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Five-dimensional metric f(R) gravity
and the accelerated universe
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Abstract

The metric f(R) theories of gravity are generalized to five-dimensional spacetimes.
By assuming a hypersurface-orthogonal Killing vector field representing the compact fifth
dimension, the five-dimensional theories are reduced to their four-dimensional formalism.
Then we study the cosmology of a special class of f(R) = αRm models in a spatially
flat FRW spacetime. It is shown that the parameter m can be constrained to a certain
range by the current observed deceleration parameter, and its lower bound corresponds
to the Kaluza-Klein theory. It turns out that both expansion and contraction of the
extra dimension may prescribe the smooth transition from the deceleration era to the
acceleration era in the recent past as well as an accelerated scenario for the present universe.
Hence five-dimensional f(R) gravity can naturally account for the present accelerated
expansion of the universe. Moreover, the models predict a transition from acceleration to
deceleration in the future, followed by a cosmic recollapse within finite time. This differs
from the prediction of the five-dimensional Brans-Dicke theory but is in consistent with a
recent prediction based on loop quantum cosmology.

PACS numbers: 04.50.-h, 98.80.Es

1 Introduction

Since 1998, a series of independent observations, including type Ia supernova [1–3], weak lens [4],
cosmic microwave background anisotropy [5], large scale structure [6,7], baryon oscillation [8,9],
etc., have confirmed that our universe is undergoing a period of accelerated expansion. This
result conflicts fiercely with the prediction of general relativity, and therefore triggers a “golden
age” of cosmology since researchers in cosmology, astrophysics, general relativity, particle physics
are all involved in seeking for viable models to explain this phenomena. Within the frame of
general relativity, the cosmic speed-up can be viewed as an indication that the present universe
is dominated by certain mysterious fluid with large negative pressure, called ”dark energy”.
However, such simple explanations could hardly be satisfactory. The simplest ΛCDM model,
which fits the observation data best so far, assumes a cosmological constant to be responsible
for the dark content. But the observed value of the constant Λ is unnaturally smaller than any
estimation by tens of orders [10, 11]. Other dynamical dark energy models then waive evolving
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scalar fields to replace and resemble the cosmological constant (for review see [12]). These early
attempts provide us with initial understanding of the complexity of the problem, though they
chiefly serve for empirical fittings with comparatively poor theoretical motivation, and none of
such models turn out to be problem-free.

In view of the challenge and the fact that gravity is the only dominant long-range interaction
insofar as we know, it is reasonable to consider the possibility that we have not fully understood
the character of gravity on a cosmological scale. Therefore, the exploration of alternative theories
of gravity are proposed. One of such examples is the Kaluza-Klein (KK) theory, which was
initiated by the motivation of unifying the gravitation field and the electromagnetic field in a
five-dimensional (5-D) metric. Since the fifth dimension is supposed to be a compact S1 circle
with an extremely tiny radius, it would actually yield no observable effect. Graceful though, the
original version of KK theory fails in passing the Solar-System experiment [13]. But recently a
new model of modified (non-compact) Kaluza-Klein cosmology was investigated in [14], where
the universe in turns inflates, decelerates, and then accelerates in respectively early times,
radiation dominated era and matter dominated era. This result meets the observational facts
roughly. But there still exist problems such as that it leaves no decelerated period in the matter-
dominant era for the formation of large scale structure. Besides, in [15] Brans-Dicke (BD) theory
of gravity was introduced to match the Mach’s principle. It is found in [16] that 5-D BD theory
can naturally predict the cosmic acceleration without the requirement of a time-varying BD
parameter ω or a fabricated potential in its 4-D counterpart [17, 18]. Thus, it lends confidence
and motivation to the effort of extending gravitational theories in 4-D to 5-D space-time. Also,
note that in [16] the allowed range for parameters ω−n is considerably wide, where ω is the BD
parameter and n represents the interaction between the extra dimension and other spatial ones.
We may suspect that further information concerning the different choices of ω−n are masked in
the formalism of 5-D BD theory. Given the argument for the equivalence (by evolutional effect)
of the f(R) theory of gravity to certain special cases of BD theory up to a potential term [19],
we are led to consider the 5-D f(R) theories of gravity for such information. It is worth noting
that the scale of the compact extra dimension of 5-D gravity theories, which we are considering,
is constrained to be less than 50 µm by current experiments [20–22].

The f(R) theories of gravity extends the Hilbert-Einstein action in general relativity to

S =

∫

d4x
√−gf(R), (1)

where f(R) is an arbitrary function of the curvature scalar R. The reason for such exploration in
4-D spacetime is twofold. On the one hand, recent research has shown that a small correction
to the Hilbert-Einstein action by adding an inverse term of R would lead to acceleration of
the universe [23], and a large variety of models are proposed since then (for review paper,
see [24]). However, few of them turn out to be without problem and most of them admit fine-
tunings so as to be consistent with experiments. On the other hand, it is highly possible that
future quantum theory of gravity, such as string theory, loop quantum gravity, etc., would bring
about modifications to the action for classical general relativity, just like that general relativity
has introduced corrections to the Newton’s gravitation theory. Therefore, this effort would
potentially match the low energy effective theory of quantum gravity and therefore accelerate
its birth.

With above motivations, we thought that modified gravity without fine-tuning should better
be constructed in higher dimensions. It is shown in this paper that values of the parameters in
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the 5-D theory are all with reasonable deductions and interpretations. In 5-D spacetimes with
a hypersurface-orthogonal Killing vector field, the 5-D f(R) theories of gravity are reduced to
the sensible 4-D world in section 2. Here we have adopted KK’s idea that the fifth dimension
is a small unobservable compact ring S1, so that a Killing vector field would arise naturally in
the low energy environment. Further, in view of that in KK’s theory one can find the sensible
4-D universe to be expanding (without acceleration) as a result of the contraction of the extra
dimension, we assume that there is certain interaction between the fifth dimension and other
ones at present, and take their relationship to be the general power-law form. Then the reduced
theories are carefully studied in the k = 0 case of the FRW metric in section 3. We consider a
special class of models with f(R) = αRm and present the numerical simulation of the evolution
history of the matter dominated universe in section 4, demonstrating its consistency with the
observation. Finally, we end with discussions in section 5 on the similarity and difference
between the 5-D f(R) theories and the 5-D BD theory, as well as further indications from our
5-D models.

2 Killing reduction of the 5-D f(R) theory

We start with the action in 5-D space-time:

S =
1

2κ

∫

d5x
√
−gf(R) + SM . (2)

Here κ = 8πG(5)/c4, where G(5) denotes the gravitational constant in the 5-D spacetime, and
SM represents the matter term in the total action S. Variation of (2) with respect to the metric
gab gives

f ′(R)Rab −
1

2
gabf(R)− (∇a∇b − gab∇c∇c)f

′(R) = κTab, (3)

where Tab = −2√
−g

δSM

δgab
, and f ′(R) = df(R)/dR. Note that we have employed the abstract

index [25] and R,Rab, Tab represent quantities in the 5-D spacetime. Contracting equation (3)
with gab, we obtain the dynamical equation for the scalar field f ′(R):

∇a∇af
′(R) =

1

4
[κT − Rf ′(R) +

5

2
f(R)]. (4)

Since here gabg
ab=5 instead of 4, the dynamical equation of f ′(R) differs from its usual 4-D

counterpart.
Next we consider the structure of the 5-D spacetime and its relation to our sensible 4-D

world. First, as mentioned in the introduction, we assume that the 5-D spacetime possesses a
Killing vector field ξa which represents the fifth dimension and is everywhere space-like. Recall
that the Killing reduction of 4-D spacetime is studied by Geroch [26] and is further extended
to the 5-D spacetime by Yang et al. [27]. Therefore, following these works we introduce the 5-D
metric as

gab = hab + λ−1ξaξb, (5)

where hab is the metric in the usual 4-D universe and λ = ξaξa. If ξa is not hypersurface-
orthogonal, it would be related to electromagnetic 4-potential in the reduced 4-D theory, as
demonstrated by KK theory. Since we are chiefly concerned with the cosmological effect of the
reduced model, our discussion is restricted to the case where ξa is hypersurface-orthogonal for
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convenience. Without losing generality, a coordinate system can be chosen as {xµ, x5}, µ =
0, 1, 2, 3, with ( ∂

∂x5 )
a = ξa. Then the line element of gab reads ds

2 = gµνdx
µdxν +λdx5dx5, while

Ricci tensors and the dynamical equation of λ in 5-D and 4-D spacetime bear the following
relation [27]:

R
(4)
ab =

1

2
λ−1DaDbλ− 1

4
λ−2(Daλ)Dbλ+ hm

a h
n
bRmn, (6)

DaDaλ =
1

2
λ−1(Daλ)Daλ− 2Rabξ

aξb. (7)

Here Da denotes the covariant derivative on 4-D spacetime and is defined as [25]

DaT
c1...cm
b1...bn

= hd
ah

e1
b1
. . . hen

bn
hc1
f1
. . . hcm

fm
∇dT

f1...fm
e1...en

,

satisfying all the conditions for a derivative operator. On the other hand, the stress-energy
tensor in (3) is regarded as a perfect fluid in 5-D spacetime with the expression [16]

T
(5)
ab = L−1λ− 1

2 [(ρ+ P )UaUb + Pgab] = L−1λ− 1

2

[

T
(4)
ab + Pλξaξb

]

, (8)

where ρ and P are the 4-D energy density and the hydrostatic pressure respectively, and L
is a constant representing the coordinate scale of the fifth dimension. This extension of the
stress-energy tensor of the 4-D perfect fluid to a 5-D one can be understood in the following
way: because the fifth dimension is compact and attached to every point of the 4-D space-time,
ρ and P experienced by a 4-D observer should be an integrated effect throughout the compact
ring. If we further expect that the fluid distributes homogeneously and does not travel along
the fifth dimension, it is clear that ρ =

∫

ρ(5)λ1/2dx5 = ρ(5)λ1/2L, P = P (5)λ1/2L, and hence
equation (8) is obtained. Combining (3), (4) with (6), (7), and (8) , straightforward calculations
lead to the 4-D field equation:

G
(4)
ab =

8πG

c4
λ− 1

2

f ′(R)
T

(4)
ab + hab

f(R)−Rf ′(R)

2f ′(R)

+
1

2
λ−1(DaDb − habD

cDc)λ− 1

4
λ−2[(Daλ)Dbλ− hab(D

cλ)Dcλ]

+
1

f ′(R)
(DaDb − habD

cDc)f
′(R)− 1

2f ′(R)
λ−1hab(D

cλ)Dcf
′(R), (9)

and the dynamical equations of λ and f ′(R):

DaDaλ =
8πG

c4
λ

1

2

f ′(R)

(

1

2
T (4) − 3

2
p

)

+
1

2
λ−1(Daλ)Daλ− 1

f ′(R)
(Daλ)Daf

′(R)

+
λ

f ′(R)

[

1

4
f(R)− 1

2
Rf ′(R)

]

, (10)

DaDaf
′(R) =

8πG

c4
λ− 1

2

4
(T (4) + p)− 1

2
λ−1(Daλ)Daf

′(R) +
1

4

[

5

2
f(R)−Rf ′(R)

]

, (11)

where G = G(5)L−1 represents the usual 4-D gravitational constant [28].
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3 FRW cosmology of the reduced f(R) gravity

In this section, we will study the cosmological predictions of the reduced f(R) gravity. The met-
ric of a spatially isotropic and homogeneous 4-D spacetime is the Friedman-Robertson-Walker
(FRW) metric with three possible structures of the space. As suggested by the observation [29],
we only handle the spatially flat case where the 4-D line element reads

ds2 = −dt2 + a2(t)

3
∑

i=1

dx2
i . (12)

Then the two components of the field equation (9) are:

3

(

ȧ

a

)2

= 8πG
λ− 1

2

f ′(R)
ρ− 3

2

ȧ

a

λ̇

λ
− 3

ȧ

a

f ′′(R)Ṙ

f ′(R)
− 1

2

λ̇

λ

f ′′(R)Ṙ

f ′(R)
− f(R)−Rf ′(R)

2f ′(R)
(13)

and

−
(

2
ä

a
+

ȧ2

a2

)

=
8πG

c2
λ− 1

2

f ′(R)
P +

ȧ

a

λ̇

λ
− 1

4

(

λ̇

λ

)2

+
1

2

λ̇

λ

f ′′(R)Ṙ

f ′(R)
+ 2

ȧ

a

f ′′(R)Ṙ

f ′(R)

+
λ̈

λ
+

f ′′′(R)Ṙ2 + f ′′(R)R̈

f ′(R)
+

f(R)−Rf ′(R)

2f ′(R)
. (14)

The dynamical equations of λ and f ′(R) are respectively:

λ̈

λ
= 8πG

λ− 1

2

f ′(R)

(ρ

2

)

− 3
ȧ

a

λ̇

λ
+

1

2

(

λ̇

λ

)2

− λ̇

λ

f ′′(R)Ṙ

f ′(R)
− f − 2Rf ′(R)

4f ′(R)
, (15)

and

f ′′′(R)Ṙ2 + f ′′(R)R̈

f ′(R)
= 8πG

λ− 1

2

f ′(R)

(

ρ

4
− P

c2

)

− 3
ȧ

a

f ′′(R)Ṙ

f ′(R)
− 1

2

λ̇

λ

f ′′(R)Ṙ

f ′(R)
−

5
2
f(R)−Rf ′(R)

4f ′(R)
.

(16)
Here an over-dot denotes the derivative with respect to the proper time t of the isotropic ob-
server, and we have assumed that the scalar field λ depends only on t. Note that the conservation
equation of the 5-D stress-energy tensor, ∇µTµ0 = 0, gives:

ρ̇+ 3
ȧ

a
(ρ+

P

c2
) +

1

2

λ̇

λ

P

c2
= 0, (17)

which can also be obtained directly from equations (13) – (16). For the common baryonic matter
content of the present universe, the pressure is negligible compared to the energy density. Thus,
we set P/c2 = 0 by approximation in the above equation and get ρ = ρ0(a0/a)

3, where ρ0 is the
current observed energy density of the luminary matter.

By now, we have been dealing with the general form of f(R) gravity. Next we restrict our
discussion to a specific class of f(R) models, f(R) = αRm, to further study the evolutional
characteristics of the theory. It has been shown that this choice in 4-D spacetime, with m 6= 1
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and the common baryonic matter, could fit the Hubble diagram of Type Ia supernovae without
need of dark energy [30]. We denote f ′(R) = αmRm−1 ≡ φ and obtain

R =

(

φ

αm

)
1

m−1

, f(R) =
φ

m

(

φ

αm

)
1

m−1

, (18)

where α is a dimensional constant. With the above analysis, we find the three cosmological
evolution equations for numerical simulations from the combination of equations (13) – (16):

ä

a
=

(

ȧ

a

)2

+
ȧ

a

λ̇

λ
+ 2

ȧ

a

φ̇

φ
+

1

2

λ̇

λ

φ̇

φ
+

(

3

8m
− 1

4

)(

φ

αm

)
1

m−1

− 8πGλ− 1

2φ−13

4
ρ0

(a0
a

)3

, (19)

λ̈

λ
= −3

ȧ

a

λ̇

λ
+

1

2

(

λ̇

λ

)2

− λ̇

λ

φ̇

φ
−
(

1

4m
− 1

2

)(

φ

αm

)
1

m−1

+ 8πGλ− 1

2φ−11

2
ρ0

(a0
a

)3

, (20)

φ̈

φ
= −3

ȧ

a

φ̇

φ
− 1

2

λ̇

λ

φ̇

φ
−
(

5

8m
− 1

4

)(

φ

αm

)
1

m−1

+ 8πGλ− 1

2φ−11

4
ρ0

(a0
a

)3

. (21)

4 Numerical simulations

Let us now find the natural initial values of a0, ȧ0, λ0, λ̇0, φ0, φ̇0 for the numerical simulation.
Firstly, a0, λ0 themselves have no direct physical meaning and therefore can be simply fixed as
1 (with no dimension). Then we can directly determine the value of ȧ0 by the present value
of Hubble parameter H0 = (ȧ/a)t0 . Secondly, we adopt the dynamical compactification idea of
KK cosmology that the contraction of the extra dimension would result in the expansion of the
remaining dimensions [31], and assume

a3λn/2 = constant, (22)

where for a particular f(R) theory with given m and α in Eq.(18), the free parameter n can
be constrained by the observation. Therefore we have (λ̇/λ)t0 = 6H0/n. Finally, comparing the
matter term in equation (9) to the field equation of general relativity, we expect λ−1/2φ−1 ∼ 1,

at least for the present period; thus φ0 = 1 (with no dimension either) and further
(

φ̇
φ

)

t0
=

−1
2

(

λ̇
λ

)

t0
. In summary, the initial conditions are:

{

a0 = λ0 = φ0 = 1,

ȧ0 = H0, λ̇0 = − 6
n
H0, φ̇0 =

3
n
H0.

(23)

Then we estimate the value of α in equations (19) – (21) and determine the allowed range for
the pair of parameters m and n. A calculation of the 5-D curvature scalar shows

R = 6

(

ä

a
+

ȧ2

a2

)

+
λ̈

λ
+

1

2

(

λ̇

λ

)2

+ 3
ȧ

a

λ̇

λ
. (24)

Inserting (18), (20) into the expression of R and noting that the deceleration parameter q = − äa
a

is an observable with its present value denoted as q0, we have

(

1

αm

)
1

m−1

=
24m

1 + 2m

[

1− q0 +
9

n2
+

8πGρ0
12H2

0

]

H2
0 . (25)
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Figure 1: Allowed range for the values of m and n with q0 ∈ (−0.47,−0.67) [32]. The horizontal
axis stands for different value of n, while the vertical axis represents m.

Substituting (25) into (19), we obtain the relationship between parameters m and n as follows:

m =
5− 4q0 +

36
n2

2(1− 2q0) +
36
n2 +

8πGρ0
H2

0

, (26)

where G = 6.67×10−11kg−1m3s−2, ρ0 = (3.8±0.2)×10−28kgm−3, H0 = (2.3±0.1)×10−18s−1 [32]
and therefore 8πGρ0

H2

0

≈ 0.12. One necessary and sufficient condition for the present accelerated

expansion of the universe is that the deceleration parameter q0 < 0. Specifically, the allowed
range for q0 according to the present observation is q0 = (−0.57±0.10) [32]. Here we apply this
criteria to determine the allowed range for m and n, as depicted in Fig. 1. From the figure,
it is obvious that there do exist suitable parameters m and n, that is, suitable formalisms of
f(R) = αRm and corresponding relationships between the extra dimension and the other ones,
such that the present cosmic acceleration can be explained without the need of dark energy.
Besides, Fig. 1 also reveals that both positive and negative values of n is allowed, indicating
that the idea of dynamical compactification can be extended to that both the expansion and
the contraction of the extra dimension can be responsible for the accelerated expansion of the
other dimensions. Besides, we know from equation (25) that

α =
1

m

[

24m

1 + 2m

(

1− q0 +
9

n2
+

8πGρ0
12H2

0

)

H2
0

]−(m−1)

. (27)

Using Eqs. (26) and (27), we depict the α − n relation in Fig. 2 with the range spanned
by q0, from which we find α increases rapidly as |n| increases. Further, one could find from
Fig. 1 or equation (26) that the lower bound of m is 1, corresponding to α = 1, and therefore
f(R) = R, which is exactly the KK case. One subtlety concerning this case is that Fig. 1 as well
as equation (26) shows that n = 0 for m = 1, and therefore equation(22) apparently indicates
H0 = ȧ = 0, contradicting with the present observations. Thus one might think that the KK
theory is inconsistent with the observation. However, this conclusion is misleading, because
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Figure 2: The relation between n and the possible range for α. The range is spanned by the
uncertainty of the deceleration parameter q0.

from the inverse-solving procedure in equation (18), we have already confined our discussion to
m 6= 1 cases. On the other hand, the asymptotic value of m, as n approaches infinity, is

lim
n→∞

m =
5− 4q0

2(1− 2q0) + 0.12
, (28)

from which we find the upper bound for m to be 1.72. Hence, the possible range for m is
narrowed down as 1 < m < 1.72.

With equations (19) – (21), initial values (23) and (25), the numerical simulation of the
evolution of the scale factor a(t), the scalar field λ(t), φ(t) and the deceleration parameter q(t)
can be conducted. As an example, we choose m = 1.5, n = 5.4. Then from equation (26) we

get q0 = −0.6. The corresponding value of
(

1
αm

)
1

m−1 is approximately 17.3H2
0 . It is useful to

define the effective gravitational “constant” from Eqs. (9) – (11) as

G̃ = Gλ−1/2f ′(R)−1 = Gλ−1/2φ−1. (29)

Note that G̃ is actually an evolving scalar. Then the evolution characters of a(t), q(t), λ(t), φ(t)
and G̃ are illustrated in Figs. 3 – 6 respectively. From these figures, it is clear that the present
deceleration parameter q0 = −0.6 is in consistent with observation and the above analysis.
Moreover, we note the following:

1. q(t) rolls from a positive value to a negative one smoothly in the recent past. Specifically, if
the age of the universe is 13.5Gyr [32], the universe turns from deceleration to acceleration
at t = (13.5− 1.2)Gyr. Thus, the “coincidence” problem in dark energy can be addressed
in this case.

2. After q(t) reaches the minimal value, it rolls back again and becomes positive at t =
(13.5 + 13.4)Gyr. Thus, the universe will become decelerating in the future rather than
be endlessly accelerating.
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Figure 3: The evolution of a(t) (solid
line) and q(t) (dashed line) with m =
1.5, n = 5.4. Here t=0 corresponds to
today, and the present value of the de-
celeration parameter is q0 = −0.6.

Figure 4: The evolution of λ(t) with
m = 1.5, n = 5.4. Note that λ(t) is
decreasing at t = 0.

Figure 5: The evolution of φ(t) with
m = 1.5, n = 5.4.

Figure 6: The evolution of G̃(t) with
m = 1.5, n = 5.4.
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Figure 7: Numerical simulation for a longer period of cosmic
evolution. The deceleration parameter q(t) becomes divergent
at t = (13.5+ 47.6)Gyr(dashed line), as a(t) (solid line in the
subfigure) approaches a constant value.

3. Numerical simulation for a long period of cosmic evolution shows that the value of q(t)
becomes divergent at t = (13.5 + 47.6)Gyr, as depicted in Fig. 7. Since a(t) > 0 and its
evolution is generally slow, the only reason for the divergence of q(t) is ȧ → 0. In other
words, the universe would come to a static point in the finite future. Actually in this
period, numerical simulation shows that all quantities, such as λ(t) and φ(t), still remain
well-behaved. After this static point, a(t) starts to decrease for a certain period before
numerical simulation fails. Thus, around the static point of a(t), numerical simulation is
still effective.

4. λ(t) decreases from a large value in the past and increases slowly at present, while φ(t)
increases to a maximum value for the present period and decreases slowly in the future.
After the static point of a(t), nonetheless, the decrease of φ(t) becomes faster and therefore
it would approach 0 in the finite future when the numerical simulation fails. Actually, since
φ appears in the denominators of Eqs. (19) – (21), the analysis from this set of equations
is no longer applicable for the evolution character beyond the φ = 0 point. Instead, one
should take advantage of original equation (3) (or Eqs. (9) – (11) by multiplying f ′(R)
on both sides). We leave the details about the static point and the evolution beyond to
future investigations.

5. The evolution of G̃ is generally slow in the future. The present value of G̃ is maximal
with an almost zero evolving speed. Thus, it is also in consistent with the observation
data that the present gravitational constant has a negligible evolving speed.

On the other hand, as indicated by Fig. 1, the expansion of the extra dimension would
also bring about the acceleration of other dimensions. If we take m = 1.5, n = −5.4 instead of
n = +5.4, the numerical simulation will give similar evolution features of a(t), q(t) and G̃(t) with
the present value of deceleration parameter q0 = −0.6, which are consistent with observations. In
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this case, the universe turned from deceleration to acceleration at t = (13.5−6.1)Gyr, which was
4.9Gyr earlier than that in the n = 5.4 case. Correspondingly, the future transition point of the
universe from acceleration to deceleration is also moved ahead to t = (13.5+8.0)Gyr, rendering
that the total acceleration period of the universe changes only moderately from 14.6Gyr to
14.1Gyr. Thus, the n < 0 case is very similar to the n > 0 case, except that the cosmic
transition from deceleration to acceleration and the inverse occur both ahead of time. The
reason for such temporal translation can be viewed in the following way. As shown before,
when 1 < m < 1.72, the future asymptotic evolution of λ should be increasing. Therefore, if the
initial (present) evolution rate for λ is set to be increasing at present rather than be decreasing,
there should be a temporal translation with respect to the evolution of λ and therefore to other
quantities that can be affected.

5 Discussions

To clarify the argument for the equivalence of the f(R) theory of gravity to certain special
cases of BD theory up to a potential term [19], we now compare the cosmic evolution of 5-D
f(R) models developed in previous sections to the 5-D BD theory [16]. From equation (9), it

is noticeable that the potential term is f(R)−Rf ′(R)
f ′(R)

, and similar terms also exist in equations

(10) and (11). These terms correspond to the
(

φ
αm

)

1

m−1 terms in (19) – (21), and would be
shown to play significant roles in predicting the future evolution of the universe. There are
three independent functions in the 5-D BD theory [16], namely a(t), λ(t) and φ(t), where
φ(t) represents the core idea of BD theory on an evolving gravitation “constant” due to the
interaction between the local gravitational fields with the faraway matter in the universe. We
note that q(t) in this case (see Fig. 2 in [16]) evolves to a constant in the future. This means that
the universe would accelerate permanently in the future until its energy density decreases to
be extremely low so that certain quantum effects may become significant, such as the situation

in [33]. It can also be read from Figs. 3 – 5 in [16] that the asymptotic values of λ̇
λ
and φ̇

φ
are

both zero, as further illustrated in Fig. 8.
In contrast, in our 5-D f(R) theories, Fig. 5 has demonstrated that, while φ evolves to a

large value presently and remains positive in the future, the
(

φ
αm

)

1

m−1 terms render the evolution
of λ(t), φ(t) to be more complicated. Specifically, the corresponding evolution characteristics of
ȧ
a
, λ̇
λ
, φ̇
φ
are illustrated in Fig. 9 with specific parameters m = 1.5, n = 5.4. As G̃ = Gλ1/2φ−1 is

an observable, it is interesting to show how
(

φ
αm

)

1

m−1 terms affect its evolution. Since m > 1,

q0 < 0, from equation (25) we have
(

1
αm

)
1

m−1 > 0. Moreover, we do not consider any solution

with a negative φ because of its anti-gravity character. Thus, the coefficient of the
(

φ
αm

)

1

m−1

term would determine the evolutional inclination of λ and φ. Specifically, because m = 0.5 and
m = 2.5 correspond to

(

1
4m

− 1
2

)

= 0 and
(

5
8m

− 1
4

)

= 0 respectively, the qualitative features of
the future evolution of λ and φ are as follows:

• If m < 0.5, λ ↓, φ ↓

• If m > 2.5, λ ↑, φ ↑

• If 0.5 < m < 2.5, λ ↑, φ ↓
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Figure 8: The evolution rate of ȧ
a
(solid

line), λ̇
λ

(dashed line) and φ̇
φ

(dash-

dotted line) in the 5-D BD theory, with
parameters ω = 1.2, n = 3 in [16].

Figure 9: The evolution of ȧ
a
(solid

line), λ̇
λ

(dashed line) and φ̇
φ

(dash-

dotted line) in 5-D f(R) gravity with
parameters m = 1.5, n = 5.4.

In view of the constraint illustrated by Fig. 1, only the last situation is allowed, where the
evolution of λ and φ counterbalances each other and therefore the evolution of G̃ is generally
slow.

In summary, we present the Killing reduction of 5-D f(R) theories of gravity to the 4-D
sensible world. Then we study its cosmological implication by assuming the spatial homogeneity
and isotropy, namely, the Friedman-Robertson-Walker metric. With the illustration of a specific
example it is found that the theory is consistent with the present observations in a variety of
aspects, including the recent cross from cosmic deceleration to acceleration, its prescription of
present cosmic speed-up, the negligible evolving speed of the effective gravitational constant, and
etc.. In contrast to the KK cosmology, it is worth mentioning that in 5-D f(R) theories of gravity,
both expansion and contraction of the extra dimension could result in the present accelerated
expansion of other spatial dimensions. Even for a simple and generic class of f(R) = αRm

models, the 5-D f(R) theories of gravity do not need unreasonable or ill-initiated fine-tuning
of certain parameters. Hence it is reasonable to infer that the present accelerated expansion of
spatial dimensions could be certain basic character of the 5-D spacetimes.

Finally, it is pointed out in Ref. [33] that in the large scale limit, quantum gravity effect would
come to be vital and bring about higher-order quantum corrections to the Friedman equation to
prescribe a static point in the finite future, followed by the recollapse of the universe. Note that
the static point in the finite future is also a significant character of the 5-D f(R) gravity. Thus, it
is of interest to explore whether there are some relation between the 5-D theories of f(R) = αRm

models and the quantum gravity theory applied in [33]. In addition, the future recollapse also
differs from the prediction of endless acceleration scenario in the 5-D BD cosmology [16]. Hence,
5-D f(R) gravity is not simply equivalent to 5-D BD theory, since the effect of potential terms
are shown to be vital enough to prescribe different cosmological scenarios in the distant future.
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