FIVE CYCLES ARE HIGHLY RAMSEY INFINITE

MARK SIGGERS

ABSTRACT. In a previous paper, the author proved that all odd cyclese five cycles,
are highly Ramsey-infinite. In this paper, we fill in the mmgsicase, and show that five
cycles are highly Ramsey-infinite.

1. INTRODUCTION

All graphs in this paper are simple, finite and undirectedr graphsG, andH, and
an integem, G is r-Ramseyfor H, if any arbritrary colouring of the edges & with r
colours, yields a copy dfl all edges of which are the same colour. A gr&pis r-Ramsey-
minimalfor H if it is r-Ramsey forH but no proper subgraph @ is. H is r-Ramsey-
infinite if there are infinitely many graphs that arer-Ramsey-minimal foH. In [4, 5]
Nesétfil and Rodl started to characterise which grapbs2aRamsey-infinite. The full
characterisation proceeded in many steps, but was cordptetae 1990s in [3] and [6].
The non-symmetric version of the problem is still open, dgdificant progress was made
relatively recently in [1]. For a more thorough list of refaces see [1] and [7].

In [2], a stronger version of ‘Ramsey-infinite’ was introédc They showed that for
any 3-connected gragt, there is a constart such that for large enough there are at
least 2"°9" graphs on at most vertices that are 2-Ramsey-minimal fdr. In [7] we
took this a step further. A grapg is highly r-Ramsey-infinité for some constant, and
large enouglm, there are at least? non-isomorphic graphs on at masvertices that are
r-Ramsey-minimal foH.

In [7] it was shown that fok > 3 andr > 2 the cliqueKy is highly r-Ramsey-infinite.
In [8] it was shown that for odd > 7 andr > 2 the cycleCy is highly r-Ramsey-infinite.
In this paper, we fill in the missing case and prove the foltayvi

Theorem 1.1. For all integers r> 2, Cs is highly r-Ramsey-infinite.

We remark that the main construction shares an underlyea\dth the main constuc-
tions in [7] and [8], but is considerably simpler, and witHyosmall changes can be made
to replace them both.

2. NOTATION AND DEFINITIONS

We identify a graptG with its edgeseE(G). We let[r] denote the sefl,...,r}. Given
a functiong defined on a sedwe let@(S) denote the seftg(s) | s€ S}. Anr-colouring of
a graphGis a mapping from the edges to the gé&t An r-colouring of a grapl® is Cs-free
if there is no monochromatic copy 6% in G, that is, there is no copy @s all of whose
edges get the same colour. We will frequently index verticexlulo m’, for some integer
m; when we do this, we use the symbols.1,m, instead of ..., m— 1.
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The following alternate definition dfighly r-Ramsey-infinitevas shown implicitly in
both [7] and [8], and is easier to work with.

Lemma 2.1. A graph H ishighly r-Ramsey-infinitéf there is some constant ¢ such that
for all odd m> 3 there are2™ different labelled graphs on at mostm vertices that are
r-Ramsey-minimal for H.
Proof. Indeed letH be as in the statement of the lemma. tet 1/8¢?, andng > 3c be
large enough that22'“5/n0! > 2¢"%. Givenn > No, let m be the maximum odd integer for
whichc-m<n. Som> 2.

By assumption, there are at leadt Aifferent labelled graphs on at mostm < n
vertices that are-Ramsey-minimal foH. So there are at least

2r’r‘|2 2(n/2c)2 22C'n2
> —

>2c'n2
n — nl n!

non-isomorphic such graphs. Thidss r-Ramsey-minimal. O

3. GADGETS
We will use the following graphs whose existence was proud8]i

Definition 3.1. Forr > 2, anegative signal senderS S~ is a graph containingignal
edges endf, and satisfying the following properties.
(i) Shas aCs-freer-colouring.
(i) Under anyCs-freer-colouring ofS, eand f get different colours.
(iii) Shas girth 5 and the distance betwessndf in Sis 6.

A positive signal senderS S is defined similarly, but we replace the word ‘different’
in (i) with ‘the same’.

We will often use these senders in constructions in theviolig way. Given a grapt®s
with edgese; ande, we will take a copySof § (or §",) disjoint fromG, and we will
identify the edges; ande, with the edgeg andf of S, respectively. When we do this we
say that we ‘connect the edgesande, with a negative (positive) sender.” We will usually
connect several pairs of edges with senders, it is alwaysress$ that these senders are all
distinct and disjoint.

The following was proved in [8] as an immediate consequefpeaperty (iii) in Defi-
nition 3.1.

Proposition 3.2. Given a graph G with edges @nd &, when we connect the edges e
and e with a negative or positive sender S, there are no cyclesngfttefive or less, that
are not entirely within G or entirely within S.

In [8], senders were used to construct the following moreegaingadget. It was con-
structed forr colours, but we only need it for 2.

Lemma 3.3. Letl C {v|v:W — [2]} be a set oR-colourings of a set W, which is closed
under permutation of2]. There exists a graph M with the following properties.
(i) WCM(=E(M))
(i) A mappingv : W — [2] can be extended to a@ree2-colouring of M if and only
ifvisinl.
(i) M has girth5 and the distance between any two edges of W is at east

The following comes from an easy application of Lemma 3.3.
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Corollary 3.4. There exists a graph N containing signal edget and ' and satisfying
the following properties.

(i) A2-colouringgof{e, f, f’} can be extended to as@ree2-colouring of N, if and

only if o({f, f'}) # (e).
(i) N has girth5 and the distance between any two signal edges is at Geast

The following follows from property (ii) of Corollary 3.4 gt as 3.2 follows from prop-
erty (iii) of Definition 3.1.

Proposition 3.5. Given a graph G and the graph N from Corollary 3.4 we introdnce
new cycles of length five or less by identifying the edgésiad ' of N with edges of G.

Lemma 3.6. For every odd integer rix 3, there exists a graph E T (m) containing signal
edges f, f1,..., fm and satisfying the following properties. (All indices irettemma and
the proof are modulo m.)

(i) For every G-free 2-colouringg of T with ¢(f,) = 1 there is somer € [m] such
thato(fg) = @(fa11) = 2.
(i) Foreverya € [m] there is a G-free 2-colouring @ of T with¢(f,) = 1 such that

o(fi) # @(fiy1) foralli # a.
(iii) There exists some constart independent of m, such th&t(T)| < crm.

Proof. Fori =1,....,mlet N; be a copy of the grapN given by Corollary 3.4. Leg, fi
andf/ be the copies dé, f, andf’ respectively if\Ni. Constructl from the disjoint graphs
N1, ...,Nnand a disjoint edgé, by identifyinge with f,, andf; with fi’+l, fori=1,....m.

We verify that this grapf satisfies properties (i - iii). Lep be aCs-free 2-colouring
of T with ¢(f.) =1. For everyi € [m], as@(e) = ¢(f,) =1, at least one of the edgés
and fi;1 = f/ get colour 2. So at least half of the eddfes..., fm get colour 2. Asnis
odd, this gives property (i).

For property (ii), leta € [m] be fixed. Define a 2-colouring of T as follows. Let
o(f.) =1, and letp(fi) =2 fori=a,a +1,a+3,...,a + (m—2) (modulom), and
@(fi) = 1 otherwise. For eache [m|\ {a}, ¢(fi) and¢(fi.1) are not both 1, so by
property (i) of Corollary 3.4 there is an extensiongfo aCs-free 2-colouring of\;; let ¢
be extended by this extension. By Proposition 3.5, any cd@san T is entirely within
one of the graphhly, ..., Nm. Thus this is &s-free colouring ofT .

Property (iii) follows from the fact that is built from m copies of the grapiN from
Corollary 3.4, which does not depend o O

4. PROOF OFTHEOREM1.1

In the first two subsections of this section we constructl&aryigraphsGy and¥. In
the third subsection we use them to constriét ifferent graphs that are 2-Ramsey for
Cs. In the final subsection, we prove Theorem 1.1 by induction aising the graphs from
the earlier subsections for the base case?.

4.1. The Graph Gp. LetP be the 3-patlpixyp. We define four colouringgy 1, @12, (1
andg of P by
@p) =i @y =]  @jlyp) =i

Let these colourings be defined similarily on any copyof

Let C consist of verticegcy, ¢, c3} with cq andcg 1 (modulo 3) connected by a copy
Py of P for eacha € [3]. (SoC is a 9-cycle.) Foi, j € [2], let @; be the colouring oi©
that restricts tag; on each oy, P, andPs. LetE be the set of 6 possible edges between
{p1, p2} and{cy,cy,c3}. LetGo = PUCUE.
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Claim 4.1. The graph @ satisfies the following properties.

(i) There is no G-free2-colouring @ of Gy that restricts tog;; on P and tog, on C,
or vice-versa.
(ii) Any2-colouringg of PUC that restricts on P or C t@p 2 or g1, can be extended
to a Gs-free 2-colouring of G.
(iii) For any ec E, the2-colouring ¢ of PUC which restricts tap 1 on P andg» on
C, extends to a&free2-colouring of G = Go \ {€e}.

Proof. (i) Assume that there is suchGy-free 2-colouringp of Gg. By considering, for
a € {1,2,3}, the subgraph o6 induced by the vertices & and Py, it is not hard to
check thatp must have different colours gmcy, andpiCqy1. SO

@(p1c1) # P(p1C2) # P(P1C3) # P(pP1C1)-

But, @ being a 2-colouring, this means thgtp;c1) # @(pic1), which is impossible.

(i) Let @ restrict onC to either@, or ;. If @ restricts onP to @1 let ¢(E) = 2,
otherwise, letp(E) = 1. It is easy to verify that thig is Cs-free. Similarily, letg restrict
onP to eitherg2 or @1. If @restricts orC to g1 let (E) = 2, otherwise, letp(E) = 1.

(iii) Assume, without loss of generality, that= p;c;. Extendg to E\ {e} as follows.
Let ¢ have colour 1 orp;cz andpac, and colour 2 on all other edgeskn\ {e}. One can
check that this is &s-free 2-colouring 0fGe. O

4.2. The Graph ¢*. For any copyC’ of C andP’ of P, refer to the edges that get colour 1
under the colouringy, as ‘1-edges’, and the edges that get colour 2 upgeas ‘2-edges’.
Let oddm > 3 be fixed. LetT® and TP be copies of the graph(m) from Lemma
3.6. Fori =0,...,m, let f¢ and f” be the copies of; in T and TP respectively. For
i=1,...,m, letC' be a copy ofZ, and letP' andQ' be copies oP.
To constructs* from the disjoint graph3d®, T€,C",P' and @', join f§ and f§’ with a
negative sender, and foe= 1,...,m, do the following (indices modulo).

e Join the 1-edges i6' to fC, and the 2-edges @' to < ; with positive senders.
e Join the 1-edges iR' andQ' to fF, and the 2-edges iR' andQ' to fF; with
positive senders.
We now observe some propertiesgf which are almost immediate from the construc-

tion, and the corresponding propertiesiolisted in Lemma 3.6.

Claim 4.2. ¢* has the following properties.
(i) For any G-free 2-colouring ¢ of ¥* with ¢(f$) = 1 there exista, 8 € [m] such
that @ restricts on ¢ to @, and on F¥ and @ to 1.
(i) Forany choice ofr, B € [m] there is a G-free 2-colouring of ¢*, with @(f§) =
1, that restricts on & P! and Q to ¢, or g1 foralli £ a and j# .
(ili) There exists some constant c independent of m, suckMtit)| < cm.

Proof. For item (i), letg be aCs-free 2-colouring of7* with ¢( fOC) =1. By Lemma 3.6
(i), there existsr € [m] such thatp(f) = @(f$,,) = 2. As @ is Cs-free on the positive
senders connecting these edge€%o ¢ restricts orCY to ¢». The sender fronioC to fop
ensures thap(ff’) = 2, and so we can argue similarily that for sofie [m], @ restricts
onP? andQ” to 1.

Item (ii) follows from item (ii) of Lemma 3.6 just as (i) follwed from (i) of Lemma
3.6.
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Item (iii) follows from property (iii) of Lemma 3.6 and thedathat%* consists of two
copies ofT and 15 m+ 1 senders. Indeed,= 2cr + 16sis sufficient, wheresis number
of vertices of the largest sender used. O

4.3. The Graph ¥(.#). For copieC’ of C andP’ of P, we say we ‘complet€’ andP’ to
a copy ofGy’ to mean we add all edges between the copies af,, andcz in C' and the
copies ofpy, andp; in P'.
For any set? = (ly,...Im) of subsets ofm| constructy = ¢(.#) from ¢¥*, by adding
only edges, as follows.
For each, j € [m]
e completeC' andP’ to a copy ofGy if i € 1}, and
o completeC' andQ! to a copy ofGq otherwise.

LetE' be the edges added betwe@randP’ or Q. LetE” =¥\ ¥* be the union of
all theE".

Claim 4.3. ¢ is 2-Ramsey for &

Proof. Towards contradiction, assume that there @ dree 2-colouringp of 4. By item
(i) of Claim 4.2, there arer, 8 € [m] such thatp restricts orC? to @ and onP? andQ?
to gus, (Or vice versa). By constructic®® and eitheP? or QP induce a copy of5g, and
so @ restricted to this copy dBg contradicts item (i) of Claim 4.1. O

Claim 4.4. For any edge e of £, ¢\ {e} has a G-free 2-colouring.

Proof. Assume, without loss of generality, theis in E1L. We define &Cs-free 2-colouring
@of 7\ {e}.

By item (ii) of Claim 4.2 there is a 2-colouring &f* that restricts oi€! to ¢ 1, on P*
andQ! to g», and on all othe€', P! andQ! to ¢r» or g»1. Define to restrict to such a
colouring on&*.

For everyi, j € [m] with not bothi, j = 1, there is, by item (ii) of Claim 4.1, s-free
2-colouring of the copy 06g in ¢* induced by the vertices & UP! UQ!, which agrees
with g onC', Pl andQ!. Definep onE"l to agree with this colouring.

By item (iii) of Claim 4.1 there is &s-free 2-colouring of the graph induced B} U
PLUQ! (a copy ofGq less an edge dE) , which agrees witlp onC?, P! andQ'. Define
@ onE!! to agree with this colouring.

We now show that this 2-colouringof ¢ \ {e} is Cs-free. By construction it i€s-free
on%* and on the (partial) copies @& induced by anyC' and anyP! or Q!. So we show
that the only copies d@s in ¢ are entirely within one of these graphs. Ggtbe a copy of
Cs in ¢ not entirely withing*. As E” is bipartite,Co must contain edges &f*. As the
vertices of#* that are incident to edges Bf” are distance at least 6 apart, unless they are
the endpoints in a copy of the 3-pa®in one ofC', Pl or Q/, Cy must intesec#* in one
of these paths. Thus it is entirely within the copy@f induced by som€' and someP!
orQ!. O

4.4. The Proof of Theorem 1.1. The proof is by induction on. The most difficult part,
the base case= 2 is almost done. Indeed, let be the constantfrom Claim 4.2 (iii). By
Lemma 2.1 it is enough to show that for odd> 3 there are % different labelled graph
on at mostcom vertices that are 2-Ramsey minimal 6¢. For each of the ¥ choices

of .# of msubsets ofm], the graph?(.#) is 2-Ramsey by Claim 4.3, and any 2-Ramsey-
minimal subgraph of it contains all & by Claim 4.4. Sinc&” is different for different
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choices of#, this gives us o different 2-Ramsey-minimal graphs on at mostvertices.
This is enough.

For the induction om we use the following construction. L&t_1 be some graph on
at mostc;_1m vertices that igr — 1)-Ramsey minimal foH. Construct4; from ¢ _; as
follows.

(i) Add a new vertexp.
(i) For each vertex € V(% _1) add a new vertex and the edgegV andv'v.
(i) Add a new edges.
(iv) Connect every edge added in step (iietowith a positive sender.
Clearly % has less thansV (¥,_1)| vertices wheres is the number of vertices in a
positive sender. S@; has less then,mvertices where, = 2sG_.

Claim 4.5. % is r-Ramsey for €

Proof. Assume, towards contradiction, thét has aCs-freer-colouring@. Theng gets
the same colour on all edges added in steps (ii) as they ajeirsdd toey with positive
senders. Let this colour bre Every edge i, _1 completes &5 with such edges, so must
get some colour other thanso g restricted ta%; _1 is aCs-free (r — 1)-colouring. As this
is impossible¥; is r-Ramsey foCs. O

Claim 4.6. For any edge & % _1, % \ {e} has a G-free (r — 1)-colouring.

Proof. Let e be an edge 0% _1. As%_1 is (r — 1)-Ramsey-minimal there is @s-free
(r —1)-colouringg of 4 _1 \ {e}. Extendg to ar-colouring of%; by settingo(f) =r on
all edgesf introduced in step (ii) of the construction, and on the eelgeAs these edges
form a forest, this introduces no monochromatic copieSs0fAs the edgesy and f have
the same colour for anf/ introduded in step (ii)g can be extended to@s-free colouring
of sender between them which was added in step (iv) of thetearion. By Proposition
3.2, thisg is aCs-freer-colouring of%; \ {e}. O

Now assume that the theorem has been proved fod, that is, that there are™
different labelled graphs on at most 1m vertices that arér — 1)-Ramsey minimal for
H. From each such grap#t 1 the above construction gives a graghon at mostc;m
vertices, which by Claim 4.5, isRamsey foCs.

By Claim 4.6 ther-Ramsey-minimal subgraphs@f and¥, constructed from different
% _1 and¥/_, are different. So we have™ different graphs on at mostm vertices that
arer-Ramsey-minimal foCs. The theorem thus holds foy and so follows by induction.

5. CONCLUDING REMARKS

In [8] we observed that no bipartite graph can be highly 2-Bayrinfinite, but we
expect that any graph that is non-bipartite and 2-Ramsiyitm, is highly 2-Ramsey-
infinite.

Apart fromCs being non-bipartite, the important aspects for our proat@s is highly
2-Ramsey-infinite are the existence of positive and negatiynal senders f@s, and the
fact thatCs has a vertex of degree 2 (in the constructiog}.

It was proved in [2] that senders exist for all 3-connecteaphsH. However, such
graphs cannot have vertices of degree 2. It would be infaget extend the construction
of the graphs?(.#) from this paper work for other 3-connected graphs. | caneet s
how to do this though. Similarily, it would be interesting¢onstruct senders for more
2-connected graphs. This also seems to be difficult.
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