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Providing accurate and automated input-modeling support is one of the challenging problems in the application of computer
simulation of stochastic systems. The models incorporated in current input-modeling software packages often fall short
because they assume independent and identically distributed processes, even though dependent time-series input processes
occur naturally in the simulation of many real-life systems. Therefore, this paper introduces a statistical methodology
for fitting stochastic models to dependent time-series input processes. Specifically, an automated and statistically valid
algorithm is presented to fit autoregressive-to-anything (ARTA) processes with marginal distributions from the Johnson
translation system to stationary univariate time-series data. ARTA processes are particularly well suited to driving stochastic
simulations. The use of this algorithm is illustrated with examples.
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1. Introduction

Dependent time-series input processes occur naturally in
the simulation of many service, communications, and man-
ufacturing systems. For example, Melamed et al. (1992)
observe autocorrelation in sequences of compressed video
frame bit rates, while Ware et al. (1998) report that the
times between file accesses on a computer network fre-
quently exhibit burstiness, as characterized by a sequence
of short interaccess times followed by one or more long
ones. Because there is no widely available, general-purpose
method for fitting dependent time-series input processes,
simulation practitioners typically ignore these dependen-
cies and develop input models using software packages that
are appropriate for independent and identically distributed
(i.i.d.) data. Unfortunately, ignoring these dependencies
while developing input models for stochastic simulation can
lead to very poor estimates of performance measures. An
illustration is given by Livny et al. (1993), who examine
the impact of autocorrelation on the performance of single-
server queues.

Much of the previous work on dependent time-series
input processes is based on linear models, such as the
autoregressive moving average class or those that under-
lie Kalman filtering and related methods (Chatfield 1999).
Mallows (1967) shows that the linearity of these models
imply normal marginal distributions, but there are many
physical situations in which the marginals of the time-series
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input processes are nonnormal. Motivated by this prob-
lem, there has been considerable research on modeling
time series with marginals from nonnormal families, such
as exponential, gamma, geometric, or general discrete
marginal distributions (see, for example, Lewis et al. 1989).
However, these models often allow only limited control of
the dependence structure, and a different model is required
for each type of marginal distribution.

A way to overcome these limitations is to construct the
desired process by a monotone transformation of a Gaussian
linear process. For example, Cario and Nelson (1996, 1998)
take this approach to develop models for representing and
generating stationary univariate time-series processes. The
central idea is to transform a Gaussian autoregressive pro-
cess into the desired univariate time-series input process
that they presume as having an autoregressive-to-anything
(ARTA) distribution. The authors manipulate the autocor-
relations of the corresponding Gaussian process so that
they achieve the desired autocorrelations for the simulation
input process. They assume—as is common in the simu-
lation input-modeling literature—that the desired marginal
distribution and dependence structure (specified via auto-
correlations) are given. However, there is no rigorously jus-
tified method for fitting the input model when only raw
data generated by an unknown process are available. To fill
this gap, we attack the problem of fitting stochastic input
models to stationary univariate time-series data and suggest
a new method that we call the ARTAFIT method in the
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remainder of the paper. We specifically fit ARTA processes
with marginal distributions from the Johnson translation
system. While the focus on the Johnson translation system
might seem restrictive, it is less so than it first appears:
In many applications, simulation output performance mea-
sures are insensitive to the specific input distribution cho-
sen, provided that enough moments of the distribution are
correct (see, for instance, Gross and Juttijudata 1997). The
Johnson translation system can match any feasible finite
first four moments, while the standard families incorporated
in existing software packages and simulation languages
often match only one or two moments. Thus, the Johnson
translation system enables us to represent key features of
the unknown source of the data that have significant impact
on the simulation output performance measures. Although
our ARTAFIT approach is particularly compatible with the
Johnson translation system, our results can be extended to
other continuous distribution.

The remainder of the paper is organized as follows:
In §2, we provide the ARTAFIT algorithm, prove its con-
vergence properties, and show the statistical properties of
the resulting estimators as the sample size approaches infin-
ity. We provide illustrative examples demonstrating the use
of the algorithm in §3 and conclude with the expected
impact of this new statistical methodology on the develop-
ment of stochastic simulation inputs in §4.

2. Fitting ARTA Models

In this section, we present the framework for fitting stocha-
stic models to dependent time-series input processes. We
also provide the theory that supports the ARTAFIT frame-
work; the proofs are available in Biller and Nelson (2004).

2.1. Notation

We let the generic univariate input random variable be
denoted by X, with marginal cumulative distribution func-
tion (cdf) Fy. The cdf of the standard normal distribution
is denoted by @ and its probability density function by ¢.
The mean of a random variable is denoted by u and its
variance by 2.

A stationary univariate time-series input process is den-
oted by {X,; t =1,2,...}. The term “time series” means
that the random variables may be dependent in sequence,
such as the month-to-month orders for a product placed by
a customer. We denote any realization of length n from the
input process X, by {x,; t=1,2,..., n}. Boldface type is
used to denote column vectors, e.g., X = (X, X5, ..., X,) .

We account for dependence between random variables
that are lag-h apart, say X, and X,_,, via their product-
moment correlation defined as py(h) = E[c72(X, — u) -
(X,_, — m)], where X, has mean w and variance o? for
all 7 due to the assumption of a stationary input process.
Representation of dependence by product-moment corre-
lation is a practical compromise we make in this paper.
Many other measures of dependence have been defined

(see Nelsen 1998), and they are arguably more informa-
tive than the product-moment correlation for some distri-
butions. However, product-moment correlation is the only
measure of dependence that is widely used and understood
in engineering applications. We believe that making it pos-
sible for simulation users to incorporate dependence by
product-moment correlation, while limited, is substantially
better than ignoring dependence. Further, the ARTA model
is flexible enough to incorporate dependence measures that
remain unchanged under strictly increasing transformations
of the random variables, such as Spearman’s rank correla-
tion and Kendall’s 7, should those measures be desired.

2.2. The ARTAFIT Model

We are particularly interested in input-modeling problems
in which data are plentiful and nearly automated input mod-
eling is required. Consequently, we use a member of the
Johnson translation system to characterize the marginal dis-
tribution of the input process. A robust method for fitting
target distributions from the Johnson translation system to
i.i.d. data is suggested by Swain et al. (1988) and imple-
mented in software called FITTR1. They demonstrate the
robustness and computational efficiency of least-squares,
minimum L, norm, and minimum L_ norm techniques for
estimating Johnson-type marginals. We believe that similar
techniques can be effectively adapted to fitting ARTA mod-
els to dependent time-series data. We outline our approach
below.

Let {X,; t =1,2,...,n} denote a stationary univariate
time-series input process. The goal is to approximate {X,;
t=1,2,...,n} by an ARTA process whose complete spec-
ification is given by

X, =F'[®(Z)], t=1,2,...,n, €))

where the base process {Z,; t =1,2,...,n} is a station-
ary, standard Gaussian autoregressive process of order p
(denoted by AR(p)) with the representation

P
Z,=> oa,Z,_,+Y, t=p+1l,p+2,....n
h=1

The «), h =1,2,..., p, are fixed autoregressive coeffi-
cients that uniquely determine the autocorrelation struc-
ture of the base process, p,(h), h=1,2,...,p, and Y,,
t=p+1,p+2,...,n, are ii.d. Gaussian random vari-
ables with mean zero and variance o:. This modeling
approach works for any marginal distribution, although Fy '
may have to be evaluated by an approximate numerical
method when there is no exact closed-form expression. The
inverse cdf method is an essential ingredient of the ARTA
framework.

In this paper, we focus on processes having marginal
distributions from the Johnson translation system defined
by a cdf of the form

x—=§

A =ofy+ar| “E] | )
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where y and 6 are shape parameters, ¢ is a location param-
eter, A is a scale parameter, and f(-) is one of the following
transformations:

log(y) for the S, (lognormal) family,

log(y++/y*+1)

for the S, (unbounded) family,
log(7=) for the S, (bounded) family,
y for the S (normal) family.

fy =

This system can match any feasible finite first four
moments by the manipulation of the parameters f, vy, 8, A,
and £. Although the first four moments of all distributions
in the families S;, Sz, Sy, and S, are finite, the ability to
match any (finite) first four moments provides a great deal
of flexibility that is sufficient for many practical problems.
Distributional properties of the marginals from the Johnson
translation system can be found in Johnson (1949).

Clearly, fitting an ARTA process to data corresponds to
the estimation of f, v, 0, A, &, p, o, for h=1,2,...,p,
and o2. However, the value of o is completely determined
by the autoregressive coefficients «,, h = 1,2,...,p,
because we select o7 =1—Y1_, a,p,(h) to force the base
process Z, to have variance 1, and each base autocorrelation
py(h), h=1,2,..., p, can be written as a nonlinear func-
tion of the autoregressive coefficients «,, h=1,2,..., p,
by using the Yule-Walker equations (Wei 1990). For exam-
ple, p,(h) = a}{, h > 1, when the order of the underlying
base process is equal to one. Therefore, we will write o7 =
g(p, &)?, where a = (a;, a,, ..., @,)’, and no longer con-
sider o} as a parameter to be estimated. For ease of pre-
sentation of our ARTAFIT algorithm, we assume that the
order of the underlying base process p and the type of the
Johnson transformation f are known. Clearly, these also
need to be determined, and we address this issue in §3.
Also, from here on, when we say “ARTA process” we mean
an ARTA process with a marginal distribution from the
Johnson translation system.

Let ¥ correspond to the vector of ARTA parameters,
ie, ¥=(A0,7,§ a;,a,,...,a,), and consider the stan-
dardized white-noise process

Yr _ Zt B Zi:l ahzth

Vi) = glp.a)  glp.a)

t=p+1,p+2,...,n

If we further write the base random variable Z, as a func-
tion of the input random variable X, using (1) and (2), then
we get the following expression for the standardized white-
noise process:

y+0f[(X,—&)/A=25_, e, (y+0f [ (X,_,— &) /A])
g(p.a)
t=p+1,p+2,...,n. (3)

)

V()=

Now, suppose that X, is actually an ARTA process with
the parameter vector Ys*. If we have all of the param-
eter values correct (¥ = ¢*), then V,(¥*), r =p + 1,
p+2,...,n, are i.i.d. standard normal random variables.
Thus, our ARTAFIT procedure searches for parameters that
make V,(s), t=p+1,p+2,...,n, appear to be such a
sample by minimizing the following objective function:

1 " (n—p+1)2(n—p+2)
(n—p)y 5, (@—p)n+tl-1)

r—p \°
—> “)
n—p+1

- (cb{v(,m} -

where V. )W) < Vi, (W) < --- <V, () denote the
order statistics corresponding to the random variables
V,(), t=p+1,p+2,...,n In the remainder of the sec-
tion, we explain how the objective function (4) has been
derived for the estimation of the ARTA parameters.

If ¥ = ¢*, then the transformed variate R ({*) =
®{V,,, (")} has the distribution of the rth order statistic
in a random sample of size n — p from the uniform dis-
tribution on the unit interval (0, 1). Because R, (%) has
mean p, = (t — p)/(n— p+1) (Kendall and Stuart 1979),
we can write R, (%) = p, + &,(*) so that the {e,(¥*);
t=p+1,p+2,...,n} are translated uniform order statis-
tics with mean zero and covariance

_pid=py)

Cov(e;(¥*), &, (W) n—p+2°

pH1I<j<k<sn (5)
(Kendall and Stuart 1979). Let R,(¥) = (R(,.1) (),
Ripiz (). Ryy)). 0 = (01 ppizs----p,) and
8(4‘) = (8p+l(lb)’ 8p+2(lb)’ e Sn(‘b))/’ so that 8(‘!’*) =
R,(*) — p. Because the first and second moments of
the translated uniform order statistics are known and eas-
ily computed, we exploit this fact to develop a single,
distribution-free formulation of the data-fitting problem.
Specifically, we minimize the distance between p and
R,(¥) as a function of Y with respect to some metric
defined by a quadratic form in the (n — p)-dimensional
Euclidean space. If W is the (n — p) x (n — p) matrix
associated with this quadratic form, then the parameter esti-
mates can be obtained via least-squares fitting given by

miny, Sy (%) = (R,(%) —p) W(R, (&) —p)

= e()' We(h)
subject to Y € W. (6)

We define the feasible region W as follows:
= {(7,5,/\,§,a1,a2,,,,,ap)/; 620

0 for f =Sy,
Xy — €& for f=S8,
1 for f =S, and Sy,

2
2
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¢ <X for f=S, and Sy,
=0 for f =Sy,

P
RootOf(l - a,B"=0, B) ‘ >1 } (7

h=1

where the function “RootOf” is a place holder for repre-
senting all the roots of the equation 1 — > 7_, a,B" =0
in the variable B. The first three constraints in (7) ensure
the feasibility of the Johnson parameters, depending on the
family of interest, and the last constraint ensures the sta-
tionarity of the autoregressive base process, and hence the
stationarity of the input process. Although an ARTA pro-
cess with parameter vector Y is well defined only if s
falls into the interior of the region W, the definition of
the feasible region (7) ensures the convergence of the data-
fitting algorithm presented in the next section. Later in §2.3,
we discuss how the statistical validity of the ARTA-fitting
algorithm is affected by a solution on the boundary of the
feasible region.

The least-squares fitting problem defined in (6) gives
rise to different estimators depending on the form of the
weight matrix W. When the weight matrix W is the
(n — p) x (n — p) identity matrix I, we obtain the ordi-
nary least-squares estimators for ¥s*; and when W # 1,
we obtain weighted least-squares (WLS) parameter esti-
mators. WLS parameter estimators are of interest because
{e,(*); t=p+1,p+2,...,n} are neither independent
nor homoscedastic. In addition, (5) shows that the matrix
W = [Cov(e;(¥"), & (lb*))](’n]_p)x(n_p) is readily computed.
For the estimation of a linear model, it is well known
that such a weight matrix yields the minimum variance
linear unbiased estimator of the vector of model parame-
ters (Seber 1977); and this suggests that we should also
take W = [Cov(e;(¥*), (W), ) (n_p) While estimat-
ing the parameters of the nonlinear model (6). However, we
choose instead to use the diagonal weight matrix, W =D,
defined as

D= dlag{ I/Var(8p+1(l!"*))’ I/Var(8p+2(¢*))’ teeo
1/Var(e,(6))},  (8)

giving us the diagonally weighted least-squares (DWLS)
parameter estimators. Our choice of the diagonal weight
matrix D is based on the empirical comparison/analysis of
Swain et al. (1988), in which DWLS is found to be superior
to WLS, and the proof in Kuhl and Wilson (1999) that
explains the poor performance of WLS by the cancellation
of a number of residual terms from the objective function
Sw(Wb).

The derivation of the objective function (4) is completed
after the objective function of the DWLS estimation prob-
lem is written by using (6) and (8). Note that this formu-
lation has two major advantages that make the ARTAFIT
framework both easy to understand and easy to implement.

The first one is that the necessary first and second moments
of the order statistics are known and easily computed.
The second and the most important advantage is that the
use of the translated uniform order statistics ®{V, (%)},
t=p+1,p+2,...,n, for fitting permits a single formu-
lation for not only Johnson-type distributions, but all con-
tinuous distributions.

Next, we present our ARTAFIT algorithm together with
the statistical properties of the resulting estimators.

2.3. The ARTAFIT Algorithm

We can minimize the objective function (4) subject to the
constraints in (7) by using a general-purpose optimiza-
tion algorithm. Unfortunately, many of these algorithms are
dependent upon good initial estimates of the parameters.
Further, the number of model parameters we need to esti-
mate is p + 4, which increases linearly with the order of
dependence p, making it even less likely that we can obtain
robust estimates that are independent of the quality of the
initial solution as p gets larger. Fortunately, there is a nat-
ural decomposition of our optimization problem, namely,
the Johnson parameters (7, 8, A, £) and the base-process
parameters (@, @,, ..., a,). We have empirically observed
that solving Sp({s) for any fixed, feasible vy, &, A, and &
provides robust estimates of a;, @,, ..., @, in the very next
iteration. Therefore, we work iteratively between improving
the estimates for (y, 0, A, §) and (a4, ay, ..., a,,)

Before we give a complete statement of our ARTAFIT
algorithm, we introduce the notation we will use in its pre-
sentation. We first let x = (x, x,, ..., x,)’ denote a vector
of sample data in which ties occur with probability zero
and then define Sy (s | x) as the objective function depen-
dent on the given sample. We also let C: ¥ — W and
D: & — W be point-to-point maps given by

C(¥) =argmin Sp(P | x)
y.0.4,&

subject to Y € W 9)
and
D(b) = Ellrgzmin Sp (W | x)
@1,
subject to Y € Py, (10)

where W and W, correspond to the constraints ensuring
the feasibility of the Johnson parameters and the stationar-
ity of the underlying base process, respectively, and satisfy
W =W, UW,. Finally, we define the solution set Q(x) =
{Ws: V¢SD(1T; | x) = 0}, corresponding to the collection of
parameters at which all of the entries of the gradient of the
objective function Sp (s | X) attain the value of zero. Next,
we present the ARTAFIT algorithm:

Initialization Step. Let k =1 and {5, € ¥ be a starting
parameter vector.

Main Step. 1. Let ¥, € C(s,_,). Replace k by k+ 1 and
go to Step 2.
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2. Let ¥s, e D(s,_,). If ¥, € Q(x), then stop; otherwise,
replace k by k+ 1 and go to Step 1.

Starting with a parameter vector in W, we first solve
the least-squares fitting problem for the Johnson param-
eters (7, 0, A, £) by keeping the base-process parameters
(aj, a,,...,a,) fixed. We call this Step 1. Then, we
solve the least-squares fitting problem for «;, a,, ..., @, by
keeping 7, 6, A, £ fixed, and we call this Step 2. We work
iteratively between these two steps until the ARTAFIT
algorithm converges.

THEOREM 1. If {s, € W is a starting parameter vector in a
convex subregion that includes any local minimum of prob-
lem (4), and we use the Levenberg-Marquardt algorithm
to carry out Steps 1 and 2, then the ARTAFIT algorithm
converges to a local minimum solution.

ProoF. See Theorem 1 of Biller and Nelson (2004). O

Thus, using a general-purpose optimization algorithm
with local convergence properties ensures that we reach a
local minimum solution when we start in its convex sur-
rounding region; however, a local minimum solution might
be on the boundary of the feasible region W (or, more
precisely, in the limit as certain parameters approach their
bounds). We address this issue here, because an ARTA pro-
cess with parameter vector {s is well defined only if {s falls
into the interior of the region W defined in (7). Although
we have never actually encountered such a situation in prac-
tice, we explain how we would ensure the feasibility of the
ARTA distribution when the resulting estimator is on the
boundary of W:

e By constructing a contrived example, we have been
able to show that a local minimum solution can occur as
f approaches X,y for the Johnson lognormal distribution,
and as § approaches x;, or ) approaches x,) + f for the
Johnson bounded distribution. We believe that little is lost
by taking & = x;, or A = x(,) + &. Although we are tech-
nically removing x;, or x, from the support of the dis-
tribution, values arbitrarily close to these data points are
still possible, and in the contrived example these boundary
values of ¢ and A are local optima because they allow the
other order statistics to be matched perfectly. The contrived
example is available in Biller and Nelson (2004).

e Our ARTAFIT algorithm provides an input model with
a degenerate marginal distribution, i.e., Pr{X =0} =1,
when A of the Johnson unbounded family is zero or the
absolute value of each root of the reverse characteristic
polynomial falls onto the complex unit circle. Fortunately,
we can show that none of these solutions is the global min-
imum of the objective function Sy, (Vs | x); further, we can
always find a value for ¥ that results in a lower objective
function value for any nonzero value of A of the Johnson
unbounded distribution and (&, @,, ..., a,) of the under-
lying base process (Biller and Nelson 2004, Proposition 2).

We note that our approach bears some similarity to the
forecasting technique of Block et al. (1990). They also

consider the observed data to be a transformation, via the
inverse cdf, of an underlying Gaussian process. They pro-
pose using this transformation to provide a joint distribu-
tion for the observed data, but, unlike us, they solve for the
unknown parameters of the marginal distribution and the
underlying Gaussian process simultaneously via maximum-
likelihood estimation. However, the resulting likelihood
function appears to be difficult to maximize except for the
simplest models, and they provide no properties for the
resulting estimators. We establish the statistical properties
of our estimators in the next section.

2.4. Statistical Properties of the ARTA Estimators

If X,,X,, ..., X, are actually defined by an ARTA process,
then we have the following result:

THEOREM 2. Let X, X,, ..., X, be identically distributed
random variables with a joint ARTA distribution character-
ized by the parameter vector Us*, for which the type of the
Johnson transformation f and the order of the underlying
base process p are known. Suppose that s, is a solution
to the diagonally weighted least-squares problem given by
(6), (7), and (8). Then, as the time-series length n — oo,
the following properties hold:

L. Pr[)\ — A =1 and Pr[f — & =1

2. Ifa,=a;, h=1,2,...,p, then Pr[,l!}n—>lb*]:1

ProOF. See Theorem 2 of Biller and Nelson (2004). O

The first result in Theorem 2 is of limited practical value.
However, the second result is helpful in two ways:

1. We proposed decomposing the algorithm for solving
the least-squares problem into two steps—improving the
estimates of (v, 8, A, £) by keeping (a;, a,, ..., a,) fixed
and improving the estimates of (a,, @,, ..., a,) by keep-
ing (7, 6, A, ) fixed—because we observed that the esti-
mates of (a;, @, ..., a,) are robust to poor estimates of
(7,8, A, £). Theorem 2 shows that when we get the base-
process parameters right, the least-squares estimators of the
remaining ARTA parameters are strongly consistent.

2. When p =0, our least-squares criterion reduces to the
one suggested by Swain et al. (1988) for fitting i.i.d. data. If
{X,;t=1,2,..., n} are actually i.i.d. Johnson-type random
variables with the parameter set ¥* = (y*, %, A*, £*)’, then
the ARTA model with p =0 is correct. Swain et al. (1988)
show empirically that solving the least-squares problem
provides a convenient computational method for fitting any
member of the Johnson translation system when p =0, but
they do not provide any statistical properties of the resulting
estimators. Theorem 2 indicates that their formulation gives
strongly consistent estimators of the Johnson parameters.

A natural question to ask is why the DWLS ARTAFIT
estimators are not consistent in general: For consistency to
hold, it is necessary and sufficient that the empirical dis-
tribution of the R,({s), t=p+1,p+2,...,n, converges
to the uniform distribution on the unit interval (0, 1) as
n— oo. We can show that R, ("), t=p+1,p+2,...,n
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have i.i.d. uniform (0, 1) marginals only if Js = {s* (Biller
and Nelson 2004, Theorem 3). However, R,({), t=p+1,
p+2,...,n, can be dependent, but still have uniform
marginals, at parameter settings other than Us*; for instance,
at y=79% 0=06% A=A% §=¢ and a, =0 for
h=1,2,...,p.

Motivated by the second result in Theorem 2, another natu-
ral question to ask is whether the following property holds: If
5, =0 9,=7v* A, =A% and &, = &%, then Pr[{s, —> "]
=1, ie., Pr[a, » a;] =1 for h=1,2,..., p. Although
it is straightforward to prove the existence of this prop-
erty when p =1, it cannot be extended to higher orders of
dependence. Because strongly consistent estimators of the
parameters of Gaussian AR(p) processes are well known,
the corresponding property would hold if we were using
one of these estimators for the parameters of a Gaus-
sian AR(p) process in the second step of the algorithm.
Our motivation for not doing so, but instead using for-
mulation (4), is to characterize the joint estimation of
(v,0,M & 00,05, ..., a[,) by a single objective that does
not favor either the Johnson or the base-process parameters,
leading to a direct proof of the convergence properties of
the numerical algorithm. We consider alternative formula-
tions that lead to strongly consistent estimators of the entire
vector of parameters Y* as a subject of future research.

3. lllustrative Examples

In this section, we illustrate the use of the ARTAFIT algo-
rithm with two different examples. The data used in the first
example are generated artifically from an ARTA process,
while the data in the second example come from a real pro-
cess representing a pressure variable of a continuous-flow
production line. In all of the experiments reported below,
we use a standalone, PC-based program that implements
the data-fitting algorithm as described in the previous sec-
tion, but no longer assuming that the type of the Johnson
transformation f and the order of the underlying base-
process p are known. Instead, we fit all four members of
the Johnson family and select the one that fits best, and we
choose the order of the underlying base process using time-
series analysis techniques; see Biller and Nelson (2004) for
complete details. The key computational components of the
software are written in portable C++4- code and are avail-
able at http://www.andrew.cmu.edu/ billerb. We refer the
interested reader to Biller and Nelson (2004) for the numer-
ical methods used to implement the data-fitting algorithm.

3.1. Source of Data: A Known ARTA Process

In this section, we test the performance of the ARTAFIT
algorithm against data that come from a known ARTA pro-
cess, and measure how well the ARTAFIT algorithm recov-
ers the parameters of the true process. The results of this
section are representative of a larger study in Biller (2002),
in which the method was found to do a good job of recover-
ing the parameters of ARTA processes across a wide range
of examples.

Table 1. Percent differences between the estimates and
the true parameters when p = 1.

s n=50 n=100 n=500 n=1,000 n=5,000

px(1) 5735 1323  0.191  0.007 0.001

pz(1) (=a,) —9.653 —6222 —1.997 —0819 —0.144
47345 32950 19.236  5.293 1.278
38283 27.318 13.232  4.345 1.201
19.620 15243  9.198  3.284 0.893
20.131 18235  7.329  2.049 0.672
39 36 37 34 33

= > O

Because of its capability of capturing the tail behavior of
a wide variety of distributional shapes, we choose to gen-
erate data from the Johnson unbounded (S,,) marginal dis-
tribution and, in particular, we assume that y = —0.540,
6=1.540, A = 1.140, and ¢ = —0.510. Marginals from
other members of the Johnson family and some non-
Johnson marginals were also tested in Biller (2002). As fac-
tors for the empirical analysis of this section, we select the
sample size n and the order of dependence p. We let n take
the values of 50, 100, 500, 1,000, and 5,000 and the autocor-
relation structures be defined as py (1) = 0.35 when p = 1;
Py (1) =0.60 and py(2) =0.20 when p =2; and py(1) =
—0.45, px(2) =0.20, and py(3) = —0.10 when p =3.

The goal is to see whether the ARTAFIT algorithm re-
covers the true ARTA representation, jointly characterized
by the S, marginal distribution and the autocorrelation
structures specified in the previous paragraph, as the sam-
ple size increases. We implement the algorithm by assum-
ing that the type of the Johnson transformation f and the
order of the underlying process p are not known. We iden-
tify the transformation type by fitting distributions from
all of the families, i.e., S;, Sz, Sy, and S,, and com-
paring the goodness of the resulting fits. We determine
the order of the underlying process by applying an order
selection method due to Schwarz (1978): We search for
the parameter p that minimizes the value of the criterion
In|Gy(p)|+ ((Inn)/n)p, where G, (p) denotes the (pseudo)
maximum-likelihood estimator of ¢, for an AR(p) model.
In Tables 1, 2, and 3, we report the percent differences

Table 2. Percent differences between the estimates and
the true parameters when p = 2.

] n=50 n=100 n=500 n=1,000 n=>5,000
px(1) 4906 2724 0.976 0.012 0.005
px(2) 3826  2.927 1.115 0.084 0.011
p (1) 2360  0.127  0.162 0.578 0.086
pz(2) 9.332 1.970 0.868 1.007 0.148
a, 2.829 0.245 0.129 1.023 0.150
a, 2.135 1.719 0.149 2.066 0.303
0% 39.627 25.326 16.931 5.993 2.008
1) 33.825 20.537 11.309 6.248 1.762
A 23911 16.208 7.427 4.396 0.879
¢ 17.243 13.157 8.502 3.685 0.713
R 51 49 45 47 43
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Table 3. Percent differences between the estimates and Table 5. The KS2 test statistics and observed
the true parameters when p = 3. significance levels when h =2.

] n=50 n=100 n=500 n=1,000 »n=5,000 Px n=50 n=100 =500 n=1,000 n=5,000
px(l) 3986  2.071 1.237 0.283 0.003 0.35 0.256 0.185 0.090  0.059 0.031
px(2) 2257 1562 0.832 0.354 0.066 (0.283) (0.249) (0.202) (0.289)  (0.194)
px(3) 5.935 2.531 0.993 0.638 0.184 (0.60,0.20)" 0.261 0.182  0.061 0.067 0.030
p (1) 14856  3.063  0.967 1.684 0.184 (0.268) (0.266) (0.547)  (0.153)  (0.192)

3 3 3 3 3 (-0.45,020, 0.258 0.163 0.089  0.056  0.025
pz(2) —18416  —4780  —1942  —1.584 0.181 Z010)  (0.242) (0342) (0217) (0312)  (0.315)
p(3) —16.542 —22.144 —21.756  —1.694  —0.075
@«  —23475 —3935 —1.064 —2.573 —-0.273
a, ~76.541 —16.873 —8.718 —8.248 —0.827 Qp, 0y, e, A, tend to be small at much lower sample sizes
a 25616  10.835 8.135 2768 0.259 than the Johnson-distribution parameters. This supports our
y‘ 50483 39371 26731 9214 3.846 contention that the base-process parameter estimates, while
5 40319 24946  15.247 10.004 1.962 not guaranteed to be consistent, are robust to errors in the
A 18242 14283 10.229 7.412 1.093 JO};\?S"t“ parameter es}?mates'u s canture the kev

ext, we measure how well our fits capture the key fea-
21.411 15.372 8.251 4.247 2.974 .

Ii 67 68 61 58 60 tures of the corresponding data samples. Because an ARTA

between the fitted ARTA parameters/autocorrelation struc-
tures and the true ARTA parameters/autocorrelation struc-
tures used to generate the data. We use the sign “—” to
indicate that the fitted ARTA parameters underestimate the
true ARTA parameters, while the lack of a sign corre-
sponds to the overestimation of the true ARTA parameters.
The numbers reported are the percent differences averaged
over a number of replications determined as follows: Each
experiment starts with an initial run of 30 replications, and
the number of replications is increased whenever neces-
sary to ensure an absolute error of no more than 0.1 on
the scaled Kolmogorov-Smirnov test statistic. The number
of replications carried out for each experimental setting is
provided in the last rows of Tables 1, 2, and 3 and denoted
by R. The summary test statistics reported in Tables 4, 5,
and 6 later in this section are also averaged over the same
number of replications.

In all of the experiments tabulated in Tables 1, 2, and 3,
the ARTAFIT algorithm recovers the true ARTA processes
as the sample size increases. Observe that when n = 5,000
the maximum percent difference between the fitted and
true input autocorrelations is less than 0.184%, while the
maximum percent difference between the fitted and true
Johnson parameters is 3.846%. Note also that the per-
centage errors in the underlying AR-process parameters,

Table 4. The KS2 test statistics and observed
significance levels when h = 1.

Px n=50 n=100 n=500 n=1,000 n=5,000

0.35 0.253  0.185 0.088 0.058 0.029

(0.291) (0.231) (0.211) (0.312)  (0.246)
(0.60,0.20) 0.245 0.171  0.052  0.061 0.028
(0.281) (0.311) (0.697) (0.187)  (0.229)
(-0.45,0.20, 0.265 0.171 0.096  0.059 0.025
—0.10)  (0.211) (0.314) (0.172) (0.268)  (0.297)

process is jointly characterized by a Johnson-type marginal
distribution function Fy, and an autocorrelation structure
specified by py(h), h=1,2,..., p, neither a pure marginal
fit nor a pure autocorrelation fit is sufficient for choosing
a good representation for the ARTA process. Instead, we
need a test that measures the goodness of the joint ARTA
distribution fit. Therefore, we use the two-dimensional
Kolmogorov-Smirnov (KS2) test, which is a generalization
of the one-dimensional Kolmogorov-Smirnov test to bivari-
ate distributions (Press et al. 1992). The KS2 test mea-
sures the extent to which the pairs (x,,x,_,), t =h+ 1,
h+ 2,...,n, generated by the true ARTA process are
consistent with the probability distribution of the two-
dimensional random variable (X,,X,_,) whose marginal
distributions are identical and characterized by the Johnson
parameter estimates, f, ¥, 8, A, and &, and whose bivariate
input correlation is given by py (k).

Specifically, the KS2 test statistic is a measure of the
largest distance between the two-dimensional empirical
distribution function and the distribution function of the
random variable (X,, X,_,). However, calculation of the
KS2 test statistic is not as straightforward as the one-
dimensional Kolmogorov-Smirnov test statistic, because
the cumulative probability distribution is not well defined in
more than one dimension. Based on the experience of Press
et al. (1992), we choose to first calculate the fraction of data
points falling in each of four natural quadrants around each

Table 6. The KS2 test statistics and observed
significance levels when h = 3.

Px n=50 n=100 n=500 n=1,000 n=5,000

0.35 0.272  0.189 0.093 0.059 0.032

(0.291) (0.247) (0.202)  (0.284)  (0.200)
(0.60,0.20) 0273 0.189  0.064  0.069 0.032
(0.250) (0.246) (0.481) (0.126)  (0.184)
(-0.45,0.20, 0262 0.171 0.096  0.059 0.025
—0.10)  (0.237) (0.320) (0.166) (0.268)  (0.306)
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point (x,,x,_,), t=h+1,h+2,...,n, and then calculate
the probabilities of (X, > x,, X,_, > x,_,), (X, <x,, X,_, >
Xn)s (X < x, Xy < X)), and (X, >x, X, <x,_,)
for the same set of points. By ranging both over the
data points and over the quadrants, we take the maximum
difference of the corresponding probabilities as the KS2
test statistic. We present the resulting KS2 test statistics
with their observed significance levels in parentheses in
Tables 4, 5, and 6 for h =1, 2, and 3, respectively.

In our experimental setting, an observed significance
level gives the extent to which a test statistic disagrees with
the null hypothesis that the fitted ARTA distribution pro-
vides a good representation of the empirical data generated
by the true ARTA process. We select the level of signifi-
cance as 5%; thus, if an observed significance level is less
than 0.05, then the test results are significant and we reject
the null hypothesis, while observed significance greater
than 0.05 supports goodness of the fit. Thus, Tables 4, 5,
and 6 provide evidence that the fitted ARTA models pro-
vide good representations of the empirical processes in all
of the experiments conducted in this section. Although we
have developed the algorithm for input-modeling problems
in which data are plentiful, the KS2 test statistics show that
we still do a good job in fitting input models to small data
samples. We attribute this to the flexibility of our ARTAFIT
framework and the robustness of the least-squares fitting
criterion.

3.2. Source of Data: A Real Process

It is essential that we experiment with realistic—as opposed
to artificially generated—input-modeling problems to stress
the proposed methodology, because real problems violate
many or all of the assumptions of the simple input models
in current use, including the existence of a true, under-
lying distribution with a simple structure. Therefore, in
this section, we use our ARTAFIT algorithm to model
519 observations of a pressure variable from a continuous-
flow production line that is recorded at fixed time intervals;
these measurements exhibit strong serial dependence. Sys-
tem simulation is sometimes used to model new and exist-
ing production lines, as well as to train new operators in
proper responses to process changes. Because pressure is
one of the key parameters of this type of production lines,
the selection of an input model for this parameter is crit-
ical in understanding its effect on the output performance
measures of the corresponding production system.

Cario and Nelson (1998) suggest representing this
dataset by using an ARTA process, but their approach is
quite different from ours: They first solve for the unknown
parameters of the marginal distribution via maximum-
likelihood estimation, and then determine the input auto-
correlations by using the sample autocorrelation function of
the raw data. Specifically, they first fit a Weibull marginal
distribution function (with shape and scale parameters of
B, =5.140 and B, = 0.940, respectively) to the 519 data
points with the aid of the Arena Input Analyzer (Rockwell

Table 7. Comparison of KS, AD, and two-dimensional
KS test statistics for pressure data.

AF ARF(0) ARF(2)

KS 1.764 1.038 0.836
AD 3.295 0.758 0.759
KS2(1) 0.191 0.832 0.088
(0.000) (0.000) (0.145)

KS2(2) 0.182 0.840 0.098
(0.000) (0.000) (0.116)

KS2(3) 0.229 0.875 0.102
(0.000) (0.000) (0.106)

Software) that assumes i.i.d. data, and then approximate the
input autocorrelation structure as py (1) =0.751, px(2) =
0.407, and p,(3) =0.121. Finally, they employ their soft-
ware ARTAFACTS to match these estimated lags 1, 2,
and 3 input autocorrelations to the autocorrelations of the
base process. We call this model ARTAFACT and denote
it by “AF” in Table 7.

Figure 1.  (a) Q-Q plot comparing the empirical and
ARTAFACT distribution functions. (b) Q-Q
plot comparing the empirical and ARTAFIT
distribution functions.
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Figure 2. Scatter plots for the empirical pressure data.
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Xt

Like Cario and Nelson (1998), we represent the corre-
sponding dataset by using an ARTA process, but unlike
Cario and Nelson, we solve for the unknown parameters
of the marginal distribution and the input autocorrelations
simultaneously via the least-squares data-fitting algorithm
developed in the previous section. As in §3.1, we identify
the type of the transformation f to use from the Johnson
translation system by fitting distributions from all of the
families, i.e., S;, Sz, Sy, and Sy, and comparing the good-
ness of the resulting fits. Also, we relax the assumption
that p is known through the application of the Schwarz
criterion. Specifically, we fit a Johnson unbounded dis-
tribution and an autocorrelation structure with p = 2—
characterized by (¥, 8, A, §) = (2.046, 3.151,0.457, 1.217)
and (e, @,) = (1.050, —0.342), implying py(1) = 0.776
and py(2) = 0.524—to the same dataset. We denote this
ARTAFIT model by “ARF(p)” in Table 7 and use p to
denote its order.

Next, we provide quantile-quantile (Q — Q) plots com-
paring the ith quantile of the empirical (pressure) distribu-
tion function, X (i) with the ith quantile of the ARTAFACT
distribution function, ,§2 + (log(1 — (i — 0.5)/519))&171 for
i=1,2,...,519 in Figure la and the Q — Q plot compar-
ing X; with the ith quantile of the ARTAFIT distribution

04 06 08 10 12 14 16 0 02 04 06 08 10 12 14 16 0 0.2

X¢ Xt

04 06 08 10 12 14 16

function, & + Af~'[((i — 0.5)/519 — 9)/8] for i =
1,2,...,519 in Figure 1b. Although the O —Q plot in
Figure 1b seems more linear than the Q — Q plot in Fig-
ure la, it is hard to conclude that there is a closer agreement
between the ARTAFIT distribution and the true distribution
of the physical process. Therefore, to substantiate our visual
observation, we use goodness-of-fit tests to compare our
results to those of Cario and Nelson (1998): We first com-
pare the fitted Johnson cdf, ®{y + Bf[(x — f)/)\]} to the
empirical cdf and present the scaled Kolmogorov-Smirnov
and Anderson-Darling test statistics, denoted by KS and
AD, respectively, in the first two rows of Table 7. Then, we
provide the KS2 test statistics together with their observed
significance levels in the last three rows of Table 7 for
h=1,2, and 3. The second column (AF) corresponds to the
fit suggested by Cario and Nelson (1998), the third column
(ARF(0)) corresponds to the Johnson fit under the assump-
tion of independence, and the last column corresponds to
the Johnson fit suggested by our data-fitting algorithm.

As noted by Moore (1982) and Gleser and Moore (1983)
in the context of short-memory processes, the critical val-
ues and the corresponding nominal levels of significance
of goodness-of-fit tests for i.i.d. data can be grossly incor-
rect when observations are dependent. Thus, we use the

Figure 3. Scatter plots for the ARTAFACT data.
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Figure 4. Scatter plots for the ARTAFIT data.
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5% critical values of 0.895 and 0.751 for the KS and
AD tests, respectively, as a rough guide for judging the
adequacy of the fit. A closer look at the scaled KS and
AD test statistics suggests that the ARF(2) marginal is
a good representation of the empirical process. Note that
the AD test statistic of ARF(0) is quite comparable to the
AD test statistics of ARF(2), even though the dependencies
are ignored while developing the ARF(0) model. We can
explain this observation by the fact that a pure marginal
match is not the only thing that matters while choosing a
good representation for a system with strong dependencies.
The KS2 test statistics in the last three lines of Table 7
indicate that the pressure data must be drawn from a distri-
bution significantly different from the ARF(0) distribution
as well as the AF distribution. Instead, the KS2 test statis-
tics suggest the use of our ARF(2) model.

Next, we illustrate the ARTA fit with graphical compar-
isons. To do this, we first generate 519 data points from
each fitted model and display the scatter plots of (x,, x,_,),
(x,,x,_,), (x,, x,_3) for the empirical pressure data and the
data of the fitted ARTAFACT and ARTAFIT models. See
Figures 2, 3, and 4. Comparison of Figures 2 and 3 shows

Figure 5. Time-series plot of the empirical pressure

data.
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that the ARTAFACT data appear to be more scattered
or random than the empirical data. We also provide the
time-series plots in Figures 5, 6, and 7. The sample paths
are qualitatively similar, but there are spikes in the empiri-
cal series that are not present in the ARTAFACT series. On
the other hand, comparison of Figures 5 and 7 shows that
the ARTAFIT model captures the height of the spikes rea-
sonably well, while comparison of Figures 2 and 4 shows
that our ARTAFIT data and the empirical data appear to
be scattered similarly. Overall, our ARTAFIT process does
a good job of capturing the key features of the underlying
process.

4. Conclusion

In this paper, we propose an automated and statistically
valid algorithm to fit stochastic models to dependent time-
series input processes for simulation. We illustrate the algo-
rithm using data generated by a real-world process and
observe that it provides a plausible characterization of the
process. Because simulation inputs form the core of every
stochastic simulation model, the product of this research is
expected to improve the accuracy of system representation

Figure 6. Time-series plot of the ARTAFACT data.
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Figure 7. Time-series plot of the ARTAFIT data.
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that is necessary for the decisions the simulation model
supports.

Recently, we have suggested a more comprehensive
model for representing and generating stationary multivari-
ate time-series input processes with arbitrary autocorre-
lation structures, and specifically considered the case of
marginal distributions from the Johnson translation system
(Biller and Nelson 2003). Our approach is very similar to
the one in Cario and Nelson (1996), but we use a vector
autoregressive Gaussian process that allows the modeling
and generation of multivariate time-series processes. A nat-
ural extension of the work presented in this paper is to
fit stochastic models to dependent, multivariate time-series
input processes. This is a subject for future research.
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