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Fitting Time Series Models for Prediction

by

William S. Cleveland

The mathematical theory of the best linear prediction of stationary
time series presumes that the model generating the series, which can be
specified by either the autocovariance function or the spectral density, is
known. The true model is, of course, not known in practice, and the pro-
cedure is to fit a model and predict as if this fitted model were the truth.
The question then is one of deciding whether the resulting predictions are
about as good as could be gotten if the truth were known. This paper de-
scribes a method for assessing the predictions of the fitted model by an
analysis of residuals. In particular, it is argued that the traditional
tests of hypothesis for white noise are inappropriate if prediction is the
goal, and a method is described for determining whether or not the mean
square errors of the predictions arising from the fitted model can be

measurably reduced.

1. Introduction

Let X5 =~ < n < o, be a discrete parameter, single-channel, co-

variance stationary time series with E(xn) = 0 and spectral density f.



The linear least squares prediction ¢n,p’ for p = 1,2,..., of xn+p

from the infinite past x is that random variable which mini-
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3 , 2 . . ,
mizes E\xn+p—y) where vy ranges over all linear combinations of X

X _qocen and their limits in mean square. The calculation of ¢n b can
b

in theory be done if f is known. References describing this are (Doob,
1953, Chapter 12), (Grenander and Rosenblatt, 1957, p. 65-82), and (Whittle,
1963).

In practice, a finite number of observations ..,XN is available,

Xyse

and it is desired to calculate for various values of p. Of course,

¢N,p

f 4is not known and must be estimated, and if prediction is the goal, the

estimate is usually a rational spectral density
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for all complex =z such that l|z| <1, and
e(k)) = exp(2nik))

Such an estimate is generally gotten by one of two methods. The first

is to assume that xn is a moving-average, autoregressive process,
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where e ~are independent (normal) random variables with E(en) = 0 and

2 2 . A A
E(en ) =0, and (1) holds with oy replaced by oy and Bk by Bk.

This means that f is the rational spectral density,
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Then the unknown parameters s Bk’ and. 02 are estimated. An excellent

discussion of this method of fitting models is found in the works of Box
and Jenkins cited in the bibliography.

The second method is to first estimate f by one of the standard non-
parametric estimates gotten by smoothing the periodogram ((Parzen, 1968)
and (Tukey, 1967)), and then approximate the estimate by a rational spectral
density. The approximation is necessitated by the fact that the nonpara-
metric estimate is not in a form from which predictions can be easily cal-
culated.

It has been assumed that E(xn) = 0. In practice, this means that a
regression (a simple one if the series is assumed mean stationary) has been
done and the non-zero means subtracted off, or X is the result of an
initial series which has been differenced to the point where it is reasonable

to assume a zero mean.

2. Calculation of the predictions and the residuals.

Let be the prediction of xN+p that results from calculating

*N,p

what would be the best prediction if % were the true density. In general,

A
£ # f and ¢N > # ¢N 0 so that there is an increase in the minimum mean
’ b1
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square error E(xN+p - ¢ ) to

N,p

A 2 2 A 2
ECuap™On,p) = E(XN+p~¢N,p) * E(¢N,p—¢N,p)

Let gk and Qk be defined by
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In what follows it will be convenient to let QO = QO = 1. It is shown in
the Appendix (assuming the mild conditions (11) for f£) that $N b satisfy
E
p-1 *
A A A
+ =
3) z %k cbN,p—k z %k xN+p—k 0
for p =1,2,... . Since the Qk can be easily calculated recursively from
A
ék and ék using (2), ¢N . can be calculated recursively in p using
b

(3).
Since only a finite number of observations are available, the second
sum in (3) can run only from p to N+p-1l, but the assumption is that

enough of the series has been observed so that x., x have little

0 Xogoree

effect on the prediction of XN+p'
A
Let € be the process defined by
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El’ ceay EN are called the residuals. Again, since only Xps wees Xy

are observed the sum in (4) must run from 1 to n-1, but generally,

b A
provided no root of 1 + Zk=l Bkzk is too close to the unit circle, this
will affect only the first few residuals él""’éM where M/N is small.

In practice, the initial residuals can be plotted and M chosen to be the
point where the residuals seem to have settled down to stationarity. In
performing the analysis of residuals described later, these initial values

should be discarded; with an abuse of notation will denote the
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ERRERL
remaining residuals.

Treating % as the true spectral density of X which is what is
done to calculate the predictions $N,p’ is equivalent to treating én

as white noise (a sequence of uncorrelated random variables). Thus a way

of investigating the adequacy of % as an approximation of f for pre-

A

A
RERRL to see how much they act like white noise.

diction is to examine
How to carry out the examination will be described in the next sections.

The motivation for looking at residuals to check assumptions comes largely

from (Anscombe, 1961) and (Anscombe and Tukey, 1963).

3. Hypothesis tests and prediction
The question of importance is the increase in the mean square error
when a prediction is calculated treating én as white noise. One important
point is that the traditional tests of the hypothesis of white noise, such
as the cumulative periodogram test (Bartlett, 1966, p. 318), do not answer
this question. The test of hypothesis judges correlation in the fitted
residuals according to a criterion of no use here. For instance, suppose

that X is the moving-average process



X = ¢ + .01le
n n

n -1’

where E(enz) = 1. Suppose % =1 so that (4) is

The minimum mean square error of l-step prediction is 1, whereas the

mean square error using % is 1.0001, which in almost any practical ap-
plication would not be an increase at all worth worrying about. But clearly
for N large enough, the probability of the cumulative periodogram test
rejecting én as white noise is near 1.

The inappropriateness of tests is related to the fact that an analysis
for understanding the mechanism generating the series is quite different
than an analysis for prediction. Models very far from the truth can give
nearly best predictions. A periodic component will a small amplitude might
be of importance if you are trying to understand the mechanism generating
the series, but the component might contribute very little to prediction.

A good example of this can be found in (Whittle, 1954). 1In Section 7 of
this paper is an example where the residuals show a definite nonwhite
noise effect, but yet the model is giving predictions that are about as

good as can be gotten.

4, The mean square error of $N .
s
For the purpose of analyzing mean square errors, the gk will be
taken as fixed numbers, rather than taking their sampling variability into
account. The reason for doing this is that if you are about to calculate

a prediction using a particualr %, estimated from the sample at hand,

then you are interested in knowing how that particular % performs.



(Until now, the same notation has been used for a random variable and a
realization of that variable. In the following example, the two will be
distinguished by writing the former in bold face.) For example, suppose

X is the autoregression

% =
X, * Zn-1 £n
. 2 . A
with E(gn ) =1 and £, independent. Let 2 be a function of
Kooy which is an estimator of %. Suppose from the sample
A , A ,

XyseesXy the observed value of g, 1is a; = %. Then (4) is

x + &x = é

n ~n-1 ~n

A
The predictor of 2N+l gotten by treating g, as white noise is

A .
QN,l = -4§N. The mean square error of QN,l 1s
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(The minimum mean square error is 1.) If the variability of gl were

A
taken into account, the mean square error of QN 1 would be
»

~

1

This expression is the mean square error of a class of predictors, —gléN'
But if after observing the sample Xpseee Xy %l takes the value %, you
are no longer interested in the entire class; you are considering whether
or not to use the particular predictor ~4XN and want to know its mean

square error,



A
Let h be the spectral density of € and Vi the autocovariances.

From (3) and (4),

p-1
z A ( A )y = A
" xN+p—k ¢N,p—k - EN+p
k=0
for p=1,2... . Solving recursively,
p-1
A A
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Thus the mean square error Ep of ¢N,k is
r-1
A 2
j,k=0
F =1, E( b2 E(. .. )%, which will be d d b
or p=l, Xy+1 ¢N,l €N+l , which wi e denote y V.

It is often the case in discussions of prediction that the mean square

error Ep of is estimated by that value which would result if %

A
*N,p
were the true demsity,
p-1
A2 2
2] 8.2
k=0

But in view of (6), a more weasonable and natural estimate of the mean

square error is

p-1
£ = £.6%
7 b bbby
k,j=0
where
N-k
A _iz/\/\
Yk TN n 8n+k



for k =0,1,..., N-1 are the sample autocovariances of the residuals. In

ﬁ 1 N A2

. A
1 N “n=1 en will be denoted by wv.

the special case p = 1,
Assuming X, is a normal process, from (Bartlett, 1966, p.285) the
A
covariance of Qj and Y is asymptotically
1
1 2 . .
N h™(A) [e(kr=jA) + e(kr+jr)]dAr.
0
Thus the variance of ﬁp is asymptotically

1 p-1
2 2 A 4
E'J )| ) bke(kx)l dx.
0 k=0

A short derivation shows an alternative method of computing ﬁp and

an additional property of the estimate. Let

N-1 N
IO = Yy e = 117 2 e@nl?
k=-(N-1) n=1

be the periodogram of the residuals. Then from (7),

1 p-1
g = J 1] T B e@n]? a
P k
0 =0
N
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= 3 ) (e H len—l+'°'+ﬁp—l€n—(p—l)) + op(N)
n=p
From (5)
A A A A
G + Qlen-l . + Qp—len—(p—l) = X - ¢n—p,p .
Thus
N
1 A 2 1
Bo= 5 1 Gpb o o -
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That is, ﬁp is approximately the sample mean square error of the p-step

% predictor.

5. Bounds on the increase in mean square error using
the fitted model

Let
p-1 2
_ _2
Bp = (v-07) z |€k|
k=0
for p = 1,2,..., where
1
(8) 02 = exp J Log h(\)dxr.
0

In the Appendix, it is shown that

9) Bloy o = Oy S B

with equality holding for p=1. That is, the increase in mean square error
due to calculating the predictions treating % as the true density is no
larger than Bp. Since v = féh(k)dk, Bp is small if the geometric mean
of h 1is close to the arithmetic mean of h.

B is derived with a view toward the practical situation and repre-
sents a middle course steered between two dangers. One danger is that a
bound will involve in too complex a manner the true parameters. Indeed,

the best bound for E(d>N )2 is the expression itself, but to try to

¢
»p 'N,p
use it would be an extreme bootstrap method. To use it (for all p) would
virtually require knowing f. The other danger is that as a bound becomes

more simple, it becomes useless as a bound.
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Bp involves two unknown parameters, v and 02. The estimation of
A
v by v has been discussed. In view of (8) 02 can be estimated by

((Whittle, 1952) and (Jones and Davis, 1968))

NV
A2 1 k
(10) of = exp(y + 57 [ Log I
k=1
where N' = [N/2] -1 and vy = .5772157... 1is Euler's constant. Assuming

X is normal, KOgSz is asymptotically normal with mean Kogoz and var-
iance n2/6N. In practice, if N 1is large, the periodogram 1s calculated
at J equally spaced points using the Fast Fourier Transform, where J > N;
in this case, N' would be replaced by J' in (10), where J' = [J/2]-1.
Bp can therefore be estimated by
p-1 2

8 = -8B 716

P k,
k=0

6. Assessing the predictor of the fitted model

The quantity

A2
EChyp = On,p

A
ECnp ~ *N,p

2

represents the best possible percentage reduction in the mean square error

2 A

A A
E =E - . B /E is a bound for this quantity and B /E is an
p (XN+p ¢N,p) p/ P d Y PP
estimate of this bound. Thus if ﬁp/ﬁp is small, it can be concluded that

the possible percentage reduction in mean square error is small, so that

A
% is adequate for p-step prediction. The variability of Bp/ﬁp can be
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investigated by breaking the residuals up into blocks and looking at the
variability of the block estimates.

If ﬁp/ép is too large to consider the model satisfactory, there are
several possibilities for courses of action. Suppose first that p=1.
Then (apart from sampling fluctuations) the model is not giving good l-step
predictions, since for p=1 equality holds in (9). That is, you should
be able to get roughly a 100 x (ﬁp/ﬁp)% reduction in the mean square
error of the l-step predictor. If, however, p > 1, then since Bp/Ep is
a bound with equality not generally holding, a 100 x (ﬁp/ép)% reduction
in the mean square error may not be able to be realized. You should be
particularly suspicious that this is the case if ﬁl/el is small. If a
different or more elaborate model is fit with the result that ﬁp is re-
duced and the new ﬁp/ép is now satisfactory then, of course, this new
model will be used. If, however, ﬁp is not measurably reduced in the new
model but the new ﬁp/ﬁp is satisfactory then either model can be used
and generally the simpler one will be chosen. The final possibility is
that no simple way is seen to reduce either ﬁp or ﬁp/ﬁp. In this case,
you must rely on your judgement of the residual autocorrelations and spec-
trum to decide if further fitting is really warranted.

A new model can be fitted by going back to the beginning and fitting
a new model to xl,...,xN or by fitting a model to the residuals el""éN'
In this latter case, if the spectral density h of gn is estimated by

b
|1+ 7§ éke(kx)|2
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then the new estimate of f is

£ b

1+ I betn]? 2+ [ Bean|?
-2 k=1 k=1
a a

1+ 7 &je(kx)|2 1+ 7 éke(kx)|2
k=1 k=1

Let h be the spectral density of the new fitted residuals. That 02 is

independent of the particular fitted model is seen by noting from the

Appendix that

1
02 = exp J Logf(\)dx.
0
That is,
1 1
exp J Logh(r)dx = exp J Logh (1) dA.
0 0

Thus the l-step prediction error is the same for the residuals of all fit-
ted models, and 02 need only be estimated once. If the initial model is
rejected and a new model is fit, the estimate of 02 already calculated
may be used in the analysis of the residuals of the new model. Indeed 02
might perhaps be estimated from the periodogram of Xpseee Xy (which cor-
responds to the fitted model. Gk =0 for k > 0). However, a note of
caution must be given. If the spectral density of the process from which

2, . . . .
o] is estimated is not fairly smooth over intervals of length then

1

N’
A

the estimate 02 can be biased. Thus if the residuals of an initially fit

. s s . 2
model are grossly inadequate, it is probably best to re-estimate o when

a new model is fit.
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7. Example

Figure 1 is a graph of the logarithms of 519 daily observations of
the power flux density (lO‘22 (watt) (meter)—2 (cycle/second)—l) of 2800
MHz. solar radio noise. The observations were recorded at National Research
Council, Ottawa, Canada, from April 4, 1967, to October 3, 1968.

Let X be the first differences multiplied by 100. It is desired
to have predictions 1 and 2 steps ahead. Table 1 shows the result of
analyses of residuals after fitting O through 4-th order autoregressions.
82 was formed from the residuals of the 2-nd order model. Using the 2-nd
order model, the l-step and 2-step mean square prediction errors are 15.25
and 18.25; the l-step error could be reduced by 3.2% and the 2-step error
by no more than 5.6%. This model was judged adequate for predicting 1 and
2 steps ahead.

Figure 2 is an estimate of the spectrum of the residuals of the 2-nd
order model. It was gotten by using the Fast Fourier Transform to calcu-
late the Fourier coefficients, hanning, squaring, and then averaging in
blocks of 3. The most noticeable nonwhite feature is the spike at the
frequency .041 which is due to the rotation of the sun. (The phenomenon
is, however, not a line in the spectrum.) The results of the analysis of
residuals show that finding a new model that eliminates this feature would
result in only a slight reduction in the mean square errors of the l-step

and 2-step predictions.
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Table 1
. A
Order of Autoregression E]
0 20.52
1 15.45
2 15.25
3 15.28

4 15.28

20.52

18.47

18.25

18.28

18.23

.045

.032

.034

.034

.056

.059

.059

15



16

8. Topics for further study
More experience is needed with the estimate 32. Other possibilities
should be investigated. It is

1
exp J £Logh (1) dx
0

that one is interested in estimating, and from the numerical analytic point
of view, approximating an integral by a sum at a large number of equally
spaced points is crude. Thus other forms of numerical integration might be
used. This must be weighed with the fact that 1I(X) rather than h(A) is
available. Another question is whether to first multiply the residuals by
cosine bells (Tukey, 1967) in this situation.

There remains the problem of generalizing to multivariate time series
this technique of analyzing residuals for prediction. If it is desired to
have the p-step predictions of both variables in a bivariate time series,
then a decision must be made how to measure errors. Two mean square errors

might be considered or perhaps one generalized mean square error.
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Appendix

Theorem: If the spectral density f satisfies

1
(11) f is bounded and f f'l(x)dx < o,
0
then (3) and (9) hold, and
1 1
exp J Logh(A)dx = exp { Logf () dx.
0 0
Proof: Since
1
J |tLogf (M) |dx = J Loge(n) + J Kogf_l(x)dx
0 £()21 £ loy=1
1 1
< J f£(A)dx + J oo a

0

both f and f“1 have canonical factorizations (Doob, 1953, P.577)

[o.0]
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i1+ ake(kx)|2 s 2lay |2 .

k=1

If f are the Fourier coefficients of %ﬂogo—zf(x) then —fk are those

k
2.-1
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Letting L denote Lebesgue measure then

s o]

a(y) = lim (1 + Z akrke(kk)) a.e. L .
r > 1- k=1

(Grenander and Szego, 1958, p.25). Thus

(o]

a) = lim @+ ] byfetant
r > 1-
k=0
= b,
using (12). Therefore
e(Nx) a(}))

is the Stone-Kolmogorov isomorph in Lz(f) of xN—¢N 1 (Doob, 1953,

k=1%k

a(}), therefore since f 1is bounded, convergence occurs also in Lz(f).

p.575). Now the partial sums of 1+% e(-k)) converge in LZ(L) to

Thus (from the Stone-Kolmogorov isomorphism)

o«

t L oaXyg = Gy
k=1

where the sum converges in mean square. Since ¢ is the l-step prediction

N
error it is orthogonal to XN—l’xN—Z"" .

% is a nonzero rational function so that the partial sums of

e(M) (1L+ [ §e(-kn)
k=1

converge uniformly and therefore in Lz(f), which means the infinite sum
in (4) converges in mean square. This then implies that the infinite sum

in (3) also converges in mean square.



Let Q be the projection operator onto the closed linear space
spanned by XN,XN_l,... . Then ¢N,p = QXN+p' Since Q 1is linear and
continuous applying it to both sides of

oo

+ =
*N+p ) e N+p-k “N+p
k=1

yields

p-1 o

¢N+p + z ak¢N,p—k * z A N+p-k 0.
k=1 k=p

19

Thus if the predictions are to be calculated treating % as the true den-

sity, the result is (3).
Again since Q 1is linear and continuous, applying it to

o«

A
z akxN+p—k N €N+p
k=0
yields
p-1 o
Y oA + 7 4 = Qe .
k'N,p-k akxN+p—k N+p
k=0 k=p
Subtracting equation (3) from this equation gives
p-1
A A A
Z ak(¢N,p—k. - ¢N’p_k) - Q€N+p .
k=0
Solving recursively,
p-1
A A
p Tt T ) ﬁkQ€N+p—k :
k=0

Thus
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p-1 2
A 2 A A 2. %
- <
(13) EChy ,=0y,p) < ) Ibk\(E(QeN+p) )
k=0 _
by the Minkowski inequality. From (1) Z:=O kak # 0 for |z| £ 1; thus
from (Robinson, 1962, p.110) the closed linear space spanned by QN’QN—l""
3 A I3
is the same as that spanned by XysXg 75+ SO that QEN+p is the pre-
A A
diction of ¢ from its own infinite past. Thus EQe )2 decreases
N+p Np

with p. This fact together with (13) gives,

p-1 2
A 2 A 2
E(oy , = fy,p) E(Qey, ) y |{,‘k|
k=0
Now
A 2 A 2 A A 2
EQey )7 = Blegyy ) = Elegyy = Qg )
Since the last term is the mean square error of predicting gN+l from its
infinite past it is equal to
1
02 = exp J Logh ()) dx.
0
(Doob, 1953, p.576-7). Thus
A 2 2
E(Qeg, ) = v=-o
and (9) holds.
From (3) and (4)
A A _
SNl T P T e T P
so that also
1
2
o = exp J Logf(A)dx.

0
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