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1. Introduction

There is currently an expectation that with the start of the Large Hadron Collider

(LHC), high energy physics will soon enter a new phase highly dominated by new

data that could imply physics beyond the Standard Model (SM). Over the past years,

low energy supersymmetry (SUSY) has become the standard approach to study the

potential physics beyond the SM, mostly because of its natural power to address the

hierarchy problem. The 124 Lagrangian parameters of the minimal supersymmetric

extension of the SM (for a recent review, see [1]) makes its phenomenological study

impractical. It may well be that the mechanism that mediates SUSY breaking to

the observable sector provides relations between many of these parameters. Unfor-

tunately, however, there are many different mediation mechanisms in the literature,

with no one clearly preferred.

In order to extract computable information, many works have reduced the num-

ber of parameters by truncating to a handful of soft-breaking parameters at a high

energy scale. The remaining set of parameters are used as boundary conditions for

renormalisation group equations (RGE), which are run down to the weak-scale. A

large amount of minimal supersymmetric standard model (MSSM) based studies

have been carried out in the way described above. Most of them were performed

in the context of the constrained MSSM (CMSSM, also sometimes called mSUGRA

for minimal supergravity) set-up which have only 4 independent non-SM parameters

(and a sign choice). Many groups have been pursuing a programme to fit this model

and identify regions in parameter space that might be of interest with the forth-

coming LHC data. See for instance [2, 3, 4, 5, 6, 7]. Complete scans over up to 8

free parameters of CMSSM with a combined treatment of likelihoods from different

experimental constraints were possible with Markov Chain Monte Carlo (MCMC)

sampling techniques [5, 8, 9, 10, 11, 12, 13, 14]. However, the truncation to a handful

of parameters in the CMSSM, is at best a very strong assumption, and most likely

over-restrictive.

There are two directions that can be followed to properly study low-energy super-

symmetric models. The top-down approach has been tried over the years by deriving

the otherwise free parameters from an ultraviolet extension of the MSSM. Models of

unification, different sources of SUSY breaking, such as gravity and gauge mediation

and classes of string compactifications [15, 16, 17, 18, 19, 20, 21, 22, 23] have been

used to provide high energy expressions for the soft breaking parameters. Soft SUSY

breaking terms can be computed at energies as high as the GUT scale of ∼ 1016 GeV,

and renormalisation group running to the TeV scale allows contact to be made with

potential quantities of interest such as sparticle masses. Recent progress in moduli

stabilisation in string theory has made this approach more concrete and calculable

with explicit results for some classes of models. This is very encouraging but usu-
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ally the string derived models fill only a small subset of the full CMSSM parameter

space, which could make them impossible to differentiate from the CMSSM. The

proliferation of SUSY breaking mechanism set-ups mean that analyses where only

one is picked tend to be very specific, with a rather limited range of applicability. It

is desirable to side-step such extreme model dependence with a different approach.

Alternatively, one can use a bottom-up approach to low-energy SUSY. In this case

the soft breaking parameters are considered at the SUSY scale without referring to

their high energy origin. All the parameters can in principle be varied over the ex-

perimentally allowed range and compared with potential observations at the LHC

and other experiments. It is a formidable task to consider all the 124 parameters,

due mostly to computing limitations. An interesting compromise is the pMSSM [24]

which we consider here. In this model, the number of free parameters is 20 soft-

breaking parameters (and a ±1 parameter) plus 5 SM ones and are selected by the

requirements of consistency with unobserved flavour changing and CP violating pro-

cesses. However, even this simplified version of the MSSM requires a lot of computer

power to be analysed in and details. The ability of future collider measurements to

constrain the pMSSM has been estimated using MCMC methods in Refs. [25, 26].

At present, SUSY forecasts for the LHC necessarily contain large uncertainties. In

particular, there is a strong model dependence on the mechanism for SUSY break-

ing. Realistic predictions need guidance from direct and precise (collider and other

related) experimental data. Interestingly, the converse is also very important: the

experiments need unbiased phenomenological guidance about the expected nature or

properties of SUSY. This is what we aim to accomplish, eventually.

The purpose of this article is to perform a global fit of the pMSSM and make SUSY

forecasts for collider and dark matter search experiments using Bayesian statistics

methods. For given prior probability and likelihood densities, Bayes theorem provides

the way to extract the posterior probability density for the parameters. It can also

be used for model comparison when enough data is available. This formalism has

been used in many fields of science, including cosmology (see [27, 28] for recent

reviews). Markov Chain Monte Carlo (MCMC) and related techniques have recently

begun to be used to perform Bayesian inference on supersymmetric models. The

increasing access to large scale computing power and improved methods of calculation

are making these techniques more manageable with time and we have been able to

tackle the relevant parameters of the pMSSM.

The complete and simultaneous scan of the 25 parameters and a sign1 for the

pMSSM construction was performed using the MultiNest program [29, 30]. At

1Where we refer to 25 parameters, we shall really mean 25 continuously varying parameters plus

the one discrete sign choice.
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the heart of the algorithm is the nested sampling technique [31] that revolutionised

computational Bayesian inference by prioritising a computation of the Bayesian evi-

dence rather than solely on computing the posterior probability distribution function

(PDF) of model parameters (although the latter is obtained at no additional cost),

as is the case in traditional Monte Carlo algorithms (e.g. MCMC). We will review

the nested sampling method in an appendix. In simple terms, similar to the MCMC,

nested sampling is an iterative Monte Carlo method that, starting with a relatively

small number of points (a few thousand in our case), it produces a list of a large

number of points (107 − 108 in our case) ordered in increasing likelihood. We used

it here because it computes both the evidence and the posterior PDF, as opposed

to traditional MCMC methods which only calculate the posterior PDFs. Further

the MultiNest algorithm is efficient in handling complicated problems with multi-

modal/degenerate posterior distributions.

We emphasise that the current situation with no direct sparticle measurement

data yet from LHC makes the issue of prior dependence critical. For this reason,

it is expected that extraction of prior independent information of our analysis will

be difficult. Interestingly, however, we find some results with approximate prior

independence. In order to illustrate the issue of prior dependence of results we

consider priors that are flat in the parameters themselves (‘linear’) and flat in the

logarithm of the parameters (‘log’) priors. As usual in Bayesian statistics prior

dependence should not be understood as a drawback but as a positive feature that

can be used to determine when enough data is available to unambiguously make

inferences. It is expected that, if SUSY is discovered, the addition of LHC sparticle

mass data will relax any prior dependence, and so an analysis along the lines of ours

could be used to extract prior independent information.

The amount of work related to this project required very efficient algorithms and

access to high performance computing. We used the University of Cambridge super-

computers: COSMOS from the Department of Applied Mathematics and Theoretical

Physics (DAMTP) and the Darwin cluster from the High Performance Computing

Service (HPC). The final run was made in terms of 60 12-hour jobs, each correspond-

ing to a cluster of 128 CPUs on HPC and 40 8-hours jobs, each corresponding to

a cluster of 64 CPUs, on COSMOS (making a total of more than 15-year standard

CPU time). Some results of a complete and independent (from the one we present

here) runs with fewer experimental constraints were presented by one of us (SSA)

at the SUSY 2008 conference and reported in Ref. [32]. While we were upgrading

our analysis, a study of randomly scanned pMSSM points appeared [33], similar in

philosophy to Ref. [4]. In the conclusions, we contrast the aims and methodologies

of our work with these.
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In order to make a self-contained presentation we briefly describe Bayesian infer-

ence and relevant terminologies in Section 2. We construct the elements needed for

inference in the context of the pMSSM in Section 3. The experimental constraints or

observables used are described in Subsection 3.2. The sampling procedure and the

different high energy physics software used to predict the observables are presented in

Subsection 3.4. In Sections 4 and 5 we analyse our results and then conclude. In the

Appendix we briefly review the nested sampling method and how the MultiNest

program works.

2. Bayesian Inference

Bayesian inference fits and plays an important role in the scientific process of data

collection and modelling. It particularly deals with the steps that involve model

fitting to data and the technique of assigning preferences to alternative models (model

comparison). This subject is very important especially with the imminent start of

the LHC experiments. Here we will give a short review of the basics of Bayesian

statistics that are useful in our work.

2.1 Bayes’ theorem

Consider a given model or hypothesis H (we shall take H to be the pMSSM)

defined by some set of parameters (in our case, 25 parameters) Θ. We wish to know

the PDF P (Θ|D, H) of the parameters Θ given the data D and the model set-up, H .

P (Θ|D, H), being the parameters’ PDF after confrontation with data, is called the

posterior PDF. The likelihood, P (D|Θ, H) ≡ L(Θ) is a measure of how well a model

point Θ predicts data set D. In order to calculate the posterior from the likelihood,

one must assign some prior PDF to the parameters P (Θ|H) ≡ π(Θ) to parametrise

our uncertainty in them before the model is confronted with data. Bayes’ theorem

then describes how one may obtain the posterior from the other two PDFs and a

normalisation constant P (D|H) ≡ Z, the Bayesian evidence for the model in light

of the data:

P (Θ|D, H) =
P (D|Θ, H)P (Θ|H)

P (D|H)
≡ L(Θ) π(Θ)

Z
. (2.1)

The Bayesian evidence is given by

Z =

∫

L(Θ)π(Θ)dNΘ. (2.2)

Here N is the dimensionality of the parameter space; N = 25 for the pMSSM. Since

the Bayesian evidence does not depend on the parameter values Θ, it is usually

ignored in parameter estimation problems and posterior inferences are obtained by

exploring the un–normalised posterior using standard MCMC sampling methods.

However, the evidence plays a central role in our discussion.
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A useful feature of Bayesian parameter estimation is that one can easily obtain

the posterior PDF of any function, f , of the model parameters Θ. Since,

P (f |D) =

∫

P (f,Θ|D)dΘ =

∫

P (f |Θ,D)P (Θ|D)dΘ

=

∫

δ(f(Θ)− f)P (Θ|D)dΘ (2.3)

where the probability chain rule is employed for the second equality and δ is the

Dirac delta function. Thus one simply needs to compute f(Θ) for every Monte

Carlo sample and the resulting sample will be drawn from P (f |D). We make use of

this feature in Sections 4 and 5 where we present the posterior probability PDFs of

various observables used in the analysis of the pMSSM.

Before proceeding to discuss prior distributions, we first briefly address 2, the dif-

ference between the Bayesian and the frequentist approaches to inference. Bayesian

inference (using Bayes’ theorem) is a robust technique for updating prior knowledge

or belief based on new data. It is unlike the frequentist approach where observations

are viewed as random draws from some pool of possible observations such that the

probability of an observation is the frequency observed with a large number of re-

peated measurements. Frequentists usually focus on the likelihood and argue that

the Bayesian approach is too subjective because of the use of priors. Bayesians reply

that when many examine frequentist statistics, they are actually implicitly using pri-

ors anyway. If one thinks of a region of parameter space with the lowest chi-squared

values as being more likely than a region of parameter space with much higher chi-

squared values, one is implicitly using some vague prior. The two approaches are

asking different questions. Bayesians ask, “how likely is a given parameter value

given the data?”, while frequentists ask, “how probable is the data, given certain pa-

rameters?” In situations where the data is very informative the two approaches give

the same results. We are interested in PDFs of parameters and so we use Bayesian

statistics. By comparing results from different but reasonable priors, we obtain an

estimate of how robust an inference is given current data.

2.2 Priors

The prior probability of the model parameters is a PDF that gives a subjective

measure of our initial knowledge/ignorance about the values of the parameters of

the model before the data are taken. Symmetries and physical observations or ex-

pectations are usually a good guide to which priors to take. Information theory also

provides a way of selecting priors by favouring those that maximise the entropy of

2We follow the description in:

http://www.dsg.port.ac.uk/ valiviitaj/Lectures2006/CrittendenCMB2003.pdf

– 6 –



the distributions. Some commonly used prior PDFs P (Θ|H) are:

P (Θ|H) ∝ constant – the linear prior, flat in Θ (2.4)

P (Θ|H) ∝ 1

Θ
– the Jeffreys prior, flat in log(Θ) (2.5)

P (Θ|H) ∝ e−(Θ−Θ)2/2σ2

– the Gaussian prior. (2.6)

The linear priors are often used for translational (like time and location) parameters,

where there is no information to suggest that one value is preferred over others. The

Jeffreys prior, also referred to as logarithmic (log) prior, is uniform in the logarithm

of the parameter. These two priors are improper since they diverge when integrated

over an infinite range. Our log and linear priors will be bounded by the requirements

of perturbativity of the model, by passing previous direct sparticle search constraints

and by the requirement of not too large fine-tuning in the Higgs potential parameters.

These three criteria are sufficient to bound all 20 non-SM input parameters to a finite

range. The Gaussian prior, on the other hand, is proper and integrable but requires

previous experimental knowledge on σ and Θ̄. This is indeed the case for our 5 SM

input parameters, and we use Gaussian priors for them (see Section 3.1).

Assuming the parameters are independent, the resultant prior is obtained by the

product of all the prior probability densities for each of the individual parameters.

For instance, in the case of pMSSM with 25 parameters, θ1, θ2, . . . , θ25,

P (Θ|H) ≡ π(Θ) =

25
∏

i=1

π(θi). (2.7)

For our construction and analysis we are going to choose a linear prior measure

for the pMSSM parameters described in Section 3.1. This is because there are no

observational evidence that hint to giving preference of some parameter region over

others. We are going to determine bounds on the parameters from the fact that

the parameter values have to be not far away from the TeV-scale in order avoid

the little hierarchy problem. We are going to call such case/scenario as the linear

prior. We then check the dependence of the results in our analysis on prior change

by performing another analysis with a log prior. When we refer to a log prior, in fact

the Jeffreys prior is only used for all parameters which only have positive bounds.

Parameters which are allowed to take either sign present a problem with Jeffreys

priors since the prior diverges at the origin. Therefore, the priors of such parameters

are always taken to be linear.

For parameter estimation, the priors become irrelevant once the data employed are

powerful enough. This is already in evidence by comparing Bayesian CMSSM fits [34]

with those in similar supersymmetric models which have a lower number of free

parameters, for example the large volume string compactification (LVS) scenario [23].
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The LVS scenario has two less free parameters than the CMSSM and current indirect

data are already enough to make the result approximately prior independent. We

may expect the addition of two precise, constraining, non-degenerate measurements

(such as sparticle mass measurements from the LHC) to have the same effect upon

the CMSSM.

For model comparison, the dependence on priors always remains (although with

more informative data the degree of dependence on the priors is expected to decrease,

see e.g. [27]). Indeed this explicit dependence on priors is one of the most attractive

features of Bayesian model selection. Refs. [13, 35] identified prior distributions in

high-scale CMSSM Lagrangian parameters. In particular, a Jacobian was defined

to transform between derived parameters (such as tanβ) and more fundamental

Lagrangian parameters from which they are derived. It is not our purpose here

to find the ‘most natural’ prior because any such choice is necessarily subjective.

Instead, we shall check the robustness of any inference under a reasonable variation

of the priors. Such a check is especially required in model comparison hypothesis

tests, which may be particularly sensitive to the particular choice of prior and its

associated metric in parameter space [36].

2.3 Model comparison

In order to evaluate and rank two alternative models H0 and H1 in the light of data

D one needs to compare their respective posterior probabilities given the observed

data set D, as follows3: use Bayes’ theorem to relate the plausibility of H1 given

the data, P (H1|D), to the predictions made by the model about the data, P (D|H1),

and the prior plausibility of H1, P (H1). With this procedure one could construct the

following probability ratio

P (H1|D)

P (H0|D)
=
P (D|H1)P (H1)

P (D|H0)P (H0)
=
Z1

Z0

P (H1)

P (H0)
. (2.8)

P (H1)/P (H0) is the prior probability ratio for the two models, it measures how much

our initial beliefs favour H1 over H2. It is often set to unity but may occasionally

require further consideration. The other ratio, P (D|H1)/P (D|H0) measure how well

the observed data were predicted by H1 and H0. It can be seen from 2.8 that the

Bayesian evidence takes the centre stage in Bayesian model comparison. As the

average of likelihood over the prior, the Bayesian evidence is higher for a model

if more of its parameter space is likely over some region of significant integrated

prior (‘prior mass’) and smaller for a model with highly peaked likelihood but has

a large prior mass associated with low likelihood values. Hence, Bayesian model

selection automatically implements Occam’s razor, since the prior PDF decreases

for models with higher numbers of parameters. A more complicated theory will

3Here we follow the description by [37].
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only have a higher evidence if it is significantly better at explaining the data than a

simpler theory with less parameters. This technique was applied in [34] to compare

two CMSSM models: sign(µ) > 0 versus sign(µ) < 0. We shall perform a similar

comparison for the pMSSM in Subsection 4.4. The comparison of different GUT

scale SUSY breaking models is also interesting [38].

Another perspective on model comparison is in quantifying the consistency be-

tween two or more data sets or constraints [39, 40]. Different experimental con-

straints may ‘pull’ the model parameters to different directions and consequently

favour different regions of the parameter space. Any obvious conflicts between the

observables are likely to be noticed by the ‘chi by eye’ method commonly employed

to-date, but it is imperative for forthcoming high–quality data to have a method

that can quantify such discrepancies. The simplest method for analysing different

constraints on a particular model is to assume that all constraints and data provide

information on the same set of parameter values. This can be considered as one

hypothesis or model, H1. This is the assumption which underlies the joint analysis

of the constraints. However, if we are interested in accuracy as well as precision

then any systematic differences between constraints or data should also be taken

into account. In the most extreme case they could be in conflict to the extent that

each of them would require its own set of parameter values, since they are in different

regions of parameter space. This scenario can be considered as another hypothesis or

model, H0, to be compared with the other, H1. Bayesian inference provides a very

easy method of distinguishing between the scenarios H0 and H1. This technique

was illustrated in Refs. [34, 41] by examining the compatibility between B → Xsγ

branching ratios and the anomalous magnetic moment of the muon in the CMSSM.

The natural logarithm of the ratio of posterior model probabilities provides a useful

guide to what constitutes a significant difference between two models:

log∆E = log

[

P (H1|D)

P (H0|D)

]

= log

[

Z1

Z0

P (H1)

P (H0)

]

. (2.9)

In Tab. 1 we summarise the conventions we use in this paper to separate between

different levels of evidence.

| log∆E| Odds, Z1/Z0 Probability Remark

< 1.0 . 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 : 1 0.750 Weak Evidence

2.5 ∼ 12 : 1 0.923 Moderate Evidence

5.0 ∼ 150 : 1 0.993 Strong Evidence

Table 1: The scale we use for the interpretation of model probabilities. Here the log

represents the natural logarithm.
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The evaluation of the multi-dimensional integral (2.2) is a challenging numerical

task. Standard techniques like thermodynamic integration [42] are extremely com-

putationally expensive which makes evidence evaluation typically at least an order of

magnitude more costly than parameter estimation. Some fast approximate methods

have been used for evidence evaluation, such as treating the posterior as a multi-

variate Gaussian centred at its peak (see e.g. [39]), but this approximation is clearly

a poor one for multi–modal posteriors (except perhaps if one performs a separate

Gaussian approximation at each mode). The Savage–Dickey density ratio has also

been proposed [43] as an exact, and potentially faster, means of evaluating evidences,

but is restricted to the special case of nested hypotheses and a separable prior on

the model parameters. Bridge sampling [44, 45, 46] allows the evaluation of the ratio

of Bayesian evidence of two models and was implemented in fits to the CMSSM in

Ref. [10]. Bank sampling [47] (a particular implementation of the MCMC technique)

also allows evidence ratios to be calculated with half the number of points than re-

quired for bridge sampling, and was used in CMSSM fits in Ref. [13]. It is not yet

clear how accurately bank sampling can calculate these evidence ratios, and both

bridge and bank sampling have the disadvantages of only being able to calculate

evidence ratios, not the evidence itself. When comparing N models, this introduces

an inefficiency of a factor of 2(N − 1)/N compared to the latter case. Various alter-

native information criteria for model selection are discussed by [28], but the evidence

remains the preferred method.

The nested sampling approach, introduced by Skilling [31], is a Monte Carlo

method targeted at the efficient calculation of the evidence. It also produces pos-

terior inferences as a by–product. Feroz & Hobson [29, 30] built on this nested

sampling framework and have recently introduced the MultiNest algorithm which

is efficient in sampling from multi–modal posteriors exhibiting curving degeneracies,

producing posterior samples and calculating the evidence value and its uncertainty.

This technique has greatly reduced the computational cost of model selection and

the exploration of highly degenerate multi–modal posterior PDFs. We employ this

technique in this paper.

3. The pMSSM

The MSSM Lagrangian has the form L = LSUSY+Lsoft where LSUSY contains all of

the kinetic terms, gauge and Yukawa interactions while preserving SUSY invariance.

It is based on the gauge group G = SU(3)c × SU(2)L × U(1)Y and superpotential,

W , constructed with a particle content in the following chiral superfields shown with
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their corresponding G charges:

L : (1, 2,−1
2
), Ē : (1, 1, 1), Q : (3, 2,

1

6
), Ū : (3, 1,

2

3
),

D̄ : (3, 1,−1
3
), H1 : (1, 2,−

1

2
), H2 : (1, 2,

1

2
). (3.1)

The superpotential is given by

W = ǫab
[

(YE)ijL
b
iH

a
1 Ēj + (YD)ijQ

bx
i H

a
1 D̄jx + (YU)ijQ

ax
i H

b
2Ūjx + µHa

2H
b
1

]

. (3.2)

Here we use the convention in [48] and denote the SU(3) colour index of the fun-

damental representation by x, y = 1, 2, 3; the SU(2)L fundamental representation

indices by a, b = 1, 2 and the generation indices by i, j = 1, 2, 3. ǫab = ǫab is the

totally antisymmetric tensor, with ǫ12 = 1.

The soft SUSY-breaking part of the Lagrangian consists of different mass and

coupling terms:

Lsoft = Lgauginos + Lsfermions + Ltrilinear + Lhiggs (3.3)

where the part including the SUSY breaking sfermion masses is

−Lsfermion = Q̃∗

ixa(m
2
Q̃
)ijQ̃

xa
j + L̃∗

ia(m
2
L̃
)ijL̃

a
j +

ũxi (m
2
ũ)ij ũ

∗

jx + d̃xi (m
2
d̃
)ijd̃

∗

jx + ẽi(m
2
ẽ)ij ẽ

∗

j . (3.4)

Each mass parameter in Eq. 3.4 is a 3× 3 hermitian matrix in generation space.

−Lhiggs = m2
H1
H1a

∗Ha
1 +m2

H2
H2a

∗Ha
2 + ǫab(m

2
3H

a
2H

b
1 +H.c.) (3.5)

gives the SUSY breaking higgs masses and bi-linear coupling terms. The SUSY

breaking scalar trilinear couplings are

−Ltrilinear = ǫab

[

Q̃xa
iL
(UA)ij ũ

∗

jxR
Hb

2 + Q̃xb
iL
(DA)ijd̃

∗

jxR
Ha

1 + L̃b
iL
(EA)ij ẽ

∗

jR
Ha

1

]

+H.c.,

(3.6)

where fields with a tilde represent the scalar components of the corresponding capital

letter superfield and the soft SUSY-breaking A-terms, each a complex 3 × 3 matrix

in generation space, are defined (no summation on i, j is inferred) as

(AU,D,E)ij = (UA, DA, EA)ij/(YU,D,E)ij . (3.7)

Finally, writing the bino as b̃, w̃A=1,2,3 as the unbroken-SU(2)L gauginos and g̃X=1,...,8

as the gluinos, then the gaugino-mass part of the Lagrangian is

−Lgaugino =
1

2

[

M1b̃b̃+M2

3
∑

A=1

w̃Aw̃A +M3

8
∑

X=1

g̃X g̃X +H.c.

]

. (3.8)
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The parameters together make a total of 105 free parameters in Lsoft, before re-

phasing and higgs potential minimisation [49, 50, 24]. In the CMSSM, the SUSY

breaking scalar masses the gaugino masses and trilinear couplings are collapsed to the

flavour independent parameters m0, M1/2 and A0 respectively, at grand unification

scalesMGUT ∼ 2×1016 GeV.m2
3 and |µ| are related to the Z−boson massmZ through

higgs potential minimisation conditions. sign(µ) = ± and tanβ, the ratio of the

Higgs vacuum expectation values (vevs) remain as free parameters. However in this

paper we instead explore the parameters at the weak-scale in its phenomenologically

most relevant directions and following Ref. [51] call the set-up the pMSSM. In

Subsection 3.1 we describes how the 25 parameters in the pMSSM set-up are derived

from the much larger parameter space of the parent MSSM.

3.1 Parameters

Sources of CP-violation in the MSSM are tightly constrained by experimental lim-

its on the electron and neutron electric dipole moments and from results on K-meson

system experiments. Assuming that the MSSM soft SUSY-breaking parameters are

real is consistent with such tight bounds, indeed significant departures from this

assumption usually require a specific cancellation or suppression mechanism in or-

der to pass the constraints. To suppress flavour changing neutral current (FCNC)

processes, all off-diagonal elements in the sfermions masses and trilinear couplings

are set to zero and the first and second generation soft terms are set to be equal.

At, Ab, Aτ may all change the likelihood significantly, and we also include Ae = Aµ

because it is relevant for the computation of the anomalous magnetic moment of the

muon [52]. We set Au = Ac = Ad = As = 0 since these are proportional to the

SM Yukawa couplings which are very tiny and so they will have negligible effect on

the likelihood. All the other trilinear couplings are set to zero. Our Higgs-sector

parameters are specified by (m2
H1
, m2

H2
), and as discussed above, we must add tan β

and sign(µ) to the list of parameters.

All of the parameters mentioned so far are purely non-SM. However, some of

the SM parameters significantly affect the likelihood. The relevant SM parameters

include the electromagnetic coupling constant αem(mZ)
MS and the strong coupling

constant αs(mZ)
MS. The values of these two couplings are taken at the Z-boson

pole mass mZ energy scale evaluated in the MS renormalisation scheme. The tau

lepton mass and GF , the Fermi constant have been so precisely determined that their

uncertainty has negligible error on the likelihood and so they are fixed at their global

average values: mτ = 1.777 GeV and GF = 1.16637× 10−5 GeV−2[53]. The top and

bottom quark masses are not as precisely known and can have significant effects on

predictions of supersymmetric models. They are therefore included as parameters

with, using the experimental measurements of their central values and uncertainties,

Gaussian priors. Despite the fact that the Z-boson mass,mZ , is precisely determined,
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we include its uncertainty because one of the observables used for the analysis (the

total decay width of the Z-boson ΓZ) is proportional tom
3
Z and the pMSSM predicted

values can fall outside the expected experimentally determined range with a sigma

variation in mZ . So adding the SM parameters,

θSM = {mZ , mt, mb(mb)
MS, αem(mZ)

MS, αs(mZ)
MS} (3.9)

makes a total of 25 continuously varying parameters in the pMSSM. These are listed

together with their ranges or Gaussian prior distributions in Tab. 2. These pMSSM

directions make up its parameter-space. Our aim is to eventually construct a detailed

map of the parameter-space that could be of help to or guide for collider and other

SUSY-related experiments. In Subsection 3.2 we briefly describe the observables

considered and summarise the experimental constraints coming from each.

3.2 Observables and experimental constraints

The SM fits high precision electroweak data well [55]. However, on the one hand,

there are some observables whose SM predicted values significantly differ from the

corresponding experimental indications. The discrepancies could be explained by the

direct or indirect presence of supersymmetric particles (or sparticles) in the inter-

actions. On the other hand the very precise agreement between the SM prediction

and the experimentally determined values of some other set of observables could be

altered by the presence of non-SM particles. The absence of any significant such

deviation puts tight constraints on possible new physics beyond the SM (SUSY in

our case); see for instance [56, 57] and references therein. The values of the spar-

ticle masses affects these tendencies. For instance, the effect of sparticles in loop

corrections to electroweak physics observables (EWPO) decouple if their masses are

much heavier than mZ (300 GeV and above according to Ref. [58]). Lighter spar-

ticles with masses just above current experimental limits will alter the agreement

between the electroweak data and SM predictions – hence the preference for low

energy (weak-scale) SUSY.

For the pMSSM set-up we use observables and constraints from high precision

collider measurements that are sensitive to effects of new physics via virtual loops.

These include five EWPO: the W -boson mass, mW , the effective leptonic weak mix-

ing angle, sin2 θlepeff , the total Z-boson decay width, ΓZ , the anomalous magnetic

moment of the muon, (g − 2)µ and the mass of the lightest MSSM Higgs boson,

mh; five B-physics observables: branching ratios BR(B → Xsγ), BR(Bs → µ+µ−),

BR(Bu− → τ−ν), BR(Bu → K∗γ) and the Bs mass-mixing parameter ∆MBs
; and

the cosmological observable, dark matter relic density from WMAP5 results. We

next briefly describe each of these physical observables and state the correspond-

ing experimental constraints. We first discuss constraints from EWPO and end the

Section with discussion of sparticle mass limits.
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Parameter Description Prior range

M1 Bino mass [−4 TeV, 4 TeV]

M2 Wino mass [−4 TeV, 4 TeV]

M3 Gluino mass [−4 TeV, 4 TeV]

mẽL = mµ̃L
1st/2nd generation LL slepton [100 GeV, 4 TeV]

mτ̃L 3rd generation LL slepton [100 GeV, 4 TeV]

mẽR = mµ̃R
1st/2nd generation ER slepton [100 GeV, 4 TeV]

mτ̃R 3rd generation ER slepton [100 GeV, 4 TeV]

mũL
= md̃L

= mc̃L = ms̃L 1st/2nd generation QL squark [100 GeV, 4 TeV]

mt̃L = mb̃L
3rd generation QL squark [100 GeV, 4 TeV]

mũR
= mc̃R 1st/2nd generation UR squark [100 GeV, 4 TeV]

mt̃R 3rd generation UR squark [100 GeV, 4 TeV]

md̃R
= ms̃R 1st/2nd generation DR squark [100 GeV, 4 TeV]

mb̃R
3rd generation DR squark [100 GeV, 4 TeV]

At Trilinear coupling for top quark [-8 TeV, 8 TeV]

Ab Trilinear coupling for b-quark [-8 TeV, 8 TeV]

Aτ Trilinear coupling for τ -quark [-8 TeV, 8 TeV]

Ae = Aµ Trilinear coupling for µ-quark [-8 TeV, 8 TeV]

mH1 up-type Higgs doublet mass [100 GeV, 4 TeV]

mH2 down-type Higgs doublet mass [100 GeV, 4 TeV]

tanβ scalar doublets vevs ratio [2, 60]

mt top quark mass [54] 172.6 ± 1.4

mZ Z-boson mass 91.187 ± 0.021

mb(mb)
MS b-quark mass 4.20 ± 0.07

1/αem(mZ)
MS electromagnetic coupling constant 127.918 ± 0.018

αs(mZ)
MS strong coupling constant 0.117 ± 0.002

Table 2: The 25 parameters of the pMSSM model. The first twenty non-SM parameters are
listed with their corresponding prior range. Gaussian priors are used for the SM parameters,
which are the last five listed, along with their central values and standard deviations.

• W -boson mass, mW :

The CDF Run II electroweak public results cited the W -boson mass measure-

ment as the single most precise measurement to date and quotes [59]

mW = (80.399± 0.025)GeV. (3.10)

Theoretically the mass can be calculated from

mW =
παem√

2GF (1−m2
W/m

2
Z)(1−∆r)

, (3.11)

where αem is the fine structure constant at the mZ renormalisation energy

scale, GF is the Fermi weak coupling constant and ∆r includes all radiative
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corrections to the mass (see e.g. [60, 61] and references therein). The high

precision in this measured quantity constrain any radiative corrections from

new physics effects. The experimental precision is very high to the extent that

measurements can be sensitive even to two-loop effects involving sparticles. We

include a theoretical uncertainty of 10 MeV on mW by adding it in quadrature

with the experimental uncertainty. We use SUSYPOPE [62, 63] to calculate the

W -boson mass mW and the other EWPO. The most complete available SM

two loop corrections and the dominant results for two loop SUSY corrections as

implemented in SUSYPOPE currently give the most accurate predictions within

the MSSM.

• Z-boson decay width, ΓZ:

The partial Z-boson decay width in the massless fermion limit (m2
f/m

2
Z → 0)

is given by [64]

ΓZ→ff̄ = Nf
c

GFm
3
Z

6
√
2π

δQCD(ḡ
(f)2
v + ḡ(f)2a ) + ∆ew/QCD (3.12)

where ḡv,a are the neutral weak coupling constants modified to include elec-

troweak (EW) radiative effects, δQCD parametrises the QCD corrections and

∆ew/QCD includes some non-factorisable EW contributions. The colour factor

Nf
c is 1 for leptons and 3 for quarks. The current experimental value for the

total decay width is [59]

ΓZ = (2.4952± 0.0023) GeV. (3.13)

Theoretically

ΓZ = Γl + Γh + Γinv (3.14)

where Γl,h are the decay widths into SM leptons and quarks. Γinv is for the

decays into invisible particles (neutrinos and possibly, if they are light enough,

neutralinos). Supersymmetric contributions enter via virtual corrections to the

partial decay widths into lepton and quarks.

• Effective mixing angle, sin2 θlepeff :

The effective electro-weak mixing angle depends only on the ratio of the effec-

tive weak couplings

Re(gv/ga) = 1− 4 sin2 θlepeff (3.15)

for the vertex that couples the Z-boson and leptons l in the Lagrangian:

ilγµ (gv − gaγ5)Zµl. It is determined from various asymmetry measurements

around the Z-boson peak from e+ e− colliders after removing QED effects [65].

We use the experimental estimate [59]

sin2 θlepeff = 0.2324± 0.0012. (3.16)
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• Z-pole asymmetry parameters from e+e− → f f̄ processes:

The results from the LEP and SLC e+e− colliders on Z-boson properties (its

mass, partial and total widths, and couplings to fermion pairs) are in good

agreement with the SM predictions [65]. The precision is high enough to probe

loop-level predictions where both SM and beyond the SM corrections are ab-

sorbed into effective coupling constants. The LEP data consist of hadronic and

leptonic cross sections, leptonic forward-backward asymmetries, τ polarisation

asymmetries, bb̄ and cc̄ partial widths and forward-backward asymmetries. The

Z-boson parameters derived from the data which we employ for our analysis

include the ratios Rl (which we assume to be the average of Re, Rµ and Rτ ),

Rb and Rc. These are defined as

Rb =
Γ(Z → bb̄)

Γ(Z → hadrons)
, Rc =

Γ(Z → cc̄)

Γ(Z → hadrons)
, Rl =

Γ(Z → l+l−)

Γ(Z → hadrons)
(3.17)

and are constrained to be

Rb = 0.21629± 0.00066, Rc = 0.1721± 0.0030 and Rl = 20.767± 0.025

The Z-boson interacts with fermions through a mixture of vector and axial-

vector couplings. This makes the strength of the interaction between left-

and right-handed fermions unequal and leads to the production of polarised

Z-bosons at the e+e− colliders. As result there are measurable asymmetries

(such as a forward-backward asymmetry) in the angular distributions of the

final-state fermions f f̄ . The forward-backward asymmetry is related to the

probability that the f̄ travels in the same (forward) or opposite (backward)

direction to the incident e− direction and is quantified by

AFB =
σF − σB
σF + σB

(3.18)

where σF (σB) is the cross section in the forward(backward) directions. In terms

of the effective vector and axial-vector neutral current couplings, gV f and gAf

respectively, other Z-pole asymmetries are:

A0,f
FB =

3

4
A

e
A

f , A
f ≡ 2gV fgAf

g2V f + g2Af

. (3.19)

Here Af gives a measure of the asymmetry for the different possible final state

fermions. At LEP the Z-pole forward-backward asymmetries A0,b
FB and A0,c

FB

were precisely measured for the final states bb̄ and cc̄ respectively. We impose

A0,b
FB = 0.0992± 0.0016 and A0,c

FB = 0.0707± 0.0035 for our analysis.
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Using polarised beams, the SLD experiment made a direct and precise mea-

surement of the parameter Ae from the left-right asymmetry

ALR =
σL − σR
σL + σR

(3.20)

were σL and σR are the e+ e− production cross sections for Z bosons produced

with left- and right-handed electrons respectively. The same parameter, Ae, is

also indirectly constrained by LEP experiments. Using the measurements of Ae

the parameters Aµ Aτ Ab and Ac can then be inferred from AFB measurements

at LEP. Hence, the LEP and SLC results form a complete set of the Af

parameter measurements. The asymmetry parameter constraints we use are

Ab = 0.923± 0.020, Ac = 0.670± 0.027 and Al = 0.1513± 0.0021 = Ae.

• Muon anomalous magnetic moment, δaµ:

The world average for the muon anomalous magnetic moment as determined

from e+e− → hadrons-based experiment at Brookhaven [66] is aexpµ ≡ 1
2
(g −

2)µ = 1165920.80 ± 0.63 × 10−9. Other results from experiments based on

the τ lepton decay to hadrons [67, 68, 69] differ slightly and we are not using

those here4. The experimental results are around 3σ deviation from the SM

prediction [71] aSMµ = 1165917.85± 0.61× 10−9 giving

δaµ = aexpµ − aSMµ = 29.5± 8.8× 10−10. (3.21)

SUSY is a good new physics candidate that can explain this deviation. For

sparticles all of mass MSUSY , their contribution to aµ is of order [72]

aSUSY
µ ≈ 13× 10−10

(

100 GeV

MSUSY

)

tan β sign(µ). (3.22)

We use micrOMEGAs [73, 74, 75, 76] to predict aµ, correcting it with ∆µ, which

includes contributions from the dominant QED-logarithmic piece, some domi-

nant two-loop corrections [70] and the recently computed tan β-enhanced term

(see [77] and references therein)

aSUSY
µ = aSUSY,1L

µ

(

1− 4α

π
log

MSUSY

mµ

)(

1

1 + ∆µ

)

+ 2-loop terms. (3.23)

For our analysis we add in quadrature a theoretical error of 2.0× 10−10 to the

8.8× 10−10 error above and use the average value δaµ = (30.2± 9.2)× 10−10.

• Lightest Higgs boson mass, mh:

The SM higgs mass is constrained to mh ≥ 114.4 GeV by LEP direct search

experiment (see e.g. [78] and references therein). The predicted higgs mass can

4See [70] for a recent review.

– 17 –



be parametrised by ghZZ/g
SM
hZZ, the ratio of the MSSM higgs coupling to two

neutral Z-bosons to the equivalent SM coupling. In the MSSM ghZZ/g
SM
hZZ =

sin2(β−α) so we use the above LEP mass limit for sin2(β−α) > 0.95 and use

the MSSM higgs mass limit mh ≥ 89.7 for sin2(β − α) < 0.95.

• Branching ratio (B → Xsγ):

The experimental value of the decay rate of the flavour changing process

B → Xsγ agrees to high precision with the SM prediction. This stringently

constrains new physics models that may contribute to the process. For SUSY

the leading contributions come from loops with charged Higgs bosons (these

interfere constructively with the SM contributions) and charginos. Loops with

neutralinos are small (see for instance, [79]). A recent theoretical estimate

for the SM contribution to the branching ratio of B → Xsγ which we call

BR(b → sγ) at next-to-next-to leading order (NNLO) in QCD is [80, 81, 82, 83]

BR(b → sγ)SM = (3.28 ± 0.23) × 10−4, where a 1.6 GeV lower energy cut is

applied to the photon. The central value is ∼ 1σ lower than a world-average

experimental value from the Heavy Flavor Averaging Group [84] (HFAG)5

BR(B → Xsγ)exp = (3.55± 0.22+0.09
−0.10 ± 0.03)× 10−4. (3.24)

The values predicted for this observable at different parameter points are con-

strained by combining in quadrature the experimental and SM prediction er-

rors:

BR(B → Xsγ)exp = (3.55± 0.42)× 10−4. (3.25)

The branching ratio therefore constrains non-SM contributions. We use Su-

perIso2.0 [85] to predict the MSSM plus SM branching ratio6.

• Branching ratio (Bs → µ+µ−):

The branching fraction for the flavour changing process Bs → µ+µ− is predicted

to be (3.42±0.54)×10−9 within the SM [87]. In the MSSM, interactions involv-

ing neutral Higgs bosons can enhance the branching fraction by several orders

of magnitude at high tanβ. The branching ratio is experimentally bounded

from above by recent CDF II results, implying

BR(Bs → µ+µ−) < 5.8× 10−8 (3.26)

at 95% CL [88]. We apply a continuous likelihood constraint derived from

CDF II data upon the MSSM prediction [89]. The resulting penalty is shown

in Fig. 1.

5We note that the most recent central value has shifted slightly to 3.52: this small change would

leave no significant imprint on our fits.
6The program SusyBSG [86] now contains a more accurate prediction of this branching ratio to

two-loops in MSSM parameters. It could lead to an estimated shift in the predicted branching ratio

of 0.13× 10−4, which may be considered to be included within our estimate of theoretical error.
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Figure 1: Likelihood penalty on the predicted value of BR(Bs → µ+µ−).

• Bs-B̄s mass difference, ∆MBs
:

The neutral B-meson oscillates between particle and antiparticle states via

flavour changing processes. The frequency of oscillation is proportional to

the mass difference ∆MBs
It has been measured to be (∆MBs

)exp = 17.77 ±
0.12 ps−1 [90]. Its SM prediction can be obtained from an overall unitarity tri-

angle fit: (∆MBs
)SM = 20.9±2.6ps−1 [91]. We use the ratio of the experimental

constraint to the SM prediction

Rexp
∆MBs

=
(∆MBs

)exp
(∆MBs

)SM
= 0.85± 0.11, (3.27)

to constrain the predicted frequencies. Our pMSSM predicted values are based

on the results in [92] and references therein:

RMSSM
∆MBs

=
(∆MBs

)MSSM

(∆MBs
)SM

(3.28)

= 1− 64π sin2 θw
αemM2

AS0(m2
t/m

2
W )

mb(µb)ms(µb) (ǫY tan2 β)2

[1 + (ǫ0 + ǫY ) tanβ]2[1 + ǫ0 tanβ]2

where mb,s are the bottom- and strange-quark masses evaluated at the MS

scale µb = mb;

ǫ0 = − 2αsµ

3πmg̃

H2

(

m2
q̃L

m2
g̃

,
m2

d̃R

m2
g̃

)

, ǫY = − Aty
2
t

16π2µ
H2

(

m2
q̃L

µ2
,
m2

ũR

µ2

)

(3.29)

are the effective couplings that parametrise the correction to the down-type

Yukawa couplings,

H2(x, y) =
x log x

(1− x)(x− y)
+

y log y

(1− y)(y − x)
; (3.30)
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µ is the supersymmetric Higgs mass terms and At is the trilinear soft breaking

term involving the stops. S0 is given by

S0(x) =
4x− 11x2 + x3

4(1− x)2
− 3x3 log x

2(1− x)3
.

• Branching ratio (Bu → τν):

The purely leptonic decay Bu− → τ−ν proceeds via the annihilation of b- and

ū-quarks into W−. The SM prediction for the branching ratio of the process is

given by

BR(Bu → τν)SM =
G2

FmBm
2
τ

8π

[

1− m2
τ

m2
B

]2

f 2
B|Vub|2τB, (3.31)

where mB and mτ are the B meson and τ pole masses, respectively, and τB
is the B−-meson lifetime. For the SM prediction we use the average of the

result from unitarity triangle fits (BR(Bu → τν) = 0.85 ± 0.14 × 10−4) and

the result obtained from the experimental determination of Vub and fB
√

BBd

(BR(Bu → τν) = 1.39± 0.44× 10−4) 7 adding the errors in quadrature to:

BR(Bu → τν)SM = 1.12± 0.46× 10−4 (3.32)

. For the experimental constraint upon the branching ratio, we use the average

of the Belle and BaBar experiments, adding their errors in quadrature:

BR(Bu → τν)exp = 1.41± 0.43× 10−4. (3.33)

Eqs. (3.32), (3.33) are then used to form the constraint

Rexp
Bτν =

BR(Bu → τν)exp
BR(Bu → τν)SM

= 1.26± 0.41. (3.34)

For the pMSSM predictions we follow [57] and predict

RMSSM
Bτν =

BR(Bu → τν)MSSM

BR(Bu → τν)SM
=

[

1−
(

m2
Bu

m2
H±

)

tan2 β

1 + ǫ0 tan β

]2

(3.35)

where ǫ0 is the effective coupling defined in Eq. 3.29, mBu
is the the B-meson

mass and mH± the charged higgs boson mass.

• ∆0−: B → K∗γ Isospin asymmetry: Isospin symmetry predicts the ampli-

tudes for the decays B̄0 → K̄∗0γ and B− → K∗−γ to be equal at leading order

in perturbation theory. Isospin-breaking effects in the process B → K∗γ [93]

7See “New Constraints from B and K rare decays” at http://www.utfit.org/
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may therefore provide a sensitive probe of physics beyond the SM. The isospin

asymmetry for the exclusive process B → K∗γ is defined as

∆0− =
Γ(B̄0 → K̄∗0γ)− Γ(B− → K∗−γ)

Γ(B̄0 → K̄∗0γ) + Γ(B− → K∗−γ)
. (3.36)

The world average experimental value is [53]

∆0− = 0.0375± 0.0289. (3.37)

In order to fit this, we use the MSSM prediction from SuperIso2.0 [85] which

contains the available next-to-leading-order (NLO) contributions to ∆0−, in-

cluding the complete supersymmetric QCD corrections to Wilson coefficient

operators. It also includes some partial next-to-NLO (NNLO) SM QCD cor-

rections.

• Dark Matter relic density:

The Wilkinson Microwave Anisotropy Probe (WMAP) fits to a cosmological

constant plus cold dark matter model (ΛCDM) imply a dark matter relic den-

sity of ΩDMh
2 = 0.1143 ± 0.0034, where h is the reduced Hubble constant

[94]. We assume R-parity, resulting in a stable lightest supersymmetric parti-

cle (LSP). The neutralino, χ̃0
1, LSP then has the correct properties to make up

the cold dark matter, being massive, stable and neutral and we constrain the

prediction of its relic density to lie on the WMAP5 central value, but inflate

the uncertainties with an assumed error on the theoretical prediction:

ΩDMh
2 = 0.1143± 0.02. (3.38)

We summarise the experimental constraints used in our fits in Tab. 3, listing the

relevant references with each.

3.3 Direct search mass limits

The absence of sparticle or Higgs boson production at current collider searches

for supersymmetric particles puts lower bounds on their possible masses [53]. We

veto any pMSSM points that violate the limits. The limits are derived from various

experiments that usually a priori assume the validity of a chosen model (usually

the CMSSM). Where possible, we use more appropriate model independent limits

upon sparticle masses coming from searches. SUSY particles may be pair produced at

colliders that have sufficient energy, then undergo subsequent decay into SM particles

and neutralino LSP. Hard jets or leptons associated with missing energy coming

from the neutralino then constitute SUSY direct search signatures. Constraints on

sparticle of mass m often dependent upon the mass difference ∆m = m − mLSP

which is correlated with the energy of visible sparticle decay products [106, 24]. The
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Observable Constraint Th. Source Ex. Source

mW [GeV] 80.399± 0.027 [63] [95]

ΓZ [GeV] 2.4952± 0.0025 [62] [65]

sin2 θlepeff 0.2324± 0.0012 [63] [65]

δaµ (30.2± 9.0)× 1010 [96, 97, 98, 99] [66, 67, 69]

R0
l 20.767± 0.025 [62] [65]

R0
b 0.21629± 0.00066 [62] [65]

R0
c 0.1721± 0.0030 [62] [65]

Ab
FB 0.0992± 0.0016 [62] [65]

Ac
FB 0.0707± 0.035 [62] [65]

Al = Ae 0.1513± 0.0021 [62] [65]

Ab 0.923± 0.020 [62] [65]

Ac 0.670± 0.027 [62] [65]

Br(B → Xsγ) (3.55± 0.42)× 104 [80, 81, 82, 100] [84]

Br(Bs → µ+µ−) see Fig. 1 [73, 74, 75, 76] [88]

R∆MBs
0.85± 0.11 [91] [90]

RBr(Bu→τν) 1.26± 0.41 [92, 101, 102] [103, 104, 105]

∆0− 0.0375± 0.0289 [85] [53]

ΩCDMh
2 0.11± 0.02 [73, 74, 75, 76] [94]

Table 3: Summary of constraints on predictions. Theoretical uncertainties have been added
in quadrature to the experimental uncertainties quoted.

sparticle mass limits derived then depend on this energy; depending upon whether

∆m is low (5 - 10 GeV) or higher. The mass limits we impose on the sparticles and

the lightest Higgs boson are summarised in Tab. 4 [53].

A recent random scan study of the pMSSM [33] found that a CDF/D0 bound [107,

108] was quite restrictive on their pMSSM parameter-space random sample points

when the relic density constraint was only applied as an upper bound (i.e. allowing

for additional extra-MSSM sources of dark matter). The bound states that, for

mχ̃±

1
−mχ̃0

1
≤ 50 MeV, mχ̃±

1
≥ 206 |U1w|2 + 171 |U1h|2 GeV at 95% confidence level

. Here |U1w|, |U1h| are the Wino and Higgsino content of the lightest chargino,

respectively. We did not use this bound in our MultiNest sampling procedure, but

we have checked retrospectively that it would not have significantly changed our fits

since only less than 1% of the posterior probability density fails this constraint.

3.4 Sampling procedure

In this Subsection we summarise the Bayesian inference elements (briefly reviewed

in Section 2) for the pMSSM and the sampling procedure we employ for fitting it to

the indirect collider and cosmological data. All of the pMSSM parameters, θ, listed

– 22 –



condition sparticle mass lower bound/GeV

sin2(α− β) > 0.95 mh 114

sin2(α− β) ≤ 0.95 mh 89.7

mτ̃1 −mχ̃0
1
> 10 GeV mτ̃1 87

mτ̃1 −mχ̃0
1
≤ 10 GeV mτ̃1 73

mẽR −mχ̃0
1
> 10 GeV mẽR 100

mẽR −mχ̃0
1
≤ 10 GeV mẽR 73

mµ̃R
−mχ̃0

1
> 10 GeV mµ̃R

95

mµ̃R
−mχ̃0

1
≤ 10 GeV mµ̃R

73

mν̃e −mχ̃0
1
> 10 GeV mν̃e 94

mν̃e −mχ̃0
1
≤ 10 GeV mν̃e 43

mν̃τ > 300 GeV mχ̃±

1
43

mν̃τ ≤ 300 GeV mχ̃±

1
92.4

- mχ̃0
1

50

mt̃ −mχ̃0
1
> 10 GeV mt̃ 95

mt̃ −mχ̃0
1
≤ 10 GeV mt̃ 65

mt̃ −mχ̃0
1
> 10 GeV mb̃ 95

mt̃ −mχ̃0
1
≤ 10 GeV mb̃ 59

- mq̃ 318

- mg̃ 195

Table 4: The lower bounds applied to MSSM particle masses.

in Tab. 2, are varied simultaneously, our calculation being driven byMultiNest and

the high energy physics software mentioned in the following paragraphs. MultiNest

is described in Appendix A. Each point is passed in SUSY Les Houches Accord

(SLHA) format [109] to the different particle physics software we use to predict the

observables described in Subsection 3.2. For each set of parameters MultiNest

selects, the following steps are followed:

1. The (input) parameters are passed to SOFTSUSY2.0.18 [48] which produces

the MSSM sparticle masses and couplings. Unphysical points are flagged by

the program to have one or some combination of the following properties: ab-

sence of electroweak symmetry breaking, the presence of a tachyon, a non-

perturbative point where the calculation can no longer be trusted or the lack

of numerical convergence (which usually occurs close to a boundary of good

electroweak symmetry breaking). If any of these properties are flagged then the

point is discarded before any further computations and the parameter point is

given a zero likelihood. In addition to this, sparticle spectra that violate mass

limits, shown in Tab. 4, from sparticle searches or that have a non-neutralino

LSP are also discarded.
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2. Physical parameter points are passed in SLHA format to micrOMEGAs3.2 [73,

74, 75, 76] which calculates the neutralino dark matter relic density, the branch-

ing ratio BR(Bs → µ+µ−) and the anomalous magnetic moment of the muon

δaµ. The physical point is then passed to the computer program SuperIso2.0 [85]

and other subroutines. The former calculates BR(B → Xsγ) and the isospin

asymmetry in B meson decays ∆0− while the latter computes the B-physics

ratios RBu→τν and R∆MBs
.

3. We then use SUSYPOPE [62, 63] to calculate theW -boson massmW , the effective

leptonic mixing angle variable sin2 θlepeff , the total Z-boson decay width ΓZ and

the other electroweak physics observables listed in Tab. 3 to two loops.

The various physical observables described in Subsection 3.2, which are derived

from the input parameters, form the data set, Di, i = 1, . . . , 19:

D = {mW , sin
2 θlepeff , ΓZ , δaµ, R

0
l , A

0,l
fb , A

l = Ae, R0
b,c, A

b,c
fb , A

b,c, (3.39)

BR(B → Xs γ), BR(Bs → µ+ µ−), ∆0−, RBR(Bu→τν), R∆MBs
,

ΩCDMh
2}.

For each predicted value Oi of observable Di, the corresponding likelihood is

P (Di|Θ, H) =
1

√

2πσ2
i

exp

[

−(Oi − µi)
2

2σ2
i

]

(3.40)

where µi and σi are the experimental central values and errors given in Tab. 3. We

assume that the observables are independent and combined the likelihoods to

L(Θ) = P (D|Θ, H) =
19
∏

i=1

P (Di|Θ, H)LBR(Bs→µ+µ−) (3.41)

where LBR(Bs→µ+µ−) is the likelihood value for the indicated observable (see Fig. 1).

The predictions from the physical points, as enumerated above, are checked against

experimental values and the deviations from this are quantified by the individual

likelihood functions Eq. 3.40. The likelihoods from the different observables are

combined into one overall likelihood, Eq. 3.41, which is then multiplied by the prior

probability density Eq. 2.7 to produce posterior probability density Eq. 2.1.

3.5 Computer resources

We end this Section with the presentation of an estimate of the computing resources

used. In the MultiNest1.3 algorithm we used 4,000 live points (see the Appendix

and [29, 30] for details) and more than 8.6× 106 likelihood evaluations for the linear

prior and more than 2.1×107 for the log prior case. The overall number of likelihood

evaluations in this work is more than 2.5 × 108. The computing was performed by
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79 12-hour jobs at the Darwin cluster of the high performance computing service

(HPC) at the University of Cambridge. Each run used 128 threads or CPUs. We

also used around 40 8-hour jobs at COSMOS (the UK Cosmology supercomputer at

DAMTP). At COSMOS each run used 64 CPUs. The total run time adds to more

than 15 CPU years. However the efficiency of the more recent version of MultiNest

has improved and these computations could take about half of the stated time.

4. Results and Analysis

We now present the results of the global fit for the weak-scale pMSSM param-

eters to indirect collider and cosmological data. We first give the marginalised 1-

dimensional posterior probability distributions for the 25 parameters and sparticle

masses in Section 4.1. We also give, see Tab. 6, a good fit point in the pMSSM param-

eter space (i.e. the sampled point with maximum likelihood) and the corresponding

sparticle spectrum in Tab. 4.2. The observables posterior PDFs are discussed in Sec-

tion 4.3. The values which each of the observables take, together with corresponding

deviations from experimental values, at the good fit point are given in Fig.s 4 and 5.

In Section 4.4 we present an implementation of Bayesian model selection by compar-

ing two different pMSSM hypothesis each with either sign of the µ parameter. We

applied the ‘gaugino code’ prescription to the pMSSM in Section 4.5. This is con-

nected with the gluino-neutralino mass ratio and its role in discriminating different

SUSY-breaking phenomenology models. We address the case of fine-tuning in the

pMSSM parameters in Section 4.6.

Results and analysis on neutralino dark matter and its direct detection prospects

are presented in Section 5. A general feature of the results is that they exhibit some

amount of prior dependence. This is clearly shown for the case of gluino-neutralino

mass ratio in Subsection 4.5, the amount of fine-tuning in the parameters in Subsec-

tion 4.6, the muon anomalous magnetic moment (see the δaµ plots in Fig. 6), and the

dominant neutralino dark matter annihilation/co-annihilation channels addressed in

in Section 5. It is expected that with more precise and direct data from the Teva-

tron and/or the LHC would lift the prior dependence. However interestingly enough,

some of the results, such as the mass of the lightest CP-even Higgs boson mass, are

very similar for the different priors considered.

4.1 Parameters and sparticle mass posterior PDFs

Our assumptions about the pMSSM priors are presented in Section 3.1. The

priors are updated using the set of different experimental measurements explained

in Section 3.2 via Bayes’ theorem (see Section 2.1). A measure of the amount of

information in the likelihood can be seen from the results of the sampling procedure

in the form of posterior PDFs. One dimensional marginalised posterior PDFs of
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the parameters are shown in Fig. 2. Most of the scalar mass terms in the log prior

−4 −2 0 2 4
M1

−4 −2 0 2 4
M2

−4 −2 0 2 4
M3

1 2 3 4
meL

= mµL

1 2 3 4
mτL

1 2 3 4
meR

= mµR

1 2 3 4
mτR

1 2 3 4
mqL

1 2 3 4
mtL = mbL

1 2 3 4
muR

= mcR

1 2 3 4
mtR

1 2 3 4
mdR

= msR

1 2 3 4
mbR

−5 0 5
At

−5 0 5
Ab

−5 0 5
Aτ

−5 0 5
Aµ = Ae

−4 −2 0 2 4
mH1

−4 −2 0 2 4
mH2

20 40 60

tanβ

Figure 2: Marginalised 1-dimensional posterior PDFs for the pMSSM parameters. The

soft-breaking scalar mass terms in the log prior scenario (broken lines) are mostly reduced

with respect to the corresponding mass term in the linear prior scenario (solid lines). All

masses are in TeV units and mqL = muL
= mdL = mcL = msL .

scenario are much reduced with respect to the corresponding mass term in the linear

prior scenario, as expected. Changes to the scalar mass priors (in the log prior
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case) do change the posterior PDFs of M1 and M2. This is because the dark matter

likelihood is driving the fit, and dark matter co-annihilation requires the mass of the

lightest neutralino (controlled by the smaller of M1 and M2) to be close to that of

the scalar that it is co-annihilating with (see Subsection 5.2 for discussion on the

co-annihilations in the pMSSM). On the other hand, M3 shows approximate prior

independence. For linear priors, upper bounds on the parameters come only from our

constraint upon the prior range, there not being sufficient power in the data yet to

constrain the parameters from becoming very large. M1,M2 andM3 have PDFs that

tend to zero as the parameter tends to zero, but a finite bin-size means that this may

not be evident in plots. Since mH1 and mH2 may take negative values, no logarithm

was applied to them in the log priors case. Thus the apparent prior independence of

mH1 is no surprise. The A terms show a peak structure because if their magnitudes

are too large, the squark mass becomes tachyonic and thus disallowed. Radiative

corrections to the lightest CP-even higgs mass involving the stops imply that they

must be quite heavy, above ∼ 2 TeV in order to push the higgs mass above its direct

search bound. Thus, the log prior only disfavours points at mt̃L = mb̃L
= 4 TeV by a

factor of 1/2 compared to the lower values. In contrast, other sfermion masses which

may be as low as 200 GeV obtain a log prior suppression of 1/20 at 4 TeV masses,

i.e. the difference between log and linear priors is much more evident in that case.

Thus there is no large enhancement of the posterior for small mt̃L = mb̃L
, which

shows approximately identical posterior PDFs for the two different prior choices.

We display the posterior PDFs of the pole sparticle masses in Fig. 3 along with the

posterior PDF of the µ parameter; and the 68% and 95% Bayesian credibility ranges

for the sparticle masses in Tab. 5. The mass distributions can be understood from

the parameters PDFs discussed above, since there is a rough one to one correspon-

dence between the tree-level mass and a mass parameter for many of the sparticles.

For the third family sparticles, the A-terms and µ parameter contribute via the large

mixing, which is proportional to the analogous SM fermion mass. The first and sec-

ond generation sfermion masses are approximately degenerate, since the degeneracy

is only broken by terms of order the second generation fermion mass, negligible com-

pared to the sfermion masses. We see approximate prior independence of mt̃1 , mt̃2 ,

mg̃, mb̃2
and mA ≈ mH ≈ mH± . Other sfermion masses show the expected log prior

suppression at high masses.

The MSSM lightest CP-even higgs mass at tree level is,

mh = mZ | cos 2β|, (4.1)

but it receives large radiative corrections from third generation particles, of order

30% of its mass. Since the tanβ posterior is similar for both priors, then the tree-

level value of mh will also be similar. An additional small prior dependence comes
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pMSSM fit (linear) pMSSM fit (log)

Mass [TeV] 68% interval 95% interval 68% interval 95% interval

mh (0.120, 0.124) (0.117, 0.129) (0.119, 0.123) (0.118, 0.128)

mA (0.111, 0.338) (0.608, 0.405) (1.129, 3.284) (0.509, 3.996)

mg̃ (2.192, 4.000) (1.280, 4.000) (1.844, 4.000) (0.924, 4.000)

mχ̃0
1

(0.899, 1.125) (0.302, 1.599) (0.100, 0.273) (0.100, 0.397)

mχ̃0
2

(0.772, 1.687) (0.322, 2.630) (0.301, 1.675) (0.176, 2.491)

mχ̃0
3

(0.126, 2.000) (0.446, 2.000) (0.539, 2.000) (0.237, 2.000)

mχ̃0
4

(0.165, 3.571) (0.649, 3.877) (1171, 2.967) (0.585, 3.631)

mχ̃±

1
(0.765, 1.428) (0.315, 1.730) (0.290, 1.692) (0.162, 2.532)

mχ̃±

2
(1.335, 3.217) (0.648, 3.771) (1.174, 2.981) (0.586, 3.656)

ml̃L
(1.901, 4.000) (0.664, 4.000) (0.279, 0.398) (0.207, 0.922)

ml̃R
(2.039, 4.000) (1.155, 4.000) (1.000, 0.606) (1.000, 2.196)

mν̃τ (2.124, 4.000) (1.230, 4.000) (0.588, 1.392) (0.256, 3.149)

mτ̃1 (1.718, 2377) (1.048, 3.188) (1.000, 0.884) (1.000, 1.965)

mτ̃2 (2686, 4.000) (1.832, 4.000) (1.166, 4.000) (0.502, 4.000)

mq̃ (1.965, 4.000) (1.143, 4.000) (0.590, 0.987) (0.434, 2.573)

mt̃1 (1.634, 2.841) (1.233, 3.423) (1.529, 2.633) (1.105, 3.271)

mt̃2 (2.591, 3.710) (2.078, 3.968) (2.424, 3.644) (1.912, 3.949)

mb̃1
(1.432, 2.679) (0.952, 3.320) (0.478, 1.695) (0.347, 2.701)

mb̃2
(2.319, 3.637) (1.746, 3.967) (1.891, 3.452) (1.354, 3913)

Table 5: pMSSM sparticle mass ranges corresponding to 68% and 95% Bayesian credibil-
ity. ml̃L(R)

represents mass of 1st and 2nd generation left-handed(right-handed) sleptons.

mainly from mt̃R and mb̃R
prior dependence, but really the model itself constrains

the higgs masses to be largely prior independent. The approximate mass degeneracy

in the heavy Higgs masses and little dependence on priors can be seen to originate

from the relationships between them. The tree-level MSSM pseudo-scalar CP odd

higgs mass is given by

m2
A = 2|µ|2 +m2

H1
+m2

H2
, (4.2)

and it receives quite large radiative corrections. There is only a small prior depen-

dence of mA, and Eq. 4.2 shows that the approximate prior independence of mA is

something of an accident since m2
H2

and µ show some prior dependence, but this

largely cancels in its effect on mA. Notice that

m2
H =

1

2

(

m2
A +m2

Z +
√

(m2
A −m2

Z)
2 + 4m2

Zm
2
A sin2(2β)

)

m2
H± = m2

A +m2
W . (4.3)
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and since mA is usually far greater than mW and mZ then mA ≈ mH ≈ mH± holds,

although loop corrections contribute to a small non-degeneracy, which however is not

visible to the eye.

4.2 Good-fit points

For a given prior, the point with the highest likelihood is termed the best-fit point.

We estimate a ‘good-fit point’ by picking the point with the highest likelihood out

of the many millions sampled by the MultiNest algorithm. We shall see below

that our under constrained fits exhibit parameter degeneracies, and so we should

not expect the particular values of the good-fit parameters to be unique. Monte

Carlo sampling methods are also ill suited to finding best-fit points, which are much

better determined by hill climbing algorithms, for example. On the other hand, the

properties of such a point are instructive to view in order to get a feel for which

observables are pulling in which direction. The values of the parameters at the good-

fit points are given in Tab. 6. The good-fit point of the linear prior has quite large

SUSY breaking mass parameters, of the order of a couple of TeV in most cases,

and large tanβ. On the other hand, the log prior sampling found a good-fit point

with a mixture of sub-TeV and several TeV masses, because it spent more time

exploring points with lower sfermion masses. It also has a moderate value of tanβ.

Interestingly, both good-fit points have a negative µ parameter. This is in contrast

to the CMSSM case, where the anomalous magnetic moment of the muon prefers

positive µ. We shall discuss the sign of µ further in Subsection 4.4 below.

We see the resulting MSSM spectra in Tab. 4.2, where the log prior good-fit

point has some light sleptons and squarks. For the linear prior, all of the sparticles

have masses around the TeV scale or higher.

The statistical pulls of the various observables are shown in Figs. 4 and 5. We see

that the observable that most discriminates between our two good-fit points is the

anomalous magnetic moment of the muon, which is much better fit for the log prior

point, where it receives large corrections from lighter slepton and gaugino masses.

mW and ΓZ also show a large difference between the two points, whereas most of the

other observables display only a small difference in statistical pull between these two

points. In fact, the log prior good-fit point has a significantly lower χ2 value (and

therefore, a better likelihood). Were nested sampling perfect for finding the good

fit point, the likelihood (or equivalently, the total χ2) values would be the same for

both priors. This difference is therefore due to the finite sampling resolution of the

posterior distributions.
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Parameter Description Linear prior fit Log prior fit

M1 Bino mass -2947 -250

M2 Wino mass -1297 -3017

M3 Gluino mass -2397 -642

mẽL = mµ̃L
1st/2nd gen. LL slepton 1040 174

mτ̃L 3rd gen. LL slepton 2640 993

mẽR = mµ̃R
1st/2nd gen. ER slepton 2301 201

mτ̃R 3rd gen. ER slepton 3748 3530

mũL
= md̃L

= mc̃L = ms̃L 1st/2nd gen. QL squark 878 165

mt̃L = mb̃L
3rd gen. QL squark 2301 2321

mũR
= mc̃R 1st/2nd gen. UR squark 3027 1515

mt̃R 3rd gen. UR squark 2618 2905

md̃R
= ms̃R 1st/2nd gen. DR squark 1368 329

mb̃R
3rd gen. DR squark 1054 1268

At top quark trilinear -1963 651

Ab b-quark trilinear -3541 5727

Aτ τ -quark trilinear 4725 3196

Ae = Aµ µ-quark trilinear 2154 2951

mH1 down-type Higgs doublet 2548 3445

mH2 up-type Higgs doublet 882 669

tanβ Higgs vevs ratio 52.0 21.0

mt top quark mass 173.4 175.3

mZ Z-boson mass 91.186 91.190

mb(mb)
MS b-quark mass 4.16 4.26

1/αem(mZ)
MS e-coupling constant 127.95 127.91

αs(mZ)
MS s-coupling constant 0.1168 0.1161

µ(Msusy) higgs parameter -942 -770

Table 6: pMSSM input parameters for both good-fit points. Mass parameters are in units

of GeV. The magnitude of the µ parameter is a derived quantity.
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Figure 3: Marginalised 1-dimensional posterior PDFs for the µ parameter and pMSSM

sparticle masses, all in TeV units, for log priors (broken lines) and linear priors (solid

lines). 1st and 2nd generation left-handed sleptons, left-handed squarks and right-handed

squarks are collapsed into single parameters, ml̃L
, mq̃L and ml̃R

respectively.
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Linear prior Log prior

ẽL, µ̃L 1062 271

ẽR, µ̃R 2310 251

τ̃L 2651 1033

τ̃R 3740 3530

ũ1, c̃1 1059 384

ũ2, c̃2 3067 1527

t̃1 2361 2354

t̃2 2665 2903

d̃1, s̃1 1060 383

d̃2, s̃2 1465 419

b̃1 1169 1296

b̃2 2367 2351

χ0
1 936 243

χ0
2 947 770

χ0
3 1317 781

χ0
4 2918 2864

χ±

1 937 765

χ±

2 1301 2916

A0, H0 2671 3529

H± 2673 3531

g̃ 2470 735

ν̃1,2 1058 255

ν̃3 2645 1018

h 121 119
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Table 7: Tabular and pictorial representation of the sparticle masses at the pMSSM good

fit point for both linear and log priors. All numbers in the table are in GeV units. The

pictures on the right hand side shows the difference in the pattern of sparticle masses for

the linear (upper picture) and the logarithmic (lower picture) prior case.
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Measurement pMSSM fit (linear)Observable 0

0

1

1

2

2

3

3

measσ| / fit - Omeas|O

 [GeV]Wm  0.027±80.399 80.370

 [GeV]ZΓ  0.0025±2.4952 2.4952

lep
effθ 2sin  0.0012±0.2324 0.2314

10 10× µ aδ  9.02±30.20 7.15

l
0R  0.025±20.767 20.761

bR  0.00066±0.21629 0.21605

cR  0.0030±0.1721 0.1722

l=AeA  0.0021±0.1513 0.1480

bA  0.020±0.923 0.935

cA  0.027±0.670 0.668

FB
bA  0.0016±0.0992 0.1038

FB
cA  0.035±0.071 0.074

4 10×) γ s X→BR(B  0.42±3.55 3.63

)ν τ → 
u

BR(BR  0.41±1.26 1.00

sB M∆R  0.11±0.85 0.99

0-∆  0.0289±0.0375 0.0764

2hCDMΩ  0.02±0.11 0.10

Figure 4: Statistical pull of various observables at the good-fit point from the linear prior

sampling. The good-fit value and the measurement for each observable are listed. The

statistical pull, defined to be the number of sigma the point differs from the experimental

central value is shown by the horizontal bars.

– 33 –



Measurement pMSSM fit (log)Observable 0

0

1

1

2

2

3

3

measσ| / fit - Omeas|O

 [GeV]Wm  0.027±80.399 80.402

 [GeV]ZΓ  0.0025±2.4952 2.4964

lep
effθ 2sin  0.0012±0.2324 0.2314

10 10× µ aδ  9.02±30.20 26.74

l
0R  0.025±20.767 20.760

bR  0.00066±0.21629 0.21962

cR  0.0030±0.1721 0.1723

l=AeA  0.0021±0.1513 0.1483

bA  0.020±0.923 0.935

cA  0.027±0.670 0.685

FB
bA  0.0016±0.0992 0.1040

FB
cA  0.035±0.071 0.074

4 10×) γ s X→BR(B  0.42±3.55 3.42

)ν τ → 
u

BR(BR  0.41±1.26 1.00

sB M∆R  0.11±0.85 1.00

0-∆  0.0289±0.0375 0.0748

2hCDMΩ  0.02±0.11 0.13

Figure 5: Statistical pull of various observables at the good-fit point from the log prior

sampling. The good-fit value and the measurement for each observable are listed. The

statistical pull, defined to be the number of sigma the point differs from the experimental

central value is shown by the horizontal bars.
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4.3 Observables’ PDFs

The posterior PDFs for the observables used to constrain the pMSSM are given

in Fig. 6. Differences between the two prior cases are mostly due to the fact that

the sparticle mass PDFs are larger in the linear prior, leading to a suppression of

SUSY effects in the loops of most observables. The B-physics observables tend to

have similar posterior PDFs in the two prior cases. In most of the EWPO, there are

larger differences in the posteriors. For δaµ, there is a particularly large difference

between the central values of the linear and log prior PDFs. The leading one-loop

gaugino contribution at large tanβ is given by [96]

δaµ ≈
m2

µµ tanβ

16π2

(

g21M1F1 + g22M2F2

)

, (4.4)

where F1 and F2 are positive loop functions proportional to m−4
susy for the case of de-

generate sparticles in the loops. The dominant contributions coming from gauginos

and sleptons therefore lead to an enhanced value of δaµ when they are lighter, as is

evident for the log prior fits. As we shall see in Section 5.2 and Tab. 10, the linear

prior fits prefer Higgsino exchange to be the dominant LSP annihilation process, as

opposed to slepton co-annihilation in the log prior case. This occurs at heavier neu-

tralino LSP masses, and hence heavier smuon masses (which are always constrained

to be heavier than the neutralino LSP). δaµ is then relatively badly fit as can be seen

in the good fit point example where the statistical pull is more than 2σ.

4.4 Sign(µ) comparison

The posterior PDFs in Fig. 3 indicates that the pMSSM prefers µ < 0 compared to

µ > 0. This is interesting since in the previous studies of CMSSM µ > 0 was seen to

be preferred by the combination of BR(b → sγ) and δaµ. One of the statistical tests

(a predictive likelihood ratio test) in Ref. [41] found that the two measurements

are incompatible in the CMSSM, but the other found no strong evidence for this

and so the final conclusion of the analysis remains unclear. The sign of the SUSY

contribution to BR(b → sγ) is dependent upon the sign of µ. There are two dominant

SUSY contributions to consider: the first comes from diagrams involving a charged

Higgs boson and up-type quarks. The second, involving a chargino and up-type

squarks, depends upon the sign of the product Atµ. Eq. 3.25 indicates that there is

a preference for a positive total contribution at the 1-σ level. In the CMSSM, At is

typically negative due to RGE effects. Eq. 4.4 shows that the sign of the non-SM

contribution to the muon anomalous magnetic moment depends upon the sign of

µM1 and µM2. In the CMSSM, M1 and M2 are positive and so the combination of

the (g − 2)µ and BR(B → Xsγ) constraints implies a preference for a definite sign

of µ. Bayesian analyses [13, 34] demonstrated that the current statistical evidence

for µ > 0 in the CMSSM is weaker than many may pre-suppose.
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Figure 6: Posterior PDF of some of the observables used to constrain the pMSSM. Solid

(broken) lines represents plots for the linear (log) prior case.

We have not used the freedom to re-define the phases of the fields and make M2

positive for example, and so negative M2 appears in our fits. As such, in the pMSSM

both At and M1, M2 may take either sign and so the preference for µ > 0 is broken

and we may expect that the dominant contributions to the observables do not prefer

either sign. On the other hand, there may be some residual dependence from the
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sub-dominant contributions, as well as sub-dominant radiative corrections to other

observables. Thus it is still important to check the relative probabilities for sign(µ).

For the pMSSM with a linear prior measure we find the following probability for the

two signs of µ:

P (µ > 0) = 0.40± 0.01 and P (µ < 0) = 0.60± 0.01. (4.5)

Fig. 7 shows the posterior PDF marginalised on the M2−µ plane. The figure shows

that, although opposite signs for µ are allowed, it is constrained to have the same

sign as M2, especially for log priors where (g − 2)µ is well fit. For linear priors,

the large volume of parameter space leading to heavy sparticle masses mean that

this tendency is reduced and there is a small amount of probability that µM2 < 0,

predicting a small negative δaµ. Fig. 7 clearly shows a symmetry of the fits when

one simultaneously flips the signs of M2 and µ, as should be the case due to phase

re-definition freedom.
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Figure 7: Marginalised 2D posterior PDF of M2 versus µ for a (left) linear prior and

(right) log prior. The dark contours show the 68% and 95% Bayesian credibility regions.

The SM prediction of (g − 2)µ remains somewhat controversial. The hadronic

contributions that are extracted from τ and e+e− data disagree, and one obtains

quite different δaµ constraints depending upon which data set is used. To quantify

the extent to which our mild preference for µ < 0 depends on the (g−2)µ observable,

we made a separate sampling with all except the (g−2)µ constraints. We found that

µ < 0 is still more probable with:

P (µ > 0) = 0.46± 0.02 and P (µ < 0) = 0.54± 0.02. (4.6)

Thus, (g− 2)µ contributes around 0.06 to the probability of µ < 0, the other observ-

ables including BR(B → Xsγ) contributing around 0.04. However, computing the
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Bayesian evidence ratios in the two scenarios indicate that there are no conclusive

evidence, based on Jeffrey’s scale (see Tab. 1), for one particular sign(µ) over the

other. The odds and logarithm of the evidence ratios are summarised in Tab. 8.

Data Considered | loge∆E| Odds, Z+/Z− Remark

All constraints −0.41± 0.04 0.67± 0.03 Inconclusive

All minus (g − 2)µ constraints −0.18± 0.04 0.84± 0.04 Inconclusive

Table 8: The Bayesian evidence ratios for the pMSSM with µ > 0 and µ < 0 with the linear

priors measure. “All observables” refers to all the constraints discussed in Section 4.3. Z+

and Z− represent the evidence for the hypothesis for the linear prior pMSSM with µ > 0

and with µ < 0 respectively. A prior probability of 0.5 is assigned to each hypothesis.

4.5 The gaugino code

The LHC being a proton-proton scattering machine, is going to be producing a

large number of strongly interacting particles. If TeV-scale SUSY is nature’s choice

of physics then the LHC machine would eventually be a gluino factory. The gluinos

would cascade-decay down to the neutralino LSP. Thus the visible energy of the

decay products of the gluino is determined by the gluino-LSP mass splitting. If the

ratio of these two masses is large, there will be high visible energy and it should be

easier to pick SUSY out from underneath backgrounds. The nature of the gluino and

neutralino sparticles could also be important in discriminating the different models

of SUSY. As recently emphasised [110], patterns of gaugino masses can be used as

an early discriminant of models of SUSY breaking at the LHC. The argument for

this goes as follows. In, for instance, the CMSSM or minimal gauge-mediated SUSY-

breaking, the boundary conditions of the values of the gauge coupling constants take

the form g21 : g22 : g23 ≈ 1 : 2 : 6 around the TeV scale. Here ga, a = 1, 2, or

3 respectively represent the electromagnetic, weak or strong interactions couplings.

Unification of the gauge couplings at a GUT scale, gives a prediction on the pattern

of gaugino mass terms since the ratio M2
a/g

2
a does not run at one loop [111]. If the

neutralino is gaugino dominated, this translates into some gluino-to-neutralino mass

ratio pattern.

Already there are distinct ratios coming from viable SUSY breaking scenarios.

For instance, the CMSSM (and AMSB) if it has a predominantly bino (and wino)

LSP predicts mg̃/mχ̃0
1
≈ 6 (and 9, respectively) [110]. Mirage mediation [112] with

predominantly bino LSP and the large volume scenario (LVS [113, 114, 115, 116])

have a characteristic ratio less than 6 and between 3 to 4, respectively (with the

LVS having the most compact gaugino mass pattern). Higgsino components of the

neutralino LSP spoil a strict prediction of the mass ratio coming from gaugino mass

ratios, however. By construction, the pMSSM set-up is the most generic and natural

– 38 –



10 20 30 40 50 60

mg̃/mχ̃0

1

 

 
Linear prior

Log prior

Figure 8: pMSSM gluino-to-neutralino mass ratio for linear and log priors.

approach for MSSM phenomenology. We show the pMSSM posterior PDF for the

gluino-to-neutralino mass ratio in Fig. 8 which provides a clear discrimination be-

tween the pMSSM and the other models. The figure 8 shows a sharp dependence of

the gluino-to-neutralino mass ratio posterior PDF on the choice of prior. The linear

prior predicts a compact gaugino mass ratio with8 mg̃/mχ̃0
1
≈ 2.5± 1.0. For the log

prior case a much broader distribution of mass ratios centred around mg̃/mχ̃0
1
≈ 10.0

results from the fits.

It is worthwhile to point out the source of the difference between the peak positions

in Fig. 8. The gluino mass, mg̃, PDF is roughly the same for both priors. This implies

that the numerator is fixed with respect to the two different priors. So the shift is

solely due to the different properties of mχ̃0
1
which is much lighter for the log prior

choice.

4.6 Fine-tuning

The main motivation of weak-scale SUSY is to solve the technical hierarchy prob-

lem, explaining why the Higgs boson remains at the weak scale despite quantum

8See [32] for similar results from a pMSSM analysis done with a different set of observables than

in this work.
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corrections which are as large as the largest mass scale in the theory (e.g. the Planck

scale). In order for softly broken SUSY to still provide a resolution of the technical

hierarchy problem, the SUSY breaking terms should not be much larger than the

TeV scale, otherwise an a priori un-natural cancellations between radiative correc-

tions are required in order to keep the Higgs boson mass low. Direct SUSY search

limits imply lower bounds on sparticle masses, which already start to imply that the

MSSM parameters must cancel somewhat in order to separate the electroweak and

SUSY breaking scales. This is termed the ‘little hierarchy problem’ [117, 118], (see a

recent discussion in [119]). We wish to quantify the necessary amount of fine-tuning

in the pMSSM parameters needed to make the set-up consistent with the imposed

sparticle mass bounds.

We follow the approach in [120], quantifying the amount of fine-tuning in the

Z-boson mass prediction coming from Higgs potential minimisation conditions. We

consider this as a measure of fine-tuning in the pMSSM. The tree-level Z-boson mass

is given by

m2
Z = −m2

H1

(

1− 1

cos 2β

)

+m2
H2

(

1 +
1

cos 2β

)

− 2|µ|2, (4.7)

where

sin 2β =
2m2

3

m2
H1

+m2
H2

+ 2|µ|2 . (4.8)

The amount of fine-tuning is quantified by considering the sensitivity of mZ to a

variation of a parameter ξ [121]:

∆(ξ) =

∣

∣

∣

∣

∂ logm2
Z

∂ log ξ

∣

∣

∣

∣

, (4.9)

where ξ = m2
H1
, m2

H2
, m2

3 and µ are the relevant parameters in the pMSSM. Assuming

tan β > 1, from Eqs. 4.7, 4.8 and 4.9, one derives:

∆(µ) =
4µ2

m2
Z

(

1 +
m2

A +m2
Z

m2
A

tan2 2β

)

, ∆(m2
3) =

(

1 +
m2

A

m2
Z

)

tan2 2β,

∆(m2
H1
) =

∣

∣

∣

∣

1

2
cos 2β +

m2
A

m2
Z

cos2 β − µ2

m2
Z

∣

∣

∣

∣

×
(

1− 1

cos 2β
+
m2

A +m2
Z

m2
A

tan2 2β

)

,

∆(m2
H2
) =

∣

∣

∣

∣

−1

2
cos 2β +

m2
A

m2
Z

sin2 β − µ2

m2
Z

∣

∣

∣

∣

×
∣

∣

∣

∣

1 +
1

cos 2β
+
m2

A +m2
Z

m2
A

tan2 2β

∣

∣

∣

∣

.(4.10)

∆(µ), ∆(m2
3), ∆(m2

H1
) and ∆(m2

H2
) are added in quadrature to obtain an over-all

measure of fine-tuning, ∆T :

∆T ≡
√

∆(µ)2 +∆(m2
3)

2 +∆(m2
H1
)2 +∆(m2

H2
)2. (4.11)

Values of ∆T far greater than unity indicate large fine-tuning.
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Figure 9: Fine-tuning PDFs in the pMSSM.

The posterior PDF for the amount of fine-tuning in the pMSSM is shown in Fig. 9.

The logarithmic prior scenario have lower ∆T than in the linear prior. This is not

surprising since the SUSY breaking terms are much reduced in the former scenarios

than in the latter. We see from the figure that the fine-tuning is most likely low at

around ∆T ∼ 20 − 30, but there is a tail extending beyond ∆T = 100. One could

use a prior of 1/∆T , to encode a belief in less fine-tuned points in our global fits [11].

Alternatively, one could place a cut on ∆T , but the value of such a cut is of course

subjective. 82% of the high posterior PDF points, around 4.0× 104 of samples, have

∆T > 10, so a hard cut placed at 10 would have a drastic effect on the fits. Here we

decline to change the prior or place cuts, since we are content with observing that,

for most of the probability mass in the fits, it is not unacceptably large. For the

highest likelihood models the fine-tuning is reduced from its average. For example,

for the good-fit point in the linear prior sample, ∆T = 24, whereas for the good-fit

point in the log prior sample, ∆T = 27.

Notice that in general the amount of fine-tuning we find is small compared to pre-

vious studies of the MSSM that start at a high scale, running down to the TeV scale

using the RG equations. The reasons for this include, as explained in Refs. [122, 118],

that the amount of fine-tuning is a function of the cut-off scale and tends to decrease

with this scale because the interval of RG running of the soft parameters induces
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EWSB at tree level and the cross-talk (through RG running) between parameters

in the Higgs sector and those from the squarks, gluinos, etc sectors is drastically

reduced such that the latter parameters can be much heavier than mZ without dis-

turbing the naturalness of the electroweak scale9. Ref. [122] found some approximate

semi-numerical solutions of the RGEs for the case that the boundary conditions on

SUSY breaking parameters are set at the GUT scale ∼ 1016 GeV. The dominant

term in ∆µ(MGUT ) typically comes from cross-talk with the GUT scale gluino mass

M3(MGUT ):

∆(µ(MGUT )) = a(tanβ)
M2

3 (MGUT )

M2
Z

, (4.12)

where the authors determined the coefficient a(tan β) numerically: a(2.5) = 24 and

a(10) = 12, for example. This is to be contrasted with the pMSSM in Eq. 4.10,

where the terms in ∆(µ) are set at the SUSY breaking scale and are ∼ O(1), and do

not involve the gluino mass, upon which there are strong empirical lower bounds.

5. Neutralino Dark Matter

Assuming R-parity conservation the lightest supersymmetric particle (LSP) may

be a good dark matter (DM) candidate. In Ref. [25], a pMSSM study of the ability

of SUSY measurements at future colliders to constrain dark matter properties was

considered. We assume that the neutralino LSP constitutes the DM in the universe.

The DM relic density then depends upon the LSP mass and, through its composi-

tion in terms of gauginos and Higgsino, its interactions. 2-D marginalised posterior

PDFs showing preferred regions in the relic density versus LSP mass are shown in

Fig. 10. There is a mild positive correlation between the preferred mass and the

dark matter relic density ΩCDMh
2 for linear priors which is not evident for the log

priors. It is clear that the LSP mass is not well constrained by current data, since

it is highly prior dependent. The nature of the neutralino LSP in the pMSSM is ad-

dressed in Section 5.1. The mass difference between the LSP and the next to lightest

supersymmetric particle (NLSP) is important because if it is small, the LSP may

efficiently co-annihilate, in the early universe, with the NLSP, significantly reducing

the relic density. The different possible NLSPs in the pMSSM with the correspond-

ing posterior probabilities are listed in Section 5.2. The dominant (co-)annihilation

channels are presented in Section 5.2. We present the prospects of direct dark matter

detection in Section 5.3.

5.1 Neutralino dark matter composition

The nature of the neutralino LSP determines the (dominant) processes by which

it (co-)annihilates into SM particles and therefore affects its present number density.

9We thank J. R. Espinosa for interesting conversations on this point and on fine-tuning in general.
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Figure 10: Marginalised 2D posterior PDFs of the neutralino dark matter relic density

against the neutralino mass. Linear priors are on the left hand side and log priors on the

right. The dark contours show the 68% and 95% Bayesian credibility regions. Note that

the feature shown towards the left hand side of the linear prior plot is due to the peak in

the neutralino mass at around 200 GeV in Fig. 3 which here just makes it into the 68%

region.

This was illustrated using the randomly scanned pMSSM samples in [4] where it was

shown that the nature of the neutralino LSP depends upon whether one assumes

that the LSP makes up all or only some of the DM relic density. The neutralino

mass matrix is given by 1
2
ψ0TMNψ

0 +H.c. where ψ0T = (−ib̃,−iw̃3, H̃0
1 , H̃

0
2) and,

MN =











M1 0 −mZcβsW mZsβcW
0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0











, (5.1)

cx = cosx and sx = sin x. The neutralino mass eigenstates are χ̃0
i = Nijψ

0
j where N is

a unitary transformation that diagonalises MN . The LSP neutralino mass eigenstate

is therefore a mixture of bino, wino and Higgsino:

χ̃0
1 = N11b̃+N12w̃

3 +N13H̃0
1 +N14H̃0

2 . (5.2)

Different regions of parameter space give different neutralino LSP compositions.

WhenM1 ≪ min(M2, |µ|), N11 ∼ 1 and the LSP is dominantly bino. Bino LSPs give

a relic density that is too high for most of the parameter space unless some specific

mechanism (such as efficient co-annihilations or annihilations through a resonance)

is working. When M2 < min(M1, |µ|), N12 dominates, i.e. the LSP is dominantly
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wino and is quasi mass degenerate with the lightest chargino. This leads to strong co-

annihilations between the LSP and the chargino, and typically the relic density much

smaller than the WMAP constraint for wino LSPs. For |µ| < min(M1,M2), N13 and

N14 are of order one and the LSP is dominantly Higgsino and there may be efficient

annihilations into top and weak gauge boson pairs. In the Higgsino-dominated LSP

scenario, χ̃0
1, χ̃

0
2, χ̃

±

1 are almost all mass degenerate and are Higgsino-like. Of course,

there exist mixed cases which include several of these limiting behaviours.
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g
]
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Figure 11: pMSSM neutralino gaugino-Higgsino admixture fractions. Higgsino domina-

tion is at the right-hand side of the plot and gaugino domination is to the left-hand side.

The gaugino/Higgsino mixture PDF of the LSP is shown in Fig. 11 constructed

from the fraction

Zg = |N11|2 + |N22|2

following [123]. 1−Zg is unity if the neutralino LSP is fully Higgsino-like and zero if

fully gaugino-like. The plot shows that LSP is mostly Higgsino in the linear prior case,

similar to the non-universal higgs mass scenario [124], and mostly gaugino for the log

prior scenario. Thus, current data do not unambiguously constrain the LSP content.

Referring to Tab. 6, we see that the good-fit point from the linear prior sample

has a mixed wino-Higgsino LSP (more precisely, the point has |N13| ∼ |N14| = 0.7

and N12 = 0.15). The log prior sample good-fit point has a bino dominated LSP

(|N11| = 0.998), but there are several light sparticles, allowing sufficient annihilation.

5.2 (Co-)Annihilations

At early times of the universe the LSP is in thermal equilibrium with other particles

and, ignoring for now co-annihilations, its number density evolution is governed by
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the Boltzmann equation

dnχ̃0
1

dt
= −3Hnχ̃0

1
− < σv > {n2

χ̃0
1
− (neq

χ̃0
1
)2}. (5.3)

Here H is the Hubble expansion rate of the universe, nχ̃0
1
is the number density and

< σv > is the thermally averaged annihilation cross sections of the neutralino LSP.

v is the relative velocity of the annihilating pair. The LSP annihilation rate is given

by Γχ̃0
1
=< σv > nχ̃0

1
. At a freeze-out temperature Tf , the neutralino decouples,

Γχ̃0
1
= H(Tf). Substituting H(Tf) into Eq. 5.3 predicts that the LSP relic density is

inversely proportional to the thermally averaged annihilation cross section, < σv >.

This means that for the LSP relic abundance today to be in the WMAP-5 range

Eq. 3.38 there must be a significant number of annihilations of the neutralino LSP at

earlier times. The possible processes are mostly two-particle final states which could

be fermion anti-fermion pair, combinations of the weak gauge-bosons (W±, Z0) or

combinations of the Higgs bosons (h0, H0, A0, H±) (see e.g. [125]). The discussion

becomes much more involved once co-annihilation processes are taken into account,

since coupled Boltzmann equations are required for each relevant SUSY particle

species.

Co-annihilation processes dominate in parameter space points where next-to-lightest

supersymmetric particle (NLSP) that are almost mass degenerate with the LSP. At

such points the neutralino abundance also depends strongly on the annihilations of

the NLSPs [126, 127] and the number densities of the LSPs and NLSPs are coupled.

A review of different co-annihilation studies was presented in [4]. Here we present

and analyse the outcome of the pMSSM annihilation and co-annihilation results for

our two different prior measures. We shall only discuss processes that contribute 1%

or more of the annihilation cross section.

In Tab. 9 we give a list of possible NLSPs and corresponding posterior probabilities

for each. The probabilities indicates that neutralino-chargino co-annihilations are

most likely to be dominant in the pMSSM with a linear prior measure. For the

log prior measure, neutralino-slepton co-annihilations are the most probable. We

illustrate the abundance and complexity of the annihilation channels by presenting

the dominant ones at the good fit points in Tab. 10. The dominant channels for the

linear prior sample good-fit point are direct neutralino-chargino co-annihilation and

neutralino annihilation via chargino exchange into Z- andW -boson pairs. For the log

prior measure good-fit point, the dominating channels are neutralino co-annihilations

with various sleptons. Many different processes contribute at the percent level. We

present the identities of the dominant channel, along with its posterior probability in

Tab. 11. The most likely channel is neutralino-chargino co-annihilation for the linear

prior and neutralino annihilation for the log prior. From the large prior dependence
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in the results, we deduce that current data are not sufficient to constrain the dark

matter annihilation properties of the LSP.

NLSP P (NLSP )Linear P (NLSP )Log
χ̃0
2 14% 1%

χ̃±

1 77% 15%

g̃ 1% 0%

ν̃e 2% 39%

ν̃τ 0% 4%

ẽL 0% 2%

ẽR 0% 27%

τ̃1 0% 7%

ũL 1% 1%

ũR 1% 1%

s̃R 1% 1%

t̃1 1% 0%

b̃1 1% 1%

Table 9: pMSSM NLSP identity probabilities for linear and log priors.

5.3 Direct detection

Many different experiments search for the nature of dark matter (e.g. see [128]

and references therein). Indirect detection experiments are designed to observe the

annihilation products of dark matter particles. We do not address indirect detection

here and save it for future consideration. Here, we consider direct detection experi-

ments such as XENON [129], CDMS [130, 131], ZEPLIN [132, 133], Edelweiss [134],

CRESST [135], WARP [136, 137] or COUPP [138]. Such experiments are designed

to observe the elastic scattering of dark matter particles with nuclei. The LSP may

interact with quarks in target nuclei via t-channel CP-even Higgs exchange or s-

channel squark exchange and with gluons via squark loop contributions. DM direct

detection rates also depend on the local neighbourhood DM density and velocity

distribution. The density, which is estimated to lie between 4 × 10−25g/cm−3 and

13× 10−25g/cm−3 (0.22− 0.73 GeV/cm3), is inferred by fitting observations to mod-

els of galactic halo [139, 140]. The velocity is expected to be around 230± 20 km/s

[141].

The elastic scattering cross section is partitioned into spin-dependent and spin-

independent components. The spin independent part is currently the most con-

straining, and we concentrate on it. It is proportional to the square of the target

nucleus atomic number, A2. This enhancement is because the dark matter wave-

length is of same order as the size of a nucleus and hence the scattering amplitudes
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Linear Prior Log Prior

Event % Event % Event % Event %

χ̃0
1 + χ̃0

1 → W+W− 3 χ̃0
1 + χ̃0

1 → ZZ 2 χ̃0
1 + χ̃0

1 → µµ̄ 2 χ̃0
1 + χ̃0

1 → eē 2

χ̃0
1 + χ̃+

1 →W+h 3 χ̃0
1 + χ̃+

1 → tb̄ 5 χ̃0
1 + ẽR → Ze 4 χ̃0

1 + ẽR → Ae 14

χ̃0
1 + χ̃+

1 → ud̄ 10 χ̃0
1 + χ̃+

1 → s̄c 10 χ̃0
1 + µ̃R → Zµ 4 χ̃0

1 + µ̃R → Aµ 14

χ̃0
1 + χ̃+

1 → νττ 3 χ̃0
1 + χ̃+

1 → µ̄νµ 3 χ̃0
1 + ν̃e → Zνe 2 χ̃0

1 + ν̃e →W+e 3

χ̃0
1 + χ̃+

1 → ēνe 3 χ̃0
1 + χ̃+

1 → ZW+ 2 χ̃0
1 + ν̃µ → Zνµ 2 χ̃0

1 + ν̃µ →W+µ 3

χ̃0
1 + χ̃+

1 → AW+ 2 χ̃0
1 + χ̃0

2 → dd̄ 1 ẽR + ẽR → ee 9 ẽR + ˜̄eR → AZ 1

χ̃0
1 + χ̃0

2 → uū 1 χ̃0
1 + χ̃0

2 → cc̄ 1 ẽR + ˜̄eR → AA 2 ẽR + µ̃R → eµ 9

χ̃0
1 + χ̃0

2 → ss̄ 1 χ̃+
1 + χ̃−

1 → Zh 2 ẽR + ˜̄νe → eν̄e 1 ẽR + ˜̄νµ → eν̄µ 1

χ̃+
1 + χ̃−

1 → tt̄ 1 χ̃+
1 + χ̃−

1 → dd̄ 2 µ̃R + µ̃R → µµ 9 µ̃R + ˜̄µR → AZ 1

χ̃+
1 + χ̃−

1 → uū 3 χ̃+
1 + χ̃−

1 → cc̄ 3 µ̃R + ˜̄µR → AA 2 µ̃R + ˜̄νe → µνe 1

χ̃+
1 + χ̃−

1 → ss̄ 2 χ̃+
1 + χ̃−

1 → τ τ̄ 1 µ̃R + ˜̄νµ → µνµ 1 ν̃e + ˜̄νe → W+W− 1

χ̃+
1 + χ̃−

1 → µµ̄ 1 χ̃+
1 + χ̃−

1 → eē 1 ν̃e + ˜̄νe → ZZ 1 ν̃µ + ˜̄νµ →W+W− 1

χ̃+
1 + χ̃−

1 → W+W− 3 χ̃+
1 + χ̃−

1 → AZ 1 ν̃µ + ˜̄νµ → ZZ 1 - -

χ̃+
1 + χ̃−

1 → AA 1 χ̃0
2 + χ̃+

1 → tb̄ 2 - - - -

χ̃0
2 + χ̃+

1 → ud̄ 4 χ̃0
2 + χ̃+

1 → cs̄ 4 - - - -

χ̃0
2 + χ̃+

1 → τντ 1 χ̃0
2 + χ̃+

1 → µ̄νµ 1 - - - -

χ̃0
2 + χ̃+

1 → eνe 1 χ̃0
2 + χ̃+

1 → ZW+ 1 - - - -

Table 10: (Co-)annihilation channels at the good fit points. We display the percentage

contribution to the annihilation cross section for each channel. Channels which contribute

less than 1% to the annihilation cross sections are not listed.

(Co-)annihilation Linear prior case Log prior case

χ̃0
1χ̃

± 35% 5%

χ̃0
1χ̃

0
1 20% 28%

χ̃0
1χ̃

0
2 0% 7%

χ̃0
1 sleptons 0% 23%

Table 11: Posterior probabilities for dominant annihilation and co-annihilation channels.

on individual nucleons add coherently. There is one experimental claim in direct

detection experiments of a signal in the annual modulation rate [142]. This result

has not been confirmed by other experiments and would be incompatible with a neu-

tralino LSP candidate, so we do not use it to constrain the pMSSM. Aside from this,

no positive signal has been detected to date in dark matter detection experiments.

A positive signal would constrain SUSY parameter space if one assumed a particular

local neighbourhood DM density and velocity distribution.

The spin-independent neutralino-nucleus elastic scattering cross section is given
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by

σ ≈
4m2

χ̃0
1
m2

T

π(mχ̃0
1
+mT )2

[Zfp + (A− Z)fn]
2, (5.4)

where mT is the mass of the target nucleus and Z and A are the atomic number and

atomic mass of the nucleus, respectively. fp and fn are the neutralino’s couplings to

protons and neutrons, given by [143]

fp,n =
∑

q=u,d,s

f
(p,n)
Tq

aq
mp,n

mq
+

2

27
f
(p,n)
TG

∑

q=c,b,t

aq
mp,n

mq
, (5.5)

where aq are the neutralino-quark couplings [143, 144, 145, 146, 147, 148] and f
(p,n)
Tq

denote the quark content of the nucleon. They have been experimentally bounded

to be: f
(p)
Tu

≈ 0.020 ± 0.004, f
(p)
Td

≈ 0.026 ± 0.005, f
(p)
Ts

≈ 0.118 ± 0.062, f
(n)
Tu

≈
0.014 ± 0.003, f

(n)
Td

≈ 0.036 ± 0.008 and f
(n)
Ts

≈ 0.118 ± 0.062 [149, 150, 151]. The

first term in Eq. 5.5 corresponds to interactions with the quarks in the target, which

can occur through either t-channel CP-even Higgs exchange, or s-channel squark

exchange. The second term corresponds to interactions with gluons in the target

through a quark/squark loop. f
(p)
TG is given by 1 − f

(p)
Tu

− f
(p)
Td

− f
(p)
Ts

≈ 0.84, and

analogously, f
(n)
TG ≈ 0.83.
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Figure 12: Posterior PDF of the neutralino-proton spin-independent scattering cross sec-

tion for the pMSSM with linear (left) and log (right) prior measures. The CDMS 90%

confidence level upper bound is also shown, assuming a local DM density of 0.3 GeV/cm3.

The dark contours show the 68% and 95% Bayesian credibility regions.

The direct detection constraints from the cryogenic cold dark matter search (CDMS)

experiments on the pMSSM is shown in Fig. 12. The large prior dependence of the
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results indicates that current data are insufficient to constrain the direct detection

cross sections. One can say that there is clearly a wide allowed range for the direct

detection cross sections.

5.4 Relaxing the purely LSP dark matter assumption

 0  0.05  0.1  0.15  0.2

L
C

D
M

ΩCDM h2

Gaussian
upper bound

Figure 13: Depiction of the likelihood constraint on the predicted value of ΩDMh2 due to

lightest neutralinos, compared to a simple Gaussian with WMAP5 central value and a 1σ

uncertainty of 0.02 used in the rest of the paper.

The analysis presented above was done assuming that the neutralino LSP is the

only source of dark matter. It is known that the LSP relic density is sensitive to

the assumed cosmology. For example, Big Bang Nucleosynthesis (BBN) expansion

rates can enhance the calculated relic density without affecting other important cos-

mological quantities [152]. The inclusion of right-handed neutrinos could change the

relic density prediction, see for instance [153]. One could also allow for additional

non-neutralino dark matter components. In order to see the potential effect of such

model changes, we relax the constraint from the DM relic density to the case where

only ΩCDMh
2 predictions larger than the central values are penalised according to

the likelihoods:

LCDM(ΩCDM) =







1

µ +
√

πs2/2
, if ΩCDM < µ

1

µ +
√

πs2/2
exp

[

− (ΩCDM−µ)2

2s2

]

, if ΩCDM ≥ µ
(5.6)
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where µ = 0.1143 is the experimental central value quoted above and s is an inflated

error on relic density that includes theoretical uncertainties in its prediction.

We have made an independent run using Eq. 5.6, i.e. relaxing the purely LSP DM

assumption, i.e. implicitly assuming some other component of dark matter. We wish

to examine the amount of DM that comes from the LSP. These runs were performed

in Ref. [32], where the relevant constraints can be found. Linear priors were used

on the parameters, which had a 2 TeV upper bound. We find in Fig. 14 that the

preferred relic density is low compared with the purely LSP DM assumption: around

ΩCDMh
2 = 10−2−10−3. Thus once one allows for an additional component of DM to

the LSP, the model prefers the additional component to dominate the relic density
10.

2 h
1

0χ∼
Ω 

10
log

-4 -3 -2 -10

1000

2000

3000

4000

5000

6000

7000

with full WMAP5 Gaussian constraint

with only WMAP5 upper bound constraint

Figure 14: Neutralino relic density assuming WMAP5 as a Gaussian likelihood constraint

or as an upper bound. For this plot only, a 2 TeV range linear pMSSM with other param-

eters as in Ref. [32] was taken.

6. Conclusions and Outlook

We have presented the first statistically convergent global fit of the pMSSM model

with its 25 independent continuous parameters plus a discrete parameter, sign(µ) =

±, to the dark matter relic density, indirect observables and direct sparticle search

constraints. We have used the entire set of relevant electroweak precision observables

and B-physics data, as well as the anomalous magnetic moment of the muon as

indirect observables. The evidence for the linear and log prior measure pMSSM in

light of the data is loge Z = 63.211± 0.033 and loge Z = 65.043± 0.042 respectively.

10Some of us hope to return to this issue in future work. We thank Bryan Webber for suggesting

this comparison.
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We have presented a good-fit point in the pMSSM parameter-space which is not

unique since the χ2 minimum is degenerate. All the different parameter-space points

with maximal likelihood are equally interesting for phenomenological studies.

This work constitutes a technical demonstration that statistically convergent global

fits in high dimensions involving curving degeneracies and several modes are now fea-

sible. This feasibility is due to new sampling algorithms and improvements in the

speed of computation and access to it. It allows more complete phenomenological

studies of multi-parameter models beyond the standard model that could not have

been completed in the past. In particular, the set-up and techniques employed here

provide an unbiased approach to MSSM phenomenology – independent of the under-

lying theory, the mechanism to break SUSY or its mediation – hence it could lead

to more robust SUSY phenomenological studies and guides for LHC SUSY searches

and for dark matter search experiments. As expected the results of this exercise

differs significantly from those of the more studied CMSSM/mSUGRA and thus the

pMSSM parameter space provides a much richer and appropriate arena for LHC

studies of the MSSM.

For the analysis we consider prior measures flat in either the parameters (a lin-

ear prior) or flat in the logarithm of the parameters (a log prior) in order to check

robustness of inferences. Given the large number of (the pMSSM) parameters com-

pared with the (weak constraining power of the) data available at the moment it is

very interesting that indeed there are some prior-independent results or inferences.

The lightest CP-even Higgs boson mass and the stop masses fall into this category of

robust and prior independent results. The other sparticle masses and all dark matter

properties exhibit significant prior dependence and require more direct and precise

data (or more constrained models) to make their prediction robust. We emphasise

that prior dependence is present and it is a positive feature of Bayesian methods,

since its absence signals when there is enough data to make the fits robust. This

can be used as a guideline for future studies of the experimental implications of

the MSSM. In particular, if SUSY is discovered via sparticle production at collider

and many sparticle properties are precisely measured, it will be possible to use the

techniques show-cased in the present work to extract pMSSM information. Such

information can then be checked for consistency with more constrained models.

We now contrast our methods with the recent random points scan analysis of the

pMSSM in Ref. [33] and a similar earlier work in Ref. [4]. These works perform a

pMSSM random parameter scan to find points which pass direct search and dark

matter constraints while being within 2 σ of the central values of some indirect

constraints. All such points are considered on an equal footing, and as such (as

emphasised by the authors) are not a statistical global fit. We, on the other hand,

allow a trade-off between different observables in a statistically correct fashion; one
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may tolerate a moderately bad fit in one observable if it fits the other observables

particularly well. Our use of Gaussian distributions for the likelihoods (instead of

the 2σ top-hat function in [4, 33]) is justified by the central limit theorem and the

maximum entropy principle [154]. Interesting points with LHC phenomenology not

covered by previous studies of constrained models were found in Ref. [33], which was

the main aim of the approach (a few thousand points passed the constraints, out of

∼ 107 scanned). We aim to perform a complete and statistically convergent global fit

of the pMSSM. To achieve this we take advantage of the power of the MultiNest

algorithm, which provides samples in moderately high dimensional parameter spaces

(with curving degeneracies and different modes) much more efficiently than in ran-

dom/grid parameter scans. In [33] there was more emphasis on direct search limits,

which are more sophisticated than the ones employed in the present paper. Since

the sparticle masses implied by our fits are large, our results are insensitive to the

exact form of the direct search limits. The density of points in Ref. [33] also shows

prior dependence although the results were not interpreted statistically (and thus

they were not Bayesian nor frequentist). Another major difference to our approach

is that in Ref. [33], the WMAP constraint is used only as an upper bound (making

viable points much easier to find) and so the existence of another non-MSSM dark

matter particle is assumed. This changes the character of the points: allowing MSSM

points which predict approximately zero LSP relic density means that a large num-

ber of sampled points have a wino dominated LSP. We, however, assume in most of

our analysis that the neutralino constitutes all of the dark matter. In Section (5.4)

we presented an independent run made using the WMAP constraint only as a lower

bound and our results (as expected) agree with those of [4, 33] in the sense that, in

that case, the LSP contribution tends to be only a small fraction of the total dark

matter.

There are many directions in which this research could be extended. For each of

the tens of thousands of preferred points in our sample, a detailed calculation of LHC

observables such as inclusive counts of opposite sign dilepton and trilepton events,

could be made using standard event generators and detector simulators, as has been

done for more constrained models such as the CMSSM [155]. This would provide a

portrait of the signature space that may eventually be useful in direct SUSY searches.

On a simpler level, one could compute relative probabilities of various sparticle mass

hierarchies. The indirect dark matter detection prospects could also be evaluated,

although with current data, they are likely to be highly prior dependent. The impact

of the inclusion of the fine-tuning into the prior could be analysed. Assuming a

particular parameter point, the impact of LHC SUSY measurements on our fits

could be evaluated and an estimate of how much luminosity would be required in

order to make inferences approximately prior independent11. In this case, model

11A Bayesian approach has recently been used to ameliorate the LHC inverse problem in the
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comparison between more constrained models and the pMSSM could be informative.

One could determine, for a given LHC luminosity, which models could be made prior

independent. The extension of the analysis to the full 124 MSSM parameter space

may be still out of reach at the moment. Algorithms improving the MultiNest

algorithm may be required before attempting it. Adding a small number of minimal

flavor violating parameters could however be feasible. An extension of this work to

include reasonable generalisations of the minimal flavour violation scenario adding a

few extra parameters should be possible. Also, including R-parity violation to the

pMSSM as well as a phenomenological NMSSM are within reach of the techniques

we used here. Some of us hope to return to these issues in future work.

A. Nested sampling and the MultiNest algorithm

For scanning parameter spaces of large dimensionality we have to use efficient

modern approaches for sampling the posterior. In such problems, interesting param-

eter regions are often tiny in some directions and many directions are orthogonal

to ones along which the likelihood is degenerately high. In this Section we present

the procedure, in the context of the pMSSM, for the Monte Carlo technique called

nested sampling developed by John Skilling [31] and implemented in MultiNest.

It is a general method for evaluating the integral Eq. 2.2 from which representative

samples from the posterior distribution Eq. 2.1 are obtained as by-product. The

method differs from the traditional approach to inference dating back to Metropolis

et. al. (1953) where the emphasis is more on evaluating the posterior density than

in calculating the evidence. Skilling’s method goes as follows. Exploring the 25-

dimensional co-ordinate Θ to evaluate the evidence integral is impractical. Instead,

the prior mass dX = π(Θ) dΘ can be used directly to convert the 25-dimensional into

a 1-dimensional integral over a unit interval. Let X(L) be the prior mass enclosed

within the likelihood contour, L(Θ) = L in the parameter space. That is,

X(L) =

∫

L(Θ)>L

π(Θ) d25Θ. (A.1)

As L increases from zero to infinity the enclosed prior mass decreases from X(0) = 1

to X(∞) = 0. The inverse function L(X) ≡ L is the contour value (a likelihood

value) such that the volume enclosed is X (see Fig. 15 for an illustration). Eq. A.1

and the definition of its inverse implies that the evidence Eq. 2.2 can be expressed

as

Z =

∫

L(Θ)π(Θ) d25Θ =

∫ 1

0

L(X) dX. (A.2)

Given the likelihood values Li = L(Xi) at a sequence of m points 0 < Xm < . . . <

MSSM by combining LHC data with indirect observables [156].
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Figure 15: Likelihood contours over a toy two-parameter space showing the enclosed vol-

ume mapped to corresponding prior mass. A prior mass x = 1
2 is mapped to the likelihood

contour that encloses 1
2 of the prior volume. Note the nested nature of the contour lines.

Figures are from [37].

X2 < X1 < X0 = 1 the evidence is estimated as a weighted sum,

Z =
m
∑

i=1

Liwi, (A.3)

where for the trapezoidal rule wi =
1
2
(Xi−1 −Xi+1).

A.1 Evidence evaluation

The nested sampling procedure for evaluating the evidence starts with the ac-

cumulation of N points uniformly drawn from the prior, the initialisation of the

evidence, Z = 0, and the initialisation of the prior volume, X0 = 1. The number,

N , of “live” points, Θ1, . . . ,ΘN is preserved throughout the procedure and every

point is associated with its corresponding likelihood value: L(Θ1), . . . , L(ΘN). Each

step i = 1, 2, 3, . . . over the iterations is associated with the lowest likelihood Li (or

the largest prior mass, Xi) that defines the contour line (or shell) L(Θ) = Li over

parameter space. For moving from the (i − 1)th to the ith iteration a new point is

drawn from the set of points uniformly distributed in (0, Xi−1), the parameter space

region with likelihoods L ≥ L(Xi) = Li. This is illustrated in Fig. 16. The new point

replaces the one with lowest likelihood. Xi is set to Xi = exp(−i/N), the weight

wi to
1
2
(Xi−1 − Xi+1) and the evidence Z incremented by Liwi. This procedure is

repeated for the subsequent iterations.
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Figure 16: Figure on the left shows N = 8 live points uniformly distributed in parameter

space (or prior volume space (0, 1)) and sorted according to corresponding likelihood values.

On the right is a picture illustrating the sampling of a new point (big purple) dot from the

live points uniformly distributed in (0, x1). Figures are from [37].

The prior volume shrinkage ratios ti = Xi/Xi−1 are distributed according to

Pr(ti) = NtN−1
i in (0, 1) where ti is the largest of N random numbers uniformly

distributed in (0, 1). Sampling over t represents a geometrical exploration of the

parameter space. The mean and standard deviation of t are

E(log t) = − 1

N
and σ[log t] =

1

N
(A.4)

respectively. This justifies the assignment Xi = exp(−i/N) since each draw of log t

is independent and after i iterations of the sampling procedure the prior volume will

shrink down according to

logXi ≈ −(i±
√
i)/N. (A.5)

A.2 Stopping criterion

The nested sampling procedure is terminated after a preset number of the iterations

(as described in Subsection A.1) or when the largest likelihood taken over the whole
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currently (at the instance of check for termination, say the jth iteration) available

prior mass would not increase the evidence value by more than some preset fraction

f (we use 0.5 in log-evidence). That is, the procedure is terminated if

max(L(Θ1), . . . , L(ΘN))Xj < fZj.

The integration, Z, is dominated around the region X ≈ e−H , wherever the bulk

of the posterior mass is to be found. Here

H = information = −
∫

log(dX/dP ) dP ≈
∑

i

log

(

Li

Z

)

Liwi

Z
(A.6)

and dX/dP is the compression ratio representing the fraction of the prior mass that

contains the bulk of the posterior. dP = p(Θ) dΘ = Z−1L(Θ)π(Θ), dΘ. Recalling

that Xi ≈ e−i/N we expect the integration procedure to take NH ±
√
NH steps

(iterations) before reaching covering the bulk of the posterior. Hence another ter-

mination condition could be to continue iterating until the count i is significantly

greater than NH .

The uncertainty in X translates to a geometrical uncertainty factor exp(±
√

H/N)

in the weights wi of the dominating iterates. This in turn gives the uncertainty in

the evidence via Eq. A.3 as dev(logZ) ≈
√

H/N so that

logZ = log

(

m
∑

i=1

Liwi

)

±
√

H

N
. (A.7)

A.3 Posterior inferences

The posterior distribution p(Θ) is simply the prior distribution weighed by the

likelihood. This can be trivially extracted from the evidence calculation since the

set of sampled points Θ1, . . . ,ΘN is already a posterior representative provided it is

assigned the appropriate importance weight and normalised by the evidence, Z, to

produce probability density with unit total. That is at the ith iteration the posterior

probability density is

pi =
Liwi

Z
. (A.8)

These are generated from the sequences of discarded points (the points with the

lowest likelihood value at each iteration) during the sampling procedure. From these

posterior sequence properties such as the mean µ and standard deviation σ of some

Q(Θ) are easily computable:

µ =
∑

i

piQ(Θi) and µ
2 + σ2 =

∑

i

piQ(Θi)
2. (A.9)

Equally-weighed samples selected proportionally to pi can be used to construct

marginalised posterior distributions in Θ.
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(a) (b)

Figure 17: Illustrations of the ellipsoidal decompositions performed by MultiNest. The

points given as input are overlaid on the resulting ellipsoids. 1000 points were sampled

uniformly from: (a) two non-intersecting ellipsoids; and (b) a torus.

For completeness, it is worth mentioning that there are alternative methods for

evaluating the evidence with other advanced MCMC algorithms like thermodynamic

integration and it is not clear yet which method is best for high dimensional prob-

lems: dimensions greater than 12 10. However, for this paper we implement the

nested sampling algorithm for our purpose using the MultiNest code [29] which

has additional quality of being efficient in sampling multi-modal posteriors exhibiting

curving degeneracies (see a summarised account in Subsection A.4).

A.4 MultiNest

The most challenging task in implementing the nested sampling algorithm is draw-

ing samples from the prior within the hard constraint L > Li at each iteration i. Em-

ploying a naive approach that draws blindly from the prior would result in a steady

decrease in the acceptance rate of new samples with decreasing prior volume (and

increasing likelihood). MultiNest algorithm [29, 30] tackles this problem through

an ellipsoidal rejection sampling scheme by enclosing the live point set into a set of

(possibly overlapping) ellipsoids and a new point is then drawn uniformly from the

region enclosed by these ellipsoids. The number of points in an individual ellipsoid

and the total number of ellipsoids is decided by a an ‘expectation–maximisation’

algorithm so that the total sampling volume, which is equal to the sum of volumes

of the ellipsoids, is minimised. This allows maximum flexibility and efficiency by

12We thank David Mackay for interesting discussions about this. See for example

http://www.inference.phy.cam.ac.uk/mackay/presentations/nested06/
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breaking up a mode resembling a Gaussian into relatively fewer number of ellip-

soids, and if the posterior mode possesses a pronounced curving degeneracy so that

it more closely resembles a (multi–dimensional) ‘banana’ then it is broken into a

relatively large number of small ‘overlapping’ ellipsoids (see Fig. 17). With enough

live points, this approach allows the detection of all the modes simultaneously re-

sulting in typically two orders of magnitude improvement in efficiency and accuracy

over standard methods for inference problems in cosmology and particle physics phe-

nomenology (see e.g.[157, 158, 34, 32, 159]). The MultiNest procedure as applied

to our pMSSM fits is summarised by the flow charts in Fig. 18.
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Print Z

STOP

YES

NO
Terminate?

Main flowchart
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STOP

counter = 0

counter == N ?
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counter = counter + 1

pass to HEP softwares
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NO
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& constraints?

YES

NO

compute likelihood

keep point and likelihood

Flowchart 2
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θDraw a 26−D point from L( ) > L

STOP
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Figure 18: Flow charts summarising the sampling procedure: Z refers to the Bayesian

evidence, Eqs. (2.2, (A.2), (A.3); Xi is the prior mass, Eq. A.1; and pi is the posterior

probability, Eq. A.8. HEP software refers to the different computer programs described in

Section (3.4).
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