− 1

n

n∑

t=1

N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}}.

Let us consider a limit version of ψn:

ψ(λ) :=

∞∑

i=0

pin>i(δin)

i+ λ
− γ

λ
− (1− β)a1(λ), (3.10)

where pin>i(δin) :=
∑

k>i p
in
k (δin) with pink (δin) := pink as defined in (2.4), and

a1(λ) :=
α+ β

1 + λ(1− β)
, λ > 0.

Here we write pini (δin) to emphasize the dependence on δin. In Lemmas A.1 and
A.2, provided in the appendix, it is shown that ψ(·) has a unique zero at δin,
where ψ(λ) > 0 when λ < δin and ψ(λ) < 0 when λ > δin, and

sup
λ≥ǫ

|ψn(λ)− ψ(λ)| → 0. (3.11)

Since ψ is continuous, for any κ > 0 arbitrarily small, there exists εκ > 0 such
that ψ(λ) > εκ for λ ∈ [ǫ, δin − κ] and ψ(λ) < −εκ for λ ∈ [δin + κ,K]. From
(3.11),

P

(
∃Nκ s.t. sup

n>Nκ

sup
λ∈[ǫ,K]

|ψn(λ)− ψ(λ)| < εκ/2

)
= 1. (3.12)
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Note supλ∈[ǫ,K] |ψn(λ)− ψ(λ)| < εκ/2 implies

ψn(λ) ≥ ψ(λ)− sup
λ∈[ǫ,K]

|ψn(λ)− ψ(λ)| ≥ εκ − εκ/2 > 0, λ ∈ [ǫ, δin − κ),

and

ψn(λ) ≤ ψ(λ) + sup
λ∈[ǫ,K]

|ψn(λ)− ψ(λ)| ≤ −εκ + εκ/2 < 0, λ ∈ (δin + κ,K].

These jointly indicate that δin − κ ≤ δ̂MLE
in ≤ δin + κ. Hence (3.12) implies

P
(
lim
n→∞

|δ̂MLE
in − δin| ≤ κ

)
= 1,

for arbitrary κ > 0. That is, δ̂MLE
in

a.s.−→ δin.

3.3. Asymptotic normality of MLE

In the following theorem, we establish the asymptotic normality for the MLE
estimator

θ̂
MLE

n = (α̂MLE , β̂MLE , δ̂MLE
in , δ̂MLE

out ).

Theorem 3.3. Let θ̂
MLE

n be the MLE estimator for θ, the parameter vector of
the preferential attachment model. Then

√
n(θ̂

MLE

n − θ)
d→ N (0,Σ(θ)) ,

where

Σ−1(θ) = I(θ) :=

⎡
⎢⎢⎣

1−β
α(1−α−β)

1
1−α−β 0 0

1
1−α−β

1−α
β(1−α−β) 0 0

0 0 Iin 0
0 0 0 Iout

⎤
⎥⎥⎦ , (3.13)

with

Iin :=
∞∑

i=0

pin>i

(i+ δin)2
− γ

δ2
in

− (α+ β)(1− β)2

(1 + δin(1− β))
2 , (3.14)

Iout :=

∞∑

j=0

pout>j

(j + δout)2
− α

δ2
out

− (γ + β)(1− β)2

(1 + δout(1− β))
2 .

In particular, I(θ) is the asymptotic Fisher information matrix for the param-
eters, and hence the MLE estimator is efficient.

Remark 3.4. From Theorem 3.3, the estimators (α̂MLE , β̂MLE), δ̂MLE
in

, and

δ̂MLE
out

are asymptotically independent.
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Proof of Theorem 3.3. We first show the limiting distributions for the MLE’s,
i.e. (α̂MLE , β̂MLE), δ̂MLE

in and δ̂MLE
out . From (3.6) and (3.7),

(α̂MLE , β̂MLE) =
1

n

n∑

t=1

(
1{Jt=1},1{Jt=2}

)
,

where {Jt}t≥1 is a sequence of iid random variables. Hence the limiting distri-

bution of the pair
(
α̂MLE , β̂MLE

)
follows directly from standard central limit

theorem for sums of independent random variables.
Next we show the asymptotic normality for δ̂MLE

in ; the argument for δ̂MLE
out

is similar. Recall from (3.5) that the score function for δin can be written as

∂

∂δin
logL(α, β, δin, δout)

∣∣∣∣
δ

=:

n∑

t=1

ut(δ),

where ut is defined by

ut(δ) :=
1

D
(t−1)
in (v

(2)
t ) + δ

1{Jt∈{1,2}} −
N(t− 1)

t− 1 + δN(t− 1)
1{Jt∈{1,2}}. (3.15)

The MLE estimator δ̂MLE
in can be obtained by solving

∑n
t=1 ut(δ) = 0. By a

Taylor expansion of
∑n

t=1 ut(δ),

0 =

n∑

t=1

ut(δ̂
MLE
in ) =

n∑

t=1

ut(δin) + (δ̂MLE
in − δin)

n∑

t=1

u̇t(δ̂
∗
in), (3.16)

where u̇t denotes the derivative of ut and δ̂∗in = δin + ξ(δ̂MLE
in − δin) for some

ξ ∈ [0, 1]. An elementary transformation of (3.16) gives

n1/2(δ̂MLE
in − δin) =

(
− 1

n−1
∑n

t=1 u̇t(δ̂∗in)

)(
n−1/2

n∑

t=1

ut(δin)

)
.

To establish
n1/2(δ̂MLE

in − δin)
d→ N(0, I−1

in ),

where Iin is as defined in (3.13), it suffices to show the following two results:

(i) n−1/2
∑n

t=1 ut(δin)
d→ N(0, Iin),

(ii) n−1
∑n

t=1 u̇t(δ̂
∗
in)

p→ −Iin.

These are proved in Lemmas A.3 and A.4 in the appendix, respectively.

To establish the joint asymptotic normality of the MLE estimator θ̂
MLE

n ,
denote the joint score function vector for θ by

∂

∂θ
logL(θ) =: Sn(θ) = (Sn(α), Sn(β), Sn(δin), Sn(δout))

T
,
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where Sn(α), Sn(β), Sn(δin), Sn(δout) are the score functions for α, β, δin, δout,
respectively. A multivariate Taylor expansion gives

0 = Sn

(
θ̂
MLE

n

)
= Sn(θ) + Ṡn

(
θ̂
∗

n

)(
θ̂
MLE

n − θ
)
, (3.17)

where Ṡn denotes the Hessian matrix of the log-likelihood function logL(θ),

and θ̂
∗

n = θ + ξ ◦
(
θ̂
MLE

n − θ
)
for some vector ξ ∈ [0, 1]4, where “◦” denotes

the Hadamard product. From Remark 3.1, the likelihood function L(θ) can be
factored into

L(θ) = f1(α, β)f2(δin)f3(δout).

Hence

1

n
Ṡn(θ̂

∗

n) =

⎡
⎢⎢⎢⎢⎢⎣

∂2 logLn(θ̂
∗

n)
∂α2

∂2 logLn(θ̂
∗

n)
∂α∂β 0 0

∂2 logLn(θ̂
∗
n)

∂β∂α
∂2 logLn(θ̂

∗
n)

∂β2 0 0

0 0
∂2 logLn(θ̂

∗
n)

∂δ2in
0

0 0 0
∂2 logLn(θ̂

∗
n)

∂δ2out

⎤
⎥⎥⎥⎥⎥⎦

p→ I(θ)

(3.18)
as implied in the previous part of the proof, where I(θ) (defined in (3.13)) is
positive semi-definite.

Note that (Sn(α), Sn(β)), Sn(δin), Sn(δout) are pairwise uncorrelated. As an
example, observe that

E[Sn(α)Sn(δin)] =

∫
∂ logL(θ)

∂α

∂ logL(θ)

∂δin
L(θ)dx

=

∫
∂ log f1(α, β)

∂α

∂ log f2(δin)

∂δin
f1(α, β)f2(δin)f3(δout)dx

=

∫
∂f1(α, β)

∂α

∂f2(δin)

∂δin
f3(δout) dx

=
∂2

∂α∂δin

∫
L(θ)dx

= 0 = E[Sn(α)]E[Sn(δin)].

Using the Cramér-Wold device, the joint convergence of Sn(θ) follows easily,
i.e.,

n−1/2Sn(θ)
d→ N(0, I(θ)).

From here, the result of the theorem follows from (3.17) and (3.18).

4. Parameter estimation based on one snapshot

Based only on the single snapshot G(n), we propose a parameter estimation
procedure. We assume that the choice of the snapshot does not depend on any
endogenous information related to the network. The snapshot merely represents
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a point in time where the data is available. Since no information on the initial
graph G(n0) is available, we merely assume n0 and N(n0) are fixed and n → ∞.

Among the sufficient statistics for (α, β, δin, δout) derived in Remark 3.1,(
N in

>i(n)
)
i≥0

,
(
Nout

>j (n)
)
j≥0

are computable from G(n), but the (Jt)
n
t=1 are not.

However, when n is large, we can use the following approximations according to
the proof of Lemma A.2:

1

n

n∑

t=n0+1

1{Jt=3} ≈ 1− α− β,

and
1

n

n∑

t=n0+1

N(t)

t+ δinN(t)
1{Jt∈{1,2}} ≈ (α+ β)

1− β

1 + δin(1− β)
.

Substituting in (3.9), we estimate δin in terms of α and β by solving

∞∑

i=0

N in
>i(n)/n

i+ δin
− 1− α− β

δin
− (α+ β)(1− β)

1 + (1− β)δin
= 0. (4.1)

Note that a strongly consistent estimator of β can be obtained directly from
G(n):

β̃ = 1− N(n)

n

a.s.−→ β.

To obtain an estimate for α, we make use of the recursive formula for {pini } in
(A.1a): (

1 +
(α+ β)δin

1 + (1− β)δin

)
pin0 = α, (4.2)

and replace pin0 by N in
0 (n)/n for large n,

(
1 +

(α+ β)δin
1 + (1− β)δin

)
N in

0 (n)

n
= α. (4.3)

Plug the strongly consistent estimator β̃ into (4.1) and (4.3), and we claim that
solving the system of equations:

∞∑

i=0

N in
>i(n)/n

i+ δin
− 1− α− β̃

δin
− (α+ β̃)(1− β̃)

1 + (1− β̃)δin
= 0, (4.4a)

(
1 +

(α+ β̃)δin

1 + (1− β̃)δin

)
N in

0 (n)

n
= α, (4.4b)

gives the unique solution (α̃, δ̃in) which is strongly consistent for (α, δin).

Theorem 4.1. The solution (α̃, δ̃in) to the system of equations in (4.4) is unique
and strongly consistent for (α, δin), i.e.,

α̃
a.s.−→ α, δ̃in

a.s.−→ δin.
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The proof of Theorem 4.1 is given in Section A.3.

The parameters δ̃out and γ̃ can be estimated by a mirror argument. We
summarize the estimation procedure for (α, β, γ, δin, δout) from the snapshot
G(n) as follows:

1. Estimate β by β̃ = 1−N(n)/n.
2. Obtain δ̃0in by solving (i.e., matching (4.4a) and (4.4b))

∞∑

i=1

N in
>i(n)

n

i

i+ δin
(1 + δin(1− β̃)) =

N in
0 (n)
n + β̃

1− N in
0 (n)
n

δin
1+(1−β̃)δin

.

3. Estimate α by

α̃0 =
N in

0 (n)
n + β̃

1− N in
0 (n)
n

δ̃0in
1+(1−β̃)δ̃0in

− β̃.

4. Obtain δ̃0out by solving

∞∑

j=1

Nout
>j (n)

n

j

j + δout
(1 + δout(1− β̃)) =

Nout
0 (n)
n + β̃

1− Nout
0 (n)
n

δout

1+(1−β̃)δout

.

5. Estimate γ by

γ̃0 =
Nout

0 (n)
n + β̃

1− Nout
0 (n)
n

δ̃0out

1+(1−β̃)δ̃0out

− β̃.

Note that even though all three estimators α̃0, β̃, γ̃0 are strongly consistent and
hence α̃0 + β̃ + γ̃0 a.s.−→ 1, Steps 1–5 do not necessarily imply the strict equality

α̃0 + β̃ + γ̃0 = 1.

We recommend adding the following two steps for a re-normalization to over-
come this defect.

6. Re-normalize the probabilities

(α̃, β̃, γ̃) ←
(
α̃0(1− β̃)

α̃0 + γ̃0
, β̃,

γ̃0(1− β̃)

α̃0 + γ̃0

)
.

7. Plug α̃ into (4.4a) to update the estimate of δin, i.e., solve for δ̃in from

∞∑

i=0

N in
>i(n)/n

i+ δ̃in
− 1− α̃− β̃

δ̃in
− (α̃+ β̃)(1− β̃)

1 + (1− β̃)δ̃in
= 0.

Similarly, solve for δ̃out from

∞∑

j=0

Nout
>j (n)/n

j + δ̃out
− 1− γ̃ − β̃

δ̃out
− (γ̃ + β̃)(1− β̃)

1 + (1− β̃)δ̃out
= 0.
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Fig 5.1. Normal QQ-plots in black for normalized estimates in (5.2) under 5000 replications
of a preferential attachment network with 105 edges and θ = (0.3, 0.5, 2, 1). The fitted lines in
blue are the traditional qq-lines (given by R) used to check normality of the estimates. The
red dashed line represents the y = x line in all plots.

5. Simulation study

We now apply the estimation procedures described in Sections 3 and 4 to sim-
ulated data, which allows us to compare the estimation results using the full
history of the network with that using just one snapshot. Algorithm 1 is used
to simulate realizations of the preferential attachment network.

5.1. MLE

For the scenario of observing the full history of the network, we simulated 5000
independent replications of the preferential attachment network with 105 edges
under the true parameter values

θ = (α, β, δin, δout) = (0.3, 0.5, 2, 1). (5.1)

For each realization, the MLE estimate of the parameters was computed and
standardized as √

n
(
(θ̂

MLE

n )i − (θ)i

)

σ̂ii
, (5.2)
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where (θ̂n)i and (θ)i denote the i-th components of θ̂
MLE

n and θ respectively,

and σ̂2
ii is the i-th diagonal component of the matrix Σ̂ := Σ(θ̂

MLE

n ). The explicit

formula for the entries of Σ̂ is

Σ̂ =

⎡
⎢⎢⎢⎣

α̂MLE
(
1− α̂MLE

)
−α̂MLE β̂MLE 0 0

−α̂MLE β̂MLE β̂MLE
(
1− β̂MLE

)
0 0

0 0 Î−1
in 0

0 0 0 Î−1
out

⎤
⎥⎥⎥⎦ ,

where, see (3.13) and (3.14),

Îin =

∞∑

i=0

N in
>i(n)/n(

i+ δ̂MLE
in

)2 − 1− α̂MLE − β̂MLE

(
δ̂MLE
in

)2

−

(
α̂MLE + β̂MLE

)(
1− β̂MLE

)2

(
1 + δ̂MLE

in (1− β̂MLE)
)2 ,

Îout =

∞∑

j=0

Nout
>j (n)/n(

j + δ̂MLE
out

)2 − α̂MLE

(
δ̂MLE
out

)2 −
(
1− α̂MLE

) (
1− β̂MLE

)2

(
1 + δ̂MLE

out (1− β̂MLE)
)2 .

By the strong consistency of the MLEs combined with Lemma A.2, we have
that Σ̂

a.s.−→ Σ.
The QQ-plots of the normalized MLEs are shown in Figure 5.1, all of which

line up quite well with the y = x line (the red dashed line). This is consistent
with the asymptotic theory described in Theorem 3.3. Confidence intervals for θ
can be obtained using this theorem. Given a single realization, an approximate
(1− ε)-confidence interval for (θ)i is

(θ̂
MLE

n )i ± zε/2

√
σ̂2
ii

n
for i = 1, . . . , 4,

where zε/2 is the upper ε/2 quantile of N(0, 1).

5.2. One snapshot

We used the same simulated data as in Section 5.1 to obtain parameter esti-
mates θ̃n := (α̃, β̃, δ̃in, δ̃out) through only the final snapshot, i.e., the set of
directed edges without timestamps, following the procedure described at the
end of Section 4. For the purpose of comparison with MLE, Figure 5.2 gives
the QQ-plots for the normalized estimates from the snapshots using the same
standardizations for the MLEs, i.e.,

√
n
(
(θ̃n)i − (θ)i

)

σ̂ii
, i = 1, . . . , 4, (5.3)
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Fig 5.2. Normal QQ-plots for the normalized estimates in (5.3) under 5000 replications of
a preferential attachment network with 105 edges and θ = (0.3, 0.5, 2, 1). The fitted lines in
blue are the traditional qq-lines used to check normality of the estimates. The red dashed line
represents the y = x line in all plots.

where (θ̃n)i denotes the i-th components of θ̃n. Again, the fitted lines in blue
are the traditional QQ-lines and the red dashed lines are the y = x line. The
QQ-plot for β̃ exhibits the same shape as for β̂MLE , since the two estimates are
identical.

From Figure 5.2, we see that the snapshot estimates of all four parameters
are consistent and approximately normal, i.e., the QQ-plots are linear. However,
the slopes of the QQ-lines for α̃, δ̃in, δ̃out are much steeper than the diagonal line,
indicating a loss of efficiency for θ̃n compared with θ̂n. Indeed the estimator
variance is inflated for all parameters except for β, where β̃ coincides with the
true MLE. This is as expected since knowing only the final snapshot provides
far less information than the whole network history.

Recall that for a consistent estimator Tn of a one-dimensional parameter θ
constructed from a random sample of size n, the asymptotic relative efficiencies
(ARE) of Tn is defined by

ARE(Tn) := lim
n→∞

Var(
√
nT ∗

n)

Var(
√
nTn)

,
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where T ∗
n denotes the asymptotically efficient estimator. We may compute the

ARE’s for the snapshot parameter estimates

ARE(α̃) = lim
n→∞

nVar(α̂MLE)

nVar(α̃)
≈ V̂ar(α̂MLE)

V̂ar(α̃)
≈ 0.398,

ARE(δ̃in) = lim
n→∞

nVar(δ̂MLE
in )

nVar(δ̃in)
≈ V̂ar(δ̂MLE

in )

V̂ar(δ̃in)
≈ 0.392,

ARE(δ̃out) = lim
n→∞

nVar(δ̂MLE
out )

nVar(δ̃out)
≈ V̂ar(δ̂MLE

out )

V̂ar(δ̃out)
≈ 0.226,

where V̂ar denotes the sample variance of the parameter estimate based on the
5000 replications. Note that ARE(β̃) = 1 since β̃ = β̂MLE .

Given a single realization, the variances of the snapshot estimates can be es-
timated through resampling as follows. Using the estimated parameter θ̃n, sim-
ulate 104 independent bootstrap replicates of the network with n = 105 edges.

For each simulated network, the snapshot estimate, θ̃
∗

n :=
(
α̃∗, β̃∗, δ̃∗in, δ̃

∗
out

)
,

is computed. The sample variance of these 104 snapshot estimates can then be
used as an approximation for the variance of θ̃n so that assuming asymptotic
normality, a (1− ε)-confidence interval for θ can be approximated by

(θ̃n)i ± zε/2

√
V̂ar

(
(θ̃

∗

n)i

)
for i = 1, . . . , 4,

where zε/2 is the upper ε/2 quantile of N(0, 1).

5.3. Sensitivity test

Now we investigate the sensitivity of our estimates while values of the parameters
(n, α, β, δin, δout) are allowed to vary. First consider the impact of n, the number
of edges in the network. To do so we held the parameters fixed with values
given by (5.1): (α, β, δin, δout) = (0.3, 0.5, 2, 1) and varied the value of n. The
QQ-plots (not presented) for standardized estimates using both full MLE and
one-snapshot methods were produced to check the asymptotic normality. When
n = 500, 1000, diagnostics revealed departures from normality for both the MLE
and the snapshot estimates. However, after increasing n to 10000, estimates
obtained from both approaches appeared normally distributed as expected.

For each value of n in Table 5.1, 5000 replicates of the network with n edges
and parameters θ = (0.3, 0.5, 2, 1) were generated. For each realization, the

MLE’s θ̂
MLE

n were computed using the full history of the network and the one-
snapshot estimates θ̃n were obtained using the 7-step snapshot method proposed
in Section 4, pretending that only the last snapshot G(n) was available. The
mean for these two estimators were recorded in Table 5.1. There is little bias
for both estimates of α and β, even for small values of n. On the other hand,
there is some bias for estimated δin and δout for n ≤ 5000. The magnitudes of
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Table 5.1

Mean of θ̂
MLE

n and θ̃n with ARE’s of θ̃n relative to θ̂
MLE

n for θ = (0.3, 0.5, 2, 1) under
different choices of n.

n Mean(θ̂
MLE

n ) Mean(θ̃n) ARE(θ̃n)
1000 (0.300, 0.500, 2.076, 1.054) (0.301, 0.500, 2.128, 1.066) (0.408, 1.000, 0.397, 0.228)
5000 (0.300, 0.500, 2.022, 1.013) (0.301, 0.500, 2.036, 1.010) (0.414, 1.000, 0.386, 0.236)
10000 (0.300, 0.500, 2.011, 1.006) (0.301, 0.500, 2.019, 1.006) (0.408, 1.000, 0.388, 0.232)
50000 (0.300, 0.500, 2.003, 1.002) (0.300, 0.500, 2.005, 1.002) (0.399, 1.000, 0.393, 0.230)
100000 (0.300, 0.500, 2.001, 1.001) (0.300, 0.500, 2.003, 1.000) (0.392, 1.000, 0.382, 0.223)

Table 5.2

Mean of θ̂
MLE

n and θ̃n with ARE’s of θ̃n relative to θ̂
MLE

n for (n, δin, δout) = (105, 2, 1)
under different choices of (α, β).

(α, β) Mean(θ̂
MLE

n ) Mean(θ̃n) ARE(θ̃n)
(0.001, 0.99) (0.001, 0.990, 2.034, 1.016) (0.001, 0.990, 2.071, 1.049) (0.291, 1.000, 0.147, 0.316)
(0.01, 0.9) (0.010, 0.900, 2.004, 1.001) (0.010, 0.900, 2.008, 1.004) (0.331, 1.000, 0.207, 0.381)
(0.1, 0.8) (0.100, 0.800, 2.003, 1.001) (0.100, 0.800, 2.004, 1.002) (0.353, 1.000. 0.264, 0.216)
(0.2, 0.6) (0.200, 0.600, 2.002, 1.001) (0.200, 0.600, 2.003, 1.001) (0.364, 1.000, 0.309, 0.236)
(0.5, 0.3) (0.500, 0.300, 2.001, 1.001) (0.500, 0.300, 2.002, 1.000) (0.472, 1.000, 0.529, 0.202)
(0.7, 0.2) (0.700, 0.200, 2.002, 1.000) (0.700, 0.200, 2.002, 1.000) (0.726, 1.000, 0.793, 0.217)
(0.1, 0.3) (0.100, 0.300, 2.001, 1.001) (0.100, 0.300, 2.002, 1.000) (0.420, 1.000, 0.313, 0.629)

the biases for both types of estimates decrease as n increases. Also the ARE’s
of the snapshot estimator stay within a narrow band as n increases.

Next we held (n, δin, δout) = (105, 2, 1) fixed and experimented with various
values of (α, β) in Table 5.2. For each choice of (α, β), 5000 independent real-

izations of the network were generated and the means of the MLE θ̂
MLE

n and

the one-snapshot estimates θ̃n were recorded. Overall, the biases for θ̂
MLE

n are
remarkably small for virtually all combinations of parameter values, except for
those parameter choices where one of (α, β) is extremely small. The biases for
the snapshot estimates θ̃n exhibit a similar property, but the magnitudes of the
biases are consistently larger than those in the MLE case.

In general, the snapshot estimators are able to achieve 20%–50% efficiency
over the range of parameters considered. The loss of efficiency might be less
than one would expect given the substantial reduction in the data available
to produce the snapshot estimates. It is worth noting that in the case where
(α, β) = (0.7, 0.2), the efficiencies of the snapshot estimators for α and δin
are much larger (0.73 and 0.79, respectively). A heuristic explanation for this
increase is that the parameter γ = 1 − α − β = 0.1 is relatively small. By the
implicit constraints used for the snapshot estimates, we have

α̃+ γ̃ = 1− β̃ = 1− β̂MLE = α̂MLE + γ̂MLE ,

that is, the snapshot estimate of the sum α + γ is the same as the MLE for
the sum. Now if γ is small, one would expect the resulting estimates to also be
small so that α̃ would be nearly the same as α̂MLE . Hence the ARE would be
close to 1. On the other hand, in the case of a larger γ, see the bottom row of
Table 5.2 in which γ = 0.6, the ARE for α is not as large (0.42), but the ARE
for δ̃out is (0.63).
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6. Real network example

In this section, we explore fitting a preferential attachment model to a social net-
work. As an illustration, we chose the Dutch Wiki talk network dataset, available
on KONECT [14] (http://konect.uni-koblenz.de/networks/wiki_talk_nl).
The nodes represent users of Dutch Wikipedia, and an edge from node A to node
B refers to user A writing a message on the talk page of user B at a certain
time point. The network consists of 225,749 nodes (users) and 1,554,699 edges
(messages). All edges are recorded with timestamps.

In order to accommodate all the edge formulation scenarios appearing in
the dataset, we extend our model by appending the following two interaction
schemes (Jn = 4, 5) in addition to the existing three (Jn = 1, 2, 3) described in
Section 2.1.

• If Jn = 4 (with probability ξ), append to G(n− 1) two new nodes v, w ∈
V (n) \ V (n− 1) and an edge connecting them (v, w).

• If Jn = 5 (with probability ρ), append to G(n − 1) a new node v ∈
V (n) \ V (n− 1) with self loop (v, v).

These scenarios have been observed in other social network data, such as the
network that models Facebook wall posts (http://konect.uni-koblenz.de/
networks/facebook-wosn-wall). They occur in small proportions and can be
easily accommodated by a slight modification in the model fitting procedure.
The new model has parameter vector (α, β, γ, ξ, δin, δout), and ρ is implicitly
defined through ρ = 1− (α+ β+ γ+ ξ). Similar to the derivations in Section 3,
the MLE estimators for α, β, γ, ξ are

α̂MLE =
1

n

n∑

t=1

1{Jt=1}, β̂MLE =
1

n

n∑

t=1

1{Jt=2},

γ̂MLE =
1

n

n∑

t=1

1{Jt=3}, ξ̂MLE =
1

n

n∑

t=1

1{Jt=4},

and δin, δout can be obtained through solving

∞∑

i=0

N in
>i(n)/n

i+ δin
−

1
n

∑n
t=1 1{Jt∈{3,4,5}}

δin
− 1

n

n∑

t=1

N(t)

t+ δinN(t)
1{Jt∈{1,2}} = 0,

∞∑

j=0

Nout
>j (n)/n

j + δout
−

1
n

∑n
t=1 1{Jt∈{1,4,5}}

δout
− 1

n

n∑

t=1

N(t)

t+ δoutN(t)
1{Jt∈{2,3}} = 0.

We first naively fit the linear preferential attachment model to the full net-
work using MLE. The MLE estimators are

(α̂, β̂, γ̂, ξ̂, ρ̂, δ̂in, δ̂out) =

(3.08× 10−3, 8.55× 10−1, 1.39× 10−1, 4.76× 10−5, 3.06× 10−3, 0.547, 0.134).
(6.1)

http://konect.uni-koblenz.de/networks/wiki_talk_nl
http://konect.uni-koblenz.de/networks/facebook-wosn-wall
http://konect.uni-koblenz.de/networks/facebook-wosn-wall
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Fig 6.1. Empirical in- and out-degree frequencies of the full Wiki talk network (red) and that
from 20 realizations of the linear preferential attachment network with fitted parameter values
(6.1) from MLE (blue). The scatter plots for the degree frequencies from the 20 simulations
are overlaid together to form an informal confidence region for the degree distribution of the
fitted model

To evaluate the goodness-of-fit, 20 network realizations were simulated from
the fitted model. We overlaid the empirical in- and out-degree frequencies of
the original network with that of the simulations. If the model fits the data
well, the degree frequencies of the data should lie within the range formed by
that of the simulations, which gives an informal confidence region for the degree
distributions. From Figure 6.1, we see that while the data roughly agrees with
the simulations in the out-degree frequencies, the deviation in the in-degree
frequencies is noticeable.

To better understand the discrepancy in the in-degree frequencies, we ex-
amined the link data and their timestamps and discovered bursts of messages
originating from certain nodes over small time intervals. According to Wikipedia
policy [23], certain administrating accounts are allowed to send group messages
to multiple users simultaneously. These bursts presumably represent broadcast
announcements generated from these accounts. These administrative broadcasts
can also be detected if we apply the linear preferential attachment model to the
network in local time intervals. We divided the total time frame down to sub-
intervals of varying length each containing the formation of 104 edges. The
number 104 is chosen to ensure good asymptotics as shown in Table 5.1. This
process generated 155 networks,

G(nk−1), . . . , G(nk − 1), k = 1, . . . , 155.

For each of the 155 datasets, we fit a preferential attachment model using MLE.
The resulting estimates (δ̂in, δ̂out) are plotted against the corresponding timeline

on the upper left panel of Figure 6.2. Notice that δ̂in exhibits large spikes at
various times. Recall from (2.1), a large value of δin indicates that the probability
of an existing node v receiving a new message becomes less dependent on its in-
degree, i.e., previous popularity. These spikes appear to be directly related to the
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Fig 6.2. Local parameter estimates of the linear preferential attachment model for the full
and reduced Wiki talk network. Upper left: (δ̂in, δ̂out) for the full network. Upper right, lower

left, lower right: (δ̂in, δ̂out), (β̂, γ̂), (α̂, ξ̂, ρ̂) for the reduced network, respectively.

occurrences of group messages. This plot is truncated after the day 2016/3/16,
on which a massive group message of size 48,957 was sent and the model can
no longer be fit.

We identified 37 users who have sent, at least once, 40 or more consecutive
messages in the message history. This is evidence that group messages were
sent by this user. We presume these nodes are administrative accounts; they
are responsible for about 30% of the total messages sent. Since their behavior
cannot be regarded as normal social interaction, we excluded messages from
these accounts from the dataset in our analysis. We then also removed nodes
with zero in- and out-degrees.

The re-estimated parameters after the data cleaning are displayed in the
other three panels of Figure 6.2. Here all parameter estimates are quite stable
through time.

The reduced network now contains 112,919 nodes and 1,086,982 edges, to
which we fit the linear preferential attachment model. The fitted parameters
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Fig 6.3. Empirical in- and out-degree frequencies of the reduced Wiki talk network (red) and
that from 20 realizations of the linear preferential attachment network with fitted parameter
values (6.2) from MLE (blue).

based on MLE for our reduced dataset are

(α̂, β̂, γ̂, ξ̂, ρ̂, δ̂in, δ̂out) =

(6.95× 10−3, 8.96× 10−1, 9.10× 10−2, 1.44× 10−4, 5.61× 10−3, 0.174, 0.257).
(6.2)

Again the degree distributions of the data and 20 simulations from the fitted
model are displayed in Figure 6.3. The out-degree distribution of the data agrees
reasonably well with the simulations. For the in-degree distribution, the fit is
better than that for the entire dataset (Figure 6.1). However, for smaller in-
degrees, the fitted model over-estimates the in-degree frequencies. We speculate
that in many social networks, the out-degree is in line with that predicted by
the preferential attachment model. An individual node would be more likely to
reach out to others if having done so many times previously. For in-degrees, the
situation is complicated and may depend on a multitude of factors. For instance,
the choice of recipient may depend on the community that the sender is in, the
topic being discussed in the message, etc. As an example, a group leader might
send messages to his/her team on a regular basis. Such examples violate the
base assumptions of the preferential attachment model and could result in the
deviation between the data and the simulations.

Next we consider the estimation method of Section 4 applied to a single
snapshot of the data. In order to implement this procedure, we donned blinders
and assumed that our dataset consists only of the information of the wiki data at
the last timestamp. That is, information about administrative broadcasts, and
other aspects of the data learned by looking at the previous history of the data
are unavailable. In particular, we would have no knowledge of the existence of
the two additional scenarios corresponding to Jn = 4, 5. With this in mind, we fit
the three scenario model using the methods in Section 4. The fitted parameters
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Fig 6.4. Empirical in- and out-degree frequencies of the full Wiki talk network (red) and that
from 20 realizations of the linear preferential attachment network with fitted parameter values
(6.3) from the snapshot estimator (blue).

are

(α̃, β̃, γ̃, δ̃in, δ̃out) = (5.80× 10−4, 8.55× 10−1, 1.45× 10−1, 0.199, 0.165). (6.3)

The comparison of the degree distributions between the data and simulations
from the fitted model is displayed in Figure 6.4 and is not too dissimilar to
the plots in Figure 6.1 that are based on maximum likelihood estimation using
the full network data. In particular, the out-degree distribution is matched rea-
sonably well, but the fitted model does a poor job of capturing the in-degree
distribution.

We see from this example that while the linear preferential attachment model
is perhaps too simplistic for the Wiki talk network dataset, it has the ability to
illuminate some gross features, such as the out-degrees, as well as to capture im-
portant structural changes such as the group message behavior. Consequently,
despite its limitation, this model may be used as a building block for more flex-
ible models. Modifications to the existing model formulation and more careful
analysis of change points in parameters are directions for future research.

Appendix A: Proofs

A.1. For the proof of Theorem 3.2: Lemmas A.1 and A.2

Lemma A.1. For λ > 0, the function ψ(λ) in (3.10) has a unique zero at δin
and, ψ(λ) > 0 when λ < δin and ψ(λ) < 0 when λ > δin.

Proof. The probabilities {pini (λ)} satisfy the recursions in i (cf. [3]):

pin0 (λ)

(
λ+

1

a1(λ)

)
=

α

a1(λ)
, (A.1a)
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pin1 (λ)

(
1 + λ+

1

a1(λ)

)
= λpin0 (λ) +

γ

a1(λ)
,

pin2 (λ)

(
2 + λ+

1

a1(λ)

)
= (1 + λ)pin1 (λ),

...

pini (λ)

(
i+ λ+

1

a1(λ)

)
= (i− 1 + λ)pini−1(λ), (i ≥ 2),

where a1(λ) := (α + β)/(1 + λ(1 − β)). Summing the recursions in (A.1) from

0 to i, we get (with the convention that
∑−1

i=0 = 0)

i∑

k=0

pink (λ)

(
k + λ+

1

a1(λ)

)
=

i−1∑

k=0

(k+λ)pink (λ)+
α

a1(λ)
+

γ

a1(λ)
1{i≥1}, i ≥ 0,

which can be simplified to

1

a1(λ)

i∑

k=0

pink (λ) + (i+ λ)pini (λ) =
1− β

a1(λ)
− γ

a1(λ)
1{i=0}, i ≥ 0. (A.2)

From (2.3),
∞∑

i=0

pini (λ) =
∑

i,j

pij(λ) = 1− β. (A.3)

Hence by rearranging (A.2), we have

(i+ λ)pini (λ) +
γ

a1(λ)
1{i=0} =

1

a1(λ)

(
1− β −

i∑

k=0

pink (λ)

)
=

1

a1(λ)
pin>i(λ),

or equivalently,

pin>i(λ) = a1(λ)(i+ λ)pini (λ) + γ1{i=0}. (A.4)

Now with the help of (A.3) and (A.4), we can rewrite ψ(λ) in the following way:

ψ(λ) =

∞∑

i=0

pin>i(δin)

i+ λ
− γ

λ
− (1− β)a1(λ)

=

∞∑

i=0

pin>i(δin)

i+ λ
− γ

λ
−

∞∑

i=0

pini (δin)a1(λ)(i+ λ)

i+ λ

=

∞∑

i=0

a1(δin)(i+ δin)p
in
i (δin) + γ1{i=0}

i+ λ
− γ

λ
−

∞∑

i=0

pini (δin)a1(λ)(i+ λ)

i+ λ

=
∞∑

i=0

pini (δin)

i+ λ

(
a1(δin)(i+ δin)− a1(λ)(i+ λ)

)
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=

∞∑

i=0

pini (δin)

i+ λ

∫ δin

λ

∂

∂s

(
a1(s)(i+ s)

)
ds

=
∞∑

i=0

pini (δin)

i+ λ

∫ δin

λ

(α+ β)(1− i(1− β))

(1 + s(1− β))2
ds

=

(
∞∑

i=0

pini (δin)

i+ λ
(1− i(1− β))

)∫ δin

λ

α+ β

(1 + s(1− β))2
ds

=: C(λ)

∫ δin

λ

α+ β

(1 + s(1− β))2
ds. (A.5)

The series defining C(λ) converges absolutely for any λ > 0 since

∞∑

i=0

∣∣∣∣
pini (δin)

i+ λ
(1− i(1− β))

∣∣∣∣ <

∞∑

i=0

pini (δin)

∣∣∣∣
i(1− β)

i+ λ
+

1

i+ λ

∣∣∣∣

< (1− β)(1− β +
1

λ
) < ∞.

Summing over i in (A.4), we get by monotone convergence

∞∑

i=0

pin>i(λ) =

∞∑

i=0

ipini (λ) = a1(λ)

∞∑

i=0

ipini (λ) + a1(λ)λ

∞∑

i=0

pini (λ) + γ.

The infinite series converge because pini (λ) is a power law with index greater
than 2; see (2.4) and (2.5). Solving for the infinite series we get

∞∑

i=0

ipini (λ) =
a1(λ)λ

1− a1(λ)
(1− β) +

γ

1− a1(λ)
= 1. (A.6)

Hence we have

C(λ) =
∑

i≤(1−β)−1

pini (δin)

i+ λ
(1− i(1− β))−

∑

i>(1−β)−1

pini (δin)

i+ λ
(i(1− β)− 1)

>

∞∑

i=0

pini (δin)

(1− β)−1 + λ
(1− i(1− β))

=
1

(1− β)−1 + λ

∞∑

i=0

pini (δin)−
1− β

(1− β)−1 + λ

∞∑

i=0

ipini (δin)

=
1

(1− β)−1 + λ
(1− β)− 1− β

(1− β)−1 + λ
1

= 0.

Now recall from (A.5) that ψ(λ) is of the form

ψ(λ) = C(λ)

∫ δin

λ

α+ β

(1 + s(1− β))2
ds,
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where C(λ) > 0 for all λ > 0. Therefore ψ(·) has a unique zero at δin and
ψ(λ) > 0 when λ < δin and ψ(λ) < 0 when λ > δin.

We show the uniform convergence of ψn to ψ in the next lemma.

Lemma A.2. As n → ∞, for any ǫ > 0,

sup
λ≥ǫ

|ψn(λ)− ψ(λ)| a.s.−→ 0.

Proof. By the definition of ψ, pin>i(δin) is a function of δin and is a constant with
respect to λ. Hence we suppress the dependence on δin and simply write it as
pin>i when considering the difference ψn − ψ as a function of λ:

ψn(λ)− ψ(λ) =

∞∑

i=0

N in
>i(n)/n− pin>i

i+ λ
− 1

λ

(
1

n

n∑

t=1

1{Jt=3} − (1− α− β)

)

− 1

n

n∑

t=1

(
N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}} −

(1− β)(α+ β)

1 + λ(1− β)

)
.

Thus,

sup
λ≥ǫ

|ψn(λ)− ψ(λ)|

≤ sup
λ≥ǫ

∞∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ λ

+ sup
λ≥ǫ

1

λ

∣∣∣∣∣
1

n

n∑

t=1

1{Jt=3} − (1− α− β)

∣∣∣∣∣

+ sup
λ≥ǫ

∣∣∣∣∣
1

n

n∑

t=1

N(t− 1)

t− 1 + λN(t− 1)
1{Jt∈{1,2}} −

(1− β)(α+ β)

1 + λ(1− β)

∣∣∣∣∣ . (A.7)

For the first term, note that for all i ≥ 0,

iN in
>i(n) =

∞∑

k=i+1

N in
k (n)i ≤

∞∑

k=1

kN in
k (n) = n,

since the assumption on initial conditions implies the sum of in-degrees at n is
n. Therefore N in

>i(n)/n ≤ i−1 for i ≥ 1, and it then follows that

∞∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ λ

≤
M∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ λ

+

∞∑

i=M+1

1/i

i+ λ
+

∞∑

i=M+1

pin>i

i+ λ
.

Note that the last two terms on the right side can be made arbitrarily small
uniformly on [ǫ,∞) if we choose M sufficiently large.

Recall the convergence of the degree distribution {Nij(n)/N(n)} to the prob-
ability distribution {fij} in (2.3), we have

N in
>i(n)

n
=

N(n)

n

N in
>i(n)

N(n)

a.s.−→ (1− β)
∑

l≥0,k>i

fkl = pin>i, ∀i ≥ 0.
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Hence, for any fixed M ,

M∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ ǫ

a.s.−→ 0, as n → ∞.

which implies further that choosing M arbitrarily large gives

sup
λ≥ǫ

∞∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ λ

≤
M∑

i=0

∣∣N in
>i(n)/n− pin>i

∣∣
i+ ǫ

+

∞∑

i=M+1

1/i

i+ ǫ
+

∞∑

i=M+1

pin>i

i+ ǫ

a.s.−→ 0.

The second term in (A.7) converges to 0 almost surely by strong law of large
numbers, and the third term in (A.7) can be written as

∣∣∣∣∣
1

n

n∑

t=1

(
N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

)
1{Jt∈{1,2}}

+
1− β

1 + λ(1− β)

1

n

n∑

t=1

(
1{Jt∈{1,2}} − (α+ β)

)
∣∣∣∣∣ ,

which is bounded by
∣∣∣∣∣
1

n

n∑

t=1

N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

∣∣∣∣∣

+
1− β

1 + λ(1− β)

∣∣∣∣∣
1

n

n∑

t=1

1{Jt∈{1,2}} − (α+ β)

∣∣∣∣∣ .

We have

sup
λ≥ǫ

∣∣∣ 1
n

n∑

t=1

N(t− 1)

t− 1 + λN(t− 1)
− (1− β)

1 + λ(1− β)

∣∣∣

= sup
λ≥ǫ

∣∣∣∣∣
1

n

n∑

t=1

N(t− 1)/(t− 1)− (1− β)

(1 + λN(t− 1)/(t− 1))(1 + λ(1− β))

∣∣∣∣∣

≤ 1

n

n∑

t=1

∣∣∣∣
N(t− 1)/(t− 1)− (1− β)

(1 + ǫN(t− 1)/(t− 1))(1 + ǫ(1− β))

∣∣∣∣ ,

which converges to 0 almost surely by Cesàro convergence of random variables,
since ∣∣∣∣

N(n)/n− (1− β)

(1 + ǫN(n)/n)(1 + ǫ(1− β))

∣∣∣∣
a.s.−→ 0, as n → ∞.

Further, by the strong law of large numbers,

sup
λ≥ǫ

1− β

1 + λ(1− β)

∣∣∣∣∣
1

n

n∑

t=1

1{Jt∈{1,2}} − (α+ β)

∣∣∣∣∣
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≤ 1− β

1 + ǫ(1− β)

∣∣∣∣∣
1

n

n∑

t=1

1{Jt∈{1,2}} − (α+ β)

∣∣∣∣∣
a.s.−→ 0, as n → ∞.

Hence the third term of (A.7) also goes to 0 almost surely as n → ∞. The result
of the lemma follows.

A.2. For the proof of Theorem 3.3: Lemmas A.3 and A.4

Lemma A.3. As n → ∞,

n−1/2
n∑

t=1

ut(δin)
d→ N(0, Iin). (A.8)

Proof. Let Fn = σ(G(0), . . . , G(n)) be the σ-field generated by the information
contained in the graphs. We first observe that {∑n

t=1 ut(δin),Fn, n ≥ 1} is a
martingale. To see this, note from (3.15) that |ut(δ)| ≤ 2/δ and

E[ut(δin)|Ft−1]

= E

[
1

D
(t−1)
in (v

(2)
t ) + δin

1{Jt∈{1,2}}

∣∣∣∣∣Ft−1

]

− N(t− 1)

t− 1 + δinN(t− 1)
E[1{Jt∈{1,2}}|Ft−1]

= E

[
1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣Jt = 1,Ft−1

]
P[Jt = 1]

+E

[
1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣ Jt = 2,Ft−1

]
P[Jt = 2]

− (α+ β)
N(t− 1)

t− 1 + δinN(t− 1)

= (α+ β)
∑

v∈Vt−1

1

D
(t−1)
in (v) + δin

D
(t−1)
in (v) + δin

t− 1 + δinN(t− 1)

− (α+ β)
N(t− 1)

t− 1 + δinN(t− 1)

= (α+ β)

⎛
⎝ ∑

v∈Vt−1

1

t− 1 + δinN(t− 1)
− N(t− 1)

t− 1 + δinN(t− 1)

⎞
⎠

= 0,

which satisfies the definition of a martingale difference. Hence
{
n−1/2

t∑

r=1

ur(δin)

}

t=1,...,n
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is a zero-mean, square-integrable martingale array. The convergence (A.8) fol-
lows from the martingale central limit theory (cf. Theorem 3.2 of [7]) if the
following three conditions can be verified:

(a) n−1/2 maxt |ut(δin)|
p→ 0,

(b) n−1
∑

t u
2
t (δin)

p→ Iin,
(c) E

(
n−1 maxt u

2
t (δin)

)
is bounded in n.

Since |ut(δin)| ≤ 2/δin, we have

n−1/2 max
t

|ut(δin)| ≤
2

n1/2δin
→ 0,

and

n−1 max
t

u2
t ≤ 4

nδ2in
→ 0.

Hence conditions (a) and (c) are straightforward.
To show (b), observe that

1

n

n∑

t=1

u2
t (δin)

=
1

n

n∑

t=1

1{Jt∈{1,2}}

(
1

D
(t−1)
in (v

(2)
t ) + δin

− N(t− 1)

t− 1 + δinN(t− 1)

)2

=
1

n

n∑

t=1

1{Jt∈{1,2}}(
D

(t−1)
in (v

(2)
t ) + δin

)2

− 2

n

n∑

t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

N(t− 1)

t− 1 + δinN(t− 1)

+
1

n

n∑

t=1

1{Jt∈{1,2}}

(
N(t− 1)

t− 1 + δinN(t− 1)

)2

= : T1 − 2T2 + T3.

Following the calculations in the proof of Lemma A.2, we have for T1,

T1 =

∞∑

i=0

N in
>i(n)/n

(i+ δin)2
− 1

δ2in

1

n

n∑

t=1

1{Jt=3}
p→

∞∑

i=0

pin>i

(i+ δin)2
− γ

δ2in
.

We then rewrite T2 as

T2 =
1

n

n∑

t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

(
N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)
− 1− β

1 + δin(1− β)

)

+
1

n

n∑

t=1

1{Jt∈{1,2}}

D
(t−1)
in (v

(2)
t ) + δin

1− β

1 + δin(1− β)

= : T21 + T22,
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where

|T21| ≤
1

n

n∑

t=1

1

δin

∣∣∣∣
N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)
− 1− β

1 + δin(1− β)

∣∣∣∣
p→ 0

by Cesàro’s convergence and

T22 =
1− β

1 + δin(1− β)

(
∞∑

i=0

N in
>i(n)/n

i+ δin
− 1

δin

1

n

n∑

t=1

1{Jt=3}

)

p→ 1− β

1 + δin(1− β)

(
∞∑

i=0

pin>i

i+ δin
− γ

δin

)
=

(α+ β)(1− β)2

(1 + δin(1− β))2
,

where the equality follows from (A.4). For T3, similar to T1, we have

T3 =
1

n

n∑

t=1

1{Jt∈{1,2}}

((
N(t− 1)/(t− 1)

1 + δinN(t− 1)/(t− 1)

)2

− (1− β)2

(1 + δin(1− β))2

)

+
(1− β)2

(1 + δin(1− β))2
1

n

n∑

t=1

1{Jt∈{1,2}}
p→ (α+ β)(1− β)2

(1 + δin(1− β))2
.

Combining these results together,

1

n

n∑

t=1

u2
t (δin) = T1 − 2(T21 + T22) + T3

p→
∞∑

i=0

pin>i

(i+ δin)2
− γ

δ2in
− (α+ β)(1− β)2

(1 + δin(1− β))2
= Iin. (A.9)

This completes the proof.

Lemma A.4. As n → ∞,

1

n

n∑

t=1

u̇t(δ̂
∗
in
)

p→ −Iin.

Proof. The result of this lemma can be established by showing first

1

n

n∑

t=1

u̇t(δin)
p→ −Iin (A.10)

and then ∣∣∣∣∣
1

n

n∑

t=1

u̇t(δ̂
∗
in)−

1

n

n∑

t=1

u̇t(δin)

∣∣∣∣∣
p→ 0. (A.11)

We first observe that

u̇t(δ) = −
(

1

D
(t−1)
in (v

(2)
t ) + δ

)2

1{Jt∈{1,2}}
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+

(
N(t− 1)

t− 1 + δN(t− 1)

)2

1{Jt∈{1,2}}

= − u2
t (δ)− 2ut(δ)

N(t− 1)

t− 1 + δN(t− 1)
.

Recall the definition and convergence result for T2 and T3 in Lemma A.3, we
have

1

n

n∑

t=1

ut(δin)
N(t− 1)

t− 1 + δinN(t− 1)
= T2 − T3

p→ 0.

Also from (A.9),

1

n

n∑

t=1

u2
t (δin)

p→ Iin.

Hence

1

n

n∑

t=1

u̇t(δin) = − 1

n

n∑

t=1

u2
t (δin)−

2

n

n∑

t=1

ut(δin)
N(t− 1)

t− 1 + δinN(t− 1)

p→ −Iin

and (A.10) is established.

By construction and definition, we have δ̂in, δ̂
∗
in, δin > 0. To prove (A.11), note

that

|ut(δ̂
∗
in)− ut(δin)|

≤ 1{Jt∈{1,2}}

∣∣∣∣∣
1

D
(t−1)
in (v

(2)
t ) + δ̂∗in

− 1

D
(t−1)
in (v

(2)
t ) + δin

∣∣∣∣∣

+ 1{Jt∈{1,2}}

∣∣∣∣∣
N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣

= 1{Jt∈{1,2}}

∣∣∣∣∣∣
δin − δ̂∗in(

D
(t−1)
in (v

(2)
t ) + δ̂∗in

)(
D

(t−1)
in (v

(2)
t ) + δin

)

∣∣∣∣∣∣

+ 1{Jt∈{1,2}}

∣∣∣∣∣∣
(N(t− 1))2(δin − δ̂∗in)(

t− 1 + δ̂∗inN(t− 1)
)
(t− 1 + δinN(t− 1))

∣∣∣∣∣∣

≤ 2|δ̂∗in − δin|
δ̂∗inδin

.

Then

|u2
t (δ̂

∗
in)− u2

t (δin)| =
∣∣∣ut(δ̂

∗
in)− ut(δin)

∣∣∣
∣∣∣ut(δ̂

∗
in) + ut(δin)

∣∣∣

≤
2
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

(
2

δ̂∗in
+

2

δin

)
,
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and

∣∣∣ut(δ̂
∗
in)

N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− ut(δin)

N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣

≤
∣∣∣ut(δ̂

∗
in)− ut(δin)

∣∣∣
N(t−1)
t−1

1 + δin
N(t−1)
t−1

+
∣∣∣ut(δ̂

∗
in)
∣∣∣
∣∣∣∣∣

N(t−1)
t−1

1 + δ̂∗in
N(t−1)
t−1

−
N(t−1)
t−1

1 + δin
N(t−1)
t−1

∣∣∣∣∣

≤
2
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

1

δin
+

2

δ̂∗in

∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

.

From Theorem 3.2, δ̂MLE
in is consistent for δin, hence

∣∣∣δ̂∗in − δin

∣∣∣ ≤
∣∣∣δ̂MLE

in − δin

∣∣∣ p→ 0.

We have
∣∣∣∣∣
1

n

n∑

t=1

u̇t(δ̂
∗
in)−

1

n

n∑

t=1

u̇t(δin)

∣∣∣∣∣

≤ 1

n

n∑

t=1

∣∣∣u̇t(δ̂
∗
in)− u̇t(δin)

∣∣∣ ≤ 1

n

n∑

t=1

∣∣∣u2
t (δ̂

∗
in)− u2

t (δin)
∣∣∣

+
2

n

n∑

t=1

∣∣∣∣∣ut(δ̂
∗
in)

N(t− 1)

t− 1 + δ̂∗inN(t− 1)
− ut(δin)

N(t− 1)

t− 1 + δinN(t− 1)

∣∣∣∣∣

≤
2
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

(
2

δ̂∗in
+

2

δin

)
+

4
∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

1

δin
+

4

δ̂∗in

∣∣∣δ̂∗in − δin

∣∣∣
δ̂∗inδin

p→ 0.

This proves (A.11) and completes the proof of Lemma A.4.

A.3. Proof of Theorem 4.1

Proof. First observe that
∑

i iN
in
i (n) sums up to the total number of edges n,

so
∞∑

i=0

N in
>i(n)

n
=

∞∑

i=0

iN in
i (n)

n
= 1.

We can re-write (4.4a) as

α+ β̃ =

(
1

δin
−

∞∑

i=0

N in
>i(n)/n

i+ δin

)/(
1

δin
− 1− β̃

1 + δin(1− β̃)

)
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=

(
∞∑

i=0

N in
>i(n)/n

δin
−

∞∑

i=0

N in
>i(n)/n

i+ δin

)/(
1

δin(1 + δin(1− β̃))

)

=

∞∑

i=1

N in
>i(n)

n

i

i+ δin

(
1 + δin(1− β̃)

)
=: fn(δin), (A.12)

and (4.4b) as

α+ β̃ =

(
N in

0 (n)

n
+ β̃

)/(
1− N in

0 (n)

n

δin

1 + (1− β̃)δin

)
=: gn(δin).

Then δ̃in can be obtained by solving

fn(δ)− gn(δ) = 0, δ ∈ [ǫ,K].

Similar to the proof of Theorem 3.2, we define the limit versions of fn, and gn
as follows:

f(δ) :=

∞∑

i=1

pin>i

i

i+ δ
(1 + δ(1− β)),

g(δ) :=
(
pin0 + β

)/(
1− pin0

δ

1 + (1− β)δ

)
, δ ∈ [ǫ,K].

Now we apply the re-parametrization

η :=
δ

1 + δ(1− β)
∈
[

1

ǫ−1 + 1− β
,

1

K−1 + 1− β

]
=: I (A.13)

to f and g, such that

f̃(η) := f(δ(η)) =

∞∑

i=1

pin>i

1 + (i−1 − (1− β))η
,

g̃(η) := g(δ(η)) =
pin0 + β

1− ηpin0
.

Note that for all η ∈ I:

• Set bi(η) := (i−1 − (1 − β))η, then 1 + bi(η) > 0 for all i ≥ 1. So that
f̃(η) > 0 on I;

• f̃(η) ≤ 1
1−(1−β)η

∑∞
i=0 p

in
>i ≤ 1 + (1− β)K < ∞.

Meanwhile, g̃ is also well defined and strictly positive for η ∈ I because

1/pin0 > 1/(1− β) > η. (A.14)
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The first inequality holds since:

1/pin0 > 1/(1− β) ⇔ pin0 < 1− β

⇔ α

1 + (α+β)δin
1+(1−β)δin

< 1− β

⇔ α+ β < 1 +
(1− β)(α+ β)δin
1 + (1− β)δin

⇔ α+ β < 1 + (1− β)δin.

We know α+ β < 1 by our model assumption, thus verifying (A.14).
Define for η ∈ I,

h̃(η) :=
1

f̃(η)
− 1

g̃(η)
=

(
∞∑

i=1

pin>i

1 + (i−1 − (1− β))η

)−1

− 1− ηpin0
pin0 + β

,

then it follows that

h̃(η) = 0 ⇔ f̃(η) = g̃(η), η ∈ I.

We now show that h̃ is concave and h̃(η) → 0 as η → 0, then the uniqueness of
the solution follows.

First observe that

∂2

∂η2
h̃(η) =

∂2

∂η2

(
∞∑

i=1

pin>i

1 + (i−1 − (1− β))η

)−1

=
∂2

∂η2

(
∞∑

i=1

pin>i

1 + bi(η)

)−1

= 2

(
∞∑

i=1

pin>i

1 + bi(η)

)−3 [
∂

∂η

(
∞∑

i=1

pin>i

1 + bi(η)

)]2

−
(

∞∑

i=1

pin>i

1 + bi(η)

)−2
∂2

∂η2

(
∞∑

i=1

pin>i

1 + bi(η)

)
. (A.15)

We now claim that

∂

∂η

(
∞∑

i=1

pin>i

1 + bi(η)

)
=

∞∑

i=1

∂

∂η

(
pin>i

1 + bi(η)

)
= −

∞∑

i=1

pin>i(i
−1 − (1− β))

(1 + bi(η))2
,

(A.16)

∂2

∂η2

(
∞∑

i=1

pin>i

1 + bi(η)

)
=

∞∑

i=1

∂2

∂η2

(
pin>i

1 + bi(η)

)
= 2

∞∑

i=1

pin>i(i
−1 − (1− β))2

(1 + bi(η))3
.

(A.17)
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It suffices to check:

∞∑

i=1

sup
η∈I

∣∣∣∣
∂

∂η

(
pin>i

1 + bi(η)

)∣∣∣∣ < ∞,

∞∑

i=1

sup
η∈I

∣∣∣∣
∂2

∂η2

(
pin>i

1 + bi(η)

)∣∣∣∣ < ∞.

Note that for i ≥ 1,

sup
η∈I

∣∣∣∣
∂

∂η

(
pin>i

1 + bi(η)

)∣∣∣∣ = sup
η∈I

pin>i|i−1 − (1− β)|
(1 + bi(η))2

≤ (2− β) sup
η∈I

pin>i

(1 + bi(η))2

≤ (2− β)(1 + (1− β)K)2pin>i.

Recall (A.6), we then have

∞∑

i=0

pin>i =

∞∑

i=0

∑

k>i

pink =

∞∑

k=0

k−1∑

i=0

pink =

∞∑

k=0

kpink = 1.

Hence,

∞∑

i=1

sup
η∈I

∣∣∣∣
∂

∂η

(
pin>i

1 + bi(η)

)∣∣∣∣ ≤ (2− β)(1 + (1− β)K)2
∞∑

i=0

pin>i

= (2− β)(1 + (1− β)K)2 < ∞,

which implies (A.16). Equation (A.17) then follows by a similar argument. Com-
bining (A.15), (A.16) and (A.17) gives

∂2

∂η2
h̃(η) = 2

(
∞∑

i=1

pin>i

1 + bi(η)

)−3

×

⎡
⎣
(

∞∑

i=1

pin>i(i
−1 − (1− β))

(1 + bi(η))2

)2

−
(

∞∑

i=1

pin>i

1 + bi(η)

)(
∞∑

i=1

pin>i(i
−1 − 1 + β)2

(1 + bi(η))3

)]

< 0,

by the Cauchy-Schwarz inequality. Hence h̃ is concave on I.
From Lemma A.1, ψ(δin) = 0 where ψ(·) is as defined in (3.10). Hence we

have f(δin) = α + β in a similar derivation to that of (A.12). Also from (4.2),
we have g(δin) = α+ β. Hence, δin is a solution to f(δ) = g(δ).

Under the δ �→ η reparametrization in (A.13), we have that f̃(ηin) = g̃(ηin)
where ηin := δin/(1 + δin(1− β)), and also

lim
η↓0

f̃(η) =
∞∑

i=1

pin>i = 1− pin>0 = β + pin0 = lim
η↓0

g̃(η).
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This, along with the concavity of h̃, implies that ηin is the unique solution to
h̃(η) = 0, or equivalently, to f̃(η) = g̃(η) on I.

Let f̃n(η) := fn(δ(η)), g̃n(η) := gn(δ(η)). We can show in a similar fashion
that η̃ := δ̃in/(1− δ̃in(1− β̃)) is the unique solution to f̃n(η) = g̃n(η). Using an
analogue of the arguments in the proof of Theorem A.2, we have

sup
η∈I

|f̃n(η)− f̃(η)| a.s.−→ 0, sup
η∈I

|g̃n(η)− g̃(η)| a.s.−→ 0,

and therefore η̃
a.s.−→ ηin. Since δ �→ η is a one-to-one transformation from [ǫ,K] to

I, we have that δ̃in is the unique solution to fn(δ) = gn(δ) and that δ̃in
a.s.−→ δin.

On the other hand, α̃ can be solved uniquely by plugging δ̃in into (A.12) and is
also strongly consistent, which completes the proof.
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