
FIVE CYCLES ARE HIGHLY RAMSEY INFINITE

MARK SIGGERS

ABSTRACT. In a previous paper, the author proved that all odd cycles, except five cycles,
are highly Ramsey-infinite. In this paper, we fill in the missing case, and show that five
cycles are highly Ramsey-infinite.

1. INTRODUCTION

All graphs in this paper are simple, finite and undirected. For graphsG, andH, and
an integerr, G is r-Ramseyfor H, if any arbritrary colouring of the edges ofG with r
colours, yields a copy ofH all edges of which are the same colour. A graphG is r-Ramsey-
minimal for H if it is r-Ramsey forH but no proper subgraph ofG is. H is r-Ramsey-
infinite if there are infinitely many graphsG that arer-Ramsey-minimal forH. In [4, 5]
Nesětřil and Rödl started to characterise which graphs are 2-Ramsey-infinite. The full
characterisation proceeded in many steps, but was completed in the 1990s in [3] and [6].
The non-symmetric version of the problem is still open, and significant progress was made
relatively recently in [1]. For a more thorough list of references see [1] and [7].

In [2], a stronger version of ‘Ramsey-infinite’ was introduced. They showed that for
any 3-connected graphH, there is a constantc such that for large enoughn, there are at
least 2cnlogn graphs on at mostn vertices that are 2-Ramsey-minimal forH. In [7] we
took this a step further. A graphH is highly r-Ramsey-infiniteif for some constantc, and
large enoughn, there are at least 2cn2

non-isomorphic graphs on at mostn vertices that are
r-Ramsey-minimal forH.

In [7] it was shown that fork ≥ 3 andr ≥ 2 the cliqueKk is highly r-Ramsey-infinite.
In [8] it was shown that for oddg≥ 7 andr ≥ 2 the cycleCg is highly r-Ramsey-infinite.
In this paper, we fill in the missing case and prove the following.

Theorem 1.1. For all integers r≥ 2, C5 is highly r-Ramsey-infinite.

We remark that the main construction shares an underlying idea with the main constuc-
tions in [7] and [8], but is considerably simpler, and with only small changes can be made
to replace them both.

2. NOTATION AND DEFINITIONS

We identify a graphG with its edgesetE(G). We let[r] denote the set{1, . . . , r}. Given
a functionφ defined on a setSwe letφ(S) denote the set{φ(s) | s∈ S}. An r-colouring of
a graphG is a mapping from the edges to the set[r]. An r-colouring of a graphG isC5-free
if there is no monochromatic copy ofC5 in G, that is, there is no copy ofC5 all of whose
edges get the same colour. We will frequently index vertices‘modulom’, for some integer
m; when we do this, we use the symbols 1, . . . ,m, instead of 0, . . . ,m−1.
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The following alternate definition ofhighly r-Ramsey-infinitewas shown implicitly in
both [7] and [8], and is easier to work with.

Lemma 2.1. A graph H ishighly r-Ramsey-infiniteif there is some constant c such that
for all odd m≥ 3 there are2m2

different labelled graphs on at most c·m vertices that are
r-Ramsey-minimal for H.

Proof. Indeed letH be as in the statement of the lemma. Letc′ = 1/8c2, andn0 > 3c be

large enough that 22c′n2
0/n0! > 2c′n2

0. Givenn> n0, let m be the maximum odd integer for
whichc ·m≤ n. Som≥ n

2c.

By assumption, there are at least 2m2
different labelled graphs on at mostc ·m≤ n

vertices that arer-Ramsey-minimal forH. So there are at least

2m2

n!
≥

2(n/2c)2

n!
=

22c′n2

n!
> 2c′n2

non-isomorphic such graphs. ThusH is r-Ramsey-minimal. �

3. GADGETS

We will use the following graphs whose existence was proved in [8].

Definition 3.1. For r ≥ 2, anegative signal sender S= S−r is a graph containingsignal
edges eand f , and satisfying the following properties.

(i) Shas aC5-freer-colouring.
(ii) Under anyC5-freer-colouring ofS, e and f get different colours.
(iii) Shas girth 5 and the distance betweene and f in S is 6.

A positive signal sender S= S+r is defined similarly, but we replace the word ‘different’
in (ii) with ‘the same’.

We will often use these senders in constructions in the following way. Given a graphG
with edgese1 ande2 we will take a copyS of S−r ( or S+r ,) disjoint fromG, and we will
identify the edgese1 ande2 with the edgeseand f of S, respectively. When we do this we
say that we ‘connect the edgese1 ande2 with a negative (positive) sender.’ We will usually
connect several pairs of edges with senders, it is always assumed that these senders are all
distinct and disjoint.

The following was proved in [8] as an immediate consequence of property (iii) in Defi-
nition 3.1.

Proposition 3.2. Given a graph G with edges e1 and e2, when we connect the edges e1

and e2 with a negative or positive sender S, there are no cycles of length five or less, that
are not entirely within G or entirely within S.

In [8], senders were used to construct the following more general gadget. It was con-
structed forr colours, but we only need it for 2.

Lemma 3.3. LetΓ ⊂ {ν | ν : W → [2]} be a set of2-colourings of a set W, which is closed
under permutation of[2]. There exists a graph M with the following properties.

(i) W ⊂ M(= E(M))
(ii) A mappingν : W → [2] can be extended to a C5-free2-colouring of M if and only

if ν is in Γ.
(iii) M has girth5 and the distance between any two edges of W is at least6

The following comes from an easy application of Lemma 3.3.
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Corollary 3.4. There exists a graph N containing signal edges e, f and f′ and satisfying
the following properties.

(i) A 2-colouringφ of {e, f , f ′} can be extended to a C5-free2-colouring of N, if and
only if φ({ f , f ′}) 6= φ(e).

(ii) N has girth5 and the distance between any two signal edges is at least6.

The following follows from property (ii) of Corollary 3.4 just as 3.2 follows from prop-
erty (iii) of Definition 3.1.

Proposition 3.5. Given a graph G and the graph N from Corollary 3.4 we introduceno
new cycles of length five or less by identifying the edges e, f and f′ of N with edges of G.

Lemma 3.6. For every odd integer m≥ 3, there exists a graph T=T(m) containing signal
edges f∗, f1, . . . , fm and satisfying the following properties. (All indices in the lemma and
the proof are modulo m.)

(i) For every C5-free2-colouringφ of T withφ( f∗) = 1 there is someα ∈ [m] such
thatφ( fα ) = φ( fα+1) = 2.

(ii) For everyα ∈ [m] there is a C5-free2-colouringφ of T withφ( f∗) = 1 such that
φ( fi) 6= φ( fi+1) for all i 6= α.

(iii) There exists some constant cT , independent of m, such that|V(T)| ≤ cTm.

Proof. For i = 1, . . . ,m let Ni be a copy of the graphN given by Corollary 3.4. Letei , fi
and f ′i be the copies ofe, f , and f ′ respectively inNi . ConstructT from the disjoint graphs
N1, . . . ,Nm and a disjoint edgef∗ by identifyingei with f∗, and fi with f ′i+1, for i = 1, . . . ,m.

We verify that this graphT satisfies properties (i - iii). Letφ be aC5-free 2-colouring
of T with φ( f∗) = 1. For everyi ∈ [m], asφ(ei) = φ( f∗) = 1, at least one of the edgesfi
and fi+1 = f ′i get colour 2. So at least half of the edgesf1, . . . , fm get colour 2. Asm is
odd, this gives property (i).

For property (ii), letα ∈ [m] be fixed. Define a 2-colouringφ of T as follows. Let
φ( f∗) = 1, and letφ( fi) = 2 for i = α,α + 1,α + 3, . . . ,α + (m− 2) (modulom), and
φ( fi) = 1 otherwise. For eachi ∈ [m] \ {α}, φ( fi) and φ( fi+1) are not both 1, so by
property (i) of Corollary 3.4 there is an extension ofφ to aC5-free 2-colouring ofNi ; let φ
be extended by this extension. By Proposition 3.5, any copy of C5 in T is entirely within
one of the graphsN1, . . . ,Nm. Thus this is aC5-free colouring ofT.

Property (iii) follows from the fact thatT is built from m copies of the graphN from
Corollary 3.4, which does not depend onm. �

4. PROOF OFTHEOREM 1.1

In the first two subsections of this section we construct auxillary graphsG0 andG . In
the third subsection we use them to construct 2m2

different graphs that are 2-Ramsey for
C5. In the final subsection, we prove Theorem 1.1 by induction onr, using the graphs from
the earlier subsections for the base caser = 2.

4.1. The Graph G0. Let P be the 3-pathp1xyp2. We define four colouringsφ11,φ12,φ21

andφ22 of P by
φi j (p1x) = i φi j (xy) = j φi j (yp2) = i.

Let these colourings be defined similarily on any copy ofP.
Let C consist of vertices{c1,c2,c3} with cα andcα+1 (modulo 3) connected by a copy

Pα of P for eachα ∈ [3]. (SoC is a 9-cycle.) Fori, j ∈ [2], let φi j be the colouring onC
that restricts toφi j on each ofP1,P2, andP3. Let E be the set of 6 possible edges between
{p1, p2} and{c1,c2,c3}. Let G0 = P∪C∪E.
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Claim 4.1. The graph G0 satisfies the following properties.

(i) There is no C5-free2-colouringφ of G0 that restricts toφ11 on P and toφ22 on C,
or vice-versa.

(ii) Any2-colouringφ of P∪C that restricts on P or C toφ12 or φ21, can be extended
to a C5-free2-colouring of G0.

(iii) For any e∈ E, the2-colouringφ of P∪C which restricts toφ11 on P andφ22 on
C, extends to a C5-free2-colouring of Ge = G0 \ {e}.

Proof. (i) Assume that there is such aC5-free 2-colouringφ of G0. By considering, for
α ∈ {1,2,3}, the subgraph ofG0 induced by the vertices ofC andPα , it is not hard to
check thatφ must have different colours onp1cα andp1cα+1. So

φ(p1c1) 6= φ(p1c2) 6= φ(p1c3) 6= φ(p1c1).

But, φ being a 2-colouring, this means thatφ(p1c1) 6= φ(p1c1), which is impossible.
(ii) Let φ restrict onC to eitherφ12 or φ21. If φ restricts onP to φ11 let φ(E) = 2,

otherwise, letφ(E) = 1. It is easy to verify that thisφ is C5-free. Similarily, letφ restrict
onP to eitherφ12 or φ21. If φ restricts onC to φ11 let φ(E) = 2, otherwise, letφ(E) = 1.

(iii) Assume, without loss of generality, thate= p1c1. Extendφ to E \ {e} as follows.
Let φ have colour 1 onp1c3 andp2c2 and colour 2 on all other edges inE \ {e}. One can
check that this is aC5-free 2-colouring ofGe. �

4.2. The Graph G ∗. For any copyC′ of C andP′ of P, refer to the edges that get colour 1
under the colouringφ12 as ‘1-edges’, and the edges that get colour 2 underφ12 as ‘2-edges’.

Let oddm≥ 3 be fixed. LetTC andTP be copies of the graphT(m) from Lemma
3.6. Fori = 0, . . . ,m, let fC

i and f P
i be the copies offi in TC andTP respectively. For

i = 1, . . . ,m, letCi be a copy ofC, and letPi andQi be copies ofP.
To constructG ∗ from the disjoint graphsTP,TC,Ci ,Pi andQi , join fC

0 and f P
0 with a

negative sender, and fori = 1, . . . ,m, do the following (indices modulom).

• Join the 1-edges inCi to fC
i , and the 2-edges inCi to fC

i+1 with positive senders.
• Join the 1-edges inPi andQi to f P

i , and the 2-edges inPi andQi to f P
i+1 with

positive senders.

We now observe some properties ofG ∗ which are almost immediate from the construc-
tion, and the corresponding properties ofT listed in Lemma 3.6.

Claim 4.2. G ∗ has the following properties.

(i) For any C5-free2-colouringφ of G ∗ with φ( fC
0 ) = 1 there existα,β ∈ [m] such

thatφ restricts on Cα to φ22 and on Pβ and Qβ to φ11.
(ii) For any choice ofα,β ∈ [m] there is a C5-free2-colouringφ of G ∗, with φ( fC

0 ) =

1, that restricts on Ci , Pj and Qj to φ12 or φ21 for all i 6= α and j 6= β .
(iii) There exists some constant c independent of m, such that|V(G ∗)|< cm.

Proof. For item (i), letφ be aC5-free 2-colouring ofG ∗ with φ( fC
0 ) = 1. By Lemma 3.6

(i), there existsα ∈ [m] such thatφ( fC
α ) = φ( fC

α+1) = 2. As φ is C5-free on the positive
senders connecting these edges toCα , φ restricts onCα to φ22. The sender fromfC

0 to f P
0

ensures thatφ( f P
0 ) = 2, and so we can argue similarily that for someβ ∈ [m], φ restricts

onPβ andQβ to φ11.
Item (ii) follows from item (ii) of Lemma 3.6 just as (i) followed from (i) of Lemma

3.6.
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Item (iii) follows from property (iii) of Lemma 3.6 and the fact thatG ∗ consists of two
copies ofT and 15·m+1 senders. Indeed,c= 2cT +16s is sufficient, wheres is number
of vertices of the largest sender used. �

4.3. The Graph G (I ). For copiesC′ of C andP′ of P, we say we ‘completeC′ andP′ to
a copy ofG0’ to mean we add all edges between the copies ofc1,c2, andc3 in C′ and the
copies ofp1, andp2 in P′.

For any setI = (I1, . . . Im) of subsets of[m] constructG = G (I ) from G ∗, by adding
only edges, as follows.

For eachi, j ∈ [m]

• completeCi andP j to a copy ofG0 if i ∈ I j , and
• completeCi andQ j to a copy ofG0 otherwise.

Let Ei j be the edges added betweenCi andP j or Q j . Let EI = G \G
∗ be the union of

all theEi j .

Claim 4.3. G is 2-Ramsey for C5.

Proof. Towards contradiction, assume that there is aC5-free 2-colouringφ of G . By item
(i) of Claim 4.2, there areα,β ∈ [m] such thatφ restricts onCα to φ22 and onPβ andQβ

to φ11, (or vice versa). By constructionCα and eitherPβ or Qβ induce a copy ofG0, and
soφ restricted to this copy ofG0 contradicts item (i) of Claim 4.1. �

Claim 4.4. For any edge e of EI , G \ {e} has a C5-free2-colouring.

Proof. Assume, without loss of generality, thate is in E11. We define aC5-free 2-colouring
φ of G \ {e}.

By item (ii) of Claim 4.2 there is a 2-colouring ofG ∗ that restricts onC1 to φ11, onP1

andQ1 to φ22, and on all otherCi ,P j andQ j to φ12 or φ21. Defineφ to restrict to such a
colouring onG ∗.

For everyi, j ∈ [m] with not bothi, j = 1, there is, by item (ii) of Claim 4.1, aC5-free
2-colouring of the copy ofG0 in G

∗ induced by the vertices ofCi ∪P j ∪Q j , which agrees
with φ onCi , P j andQ j . Defineφ onEi j to agree with this colouring.

By item (iii) of Claim 4.1 there is aC5-free 2-colouring of the graph induced byC1∪
P1∪Q1 (a copy ofG0 less an edge ofE) , which agrees withφ onC1, P1 andQ1. Define
φ onE11 to agree with this colouring.

We now show that this 2-colouringφ of G \{e} isC5-free. By construction it isC5-free
onG ∗ and on the (partial) copies ofG0 induced by anyCi and anyP j or Q j . So we show
that the only copies ofC5 in G are entirely within one of these graphs. LetC0 be a copy of
C5 in G not entirely withinG

∗. As EI is bipartite,C0 must contain edges ofG ∗. As the
vertices ofG ∗ that are incident to edges ofEI are distance at least 6 apart, unless they are
the endpoints in a copy of the 3-pathP in one ofCi ,P j or Q j , C0 must intesectG ∗ in one
of these paths. Thus it is entirely within the copy ofG0 induced by someCi and someP j

or Q j . �

4.4. The Proof of Theorem 1.1. The proof is by induction onr. The most difficult part,
the base caser = 2 is almost done. Indeed, letc2 be the constantc from Claim 4.2 (iii). By
Lemma 2.1 it is enough to show that for oddm≥ 3 there are 2m

2
different labelled graph

on at mostc2m vertices that are 2-Ramsey minimal forC5. For each of the 2m
2

choices
of I of m subsets of[m], the graphG (I ) is 2-Ramsey by Claim 4.3, and any 2-Ramsey-
minimal subgraph of it contains all ofEI by Claim 4.4. SinceEI is different for different
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choices ofI , this gives us 2m
2

different 2-Ramsey-minimal graphs on at mostcmvertices.
This is enough.

For the induction onr we use the following construction. LetGr−1 be some graph on
at mostcr−1m vertices that is(r −1)-Ramsey minimal forH. ConstructGr from Gr−1 as
follows.

(i) Add a new vertexv0.
(ii) For each vertexv∈V(Gr−1) add a new vertexv′ and the edgesv0v′ andv′v.
(iii) Add a new edgee0.
(iv) Connect every edge added in step (ii) toe0 with a positive sender.

Clearly Gr has less than 2s|V(Gr−1)| vertices wheres is the number of vertices in a
positive sender. SoGr has less thencrmvertices wherecr = 2scr−1.

Claim 4.5. Gr is r-Ramsey for C5.

Proof. Assume, towards contradiction, thatGr has aC5-free r-colouringφ . Thenφ gets
the same colour on all edges added in steps (ii) as they are alljoined toe0 with positive
senders. Let this colour ber. Every edge inGr−1 completes aC5 with such edges, so must
get some colour other thanr, soφ restricted toGr−1 is aC5-free(r −1)-colouring. As this
is impossible,Gr is r-Ramsey forC5. �

Claim 4.6. For any edge e∈ Gr−1, Gr \ {e} has a C5-free(r −1)-colouring.

Proof. Let e be an edge ofGr−1. As Gr−1 is (r −1)-Ramsey-minimal there is aC5-free
(r −1)-colouringφ of Gr−1\ {e}. Extendφ to ar-colouring ofGr by settingφ( f ) = r on
all edgesf introduced in step (ii) of the construction, and on the edgee0. As these edges
form a forest, this introduces no monochromatic copies ofC5. As the edgese0 and f have
the same colour for anyf introduded in step (ii),φ can be extended to aC5-free colouring
of sender between them which was added in step (iv) of the construction. By Proposition
3.2, thisφ is aC5-freer-colouring ofGr \ {e}. �

Now assume that the theorem has been proved forr − 1, that is, that there are 2m2

different labelled graphs on at mostcr−1m vertices that are(r −1)-Ramsey minimal for
H. From each such graphGr−1 the above construction gives a graphGr on at mostcrm
vertices, which by Claim 4.5, isr-Ramsey forC5.

By Claim 4.6 ther-Ramsey-minimal subgraphs ofGr andG ′
r constructed from different

Gr−1 andG
′
r−1 are different. So we have 2m2

different graphs on at mostcrm vertices that
arer-Ramsey-minimal forC5. The theorem thus holds forr, and so follows by induction.

5. CONCLUDING REMARKS

In [8] we observed that no bipartite graph can be highly 2-Ramsey-infinite, but we
expect that any graph that is non-bipartite and 2-Ramsey-infinite, is highly 2-Ramsey-
infinite.

Apart fromC5 being non-bipartite, the important aspects for our proof thatC5 is highly
2-Ramsey-infinite are the existence of positive and negative signal senders forC5, and the
fact thatC5 has a vertex of degree 2 (in the construction ofG0).

It was proved in [2] that senders exist for all 3-connected graphsH. However, such
graphs cannot have vertices of degree 2. It would be interesting to extend the construction
of the graphsG (I ) from this paper work for other 3-connected graphs. I cannot see
how to do this though. Similarily, it would be interesting toconstruct senders for more
2-connected graphs. This also seems to be difficult.
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[4] J. Nešetřil, V. Rödl.Partitions of vertices.Comment. Math. Univ. Carolinae 17 (1976), no. 1, 85–95.
[5] The structure of critical Ramsey graphs.Acta Math. Acad. Sci. Hungar. 32 (1978), no. 3-4, 295–300.
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