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ABSTRACT 

The three-parameter Weibull distribution is a commonly-used distribution for the study of 

reliability and breakage data. However, given a data set, it is difficult to estimate the 

parameters of the distribution and that, for many reasons: (1) the equations of the maximum 

likelihood estimators are not all available in closed form. These equations can be estimated 

using iterative methods. However, (2) they return biased estimators and the exact amount of 

bias is not known. (3) The Weibull distribution does not meet the regularity conditions so 

that in addition to being biased, the maximum likelihood estimators may also be highly 

variable from one sample to another (weak efficiency). The methods to estimate parameters 

of a distribution can be divided into three classes: a) the maximizing approaches, such as the 

maximum likelihood method, possibly followed by a bias-correction operation; b) the 

methods of moments; and c) a mixture of the previous two classes of methods. We found 

using Monte Carlo simulations that a mixed method was the most accurate to estimate the 

parameters of the Weibull distribution across many shapes and sample sizes, followed by the 

weighted Maximum Likelihood estimation method. If the shape parameter is known to be 

larger than 1, the Maximum Product of Spacing method is the most accurate whereas in the 

opposite case, the mixed method is to be preferred. A test that can detect if the shape 

parameter is smaller than 1 is discussed and evaluated. Overall, the maximum likelihood 

estimation method was the worst, with errors of estimation almost twice as large as those of 

the best methods. 

   Index Terms  —  Weibull distribution, parameter estimation, maximum likelihood. 

 

1 INTRODUCTION 

THE Weibull distribution is used in reliability studies, for 

example to study the voltage breakage of electric circuits [1, 2]. 

It is also commonly used in other disciplines such as physics for 

the study of crystallization, in climatology for the study of tides 

and in cognitive psychology to study the time to complete a task 

[3-5]. The Weibull distribution with non-zero shift has three 

parameters, denoted in the following: γ > 0, the shape 

parameter responsible for the skew of the distribution; β > 0, 

the scale parameter; finally α , the shift parameter which is also 

a lower bound. Its probability density function is given by 
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Three basic statistics of this distribution, the mean, the variance 

and the Fisher skew are given by 
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in which Γ represents the Gamma function. Its shape can vary 

from an hyperexponential (whenever γ < 1) to a near 

symmetrical (when γ ≈  3.6) to a negatively skewed 

distribution (as γ → ∞ ). 

In general, the best method to estimate the parameters of a 

distribution is the Maximum Likelihood Estimation method 

(MLE). However, its application to the Weibull distribution is 

problematic for three reasons: 

1) In order for MLE to be the most efficient method (as 

sample size increases to infinity), the distribution must satisfy 

the so-called regularity conditions [6]. However, the Weibull Manuscript received on 5 April 2008, in final form 24 November 2008. 



 

distribution does not satisfy one of the conditions because the 

domain of the random variable depends on the position of the 

lower bound (the parameter α ). Three cases occurs, identified 

in [7]: γ  ≤ 1, in which case the MLE method is not consistent 

as there may be more than one solution [8]; 1 < γ  ≤ 2, where 

the distribution of the estimates does not follow a normal 

distribution; finally, γ  > 2, for which the weak regularity 

conditions are satisfied so that the properties of MLE 

(consistency, normality, maximum efficiency) are effective as 

the sample size tends towards infinity. 

2) The MLE solutions are biased and it is not known by what 

amount. The bias strongly depends on the parameter γ  and the 

sample size n  [9]. Figure 1 illustrates the mean estimated 

parameters γ̂ , β̂  and α̂  as a function of the population γ  and 

sample size n . It was suggested to model the bias surfaces of 

Figure 1 using polynomials so that a correction could be applied 

on the estimates [10]. However, we found this approach to be 

very sensitive to the specifics of the implementation (for 

example, changing the optimization procedure). Likewise, a 

review of some bias correction procedures was performed in 

[1]. However, they are all based on the two-parameter Weibull 

distribution and do not generalize to the three-parameter 

Weibull distribution. 

3) The MLE solutions are not available in a direct form for 

two of the three parameters. The likelihood function of the 

Weibull parameters for a sample X of size n  is given by 
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so that the log of the likelihood function simplifies to: 
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   Maximizing the above is achieved by computing the 

derivative with respect to the scale parameter β  and setting it 

to zero. The resulting equation can be reorganized into: 
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It is the only parameter which can be isolated on the left-hand 

side of an equation. Note that it requires the knowledge of the 

other two parameters to be computed. 

The derivative with respect to γ  yields, replacing γβ −  with 
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Similarly for α , we get: 
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Equations (4) and (5) define implicitly the parameters γ  and 

α , which in turn can be used to derive β . 

One way to estimate γ  and α  is to square equations (4) and 

(5) and search for the minimum so that the full MLE solution is 

given by { }
MLE

ˆ ˆ,γ α  which satisfies the following two 

constraints: 
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and by ( )MLE
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In the following, we will review alternatives to maximizing 

the likelihood function, namely the maximum product of 

spacing (MPS) [11] and the weighted Maximum Likelihood 

estimation method (w-MLE) [12]. We will also review method 

of moment estimators [13] and propose new such estimators. 

We will also consider mixed methods where a subset of the 

parameters is estimated with one method and the remaining 

parameters with another method. Finally, we will assess the 

capabilities of the methods using Monte Carlo simulations. 

Because the parameters α  and β  are scaling parameters, they 

will not be varied in the simulations; only the shape parameter 

γ  and the sample size n  will be manipulated. 

2 A REVIEW OF EXISTING METHODS TO ESTIMATE 

THE PARAMETERS OF A THREE-PARAMETER 

WEIBULL DISTRIBUTION 

The methods will be divided into three classes, one that 

maximizes a measure of adequacy (e.g. the likelihood), one that 

isolate the parameters from the equations of basic statistics of 

Figure 1. Biases of the MLE method as a function of sample size and true 

population γ . Left panel: estimated shape parameter; middle panel: estimated 

scale parameter; right panel: estimated shift parameter.  A quantity below zero
means an underestimation of the parameter. 



 

equations (2) and a class which mixes methods from the 

previous two. 

2.1 MAXIMIZING ADEQUACY 

Maximum Likelihood estimation (MLE). This method was 

already reviewed above. With this method, the parameter β  is 

a function of the other two parameters. It can be shown that if 

the true parameter α  and γ  are known, ˆγβ  follows a Gamma 

distribution with parameters n , / nγβ , which tends to a 

normal distribution as n  get large. However, the true 

parameters α  and γ  being unknown, this result is of little 

interest in practical application. 

Maximum Product of Spacing (MPS). To avoid inconsistent 

solutions when γ  < 1, it was proposed to replace the likelihood 

function with a related function, the spacing function [11]. This 

function returns the probability that the data are spaced the way 

they are. To do so, the following quantity is maximized: 
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in which F is the cumulative distribution function of the 

Weibull distribution ( )( | , , ) 1 exp( ( ) / )F x x
γ

γ β α α β= − − −  and 

where F(x0) and F(xn+1) are set to 0 and 1 respectively. This 

function is consistent for all γ , avoiding the first difficulty with 

MLE. In addition, it was shown to be hyper-efficient, i.e. to 

produce less variable estimates than the MLE alternative, a 

characteristic that will be present in the subsequent simulations. 

A generalization of MPS was proposed, the Quantile 

Maximum Product Estimation (QMPE) [14]-[17] and explored 

in [9]. In this generalization, m ≤ n quantiles are estimated from 

the data (with boundaries [qi, qi+1], each quantile regrouping in  

data ( in n=∑ ). Then, the function to maximize is 
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in which F(q0) = 0 and F(q n +1) = 1. The advantage of QMPE 

is that it is little affected by outliers (suspiciously small or large 

data) commonly found in experimental psychology. We chose 

not to explore QMPE here as the optimal number of quantile 

m  is not known. 

Weighted Maximum Likelihood estimation (w-MLE). First 

proposed in [18] for the two-parameter Weibull distribution and 

extended to the three-parameter case in [12], this approach 

proposes equations similar to the MLE’s but incorporating three 

weights such that { }ˆ ˆ,
w MLE

γ α
−

 satisfy the system of equations: 

( )
( )( )

( )

( )

( )

2

12

,
1

1

2

1
3

, 11

1

log
1

Min log

  

1 1
Min

n

i in
i

i n
i

i

i

n

in
i
n

ii
i

i

x x
w

x
n

x

x

w
n x

x

γ

γ α γ

γ

γ α γ

α α

α
γ

α

α

α
α

=

=

=

=

−=

=

    − −    + − −   −     
 
  
  −
  
  × −

−  
 − 

    

∑
∑

∑

∑
∑

∑

 

from which we derive  
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The weights are meant to nullify the biases and two of them (w1 

and w2) depends only on the sample size whereas the third 

depends on the sample size and the hypothetical shape 

parameter γ . The weights are not available in closed form; [12] 

provides tables in which the weights were estimated using 

Monte Carlo simulations. Contrary to MLE, w-MLE properties 

exist for all sample sizes, not just for the asymptotic cases. 

Related techniques. A nested MLE method was proposed in 

which the search for the best-fitting parameters is performed by 

subdividing the parameter space [19]. This technique however 

returns estimates that are only marginally better than those of 

the regular MLE technique [20]. 

Reference [21] supplemented the regular MLE method with 

an alternative method when the true shape parameter is smaller 

than 1 to avoid inconsistent solutions. However, the method 

returned estimates that are poorer than regular MLE (inversing 

the bias). They also proposed a test to determine whether the 

population shape is smaller or equal to 1. We will discuss this 

test in the last section. 

Finally, Bayesian estimation techniques and prior-informed 

MLE are generalizations of the regular MLE method [22], [23]. 

Because they are based on the likelihood functions, the inherent 

biases of MLE transfer to these methods as well. Their 

advantage is that they incorporate priors, if such priors are 

available in a given theoretical context. 

2.2 METHOD OF MOMENTS 

The method of moments (MoM) consists in using equations 

of summary statistics to isolate the parameters to be estimated. 

Statistics of higher moments (e. g. skewness as opposed to 

mean) are more variable and more likely to result in a poor 

estimate. A few MoM estimators were proposed for the two-

parameter Weibull distributions which cannot be generalized to 

a three-parameter Weibull distribution [13]. Harter and Moore 

suggested to estimate γ  using the coefficient of variation (ratio 

of the mean onto the standard deviation). If there is no shift (α  

= 0), this ratio is equal to an expression involving γ  only (that 

expression cannot be manipulated to isolate γ  but using a 

simple binary search, its value can be estimated). In the case 

where α  is not zero and unknown, their estimate 
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(in which X  is the mean of the sample X and X
�

 is the sample 

standard deviation) requires the knowledge of α  to be 

obtained. Likewise, [13] proposed a MoM estimator for β  

which requires both α  and γ : ˆ
HMβ =  ( ) / (1 1 / )X α γ− Γ +  

but this method will not be examined further. 

It is possible to derive a new MoM estimate for γ  which 

does not requires information of the other two parameters, but 

this estimator requires an estimate of the Fisher skew, which is a 

moment-3 statistic: ˆSkγ  such that: 
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Regarding the other two parameters, it seems difficult to 

produce an estimate not based on the other parameters, but we 

found a few estimators based only on one parameter, the shape 

parameter γ . 

One was suggested in [13] and uses the standard deviation 

(moment-2 statistic): 
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In the following, two new MoM estimators will be proposed, 

based on the notion of expected minimum of a sample, 

E(Min(X)). The minimum of a sample of size n  is smaller than 

x with probability: 
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which is a Weibull distribution with the same shape and shift 

parameter than the sample population but with scale reduced by 

a factor n
γ

. Hence, the expected minimum of a sample is 

given by ( ( )) ( / ) (1 1 / )E Min n
γα β γ= + Γ +X . Using this 

statistic, we have that ( ) ( ( ))E E Min− =X X  
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γβ γΓ + −  such that a new MoM estimate for β  is 

given by: 
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in which (1)X  is the minimum of the sample. Likewise, 
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2.3 MIXED METHODS 

We have found two MoM estimators which are dependent on 

γ . Because they involve only moment-1 statistics (expected 

value and expected minimum value) which are not biased 

statistics, they have the potential to be unbiased estimators if the 

shape parameter γ  is itself without bias. However, the MoM 

estimator for γ  is based on skew, a moment-3 statistic which is 

very likely to be a poor estimator (as will be confirmed in the 

next section). This opens the possibility to have a mixed method 

in which γ  is estimated using a maximum-adequacy method 

and the other two parameters are then estimated using the MoM 

estimators. This is one approach that will be examined in the 

subsequent section. 

3 ESTIMATING THE SHAPE PARAMETER γ  

In this section, we concentrate only on methods to estimate 

the shape parameters. We identified in the previous section four 

methods that can be used: MLE (equation 6), MPS (equation 

7), w-MLE (equation 8) and MoM using skew (equation 9). 

These methods were tested using Monte Carlo simulations 

(methodology described in the appendix) varying the sample 

size n  {8, 16, 32, 64} from very small to moderately large 

sample size and the true shape parameter Tγ  {0.5, 1.0, 1.5, 2.0, 

2.5} from regions with inconsistent solutions to regions 

satisfying the weak regularity conditions. 

In this section, we screened the estimated γ̂  for possible 

extreme estimates. Indeed, negatively skewed Weibull 

distributions occur for γ  in the infinite range [3.6 .. ∞ ]. As a 

result, a Weibull distribution with shape 10 has an 

undistinguishable shape from another Weibull distribution with 

shape 10,000. A very small number of such extreme estimates 

would increase the measures of bias, efficiency and root mean 

square error (RMSE). Following [25], we rejected estimates of 

γ  which were above 5.  

There was a total of 2% of extreme estimates. The extreme 

estimates were not randomly distributed. 70% of them were 

located in the Tγ  = 2.5 conditions. This is understandable as 

the true shape is closer to the cut-off point. Similarly, the 

methods differ regarding the number of outlying estimates they 

produced. The MLE method produced the largest amount of 

extreme estimates (41%), followed closely by MoM(Sk) and 

MPS (35% and 24% respectively). The w-MLE method never 

produced estimates above 5. 

Figure 2 illustrates the biases, the efficiencies and the RMSE 

for the four sample sizes and the four methods divided 

according to the population shape. 

As seen, the w-MLE method systematically outperforms the 

other methods. The worst method is the MoM(Sk) which is not 



 

so surprising since it is based on a moment-3 statistic. Its poor 

performance are mostly apparent for small γ ; for large γ , its 

RMSE gets closer to MLE’s RMSE. 

MLE are also generally bad but surprisingly, not for the cases 

where γ  < 1. In those situations, there is a second inconsistent 

solution but as shown in [8], this second solution is always 

located on one of the boundaries in the parameter space (e.g. 

when α  = (1)X ). Because all the boundaries were excluded 

from the starting values, it seems that the optimization 

procedure generally found the (correct) local maximum of the 

likelihood surface. 

Table 1 summarizes the RMSE and the biases across all 

sample sizes. Regarding biases, both w-MLE and MPS have 

smallest bias so that they are potential contenders for providing 

the γ   estimate in a mixed method. 

4 ESTIMATING ALL THREE PARAMETERS 

SIMULTANEOUSLY 

We chose to examine three maximum-adequacy methods 

(namely MLE, (equation 6), MPS (equation 7), and w-MLE, 

(equation 8)) and three mixed methods. In all three mixed 

methods, β  and α  are estimated using the mean and the 

expected minimum (equations 11 and 12). They differ on the 

origin of γ̂ : it was taken from the previous three methods (the 

estimates are thus noted Mixed( γ  � MLE), Mixed( γ  � 

MPS), and Mixed( γ  � w MLE)). In light of the results in the 

previous section, we expect MLE to provide poor estimates but 

it is nonetheless provided as a baseline and because it is still the 

most commonly used method. 

The quality of the estimates are again reported in terms of 

RMSE, bias and efficiency, but this time computed on the 

vector composed of the three parameters { , , }θ γ β α=
�

 and 

distance computed using the Euclidian distance (the norm). The 

results are presented in Figure 3 and summarized in Table 2. 

As seen, MLE and Mixed( γ  � MLE) are the worst 

methods (with one exception: if γ  = 0.5, MPS is the second 

worst method). Yet, MPS is the most reliable method for γ  > 

1. When γ  ≤ 1, the Mixed( γ  � w-MLE) method is superior 

to all other methods. If you have to adopt only one method and 

you expect to have γ s that are above and below 1, the 

recommended methods are either Mixed( γ  � w-MLE) or w-

MLE. 

Because the reliability of the methods depends on whether γ  

≤1 or γ  > 1, it would be nice to have a test to decide what 
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Figure 2. Bias, efficiency and RMSE for the shape estimates as a function of the true population shape (graphs), methods (abscissa) and sample sizes (in the order 8, 16, 32, 
64). The dots shows the bias, the error bars, the efficiency, and the thick line, the RMSE. The number in the bottom of the graphs is the mean RMSE across the four sample 
sizes. 

Table 1. Mean estimated RMSE and Bias on the parameter γ across sample 

sizes as a function of the true parameter γ for the four methods of estimation 

explored in the text. 

T rue MLE w-MLE MPS MoM(Sk)

RMSE

0.5 0.129 0.095 0.137 0.484

1.0 0.394 0.148 0.336 0.585

1.5 0.610 0.180 0.510 0.682

2.0 0.784 0.212 0.715 0.785

2.5 0.987 0.238 0.877 0.865

Unsigned mean 0.581 0.175 0.515 0.680

Bias

0.5 -0.052 0.011 -0.020 0.393

1.0 -0.238 -0.005 -0.015 0.339

1.5 -0.249 -0.035 -0.026 0.274

2.0 -0.304 -0.068 -0.081 0.180

2.5 -0.461 -0.087 -0.279 -0.044

Unsigned mean 0.261 0.041 0.084 0.246
 



 

method to use. Such a test was proposed in [21], hereafter 

called the Lockhart and Stephens test. It consists in minimizing 

the following: 
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 (13). 

If the minimized value is not zero, we are in a region with 

inconsistent solutions and therefore, γ  must be smaller or equal 

to 1. We verified this test with Monte Carlo simulations using a 

very small sample size (n  = 8) and found it to be very 

sensitive, as seen in Table 3. 

By first using the test followed by either MPS if equation 

(13) is zero or Mixed( γ  � w-MLE) otherwise, the global 

RMSE is lowered to 10.656, a significant improvement over 

any one method used exclusively. 

5 CONCLUSION 

In this report, we examined methods to estimate the 

parameters of the three-parameter Weibull distribution. The 

results showed that the regular MLE is the worst method and 

should be avoided at all cost unless the sample size is very large 

(much larger than the sizes tested here). Any other method 

tested in the third section performed almost 40% better than 

MLE. 

However, there is another reason why MLE should not be 

used: the precision in measurements. In all the empirical 

sciences, the data are measured with a precision of ± x∆  (in the 

Monte Carlo simulations reported above, we generated random 

deviates with 40 digits of precision so that x∆  can be ignored). 

As such, the likelihood of a data set is unfounded since we only 

have access to approximate measures and this fact must have 

repercussions on the likelihood measure:  
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∏

XL

 (14) 

As seen, equation (14) is much more similar to MPS (equation 

7) in which the spacing to the subsequent datum provided a 

form of measurement precision. As such, this method should be 

preferred over the standard MLE method, more so if γ is known 

to be larger than 1. 

APPENDIX 

In all the Monte Carlo simulations reported in the text, we 

used the following method. In one simulation, a random sample 

of size n  was obtained from a population following a Weibull 

distribution with true parameters { γ , β  = 100, α  = 300}. 

Because α  and β  are scaling parameters, it is not necessary to 

vary them systematically. The sample was then analysed using 

the methods described in the text and the resulting estimates 

were saved. This simulation process was repeated a thousand 

times for a given condition of n  and γ . 

For all the maximizing adequacy methods, we used a simplex 

algorithm [27]. Both β  and γ  were constrained to be larger 

than zero. The shift parameter was constrained to be smaller 

than the smallest value of the sample (as α  is the lower bound 

Table 2. Mean estimated RMSE and Bias on the parameter vector across sample sizes as a function of the true parameter γ for the six 

methods of estimation explored in the text. 
 

True γ  MLE  w-MLE  MPS  

Mixed         

(γ �MLE)  

Mixed 

(γ �w-MLE)  

Mixed  

(γ �MPS) 

RMSE             

0.5  62.080  24.735  38.091  21.632  19.875  23.544 

1.0  11.137  9.539  10.032  10.201  9.029  9.223 

1.5  10.309  8.057  7.759  9.922  8.312  8.171 

2.0  13.770  8.698  7.783  13.251  9.834  9.378 

2.5  16.930  9.484  8.838  16.498  11.430  11.309 

Unsigned mean 22.845  12.103  14.500  14.301  11.696  12.325 

             

Bias             

0.5  16.515  6.912  11.106  -2.742  2.286  5.241 

1.0  0.705  2.098  0.662  -2.356  0.560  0.131 

1.5  3.497  0.835  -0.570  0.509  0.079  0.078 

2.0  4.722  0.207  -0.156  1.262  -0.060  1.205 

2.5  5.734  -0.467  0.981  1.942  -0.167  2.682 

Unsigned mean 6.235   2.104   2.695   1.762   0.630   1.867 

  



 

parameter, all the data have to be above it). The search was 

provided two starting values for each parameter. They were the 

same in all conditions: For γ , 0.6 and 2.4; for β , 80 and 120; 

for α , 280 and 320. These quantities for α  and β  correspond 

to what can generally be estimated from a visual inspection of 

the empirical distribution. 

Across simulations, we varied the sample size n , with values 

{8, 16, 32, 64}. These numbers represent a very small, small, 

moderate and moderate to large sample sizes which are 

commonly found in empirical papers. We did not explore larger 

sample sizes as the problem of parameter estimation is much 

less acute for n  ≥ 100. We also varied the shape parameter γ , 

with values {0.5, 1.0, 1.5, 2.0, 2.5}. We chose one value for 

each scenario { γ  = 0.5 implies the presence of inconsistent 

estimates; γ  = 1.5 implies non normal estimates; γ  = 2.5 

implies normal and asymptotically most efficient estimates) as 

well as the boundaries between the scenarios ( γ  = 1.0 and γ  = 

2.0). In total, we had 20 conditions each containing 1000 

simulations. 

For each of the conditions, we computed the following 

statistics: bias (difference between the mean estimated 

parameter and the true parameter), efficiency (standard 

deviation of the difference between the individual parameter 

estimates and the mean estimate) and the root mean square error 

(based on the squared difference between the individual 

estimates and the true parameters). They were computed on the 

difference (in the case of a single parameter) or the Euclidian 

distance (in the case where all three parameters are considered 

simultaneously as a vector). In either case, we have the relation 

2 2RMS vE b aia ces rian= + . 

where variance is the square of efficiency illustrated in Figures 

2 and 3 

For practical considerations, the RMSE is the most relevant 

measure as it quantifies the ability of a method to estimate the 

parameters adequately: a method with significantly smaller 

RMSE is to be preferred whenever possible. 
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