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FIVE EMBEDDINGS OF ONE SIMPLE GROUP

IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Abstract. We propose a new method to study birational maps between Fano varieties based
on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four
Fano threefolds acted on by the group A6. As an application, we obtain that Bir(P3) has at
least five non-conjugate subgroups isomorphic to A6.
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We assume that all varieties are projective, normal, and defined over C.

1. Introduction

The group of birational automorphisms of the projective plane P2, also known as the Cremona
group Cr2(C), is a classical object in algebraic geometry. Classifying finite subgroups in Cr2(C)
up to conjugacy is an important research direction originating in the works of Kantor, Bertini,
Wiman and others. This classification has been almost completed in [16]. In particular, we
know how to decide whether two finite isomorphic subgroups in Cr2(C) are conjugate or not.

The group of birational automorphisms of the projective space P3, the Cremona group Cr3(C),
is poorly understood. We know so little about finite subgroups in Cr3(C) that Serre asked

Question 1.1 ([40, Question 6.0]). Does there exist a finite group which is not embeddable in
Cr3(C)?

It is well-know that most of finite groups are not embeddable in Cr2(C). For example, the
only finite simple non-abelian subgroup in Cr2(C) are A5, A6, PSL2(F7) (see [16]). Prokhorov
explicitly answered Question 1.1 by proving the following

Theorem 1.2 ([38, Theorem 1.3]). Let Ḡ be a finite simple non-abelian subgroup in Cr3(C).
Then Ḡ is one of the following groups: A5, A6, PSL2(F7), A7, SL2(F8), PSp4(F3). All the
possibilities occur.

During a workshop “Subgroups of Cremona groups” at Edinburgh in Spring 2010, Serre posed
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Question 1.3. What are normalizers in Cr3(C) of finite simple non-abelian subgroup in Cr3(C)?

An answer to Question 1.3 depends on classification of finite non-abelian simple subgroups in
Cr3(C) up to conjugation. But Theorem 1.2 gives such classification only up to isomorphism.
So before trying to answer Question 1.3, we must first consider

Question 1.4. How to decide whether two finite isomorphic subgroups in Cr3(C) are conjugate
or not?

With a very few exceptions (see [31], [8], [38]), we do not know how to answer Question 1.4
in full generality. In this paper, we show a new technique that can be used to answer both
Questions 1.3 and 1.4 in some cases. In particular, we use this technique to prove

Theorem 1.5. Up to conjugation, there are at least 5 subgroups in Cr3(C) that are isomorphic
to A6. For three of these non-conjugated subgroups, the normalizer in Cr3(C) is S6, and for one
is the free product of S6 and S6 with an amalgamated subgroup A6.

Let us show how to translate Questions 1.4 and 1.3 into a geometric language. Let Ḡ be a finite
subgroup, and let τ : Ḡ → Cr3(C) be a monomorphism. It is well-known (see [38, Section 4.2])
that there is a birational map ξ : V 99K P3 such that

• the threefold V is normal and has terminal singularities,
• there exists a monomorphism υ : Ḡ→ Aut(V ),
• for every element g ∈ Ḡ, we have τ

(
g
)
= ξ ◦ υ

(
g
)
◦ ξ−1,

• there exists a υ(Ḡ)-Mori fibration π : V → S, i. e. a non-birational υ(Ḡ)-equivariant
surjective morphism with connected fibers such that the divisor −KV is π-ample and for
every υ(Ḡ)-invariant Weil divisor D on V , there is δ ∈ Q such that

δKV +D ∼Q π
∗
(
H
)

for some Q-Cartier divisor H on the variety S.

Definition 1.6. The quadruple (V, ξ, υ, π) is a Mori regularization of the pair (Ḡ, τ).

Theorem 1.7. The normalizer of the group τ(Ḡ) in Cr3(C) is isomorphic to the group of all
υ(Ḡ)-equivariant birational automorphisms of the variety V .

Proof. The proof is obvious and left to the reader. �

Let τ ′ : Ḡ→ Cr3(C) be another monomorphism, and let (V ′, ξ′, υ′, π′) be a Mori regularization
of the pair (Ḡ, τ ′).

Theorem 1.8 ([16, Lemma 3.4]). The following assertions are equivalent:

• the subgroups τ(Ḡ) and τ ′(Ḡ) are conjugate in Cr3(C),
• there is a birational map ρ : V 99K V ′ such that for every g ∈ Ḡ there is g′ ∈ Ḡ such that

υ′
(
g′
)
= ρ ◦ υ

(
g
)
◦ ρ−1 ∈ Aut

(
V ′

)
.

Thus, the subgroups τ(Ḡ) and τ ′(Ḡ) are conjugate in Cr3(C) if and only if there exists a
Ḡ-equivariant birational map V 99K V ′ with respect to the actions of the group Ḡ on V and V ′

induced by the monomorphisms υ and υ′. However, to prove or disprove the existence of such
birational map is not easy in general. The following two definitions help to deal with this in the
case when π(V ) = S is a point, i.e. in the case when V is a normal Fano variety with terminal
singularities such that the υ(Ḡ)-invariant subgroup in Cl(V )⊗Q is generated by −KV .

Definition 1.9 (cf. [7, Definition 0.3.3]). If S is a point, then V is called υ(Ḡ)-birationally rigid
if for every Mori regularization (V ′, ξ′, υ′, π′) of the pair (Ḡ, τ), we have V ′ ∼= V , π′(V ′) is a
point, and the subgroups υ(Ḡ) and υ′(Ḡ) are conjugate in Aut(V ) ∼= Aut(V ′).
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Definition 1.10 (cf. [7, Definition 0.3.4]). If S is a point, then V is called υ(Ḡ)-birationally
superrigid if for every Mori regularization (V ′, ξ′, υ′, π′) of the pair (Ḡ, τ), the map ξ−1 ◦ ξ′ is
biregular.

From now on we will identify the group Ḡ with its image υ(Ḡ) to simplify the notation.
Note that if S is a point and V is Ḡ-birationally superrigid, then it follows from Definitions 1.9

and 1.10 that V is Ḡ-birationally rigid. Denote by AutḠ(V ) (by BirḠ(V ), respectively) the
groups of Ḡ-equivariant biregular (birational, respectively) self-maps of V . Note also that the

group AutḠ(V ) (the group BirḠ(V ), respectively) coincides with the normalizer of Ḡ in Aut(V )
(in Bir(V ), respectively).

Corollary 1.11. Suppose that S is a point, the threefold V is Ḡ-birationally rigid, and V 6∼= V ′.
Then τ(Ḡ) and τ ′(Ḡ) are not conjugate in Cr3(C).

Corollary 1.12. Suppose that S is a point, and V is Ḡ-birationally superrigid. Then the

normalizer of the group τ(Ḡ) in Cr3(C) is isomorphic to AutḠ(V ).

Let us consider examples of Mori regularizations in the case when Ḡ is one of the following
groups: A7, SL2(F8), and PSp4(F3). Note that in the latter case, the variety S must be a point,
since A7, SL2(F8), and PSp4(F3) are not embeddable in Cr2(C).

Example 1.13. If Ḡ = A7 or Ḡ ∼= PSp4(F3), then there is a monomorphism υ : Ḡ → Aut(P3)
(see [15]).

Example 1.14 ([38, Example 2.11]). Put Ḡ = SL2(F8). One can show that there is a monomor-
phism α : Ḡ → Aut(LGr(4, 9)), and Pic(LGr(4, 9)) = Z[H], where H is an ample divisor such
that |H| gives an embedding ζ : LGr(4, 9) → P15, which implies that the monomorphism α in-
duces a monomorphism β : Ḡ → Aut(P15). Put V = ζ(LGr(4, 9)) ∩ Π, where Π is the unique
β(Ḡ)-invariant linear subspace Π ⊂ P15 such that dim(Π) = 8. Then V is a smooth Fano three-
fold such that Pic(V ) ∼= Z and −K3

V = 12 (see [35]), and V is rational (see [25, Corollary 4.4.12]).
The monomorphism β induces an isomorphism υ : Ḡ→ Aut(V ).

Example 1.15. Suppose that V is a complete intersection in P5 that is given by

5∑

i=0

xi = σ4
(
x0, x1, x2, x3, x4, x5

)
= 0 ⊂ P5 ∼= Proj

(

C
[
x0, x1, x2, x3, x4, x5

])

,

where σ4 is the elementary symmetric form of degree 4. Put Ḡ = PSp4(F3). Then there is
a monomorphism υ : Ḡ → Aut(V ) (see [23, Chapter 5]). It is known that the threefold V is
rational (see [23, Section 5.2.7]), and the Ḡ-invariant subgroup in the group Cl(V ) is Z (cf.
Theorem 1.20).

The threefold constructed in Example 1.15 is known as the Burkhardt quartic (see [23]).

Theorem 1.16 ([38, Theorem 1.5], [4]). Suppose that Ḡ is one of the following subgroup: A7,
SL2(F8), or PSp4(F3). Let V be a normal rational threefold with at most terminal singularities
that admits a faithful action of the group Ḡ such that there exists a Ḡ-Mori fibration π : V → S.
Then S is a point, and

• if Ḡ ∼= A7, then V ∼= P3 (see Example 1.13),
• if Ḡ ∼= SL2(F8), then V is the threefold constructed in Example 1.14,
• if Ḡ ∼= PSp4(F3), then either V ∼= P3 or V is the threefold constructed in Example 1.15.

Now let us consider examples of Mori regularizations in the case when Ḡ ∼= A6.

Example 1.17. Put V = P3 and Ḡ = A6. Then there exists a monomorphism 2.A6 → SL4(C)
(see [15]), which induces a monomorphism υ : Ḡ → Aut(V ) ∼= PGL4(C). Furthermore, up to
conjugation this is the unique subgroup isomorphic to A6 in PGL4(C).
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Example 1.18. Put Ḡ = A6. Then there exists a monomorphism Ḡ→ SO5(R), which implies
the existence of a monomorphism υ : Ḡ→ Aut(V ), where V is a smooth quadric threefold.

Example 1.19. Put Ḡ = A6. Suppose that V is the complete intersection

5∑

i=0

xi =

5∑

i=0

x3i = 0 ⊂ P5 ∼= Proj
(

C
[
x0, x1, x2, x3, x4, x5

])

.

Then V has exactly 10 isolated ordinary double points (and hence V is rational), and there
exists a natural monomorphism υ : Ḡ → Aut(V ). Furthermore, one has Cl(V ) ∼= Z6 (see [18],
[19]), which implies that the Ḡ-invariant subgroup of the group Cl(V ) is Z.

The threefold constructed in Example 1.19 is known as the Segre cubic (see [23, Section 3.2]).
Let us show how to prove that V is Ḡ-birational superrigid in the case when S is a point.

Theorem 1.20. Put Ḡ = A6. Suppose that V is the threefold constructed in Example 1.15.

Then rkClḠ(V ) = 1 , the variety V is Ḡ-birationally superrigid, and BirḠ(V ) ∼= S6.

Proof. The required assertions are probably well-known to experts. But we failed to find any
relevant reference. The fact that the Ḡ-invariant subgroup of the group Cl(V ) is Z follows from
the isomorphism V/F̄ ∼= P(1, 2, 2, 3), where F̄ is a subgroup in Ḡ such that F̄ ∼= S4 and F̄ fixes

a point in Sing(V ). The isomorphism BirḠ(V ) ∼= S6 follows from Ḡ-birational superrigidity of
the threeefold V , Corollary 1.12, and classification of primitive subgroups in SL5(C) (see [17]).
The fact that V is Ḡ-birationally superrigid easily follows from the proof of [33, Theorem 5]
(cf. [42, Section 9]), but we decided to prove this here to illustrate how to proof Ḡ-birational
superrigidity using only classical technique that goes back to [24].

Suppose that V is not Ḡ-birationally superrigid. Then [12, Theorem 4.2] implies the exis-
tence of a Ḡ-invariant linear system M on the threefold V such that M does not have fixed
components, and the log pair (V, λM) is not canonical, where λ ∈ Q is such that KV +λM ∼Q 0.

LetM1 andM2 be sufficiently general surfaces in the linear system M, and let H be a general
surface in | −KV |. Consider V as a quartic threefold in P4.

Suppose that there is an irreducible curve C ⊂ V such that the log pair (V, λM) is not
canonical along the curve C. Then the multiplicity of the linear system |M| along the curve
C is greater than 1/λ (see e. g. [14, Exercise 6.18]). Let Z be the Ḡ-orbit of the curve C. Put
d = −KV · Z. Then

4/λ2 =M1 ·M2 ·H > dmultC
(
M1

)
multC

(
M2

)
> d/λ2,

which implies that d 6 3. So, the curve Z is contained in a hyperplane in P4, which is impossible,
because the corresponding five-dimensional representation of the group Ḡ is irreducible.

Thus, the centers of canonical singularities (see [7, Definition 1.3.8]) of the log pair (V, λM)
are points. Take any point P ∈ V such that the singularities of the log pair (V, λM) are not
canonical at the point P . Suppose that P ∈ V is a smooth point, and let HP be a general
hyperplane section of V ⊂ P4 passing through P . Then

4/λ2 =M1 ·M2 ·HP > multP (M1 ·M2) > 4/λ2

by [13, Corollary 3.4]. The obtained contradiction shows that the quartic V is singular at P .
Let Σ be the Ḡ-orbit of the point P ∈ V . Then there is a subset Γ ⊂ Σ such that |Γ| = 4,

and the set Γ is not contained in any two-dimensional linear subspace of P4.
Let Q ⊂ | − 2KV | be a linear subsystem that consists of all surfaces in | − 2KV | that pass

through every point of the set Γ. Then the base locus of the linear system Q is the set Γ.
Let π : U → V be a blow up of the set Γ, let M̄ be the proper transforms of the linear

system M on the variety U , and let E1, . . . , E4 be exceptional divisors of π. Then there is
m ∈ Z such that M̄ ∼ π∗(M)−m

∑4
i=1Ei. Moreover, it follows from [7, Theorem 1.7.20] that
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m > 1/λ (cf. [13, Theorem 3.10]). Let Υ be the intersection of two sufficiently general surfaces
in Q, and let Ῡ be the proper transform of the curve Υ on the threefold U . Then

0 > 8/λ− 8m > 8/λ−m
∑

O∈Γ

multO
(
Υ
)
= M̄ · Ῡ > 0,

where M̄ is a general surface in M̄. The obtained contradiction completes the proof. �

Corollary 1.21. Up to conjugation, there are at least 2 subgroups in Cr3(C) isomorphic to A6.

Corollary 1.22. Suppose that Ḡ = PSp4(F3) and V is the threefold constructed in Exam-
ple 1.15. Then the Ḡ-invariant subgroup of the group Cl(V ) is Z, and V is Ḡ-birationally
superrigid.

Now applying Theorem 1.8, Corollary 1.11, and Theorem 1.16, we obtain

Corollary 1.23. Up to conjugation, the group Cr3(C) contains exactly 1 subgroup that is
isomorphic to SL2(F8), exactly 2 subgroups that are isomorphic to PSp4(F3), exactly 1 subgroup
that is isomorphic to A7.

The proof of Theorem 1.20 goes back to the classical result of Iskovskikh and Manin about the
non-rationality of every smoooth quartic threefold (see [24]). Of course, the quartic threefold
constructed in Example 1.15 is not smooth, but this problem is dealt using technique introduced
in [13] and [33]. So the proof of Theorem 1.20 is a nice illustration how to answer Question 1.4
in one particular case. Unfortunately, this approach is hard to apply to Fano varieties of large
anticanonical degree. The main purpose of this paper is to introduce a new technique to prove
Ḡ-birational rigidity or Ḡ-birational superrigidity of the threefold V in the case when S is a
point. This technique does not always work. But sometimes it does. We will use this technique
to prove

Theorem 1.24. Suppose that Ḡ = A6. If V ∼= P3 (cf. Example 1.17), then the threefold V is

Ḡ-birationally rigid (but not Ḡ-birationally superrigid), and BirḠ(V ) is a free product of two
copies of S6 with amalgamated subgroup A6. If V is either the Segre cubic or a smooth quadric

threefold, then V is Ḡ-birationally superrigid and BirḠ(V ) ∼= S6.

Corollary 1.25. Up to conjugation, there are at least 5 subgroups in Cr3(C) isomorphic to A6.

Unfortunately, we are unable to classify all subgroups in Cr3(C) that are isomorphic to A6

up to conjugation similar to what is done in Corollary 1.23 for A7, SL2(F8), PSp4(F3). The
main problem is that S is not necessarily a point if Ḡ = A6, since A6 is embeddable in Cr2(C).
If Ḡ = A6 and dim(S) = 1, i.e. π : V → S is a del Pezzo fibration, then V ∼= P2 × P1 by
Theorem B.1. However, If Ḡ = A6 and dim(S) = 2, i.e. π : V → S is a conic bundle, then we
do not have any decent description of the threefold V and this is the main reason why we are
unable to classify all subgroups in Cr3(C) that are isomorphic to A6 up to conjugation.

Remark 1.26. Suppose that Ḡ = A6 and dim(S) = 2. Then the monomorphism υ : Ḡ→ Aut(V )
induces a monomorphism ι : Ḡ → Aut(S), because π is Ḡ-equivariant and Ḡ is simple. On the
other hand, the group Ḡ faithfully acts on P2×P1 so that its action of the first factor is induced
by a three-dimensional representation of the group 3.A6, and its action on the second factor is
trivial. Keeping in mind that V is rational, it is very tempting to expect that there always exists
a commutative diagram

V
α //❴❴❴❴❴❴

π

��

P2 × P1

pr1
��

S
β

//❴❴❴❴❴❴❴ P2,
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where α is some Ḡ-equivariant birational map, β is some ι(Ḡ)-equivariant birational map, and
pr1 : P

2 × P1 → P2 is the projection to the first factor. We do not have any strong evidence for
such expectation. But we failed to construct a counter-example either.

Let us describe the strategy how to prove Theorem 1.24. Let X be a Fano threefold with

Gorenstein terminal singularities, and let Ḡ be a subgroup in Aut(X) such that rkClḠ(X) = 1.
We suppose that X is not Ḡ-birationally superrigid and seek for a contradiction. It is well-known
that in this case there are a movable Ḡ-invariant linear system M without fixed components and
λ ∈ Q such that KX + λM ∼Q 0 and the log pair (X,λM) has non-canonical singularities (see
[12, Theorem 4.2], [7, Theorem 1.4.1]). Since X is Gorenstein, the singularities of the log pair
(X, 2λM) must be worse than log canonical by Corollary 2.3. Now, although the last condition
is much weaker than non-canonicity of the log pair (X,λM), we are in a position to use the
machinery of multiplier ideal sheaves to obtain a contradiction. Namely, we choose µ < 2λ
such that the log pair (X,µM) is strictly log canonical, and pick up a minimal center S of log
canonical singularities of (X,µM) (see Section 2 for definitions). The minimality of the center S
implies that the Ḡ-orbit of S is either a finite set, or a disjoint union of irreducible curves. We
use Lemma 2.13 to observe that one may assume that every center of log canonical singularities
of the log pair (X,µM) is g(S) for some g ∈ Ḡ. Then applying the Nadel–Shokurov vanishing
theorem (see Theorem 2.4, [30, Theorem 9.4.8]) we obtain an upper bound on the number of
irreducible components of the Ḡ-orbit of S. If S is a point, the latter appears to be mostly enough
to obtain a contradiction with the structure of Ḡ-orbits on X. If S is a curve, the Kawamata
subadjunction theorem (see Theorem 2.8, [28, Theorem 1]) implies that S is smooth, and we
proceed with applying the Nadel–Shokurov vanishing theorem, the Riemann–Roch theorem, the
Clifford theorem (see Theorem 2.19, [22, Theorem 5.4], [2, Section III.1]), and the Castelnuovo
bound (see Theorem 2.20, [22, Theorem 6.4], [2, Section III.2]). Using these, we obtain various
restrictions on the number of irreducible components of S, the degree of the curve S, and the
genus of the curve S. In many cases these restrictions appear to be incompatible with a faithful
action of Ḡ on X. Namely, suppose that X is one of the three threefolds from Theorem 1.24
and Ḡ ∼= A6. Then all possibilities for S are ruled out by the above arguments, except for the
cases when either X is the Segre cubic and S is its singular point, or when X ∼= P3 and S is line
whose Ḡ-orbit consists of 6 lines. In the former case the contradiction is obtained by brute force
(see Lemma 5.7). So we have to deal with the case when X ∼= P3 and S is line whose Ḡ-orbit
consists of 6 lines. If S is not a center of canonical singularities of the log pair (P3, λM), then
we use Lemma 2.17 to obtain a contradiction. However, we can not obtain a contradiction here
in general, because P3 is not Ḡ-birationally superrigid! Indeed, for every line L ⊂ P3 whose Ḡ-
orbit consists of 6 lines, there exists a non-biregular Ḡ-equivariant birational involution P3 → P3

discovered by Todd in [45] that is undefined along every line in the Ḡ-orbit of L (see Lemma 4.5
for a description). There are 12 such lines in P3 in total. These 12 lines split in two Ḡ-orbits,
and each Ḡ-orbit gives us a non-biregular Ḡ-equivariant birational involution P3 99K P3, which
we denote by ι and ι′, respectively. Applying ι and ι′ to M if necessary, we may assume that
lines whose Ḡ-orbit consist of 6 lines are not centers of canonical singularities of the log pair
(X,λM) (see Lemma 4.7). Combining this with what we have already proved, we see that the
singularities of the log pair (X,λM) are canonical up to the action of 〈Ḡ, ι, ι′〉, which implies

that P3 is Ḡ-birationally rigid and BirḠ(P3) = 〈AutḠ(P3), ι, ι′〉. Finally, we observe that

AutḠ(P3) ∼= 〈Ḡ, ι〉 ∼= 〈Ḡ, ι′〉 ∼= S6

and use this to prove that 〈AutḠ(P3), ι, ι′〉 is the free product of two copies of S6 with amalga-
mated subgroup A6. Let us illustrate the described strategy by proving

Theorem 1.27. Suppose that Ḡ is one of the following subgroups: A7, SL2(F8), PSp4(F3).
Then V is Ḡ-birationally superrigid.
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Proof. If V ∼= P3, then either Ḡ ∼= A7, or Ḡ ∼= PSp4(F3), and the proof of Theorem 1.24 implies
that V is Ḡ-birationally superrigid, since A7 and PSp4(F3) contain subgroups isomorphic to A6.
In fact, the Ḡ-birational superrigidity of the threefold V in the latter case is much easier to
prove than Theorem 1.24, but we leave the details to the reader.

It follows from Theorem 1.16 and Corollary 1.22 that we may assume that Ḡ ∼= SL2(F8) and V
is the threefold constructed in Example 1.14. Suppose that V is not Ḡ-birationally superrigid.
Then it follows from [12, Theorem 4.2] or [7, Theorem 1.4.1] that there is a (non-empty) Ḡ-
invariant linear system M on V such that M does not have fixed components, and (V, λM) is
not canonical, where λ is a positive rational number such that λM ∼Q −KV . By Corollary 2.3
there is µ ∈ Q such that µ < 2λ and (V, µM) is log canonical and not Kawamata log terminal
(see [29, Definition 3.5]).

Let S be a subvariety in V that is a minimal center of log canonical singularities of the log
pair (V, µM) (see [27], [28], [10, Definition 2.8]), and let Z be the Ḡ-orbit of the subvariety S.
Then S is either a point or a curve, since M does not have fixed components. Moreover, the
subvariety Z ⊂ V is a disjoint union of its components (see Lemma 2.7, [27, Proposition 1.5]).

Arguing as in the proof of [27, Theorem 1.10] or [28, Theorem 1], we can construct a Ḡ-
invariant effective Q-divisor D on V such that D ∼Q −δKV for some positive rational number
δ < 2, the log pair (V,D) is log canonical, the subvariety S is a minimal center of log canonical
singularities of the log pair (V,D), and the only centers of log canonical singularities (see [27,
Definition 1.3]) of the log pair (V,D) are irreducible components of Z (see Corollary 2.3 and
Lemma 2.13).

Let IZ be its ideal sheaf. Put q = h0(OV (−KV )⊗ IZ) = 0. Then

(1.28) h0
(

OZ ⊗OV

(
−KV

))

= h0
(

OV

(
−KV

))

− q = 9− q 6 9

by the Nadel–Shokurov vanishing theorem (see Theorem 2.4, [30, Theorem 9.4.8]) and
the Riemann–Roch theorem. Let r be the number of irreducible components of the curve Z.
Then r 6∈ {2, 3, . . . , 8}, since Ḡ can not act transitively on a finite set consisting of at least 2
and at most 8 elements (see [15]). Note that Z = S if r = 1.

Suppose that S is a point. Then either Z = S or |Z| = r = 9 by (1.28). If Z = S, then Ḡ
must act faithfully on the tangent space to V at the point S, which is impossible, since SL2(F8)
has no non-trivial three-dimensional representations (see [15]). Thus, we see that |Z| = 9. Let
F56 be the stabilizer subgroup in Ḡ of the point S. Then |F56| = |Ḡ|/9 = 56, and hence one has
F56

∼= Z3
2 : Z7 (see [15]). On the other hand, the group F56 must faithfully act on the tangent

space to V at the point S, which is impossible, since Z3
2 : Z7 has no faithful three-dimensional

representations.
Thus, we see that S is a curve. Put d = −KV ·C. By the Kawamata subadjunction theorem

(see Theorem 2.8, [28, Theorem 1]), the curve S is a smooth curve of genus g such that d > 2g−2.
In particular, the divisor −KV |S is not special. Thus, it follows from (1.28) and the Riemann–
Roch theorem that

(1.29) 9− q = r(d− g + 1),

where either r = 1, or r = 9. If r = 9, then it follows from (1.29) that d = g and q = 0, which
is impossible, since d > 2g − 2. Thus, we see that r = 1, which simply means that Z = S.
Then Ḡ acts faithfully on S, since Ḡ is simple and there are no points in V that are Ḡ-invariant.
Moreover, it follows from (1.29) that d = 8 + g − q. Keeping in mind that d > 2g − 2, we see
that g < 10. Then g = 7 by the refined Hurwitz bound (see [6, Theorem 3.17], Theorem 2.18).
In particular, we see that d = 15− q, since d = 8 + g − q.
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Let M1 and M2 be general surfaces in M, and let H be a general surface in | −KV |. Then it
follows from [13, Theorem 3.1] that multS(M1 ·M2) > 4/µ2, where µ < 2λ. Thus, one has

12

λ2
=M1 ·M2 ·H >

∑

O∈H∩S

multS(M1 ·M2) >
4|H ∩ S|

µ2
>

|H ∩ S|
λ2

,

which implies that |H ∩S| < 12. But |H ∩S| = d = 15− q, which implies that q > 4. The latter
is impossible, since SL2(F8) has no non-trivial representations of dimension at most 6. �

The reader may find it useful to compare the proof of Theorem 1.20 (that uses a classical
approach to birational rigidity) with the proof of Theorem 1.27 (that uses our new approach).
Note that the proof of Theorem 1.27 does not use any information about the geometry of the
variety V acted on by the group SL2(F8). Applying Theorem 1.7 and Corollary 1.12 and using
classification of primitive subgroups in SL4(C) and SL5(C) (see [17]), we obtain

Corollary 1.30. Let Ḡ be a subgroup in Cr3(C) that is isomorphic to either A7, or PSp4(F3). If
Ḡ ∼= A7, then its normalizer in Cr3(C) is isomorphic to S7. If Ḡ ∼= PSp4(F3), then its normalizer
in Cr3(C) is Ḡ itself.

The plan of the paper is as follows. In Section 2 we collect the well-known preliminary results
on the log canonical singularities, make some remarks on varieties with group action and recall
some general classical theorems. In Section 3 we collect the necessary facts about the structure
of the groups A6 and 2.A6 and the relevant representation theory. In Sections 4, 5 and 6 we
study the projective space P3, the Segre cubic and the smooth quadric threefold according to the
plan explained above, proving Theorems 4.8, 4.9, 5.5 and 6.2, respectively. These four theorems
imply Theorem 1.24. In Appendix A, we answer (negatively) a question on the existence of
equivariant birational maps between two certain remarkable threefolds acted on by the group
Γ̄ ∼= PSL2(F11) posed in [38, Remark 2.10]. Appendix B, written by Yu. Prokhorov, classifies
terminal threefolds X acted on by the group Ḡ ∼= A6 such that X admits a Ḡ-Mori fibration
π : X → P1.

We would like to thank T.Dokchitser, I. Dolgachev, Yu.Prokhorov, L. Rybnikov and
E. Smirnov for very useful discussions and comments. We would like to thank the referee for
many valuable and useful comments that helped us to improve the paper significantly.

2. Preliminaries

Throughout the paper we use the standard language of the singularities of pairs (see [29] and
[14, Section 6]). By strictly log canonical singularities we mean log canonical singularities that
are not Kawamata log terminal (see [29, Definition 3.5]).

Let X be a variety with at most Kawamata log terminal singularities (see [29, Definition 3.5]),
let BX be a formal linear combinations with non-negative rational coefficients of non-empty (but
not necessarily complete) linear systems on X. Then we may write BX =

∑r
i=1 aiBi, where

ai ∈ Q, and Bi is either a prime Weil divisor on the variety X, or a linear system without fixed
components. We assume for simplicity that Bi 6= Bj if i 6= j.

Remark 2.1. Usually BX is assumed to be an effective Q-divisor. But sometimes it is necessary
to assume that some or all components of BX are linear systems without fixed components (see
[14, Section 6]). We will need such log pair throughout the paper, but do not want to stress on
using them, since all properties of standard log pairs we plan to use hold for these generalized
log pairs (see [29, Definition 4.6] and [14, Definition 6.16]). Moreover, we can always treat BX as
a Q-divisor by replacing each its mobile component by a weighted sum of its sufficiently general
members (see [29, Theorem 4.8]).
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Suppose that KX +BX is Q-Cartier. Let π : X̄ → X be a birational morphism such that X̄
is smooth. Then

KX̄ +
r∑

i=1

aiB̄i ∼Q π
∗
(

KX +BX

)

+
m∑

i=1

diEi,

where B̄i is the proper transforms of Bi on the variety X̄, and Ei is an exceptional divisor
of the morphism π, and di is a rational number. We may assume that

∑r
i=1 B̄i +

∑m
i=1Ei is

a divisor with simple normal crossing and every mobile linear system among B̄1, . . . , B̄r (if any)
is free from base points.

Lemma 2.2. Suppose that X has terminal singularities. Let n be a positive integer such
that nKX is a Cartier divisor. Then (X, (1 + n)λBX) is not log canonical if (X,λBX) is not
canonical.

Proof. There are positive rational numbers c1, . . . , cr such that KX̄ ∼Q π∗(KX) +
∑m

i=1 ciEi,
because X has terminal singularities and, in particular, KX is a Q-Cartier divisor. Moreover,
the numbers nc1, . . . , ncr are positive integers, since nKX is a Cartier divisor. On the other
hand, we have

r∑

i=1

aiB̄i ∼Q π
∗
(
BX

)
−

m∑

i=1

miEi

for some non-negative rational numbers m1, . . . ,mr. Then di = ci −mi for every i ∈ {1, . . . , r}.
Suppose that (X,λBX ) is not canonical. Then there exists s ∈ {1, . . . ,m} such that cs−ms =

ds < 0 (see [14, Definition 6.16]). Thus, we have

cs − (1 + n)ms = cs −ms − nms < −nms < −1,

because ms > cs > 1/n, since ncs is a positive integer. On the other hand, we have

KX̄ + (1 + n)

r∑

i=1

aiB̄i ∼Q π
∗
(

KX + (1 + n)BX

)

+

m∑

i=1

(
ci − (1 + n)mi

)
Ei,

where cs − (1 + n)ms < −1. Therefore, the log pair (X, (1 + n)λBX) is not log canonical. �

Corollary 2.3. Suppose that X has terminal Gorenstein singularities and (X,λBX) is not
canonical. Then (X, 2λBX ) is not log canonical.

Suppose that (X,BX ) is log canonical. Put âi = ai if Bi is a prime Weil divisor, and
âi = 0 if Bi is a linear system without fixed components. Put I(X,BX) = π∗(

∑m
i=1⌈di⌉Ei −∑r

i=1⌊âi⌋B̄i).

Theorem 2.4 ([30, Theorem 9.4.8]). Let H be a nef and big Q-divisor on X, and let D be a
Cartier divisor on X such that D ≡ KX +BX +H. Then hi(I(X,BX)⊗D) = 0 for every i > 1.

Let L(X,BX) be a subscheme of X that corresponds to the ideal sheaf I(X,BX). Put
LCS(X,BX ) = Supp(L(X,BX )). Note that L(X,BX) is reduced, because (X,BX) is log canon-
ical.

Theorem 2.5 ([41, Lemma 5.7], [27, Theorem 1.4]). Let ζ : X → Z be a surjective morphism
with connected fibers, and let F be a fiber of ζ. Then the locus LCS(X,BX ) ∩ F is connected
if −(KX +BX) is η-nef and η-big.

Recall that there are standard names for I(X,BX), L(X,BX) and LCS(X,BX ). Namely,
the ideal I(X,BX) is known as the multiplier ideal sheaf (see [30, Section 9.2]), the subscheme
L(X,BX) is known as the log canonical singularities subscheme (see [7, Definition 1.7.5]), and the
locus LCS(X,BX) is known as the locus of log canonical singularities (see [41, Definition 3.14]).
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Theorem 2.6 ([14, Theorem 6.29]). Suppose that a1 = 1, and B1 is a prime Weil divisor.
Suppose that B1 is a Cartier divisor onX, and B1 is a normal variety that has at most Kawamata
log terminal singularities. Then (X,BX) is log canonical along B1 if and only if the log pair
(B1,

∑r
i=2 aiBi|B1

) is log canonical.

Let Z be a center of log canonical singularities of the log pair (X,BX ) (see [27, Definition 1.3]),
and let LCS(X,BX ) be the set of all centers of log canonical singularities of the log pair (X,BX).

Lemma 2.7 ([27, Proposition 1.5]). Let Z and Z ′ be elements of the set LCS(X,BX), and
let Y be any irreducible reduced component of Z · Z ′. Then Y ∈ LCS(X,BX).

Suppose that Z is a minimal center in LCS(X,BX ) (see [27], [28], [10, Definition 2.8]).

Theorem 2.8 ([28, Theorem 1]). Let ∆ be an ample Q-Cartier Q-divisor on X. Then

• the variety Z is normal and has at most rational singularities,
• there exists an effective Q-divisor BZ on Z such that (KX + BX +∆)|Z ∼Q KZ + BZ ,
and (Z,BZ) has Kawamata log terminal singularities.

Let Ḡ ⊆ Aut(X) be a finite subgroup.

Lemma 2.9. Suppose that X is a curve. Let Σ ⊂ X be a Ḡ-orbit. If |Σ| = 1, then Ḡ is cyclic.
If Ḡ ∼= A5, then |Σ| ∈ {12, 20, 30, 60}. If Ḡ ∼= A6, then |Σ| ∈ {60, 72, 90, 120, 180, 360}.
Proof. If Σ is a point, then Ḡ acts faithfully on the tangent space to X at the point Σ. �

Lemma 2.10. Suppose that X is a curve of genus g and Ḡ ∼= A6. If g 6 34, then g ∈
{10, 16, 19, 25, 31}. If g = 10, then X does not contain Ḡ-orbits of length 120.

Proof. Let F̄ ⊂ Ḡ be a stabilizer of a point in X. Then F̄ ∼= Zk for some k ∈ {1, 2, 3, 4, 5, 6}
by Lemma 2.9. Put X̄ = X/Ḡ. Then X̄ is a smooth curve of genus ḡ. The Riemann–Hurwitz
formula gives

2g − 2 = 360
(
2ḡ − 2

)
+ 180a2 + 240a3 + 270a4 + 288a5 + 300a6,

where ak is the number of Ḡ-orbits in X with a stabilizer of a point isomorphic to Zk.
Suppose that g 6 34. Note that g 6= 0 by the classification of finite subgroups of PGL2(C),

and g 6= 1 since Ḡ is non-solvable. Since ak > 0, one has ḡ = 0, and

(2.11) 2g − 2 = −720 + 180a2 + 240a3 + 270a4 + 288a5 + 300a6,

which implies that g ∈ {10, 16, 19, 25, 31}. The only solution to (2.11) for g = 10 is
(a2, a3, a4, a5, a6) = (1, 0, 1, 1, 0), which completes the proof. �

Remark 2.12. We do not claim that every case listed in Lemma 2.10 is realized. The obtained
restrictions on the genus are enough for our purposes.

Suppose, in addition, that BX is Ḡ-invariant. Then g(Z) ∈ LCS(X,BX ) for every g ∈ Ḡ, and
the locus LCS(X,BX ) is Ḡ-invariant. It follows from Lemma 2.7 that Z ∩ g(Z) 6= ∅ if and only
if Z = g(Z) for every g ∈ Ḡ, because Z is a minimal center in LCS(X,BX).

Lemma 2.13. Suppose that the divisor BX is ample. Let ǫ be an arbitrary rational number such
that ǫ > 0. Then there exists an effective Ḡ-invariant Q-divisor D on the variety X such that
the set LCS(X,D) consists of all components of the Ḡ-orbit of Z, the log pair (X,D) is log
canonical, and the equivalence D ∼Q (1 + ǫ)BX holds.

Proof. See the proofs of [27, Theorem 1.10], [28, Theorem 1], [10, Lemma 2.11]. �

Suppose, in addition, that X is a Fano variety. Put

lct
(

X, Ḡ
)

= sup

{

λ ∈ Q

∣
∣
∣
∣
∣

the log pair
(
X,λD

)
has log canonical singularities

for every Ḡ-invariant effective Q-divisor D ∼Q −KX

}

∈ R.
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Remark 2.14. If X is smooth, then it follows from [9, Theorem A.3] that lct(X, Ḡ) = αḠ(X),
where αḠ(X) is the Ḡ-invariant α-invariant of the variety X introduced in [43] and [44].

Suppose that X ∼= P1 × P1.

Lemma 2.15. Suppose that Ḡ ∼= A5. Let Σ ⊂ X be a Ḡ-invariant subset. Then |Σ| > 12.

Proof. The required assertion follows from Lemma 2.9. �

Let L1 and L2 be fibers of the projection to the first and the second factor, respectively.

Lemma 2.16. The inequality lct(X, Ḡ) > 1 holds if and only if the linear systems |L1|, |L2|,
|L1 + L2| contain no Ḡ-invariant curves.

Proof. If there is a Ḡ-invariant curve in |L1| or |L2| or |L1 + L2|, then lct(X, Ḡ) = 1/2 (see [8,
Theorem 1.7]).

Suppose that |L1|, |L2|, |L1 + L2| contain no Ḡ-invariant curves, but lct(X, Ḡ) < 1. There
are λ ∈ Q and an effective Ḡ-invariant Q-divisor D on X such that λ < 1 and D ∼Q 2(L1+L2),
but (X,λD) is not Kawamata log terminal. We may assume that (X,λD) is log canonical.

Suppose that there is a Ḡ-invariant curve C ⊂ X such that λD = µC + Ω, where µ > 1,
and Ω is an effective Ḡ-invariant Q-divisor, whose support does not contain any component of
the curve C. Then C ∼ aL1 + bL2 for some non-negative integers a and b. Then either a > 2 or
b > 2. But

2 > 2λ = λ
(

D · L1

)

=
(

µC +Ω
)

· L1 > C · L1 = b,

which implies that b 6 1. Similarly, we see that a = C · L2 6 1, which is a contradiction.
We see that the locus LCS(X,λD) is a finite Ḡ-invariant set. Thus, the locus LCS(X,λD)

consists of a single point O ∈ X by Theorem 2.5. Let H be the unique curve in |L1+L2| that is
singular at O. Then H must be Ḡ-invariant, which is a contradiction, because the linear system
|L1 + L2| contains no Ḡ-invariant divisors. �

Let us identify X ∼= P1 × P1 with a smooth quadric surface in P3, and let us identify Ḡ with
a subgroup in Aut(P3) such that X is Ḡ-invariant. Let φ : SL4(C) → Aut(P3) be the natural
projection. Then there is a finite subgroup G ⊂ SL4(C) such that Ḡ = φ(G). Put W = C4.

Lemma 2.17. Suppose that Ḡ ∼= G ∼= A5, and W ∼= C4 is an irreducible representation of
the group G. Assume that BX ∼Q mL1 +

(
8 −m

)
L2, where m is a rational number such that

1 < m < 2. Then the locus LCS(X,BX ) consists of finitely many points.

Proof. Let U be a two-dimensional representation of the group 2.A5. Then the center of the
group 2.A5 acts trivially on U ⊗U∨, and U ⊗U∨ ∼=W as representations of A5. Therefore, one
has

H0(X,OX (L1 + nL2)) ∼= U ⊗ Symn(U∨)

as representations of A5.
Suppose that the locus LCS(X,BX) does not consist of finitely many points. Then there

is a Ḡ-invariant curve C ⊂ X such that BX = µC + Ω, where µ > 1 and Ω is an effective
Ḡ-invariant Q-divisor, whose support does not contain any component of the curve C. Then
C ∼ aL1 + bL2 for some non-negative integers a and b. Then either a > 2 or b > 2, since the
linear systems |L1|, |L2| and |L1 + L2| do not contain Ḡ invariant divisors (indeed, W is an
irreducible Ḡ representations, so that P(W ) does not contain Ḡ-invariant hyperplanes, and both
U and U∨ are irreducible G-representations, so that P(U) ∼= P1 and P(U∨) ∼= P1 do not contain
Ḡ-invariant points). On the other hand

2 > m = BX · L2 =
(

µC +Ω
)

· L2 > C · L2 = a,
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which implies that either a = 0 or a = 1. Similarly, we see that

7 > 8−m = BX · L1 =
(

µC +Ω
)

· L1 > C · L1 = b,

which implies that b 6 6. If a = 0, then C ∈ |bL2|, and thus C is Ḡ-invariant. The latter is
implied by Lemma 2.9 (actually, Lemma 2.9 shows that the linear system |bL2| does not contain
Ḡ-invariant curves for b 6 11). If a = 1, then C ∈ |L1 + bL2|. Now a direct computation1 shows
that U ⊗ Symn(U∨) does not contain one-dimensional G-invariant subspaces for b 6 6. The
obtained contradiction completes the proof. �

Let C be a smooth irreducible curve of genus g.

Theorem 2.18. Suppose that g > 2. Then

∣
∣Aut(C)

∣
∣ 6







320 if g = 9,

432 if g = 10,

240 if g = 11,

120 if g = 12,

360 if g = 13,

504 if g = 15,

and the inequality |Aut(C)| 6 84(g − 1) holds for any g > 2.

Proof. The inequality |Aut(C)| 6 84(g−1) is the famous Hurwitz bound (see [6, Theorem 3.17]),
the exact bounds for particular genera may be found in [6, Table 13]. �

Let D be an effective divisor on the curve C.

Theorem 2.19 ([22, Theorem 5.4]). If h1(OC(D)) 6= 0, then

h0(OC(D)) 6
deg(D)

2
+ 1.

Suppose that there is an embedding ζ : C → Pn such that ζ(C) is a curve of degree d.

Theorem 2.20 ([2, Section III.2]). If ζ(C) is not contained in any hyperplane in Pn, then

g 6
m(m− 1)(n − 1)

2
+mε,

where m = ⌊(d− 1)/(n − 1)⌋ and ε = d− 1−m(n− 1).

3. Alternating group

Let S6 be the group of permutations of the set {1, 2, 3, 4, 5, 6}.

Definition 3.1. Let H ⊂ A6 be a subgroup that is isomorphic to A5, S4 or A4. Then we say that
the embedding H ⊂ A6 is standard if one of the following conditions is satisfied:

• if H ∼= A5 and H is conjugate to the subgroup of even permutations of {1, 2, 3, 4, 5},
• if H ∼= S4 and H is conjugate to the subgroup of permutations of the set {1, 2, 3, 4} such
that the odd permutations of {1, 2, 3, 4} are twisted by the transposition (5, 6),

• if H ∼= A4 and H is conjugate to the subgroup of even permutations of {1, 2, 3, 4}.
We say that the embedding H ⊂ A6 is non-standard if it is not standard2.

1We used the Magma software [5] to carry it out.
2Note that the non-standard and standard embeddings of the group H into A6 are interchanged by Aut(A6).
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Let 2.A6 be the group such that there exists a non-splitting exact sequence of groups

1 // Z2
α // 2.A6

β
// A6

// 1 .

Note that α(Z2) is the center of the group 2.A6.

Definition 3.2. Let H ⊂ 2.A6 such that β(H) is isomorphic to A5, S4 or A4. Then we say that
the embedding H ⊂ 2.A6 is standard if β(H) ⊂ A6 is standard, and we say that the embedding
H ⊂ 2.A6 is non-standard if β(H) ⊂ A6 is non-standard.

Let Ḡ be a finite subgroup in Aut(P3) such that Ḡ ∼= A6.

Lemma 3.3 ([15]). Every maximal proper subgroup of the group Ḡ ∼= A6 is isomorphic to
either to A5, or S4, or (Z3 × Z3) ⋊ Z4. Moreover, up to conjugation, the group Ḡ contains
one subgroup isomorphic to (Z3 × Z3) ⋊ Z4, one subgroup isomorphic to (Z3 × Z3) ⋊ Z2, two
subgroups isomorphic to S4 (respectively, A5, A4).

Put W = C4. There exists a finite subgroup G ⊂ SL4(C) such that G ∼= 2.A6 and Ḡ =
φ(G) ⊂ Aut(P3) ∼= PGL4(C) where φ : SL4(C) → Aut(P3) is the natural projection.

Remark 3.4. The group G has two irreducible four-dimensional representations (see [15]), which
implies that we may identify W with one of them, because another one differs from W by
an outer automorphism of the group G. Thus, we may assume that the natural action of the
group G on Λ2

(
W

) ∼= C6 arises from the permutation representation of the group Ḡ ∼= A6.

Let F̄ ⊂ Ḡ be a subgroup, and let F ⊂ G be a subgroup such that φ(F ) = F̄ .

Remark 3.5. Suppose that F ∼= 2.A5 ⊂ 2.A6. Then

C4 ∼=W ∼=
{

U ⊕ U ′ if F ⊂ G is standard,

Sym3
(
U
) ∼= Sym3

(
U ′

)
if F ⊂ G is non-standard,

where U and U ′ are different two-dimensional representations of the group F ∼= 2.A5.

Lemma 3.6. Suppose that F ∼= 2.A5 and F ⊂ G is a non-standard embedding. Then there
exists an irreducible F̄ -invariant smooth rational cubic curve Z ⊂ P3.

Proof. The required assertion follows from Remark 3.5. �

Let z and e be the non-trivial element in the center of G and the identity element, respectively.

Lemma 3.7 (cf. [10, Lemma 4.7]). Any semi-invariant of the group G is its invariant. The group
G does not have invariants of odd degree, as well as invariants of degree at most 7. On the other
hand, the group G has two linearly independent invariants of degree 8.

Proof. Semi-invariants of the group G are its invariants, because the center of the group G is
contained in its commutator, and the group Ḡ is a simple non-abelian group.

The group G does not have invariants of odd degree, because G contains a scalar matrix
whose non-zero entries are −1. Therefore, to prove that G has no invariants of degree at most 7,
it is enough to show that G does not have invariants of degree 4 and 6.

Let χm be the character of the representation Symm(W ) (cf. Remark 3.4). Put χ = χ1.
The values of the characters χ, χ4, χ6 and χ8 are listed in the following table:
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[5, 1]10 [5, 1]5 [4, 2]8 [3, 3]6 [3, 3]3 [3, 1, 1, 1]6 [3, 1, 1, 1]3 [2, 2, 1, 1]4 z e

# 144 144 180 40 40 40 40 90 1 1

χ 1 −1 0 −1 1 2 −2 0 −4 4

χ4 0 0 −1 2 2 −4 −4 3 35 35

χ6 −1 −1 0 3 3 3 3 −4 84 84

χ8 0 0 1 3 3 3 3 5 165 165

where the first row lists the types of the elements in G (for example, the symbol [5, 1]10 denotes
the set3 of elements of order 10 whose image in A6 is a product of disjoint cycles of length 5 and 1).

Recall that there is a natural inner product 〈·, ·〉 defined for the characters θ and θ′ by

〈θ, θ′〉 = 1

|G|
∑

g∈G

θ(g)θ′(g).

Let χ0 be the trivial character of G. Then 〈χ4, χ0〉 = 〈χ6, χ0〉 = 0, so that G has no invariants
of degree 4 and 6. On the other hand, 〈χ8, χ0〉 = 2, which means that the group G has exactly
two linearly independent invariants of degree 8. �

Suppose that F̄ is a stabilizer of a point P ∈ P3.

Lemma 3.8. Let Σ ⊂ P3 be the Ḡ-orbit of the point P ∈ P3. Then |Σ| > 36.

Proof. It follows from Lemma 3.7 that |Σ| > 8 and |Σ| is even. Suppose that |Σ| 6 35. Then

45 =
|Ḡ|
8

>
∣
∣F̄

∣
∣ >

|Ḡ|
35

> 10,

which implies that |F̄ | ∈ {12, 18, 36} by Lemma 3.3.
Let us consider the vector space W as a representation of the group F , and let χ be its char-

acter. There is a homomorphism θ : F → C∗ such that the inner product 〈θ, χ〉 6= 0.
Suppose that |F̄ | = 36. Then F̄ ∼= (Z3 × Z3)⋊ Z4 by Lemma 3.3.
The structure of the group F and the values of χ are given in the following table:

[4, 2]8 [3, 3]6 [3, 3]3 [3, 1, 1, 1]6 [3, 1, 1, 1]3 [2, 2, 1, 1]4 z e

# 36 4 4 4 4 18 1 1

χ 0 −1 1 2 −2 0 −4 4

where we use the notation that are used in the proof of Lemma 3.7.
We have [F,F ] ∼= 2.(Z3 × Z3), which gives θ(g) = 1 for any g ∈ F that is not of type [4, 2]8

and [2, 2]4. Hence 〈θ, χ〉 = 0, which is a contradiction.
Suppose that |F̄ | = 18. Then F̄ ∼= (Z3 × Z3) ⋊ Z2 by Lemma 3.3. Arguing as above, we get

〈θ, χ〉 = 0.
Suppose that |F̄ | = 12. Then F̄ ∼= A4 by Lemma 3.3.
Up to conjugation, the group Ḡ contains two subgroups isomorphic to A4.
If F̄ ⊂ Ḡ is a standard embedding, then the values of χ are given in the following table:

[3, 1, 1, 1]6 [3, 1, 1, 1]3 [2, 2, 1, 1]4 z e

# 8 8 6 1 1

χ 2 −2 0 −4 4

If F̄ ⊂ Ḡ is a non-standard embedding, then the values of χ are given in the following table:

3 Note that these sets do not coincide with conjugacy classes. For example, the image of the set of the elements
of type [5, 1]10 under the natural projection 2.A6 → A6 is a union of two different conjugacy classes in A6.
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[3, 3]6 [3, 3]3 [2, 2, 1, 1]4 z e

# 8 8 6 1 1

χ −1 1 0 −4 4

We have [F,F ] ∼= 2.(Z2 × Z2). So θ(g) = 1 for any g ∈ F of order different from 3 and
6, and θ(g) = θ(g2) for all g ∈ F of order 6. Now we can check that 〈θ, χ〉 = 0, which is
a contradiction. �

Lemma 3.9. Let C be a smooth irreducible Ḡ-invariant curve in P3 of genus g > 13, and let IC
be its ideal sheaf. Then h0(OP3(i)⊗ IC) = 0 for any i ∈ {1, 2, 3}.
Proof. It follows from Theorem 2.20 and Lemma 2.10 that d > 4. Hence h0(OP3(2) ⊗ IC) = 0,
since G does not have semi-invariants of degree 2 by Lemma 3.7.

Suppose that there is a cubic surface X ⊂ P3 such that C ⊂ X. Then h0(OP3(3) ⊗ IC) > 2,
since G does not have semi-invariants of degree 3 by Lemma 3.7. Thus, there is a cubic surface
X ′ ⊂ P3 such that C ⊂ X ′ 6= X. Thus C ⊂ X ∩X ′, and X and X ′ are irreducible, because C
is contained neither in a quadric nor in a plane. We see that d 6 9. Hence, we have g 6 12 by
Theorem 2.20, which is a contradiction. �

4. Projective space

Let Ḡ be a subgroup in Aut(P3) such that Ḡ ∼= A6. Then there is a subgroup Ĝ ⊂ Aut(P3)

such that Ḡ ⊂ Ĝ ∼= S6, which implies that Ĝ ⊆ AutḠ(P3), because Ḡ is a normal subgroup of

the group Ĝ (recall that AutḠ(P3) is the normalizer of the group Ḡ in the group Aut(P3)).
The main purpose of this section is to prove that P3 is Ḡ-birationally rigid and to describe

the group BirḠ(P3) (see Theorem 1.24). We will do this in several steps. But first of all, we
must study lines in P3 whose Ḡ-orbits consists of 6 lines (there are 12 such lines in total, the

groups Ĝ acts transitively on them, and they form two Ḡ-orbits consisting of 6 lines each).
Let Ḡ1 ⊂ Ḡ be a subgroup such that Ḡ1

∼= A5 and the embedding A5
∼= Ḡ1 ⊂ Ḡ ∼= A6 is

standard (see Definition 3.1). Then there are two disjoint Ḡ1-invariant lines L1 and L′
1 in P3 by

Remark 3.5. Denote by L1, . . . , L6 (L′
1, . . . , L

′
6, respectively) the lines in P3 that are the images

of L1 (L′
1, respectively) under the action of Ḡ. Put L = {L1, . . . , L6} and L′ = {L′

1, . . . , L
′
6}.

Lemma 4.1. The curve
∑6

i=1 Li +
∑6

i=1 L
′
i is a Ĝ-orbit of the line L1. The 12 lines of L ∪ L′

are pairwise disjoint. For any 4 lines among the lines L1, . . . , L6 (L′
1, . . . , L

′
6, respectively), there

are 2 lines in P3 that intersect them. There are no lines in P3 that intersect 5 lines among
L1, . . . , L6 (L′

1, . . . , L
′
6, respectively).

Proof. The first assertion of the lemma follows from the construction of the lines Li and L
′
i. To

prove the second assertion note that the stabilizers of any two of the 12 lines of L ∪ L′ except
for the case of the lines Li and L

′
i corresponding to one and the same stabilizer A5 ⊂ Ḡ (i. e. two

standard subgroups isomorphic to A5) generate together the whole group Ḡ ∼= A6. In particular,
all 12 lines of L ∪ L′ are pairwise distinct, since otherwise there would exist a Ḡ-invariant line
in P3. Similarly, if some two of the 12 lines of L ∪ L′ intersected at a point P , then there would
exist a Ḡ-invariant point in P3.

Suppose that there exist more than 2 lines in P3 that intersect some 4 of the lines of L (say, L1,
L2, L3 and L4). Then the lines L1, . . . , L4 are contained in a (unique) smooth quadric X ⊂ P3.
Note that there is an element g ∈ Ḡ ∼= A6 that preserves the lines L1 and L6, interchanges
the lines L2 and L3 and interchanges the lines L4 and L5. The quadric X is invariant under g
(indeed, an intersection of two distinct smooth quadrics in P3 cannot contain three skew lines).
Hence X contains the line L5. Similarly, X contains the line L6, and thus X is Ḡ-invariant.
The latter contradicts Lemma 3.7. Therefore, to prove the third assetion of the lemma we may
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suppose that there exist exactly 1 line L1234 in P3 that intersects the lines L1, . . . , L4. Note that
the group Ḡ acts transitively on the 4-tuples of the lines of L. Thus for any 4 lines Li1 , . . . , Li4

there exists a unique line Li1...i4 that intersects Li1 , . . . , Li4 . Put Pi2i3i4 = L1 ∩ L1i2i3i4 . Then

the set {Pi2i3i4} is invariant under the group Ḡ1
∼= A5 and consists of at most

(5
3

)
= 10 points.

This is impossible by Lemma 2.9.
Finally, suppose that for some 5 of the lines of L (say, for L2, . . . , L6) there exists a line L that

intersects all 5 of them. The above argument implies that there are at most 2 lines intersecting
L2, . . . , L6, so that L is invariant under the group Ḡ1

∼= A5. Since the lines of L ∪ L′ are pairwise
disjoint, the line L coincides with neither L1 nor L′

1. Hence there are at least 3 lines in P3 that
are invariant under Ḡ1, which contradicts Remark 3.5.

The same arguments apply if one replaces the lines of L by the lines of L′. �

Recall that several lines in P3 are said to lie in a linear complex if the corresponding points
of the Grassmaniann Gr(2, 4) ⊂ P5 lie in a hyperplane section.

Lemma 4.2. Neither L1, L2, L3, L4, L5, L6 nor L′
1, L

′
2, L

′
3, L

′
4, L

′
5, L

′
6 lie in a linear complex.

Proof. It follows from Remark 3.4 that the space Λ2(V ) ∼= C6 is the permutation representation
of the group Ḡ ∼= A6. The natural action of the group Ḡ on Gr(2, 4) ⊂ P5 ∼= P(Λ2(V )) arises
from this representation. Let us identify Ḡ with a subgroup in Aut(P5). Then there is a unique
Ḡ-invariant hyperplane H ⊂ P5. We may assume that Gr(2, 4) ∩H is given by

5∑

i=0

xi =
5∑

i=0

x2i = 0 ⊂ P5 ∼= Proj
(

C
[
x0, x1, x2, x3, x4, x5

])

,

and H is given by
∑5

i=0 xi = 0. Let P ∈ Gr(2, 4) be a point that corresponds to the line L1 ⊂ P3,
and let Ḡ1 be the stabilizer subgroup in Ḡ of the point P . Then Ḡ1

∼= A5, and the embedding
Ḡ1 ⊂ Ḡ is standard. If the Ḡ-orbit of the point P is contained in a hyperplane, then this
hyperplane must be H, which implies that the Ḡ-orbit of the point P must contain a point in P5

that is given by x0 = . . . = x4 = −x5/5, which is impossible, because this point does not belong
to the intersection Gr(2, 4) ∩H. �

Now we are ready to formulate the main technical result of this section.

Theorem 4.3. Let M be a (non-empty) Ḡ-invariant linear system on P3 that does not have
fixed components, and let λ be a positive rational number such that λM ∼Q −KP3 . Suppose
that (P3, λM) is canonical at a general point of every line L1, . . . , L6, L

′
1, . . . , L

′
6. Then (P3, λM)

is canonical.

Before proving Theorem 4.3, let us show that it implies that P3 is Ḡ-birationally rigid and

BirḠ(P3) is isomorphic to a free product of S6 and S6 with an amalgamated subgroup A6. To do

this, will use the lines L1, . . . , L6, L
′
1, . . . , L

′
6 to prove that AutḠ(P3) = Ĝ and to construct two

Ḡ-equivariant birational non-biregular involutions of P3 that was described in [45]. The proof

of Ḡ-birational rigidity of P3 and description of the group BirḠ(P3) crucially depend on these
birational involutions.

Lemma 4.4. The equality AutḠ(P3) = Ĝ holds.

Proof. Put G̃ = AutḠ(P3). Then the curve
∑6

i=1 Li +
∑6

i=1 L
′
i is G̃-invariant, and the group Ḡ

is a normal subgroup of the group G̃. There is a subgroup Ğ ⊂ G̃ of index 2 such that
∑6

i=1 Li

and
∑6

i=1 L
′
i are Ğ-invariant.

Let Y be the Hierholzer surface of the lines L1, L2, L3, L4, L5, L6 (see [46, Section 2.1]). Then

the surface Y is Ğ-invariant and there exists a monomorphism ξ : Ğ → Aut(Y ). Moreover,
the surface Y is birational to a surface of general type (see [46, Theorem 2.1]), which implies



FIVE EMBEDDINGS OF ONE SIMPLE GROUP 17

that Ğ is a finite group (see e. g.[21, Theorem 1.1]). Thus G̃ is a finite group. Hence, we have

lct(P3, G̃) > lct(P3, Ḡ) > 5/4 by [10, Theorem 4.13].
Let φ : SL4(C) → Aut(P3) be the natural projection. Then there is a finite subgroup G ⊂

SL4(C) such that G̃ = φ(G). Note that G may not be uniquely defined. However, by [10,
Theorem 4.13], we may assume that G is one of the eight groups described in [10, Lemma 4.12].

Suppose that Ĝ ( G̃. Then G 6∼= 2.S6.
Recall that Ḡ is a (non-trivial) normal subgroup in G̃. Hence G cannot be isomorphic to any

of the groups 2.A7 and PSp4(F3), because the images of these groups in PGL4(C) are simple

groups. Moreover, G 6∼= 2.A6, since there is a subgroup Ĝ ⊂ G̃ isomorphic to S6.
For each of the four remaining groups from [10, Lemma 4.12] one has (see [36]) an exact

sequence of groups

1 // Z4
2

α // G̃
β

// Γ // 1 ,

where Γ is a subgroup of the group S6. Thus Γ ∼= S6 because G̃ ⊃ Ĝ ∼= S6. Let e be the identity
element in G̃. Then Ḡ ∩ im(α) = e, because Ḡ is a simple group, and Ḡ is a normal subgroup

of the group G̃. Hence the subgroup of G̃ generated by Ḡ ∼= A6 and im(α) ∼= Z4
2 is a direct

product of the latter groups. This leads to a contradiction because the action of Γ on Z4
2 is

faithful (see [36]). �

Let H be a general hyperplane in P3.

Lemma 4.5. There is a Ḡ-equivariant birational non-biregular involution ι ∈ Bir(P3) such that
ι(H) is a surface of degree 19 that has singularity of multiplicity 5 in a general point of every
line L1, . . . , L6, and the group generated by Ḡ and ι is isomorphic to S6.

Proof. Let H be a linear subsystem of the linear system |OP3(4)| consisting of surfaces that
pass through the lines L1, L2, L3, L4, L5, L6. Then it follows from [45] and [46, Theorem 2.4]
that H does not have fixed components, and H gives a rational map ψ : P3 99K V , where V is
a quartic threefold in P4. Let α : U → P3 be a blow up along L1, L2, L3, L4, L5, L6. Then there
is a commutative diagram

U

α

��⑦⑦
⑦⑦
⑦⑦
⑦⑦ β

��
❄❄

❄❄
❄❄

❄❄

P3

φ
//❴❴❴❴❴❴❴ V,

where β is a birational morphism that contracts finitely many curves. It follows from [46,
Theorem 2.4] that V ⊂ P4 can be given by the equation4

5
(

yw − zt+ xy + xw − xz − xt− x2
)2

− 20xyw
(

w − x+ y − z − t
)

‖
(

3x2 + 2y2 + 2z2 + 2t2 + 2w2 − 3xy + 3xz + 3xt− 3xw − 2yz − 2yt+ yw + zt− 2zw − 2tw
)2

in appropriate homogeneous coordinates [x : y : z : t : w] in P4. By [45] we know that the sin-
gular locus of the threefold V consists of 36 nodes, and the morphism β contracts the proper
transforms of 30 lines in P3 each of whom intersects 4 lines among L1, L2, L3, L4, L5, L6, and
proper transforms of 6 twisted cubics in P3 each of whom has the lines L1, L2, L3, L4, L5, L6 as
chords.

The map φ is Ḡ-equivariant. We can identify Ḡ with a subgroup in Aut(V ) and with a
subgroup in Aut(P4). By Lemma 3.7, there are no Ḡ-fixed points in P4. So, the action of

4 Note that the quartic threefold V ⊂ P4 is determinantal (see [45], [37, Example 6.4.2]).
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the group Ḡ on P4 arises from its irreducible five-dimensional representation (cf. Remark 3.4).
Hence, there is a subgroup Γ̄ ⊂ Aut(V ) such that Ḡ ⊂ Γ̄ ∼= S6. Let θ be an involution in Γ̄ such

that θ 6∈ Ḡ. Put ι = φ−1 ◦ θ ◦ φ ∈ BirḠ(P3). Then it follows from the construction of ι that
〈ι, Ḡ〉 ∼= S6.

Let us show that ι is not biregular. Suppose that this is not true. Let us identify the subgroup
〈ι, Ḡ〉 with Γ̄ ∼= S6. Then

∑6
i=1 Li must be Γ̄-invariant. Let Ḡ1 ⊂ Ḡ and Γ̄1 ⊂ Γ̄ be stabilizers of

the line L1. Then A5
∼= Ḡ1 ⊂ Γ̄1

∼= S5, and there are natural homomorphisms ζ : Ḡ1 → Aut(L1)
and η : Γ̄1 → Aut(L1). Thus, we have A5

∼= im(ζ) ⊆ im(η), which gives im(η) ∼= S5. But
Aut(L1) ∼= PGL2(C) contains no subgroups isomorphic to S5. The obtained contradiction shows
that ι is not biregular.

Put τ = β−1 ◦θ ◦β ∈ Bir(U). Then τ is a composition of flops, and the commutative diagram

U

α

xxqq
qq
qq
qq
qq
qq
q

β

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
τ //❴❴❴❴❴❴❴❴❴❴❴❴❴ U

θ◦β

xxqq
qq
qq
qq
qq
qq
q

α

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

P3
φ

//❴❴❴❴❴❴❴❴❴❴❴❴❴ V P3,
φ◦ι

oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

is a Ḡ-equivariant Sarkisov link of type II (see [13, Definition 3.4]). The involution τ is biregular
outside of the curves contracted by β. Then τ naturally acts on the group Pic(U). Moreover,
this action is nontrivial, because ι is not biregular.

Put Ĥ = α∗(H). Let Ek be the α-exceptional divisor such that α(Ek) = Lk. Then

τ∗
(
Ĥ
)
· τ∗

(
Ĥ
)
·
(

4Ĥ −
6∑

i=1

Ei

)

= 4,

because τ∗(KU ) ∼ KU and β contracts finitely many curves. Similarly, we see that

τ∗
(
Ĥ
)
· τ∗

(
Ek

)
·
(

4Ĥ −
6∑

i=1

Ei

)

= 1, τ∗
(
Ei

)
· τ∗

(
Ek

)
·
(

4Ĥ −
6∑

i=1

Ei

)

=

{ − 2 if i = k,

0 if i 6= k,

which immediately implies that either τ∗(Ĥ) ∼ Ĥ and τ∗(Ek) = Ek, or

(4.6)







τ∗(Ĥ) ∼ 19Ĥ − 5

6∑

i=1

Ei,

τ∗
(
Ek

)
∼ 12Ĥ − 4Ek −

∑

i 6=k

3Ei,

Since ι is not biregular, the involution τ must act non-trivially on Pic(U). Thus, we see that
(4.6) holds, which implies, in particular, that ι(H) is a surface of degree 19 that has singularity

of multiplicity 5 in a general point of every line L1, . . . , L6, because ι(H) = α ◦ τ(Ĥ). �

Put ι′ = ν ◦ ι ◦ ν−1 for any ν ∈ Ĝ ∼= S6 such that ν 6∈ Ḡ. Then ι′ is a Ḡ-equivariant birational
non-biregular involution of P3 such that ι′(T ) is a surface of degree 19 that has singularity of
multiplicity 5 in a general point of every line L′

1, . . . , L
′
6, and the group generated by Ḡ and ι′

is also isomorphic to S6. Note that the choice of ι and ι′ is not unique. Put Γ = 〈ι, ι′, Ĝ〉. Let
us use birational involutions ι and ι′ together with Theorem 4.3 to prove

Lemma 4.7. Let M be a (non-empty) Ḡ-invariant linear system on P3 that does not have fixed
components. Then there are ρ ∈ Γ and µ ∈ Q>0 such that µρ(M) ∼Q −KP3 , and (P3, µρ(M))
is canonical.
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Proof. Take λ ∈ Q>0 such that λM ∼Q −KP3 . If (P3, λM) is canonical, then we are done.
Thus, we may assume that (P3, λM) is not canonical. By Theorem 4.3, the log pair (P3, λM)
is not canonical at a general point of one line among L1, . . . , L6, L

′
1, . . . , L

′
6.

Without loss of generality, we may assume that (P3, λM) is not canonical at a general point of
the line L1. Then (P3, λM) is not canonical at a general point of the lines L2, . . . , L6, since M is
Ḡ-invariant. Let M be a general surface in M. Then multLi

(M) > 1/λ for every i ∈ {1, . . . , 6}
(see [14, Exercise 6.18]). Note that M is a surface of degree d = 4/λ. Let d̃ be the degree of the

surface ι(M). Put λ̃ = 4/d̃. Then λ̃ι(M) ∼Q −KP3 . Moreover, it follows from Lemma 4.5 that

d̃ = 19d − 12

6∑

i=1

multLi
(M) < 19d− 18d = d.

If (P3, λ̃ι(M)) is canonical, then we are done. If it is not canonical, then it follows

from Theorem 4.3 that (P3, λ̃ι(M)) is not canonical at a general point of one line among

L1, . . . , L6, L
′
1, . . . , L

′
6. Thus, we can iterate the above process. Since d̃ < d, our iterations

must terminate in at most d− 1 steps, which completes the proof. �

Now we ready to prove

Theorem 4.8. The variety P3 is Ḡ-birationally rigid and BirḠ(P3) = Γ.

Proof. Suppose that there exists a rational normal threefold V with at most terminal singularities
that admits a faithful action of the group Ḡ such that there are a Ḡ-equivariant Mori fibration
π : V → S and a Ḡ-equivariant birational map ξ : V 99K P3. Let D be a sufficiently general
very ample divisor on V . Put M = ξ(|D|). Then M does not have fixed components and is
Ḡ-invariant. Thus, it follows from Lemma 4.7 that there are ρ ∈ Γ and µ ∈ Q>0 such that
µρ(M) ∼Q −KP3 , and (P3, µρ(M)) is canonical. Then ρ ◦ ξ is biregular by [12, Theorem 4.2].
In particular, we see that V ∼= P3 and S is a point. Since all subgroups in Aut(P3) that
are isomorphic to Ḡ are conjugate to each other, we see that P3 is Ḡ-birationally rigid and

BirḠ(P3) = Γ. �

Before proving Theorem 4.3, let us use it one more time to prove

Theorem 4.9. The group Γ is the free product of Ĝ and 〈ι, Ḡ〉 with amalgamated subgroup Ḡ.

Proof. Let ξ be a birational automorphism in BirḠ(P3) such that ξ 6∈ Ĝ. Put M = ξ(|T |) and
take λ ∈ Q such that λM ∼Q −KP3 . Then (P3, λM) is not canonical by [12, Theorem 4.2].
By Theorem 4.3, the log pair (P3, λM) is not canonical at a general point of one line among
L1, . . . , L6, L

′
1, . . . , L

′
6. Arguing as in the proof of Lemma 4.7, we see that there exists a combi-

nation

ζ = . . . ◦ ι ◦ ι′ ◦ ι ◦ ι′ ◦ ι ◦ . . .
︸ ︷︷ ︸

m times

,

such that (P3, µζ(M)) is canonical, where µ is a positive rational number such that one has

µζ(M) ∼Q −KP3 . Then ζ ◦ ξ is biregular by [12, Theorem 4.2], which implies that ζ ◦ ξ ∈ Ĝ by
Lemma 4.4.

Let us show that ζ is uniquely determined by ξ and the algorithm hidden in the proof
Lemma 4.7.

Let M be a general surface in M, and let d be its degree. Then d = 4/λ. Arguing as in
the proof of Lemma 4.7, we see that if (P3, λM) is not canonical at a general point of one line
among L1, . . . , L6, then the degree of ι(M) is smaller than d. Similarly, we see that if (P3, λM)
is not canonical at a general point of one line among L′

1, . . . , L
′
6, then the degree of ι′(M) is

smaller than d. We can use this to construct ξ step by step. Thus, to show that ζ is uniquely
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determined by ξ, we must show that (P3, λM) can not be non-canonical at a general point of
one line among L1, . . . , L6 and the same time at a general point of one line among L′

1, . . . , L
′
6.

Suppose that (P3, λM) is not canonical at a general point of one line among L1, . . . , L6

and the same time at a general point of one line among L′
1, . . . , L

′
6. Then (P3, λM) is not

canonical at a general point of every line among L1, . . . , L6, L
′
1, . . . , L

′
6, since M is Ḡ-invariant.

Then multLi
(M) > 1/λ and multL′

i
(M) > 1/λ for every i ∈ {1, 2, . . . , 6}. Let Π be a general

plane in P3 that contains the line L1. Put M|Π = multL1
(M)L1 + B, where B is a linear

system on Π that does not have fixed components. Let B1 and B2 be general curves in B,
let Oi be the point Π ∩ Li for every i ∈ {2, . . . , 6}, and let O′

i be the point Π ∩ L′
i for every

i ∈ {1, . . . , 6}. Then multOi
(B1) = multOi

(B2) = multL1
(M) for every i ∈ {2, . . . , 6}, and

multO′

i
(B1) = multO′

i
(B2) = multL′

1
(M) for every i ∈ {1, . . . , 6}. Then

B1 ·B2 >

6∑

i=2

multOi

(
B1

)
multOi

(
B2

)
+

6∑

i=1

multO′

i

(
B1

)
multO′

i

(
B2

)
>

11

λ2
,

because multL1
(M) > 1/λ and multL′

1
(M) > 1/λ. On the other hand, we have

B1 ·B2 =
( 4

λ
Π
∣
∣
∣
Π
−multL1

(
M

)
L1

)2
=

( 4

λ
−multL1

(
M

))2
<

9

λ2
,

which is a contradiction. Thus we see that (P3, λM) is not canonical either at a general point
of every line among L1, . . . , L6, or at a general point of every line among L′

1, . . . , L
′
6. But it can

not be non-canonical at a general point of all these 12 lines.
Recall that we defined ι′ ad ν ◦ ι ◦ ν−1 for some ν ∈ Ĝ such that ν 6∈ Ḡ. Without loss of

generality we may assume that ν is an involution. Thus, we see that every α ∈ BirḠ(P3) can be
uniquely written as

α = . . . ◦ ι ◦ ν ◦ ι ◦ ν ◦ ι ◦ ν ◦ ι ◦ ν ◦ ι
︸ ︷︷ ︸

r times

◦β

for some β ∈ Ĝ such that r = 0 if and only if α ∈ Ĝ. The latter implies that Γ is the free product
of the groups Ĝ = 〈ν, Ḡ〉 ∼= S6 and 〈ι, Ḡ〉 ∼= S6 with amalgamated subgroup Ḡ ∼= A6. �

Remark 4.10. Note that Ĝ 6⊂ 〈ι, ι′, Ḡ〉 (see the proof of Theorem 4.9).

In the rest of this section, we prove Theorem 4.3. Let M be a (non-empty) Ḡ-invariant linear
system on P3 that does not have fixed components, and let λ be a positive rational number
such that λM ∼Q −KP3 . Suppose that (P3, λM) is canonical at a general point of every line
L1, . . . , L6, L

′
1, . . . , L

′
6. We must prove that (P3, λM) is canonical.

Suppose that the log pair (P3, λM) is not canonical. Let us seek for a contradiction. By
Corollary 2.3 there is µ ∈ Q such that µ < 2λ and (P3, µM) is strictly log canonical. Let
S ⊂ X be a minimal center in LCS(P3, µM). Then S is not a surface, since M has no fixed
components.

Recall that we denote by H a general hyperplane in P3. By Lemma 2.13, there is δ ∈ Q and
there is a Ḡ-invariant effective Q-divisor D ∼Q δH on the threefold P3 such that 0 < δ < 8,
the log pair (P3,D) is log canonical and the set LCS(P3,D) consists of all irreducible components
of the Ḡ-orbit of S.

Remark 4.11. It follows from the proof of Lemma 2.13 that we may assume that multLi
(D) < 2

and multL′

i
(D) < 2 for every i ∈ {1, 2, . . . , 6}, since (P3, λM) is canonical at a general point of

every line L1, . . . , L6, L
′
1, . . . , L

′
6.

Let I be the multiplier ideal sheaf of the log pair (P3,D), and let L be the log canonical
singularities subscheme of the log pair (P3,D). Then it follows from Theorem 2.4 that

(4.12) h0
(

OL ⊗OP3

(
4H

))

= h0
(

OP3

(
4H

))

− h0
(

OP3

(
4H

)
⊗ I

)

= 35− h0
(

OP3

(
4H

)
⊗ I

)

.
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Lemma 4.13. The center S is a curve.

Proof. If S is a point, then |LCS(P3,D)| 6 35 by (4.12), which contradicts Lemma 3.8. �

By Theorem 2.8, the curve S is a smooth curve in P3 of degree d and genus g such that

(4.14) g 6 2d.

Put q = h0(OP3(4H)⊗I). Let Z be the Ḡ-orbit of the curve S, let r be the number of irreducible
components of Z. Then Z = L, since (P3,D) is log canonical. Moreover, the curve Z is smooth
by Lemma 2.7, and Z is not contained in a hyperplane in P3 by Remark 3.4.

Lemma 4.15. The equality r(4d− g + 1) = 35− q holds.

Proof. The equality follows from (4.12) and the Riemann–Roch theorem, because 2d > g. �

Corollary 4.16. The inequality g 6 34 holds.

Lemma 4.17. Suppose that 1 6 q 6 7. Then q ∈ {5, 6}.
Proof. Put W4 = H0(OP3(4H)⊗ I). Since the center of G acts trivially on polynomials of even
degree, the space W4 has a natural structure of a Ḡ-representation. Suppose that q 6∈ {5, 6}.
Then W4 has a trivial subrepresentation of the group Ḡ by dimension reasons (see [15]), which
is impossible by Lemma 3.7. �

Lemma 4.18. Suppose that r 6= 1. Then r = 6 and d = 1.

Proof. Since r 6 35 by Lemma 4.15, one has r ∈ {6, 10, 15, 20, 30} by Lemma 3.3. In particular,
the inequality q > 1 holds by Lemma 4.15.

Suppose that q > 6. Then r(4d−g+1) < 30 by Lemma 4.15. We see that g+1 6 4d−g+1 < 5,
which implies that g 6 3. Then d = 1 and g = 0, so that 4d−g+1 = 5, which is a contradiction.

By Lemma 4.17 we may assume that q = 5. Then r ∈ {6, 10, 15, 30} by Lemma 4.15.
If r = 30, then g + 1 6 4d− g + 1 = 1 by Lemma 4.15, which is a contradiction.
If r = 15, then g + 1 6 4d− g + 1 = 2 by Lemma 4.15, which leads to a contradiction.
If r = 10, then g + 1 6 4d− g + 1 = 3 by Lemma 4.15, which leads to a contradiction.
If r = 6, then g + 1 6 4d− g + 1 = 5 by Lemma 4.15, which gives g = 0 and d = 1. �

Lemma 4.19. The equality r = 1 holds.

Proof. Suppose that r 6= 1. Then Z is a disjoint union of 6 lines by Lemma 4.18, which implies
that either Z = L1 + L2 + L3 + L4 + L5 + L6, or Z = L′

1 + L′
2 + L′

3 + L′
4 + L′

5 + L′
6.

Without loss of generality, we may assume that S = L1 and Z = L1+L2+L3+L4+L5+L6.
Let F̄ ⊂ Ḡ be the stabilizer of L1. Then F̄ ∼= A5. Let π : U → P3 be the blow up of L1. Then

KU + D̄ +
(

multL1

(
D
)
− 1

)

E ∼Q π
∗
(

KP3 +D
)

,

where E is the π-exceptional divisor, and D̄ is the proper transform of D on U . One has
2 > multL1

(D) > 1 by Remark 4.11. The group F̄ naturally acts on E so that the divisor D̄|E
is F̄ -invariant.

We can identify the surface E with a smooth quadric in P3. The action of the group F̄ ex-
tends to the ambient space P3. Note that this action arises from the standard four-dimensional
representation of the group F̄ ∼= A5.

It follows from the inequality multL1
(D) < 2 that the set LCS(U, D̄ + (multL1

(D) − 1)E)
contains an irreducible reduced curve C ⊂ E such that π(C) = L1. One has C ∈ LCS(E, D̄|E)
by Theorem 2.6, which is impossible by Lemma 2.17. �

We see that r = 1, so that Z = S. By Lemma 2.10 one has g ∈ {31, 25, 19, 16, 10}.
Lemma 4.20. The inequality g 6= 31 holds.
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Proof. Suppose that g = 31. Then it follows from Lemma 4.15 that

(4.21) d =
65− q

4
,

which gives q > 0. Hence q > 5 by Lemma 4.17 and thus d 6 15 by (4.21). By (4.14) we have
g/2 6 d 6 15, which is impossible. �

Lemma 4.22. The inequality g 6= 25 holds.

Proof. Suppose that g = 25. Then it follows from Lemma 4.15 that

(4.23) d =
59− q

4
,

which gives q > 0. Hence q > 11 by Lemma 4.17 and thus d 6 15 by (4.23). By (4.14) we have
g/2 6 d 6 12, which is impossible. �

Lemma 4.24. The inequality g 6= 19 holds.

Proof. Suppose that g = 19. Then S is not contained in a cubic surface by Lemma 3.9. We have
h0(OP3(3) ⊗ OS) > h0(OP3(3)) = 20, because there is an exact sequence of the cohomology
groups.

0 −→ H0
(

OP3

(
3
)
⊗ I

)

−→ H0
(

OP3

(
3
))

−→ H0
(

OP3

(
3
)
⊗OS

)

.

By the Riemann–Roch theorem, we have

20 6 h0
(

OP3

(
3
)
⊗OS

)

= 3d− g + 1 + h1
(

OP3

(
3
)
⊗OS

)

= 3d− 18 + h1
(

OP3

(
3
)
⊗OS

)

,

which implies that h1(OP3(3) ⊗OS) 6= 0, because d 6 12 by Lemma 4.15. Then it follows from
Theorem 2.19 that 19 > 3d/2 + 1 > h0(OP3(3)⊗OS) > 20, which is a contradiction. �

Lemma 4.25. The inequality g 6= 16 holds.

Proof. Suppose that g = 16. Arguing as in the proof of Lemma 4.24, and keeping in mind
that d 6 11 by Lemma 4.15, we see that 18 > 3d/2 + 1 > h0(OP3(3) ⊗ OS) > 20, which is a
contradiction. �

Therefore, we see that g = 10. Then d > 9 by Theorem 2.20.

Lemma 4.26. The inequality d 6= 9 holds.

Proof. Suppose that d = 9. It follows from Lemma 3.7 that h0(OP3(2) ⊗ I) 6= 1, which implies
that S = F1 ∩ F2, where F1 and F2 are cubic surfaces in P3 (see [22, Example 6.4.3])

The group Ḡ cannot act non-trivially on the pencil generated by F1 and F2, which implies
that the surfaces F1 and F2 must be Ḡ-invariant. The latter is impossible by Lemma 3.7. �

Lemma 4.27. The inequality d 6= 10 holds.

Proof. Suppose that d = 10. Then q = 4 by Lemma 4.15, which is impossible by Lemma 4.17. �

Thus we see that d > 11. Then q = 0 and d = 11 by Lemma 4.15.
Take a subgroup F̄ ⊂ Ḡ such that F̄ ∼= A5 and the embedding F̄ ⊂ Ḡ is non-standard (see De-

finition 3.1). Then there is an F̄ -invariant twisted cubic curve C ⊂ P3 by Lemma 3.6.
Let R be the quartic surface in P3 that is swept out by the lines that are tangent to C. Then

the surface R is F̄ -invariant, and the curve S is not contained in the surface R, because q = 0.
Put Σ = R ∩ S. We have Σ = Σ1 ∪ . . . ∪ Σr, where Σi is a F̄ -orbit. Hence, we have

44 = R · S =

r∑

i=1

ai
∣
∣Σi

∣
∣
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for some positive integers a1, . . . , ar. We may assume that |Σ1| > . . . > |Σr|. But |Σi| ∈
{12, 20, 30, 60} for every i ∈ {1, . . . , r} by Lemma 2.9. Thus, we see that |Σ1| = 20.

Let O ∈ Σ1 be a point, and let F̄O ⊂ F̄ be the stabilizer of the point O. Then F̄O
∼= Z3.

Let Γ be the Ḡ-orbit of the point O, and let ḠO ⊂ Ḡ be the stabilizer of the point O. Then
the order of the group ḠO must divide 18. Moreover, the group ḠO is cyclic by Lemma 2.9,
which implies that ḠO

∼= Z3. Hence, we see that |Γ| = 120, which contradicts Lemma 2.10.
The obtained contradiction completes the proof of Theorem 4.3.

5. Segre cubic

Let G ⊂ SL5(C) be a subgroup such that G ∼= A6. Let φ : SL5(C) → Aut(P4) be the natural
projection. Put W = C5 and Ḡ = φ(G) ⊂ Aut(P4). Then the space W is an irreducible
representation of the group G ∼= Ḡ ∼= A6, and there is a unique cubic hypersurface X ⊂ P4 that
is Ḡ-invariant. Let us identify X with a complete intersection in P5 that is given by the equation

5∑

i=0

xi =
5∑

i=0

x3i = 0 ⊂ P5 ∼= Proj
(

C
[
x0, x1, x2, x3, x4, x5

])

,

and let us identify Ḡ with a subgroup of the group Aut(X) (cf. Example 1.19).
Let O ∈ X be a point, and let F̄ ⊂ Ḡ be its stabilizer.

Remark 5.1. Let T̃ be the affine tangent space to P4 at the point O ∈ P4. Then F̄ naturally
acts on the space T̃ . Let us consider W as a representation of the group F̄ . One has

T̃ ∼=W/WO ⊗W ∗
O,

where WO is the one-dimensional subrepresentation of F̄ that corresponds to the point O ∈ P4.

Let Σ be the Ḡ-orbit of the point O ∈ X.

Lemma 5.2. Suppose that |Σ| 6 15. Then |Σ| ∈ {10, 15}.

Proof. One has |Σ| 6= 1, because W is an irreducible representation of the group Ḡ. Hence
|Σ| ∈ {6, 10, 15} by Lemma 3.3. Suppose that |Σ| = 6. Then F̄ ∼= A5 by Lemma 3.3.

Let us considerW as a representation of the group F̄ . ThenW is reducible andW ∼=Wt ⊕W4,
where Wt and W4 are the trivial and a four-dimensional representations of the group F̄ , respec-
tively. The embedding F̄ ⊂ Ḡ is standard (see Definition 3.1), because W is reducible.

Note that Wt is the only one-dimensional subrepresentation of the representation W , because
the representation W4 is irreducible. Hence, the set Σ must contain a point in P5 that is
given by x0 = . . . = x4 = −x5/5, which is impossible, because this point does not belong to
the hypersurface X ⊂ P5. �

Let T be the affine tangent space to X at the point O. Then F̄ naturally acts on T .

Lemma 5.3. Suppose that |Σ| = 10. Then Σ = Sing(X) and F̄ ∼= (Z3×Z3)⋊Z4. Moreover, T
is an irreducible four-dimensional representation of the group F̄ .

Proof. One has F̄ ∼= (Z3 × Z3)⋊Z4 by Lemma 3.3.
Up to conjugation, the group Ḡ has a unique subgroup that is isomorphic to F̄ , which implies

that we may assume that F̄ fixes the point [1 : −1 : 1 : −1 : 1 : −1] ∈ Sing(X).
Let us considerW as a representation of the group F̄ , and letW1 ⊂W be the one-dimensional

subrepresentation of the group Ḡ that corresponds to the point [1 : −1 : 1 : −1 : 1 : −1]. Then
W ∼=W1 ⊕W4, where W4 is some four-dimensional representation of the group F̄ .

Let χ1 and χ be the characters of the representations W1 and W , respectively. The values of
the characters χ1 and χ and the structure of the subgroup F̄ are given in the following table:
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[4, 2] [3, 3] [3, 1, 1, 1] [2, 2, 1, 1] e

# 18 4 4 9 1

χ −1 −1 2 1 5

χ1 −1 1 1 1 1

where we use notation similar to the ones used in the proof of Lemma 3.7.
We see that W4 is an irreducible representation of the group F̄ . Thus, without loss of gener-

ality, we may assume that O = [1 : −1 : 1 : −1 : 1 : −1]. Then T ∼= W4 ⊗W ∗
1 by Remark 5.1,

which implies that T is an irreducible representation of the group F̄ . �

Let Γ be the Ḡ-orbit of the point [0 : 0 : 0 : 0 : 1 : −1] ∈ X \ Sing(X). Then |Γ| = 15.

Lemma 5.4. Suppose that |Σ| = 15. Then Σ = Γ, and F̄ ∼= S4. Moreover, T is an irreducible
three-dimensional representation of the group F̄ .

Proof. One has F̄ ∼= S4 by Lemma 3.3. Up to conjugation, the group Ḡ contains exactly two
non-conjugate subgroups that are isomorphic to the group F̄ ∼= S4 (see Lemma 3.3).

Let us considerW as a representation of the group F̄ . ThenW contains some one-dimensional
subrepresentation U of the group F̄ that correspond to the point O ∈ X.

Let Wt be the trivial one-dimensional representations of the group F̄ , and let W1 be the non-
trivial one-dimensional representations of the group F̄ . Then either U ∼=Wt or U ∼=W1.

Let χ and χ1 be the characters of W and W1, respectively.
Suppose that S4 ∼= F̄ ⊂ Ḡ ∼= A6 is a non-standard embedding. The values of χ1 and χ and

the structure of the subgroup F̄ are given in the following table:

[4, 2] [3, 3] [2, 2, 1, 1] [2, 2, 1, 1] e

# 6 8 3 6 1

χ −1 −1 1 1 5

χ1 −1 1 1 −1 1

where we use notation similar to the ones used in the proof of Lemma 3.7, and we divide
the elements of type [2, 2, 1, 1] that are contained in the subgroup F̄ into two classes with respect
to the values of the character χ1. We see thatW contains no one-dimensional subrepresentations.

Thus S4 ∼= F̄ ⊂ Ḡ ∼= A6 is a standard embedding. The values of χ1 and χ and the structure
of the subgroup F̄ are given in the following table:

[4, 2] [3, 1, 1, 1] [2, 2, 1, 1] [2, 2, 1, 1] e

# 6 8 3 6 1

χ −1 2 1 1 5

χ1 −1 1 1 −1 1

which implies that W ∼=Wt ⊕W1 ⊕W3, where W3 is an irreducible three-dimensional represen-
tation of the group F̄ . Hence T is an irreducible representation of the group F̄ by Remark 5.1.

Suppose that Σ 6= Γ. Then [1 : 1 : 1 : 1 : −2 : −2] ∈ Σ. But [1 : 1 : 1 : 1 : −2 : −2] 6∈ X, which
gives a contradiction. �

Let H be a general hyperplane section of the cubic X ⊂ P4. Then the Ḡ-invariant subgroup
of the group Cl(X) is generated by H (see Example 1.19). The main purpose of this section is
to prove

Theorem 5.5. The threefold X is Ḡ-birationally superrigid and BirḠ(X) ∼= S6.
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By Corollary 1.12, the isomorphism BirḠ(X) ∼= S6 follows from Ḡ-birational superrigidity of
X and classification of primitive subgroups in SL5(C) (see [17]). In the remaining part of this
section, we will prove that X is Ḡ-birationally superrigid.

Suppose that X is not Ḡ-birationally superrigid. Let us derive a contradiction. It follows
from [12, Theorem 4.2] or [7, Theorem 1.4.1] that there is a (non-empty) Ḡ-invariant linear
system M on X such that M does not have fixed components, and (X,λM) is not canonical,
where λ ∈ Q such that λM ∼Q −KX . By Corollary 2.3 there is µ ∈ Q such that µ < 2λ and
(X,µM) is strictly log canonical. Let S ⊂ X be a minimal center in LCS(X,µM). Then it
follows from Lemma 2.7 that S ∩ g(S) 6= ∅ if and only if S = g(S) for every g ∈ Ḡ. Moreover,
the center S is not a surface, since M has no fixed components.

By Lemma 2.13, there is a Ḡ-invariant effective Q-divisorD onX such that the set LCS(X,D)
consists of irreducible components of the Ḡ-orbit of S, the log pair (X,D) is log canonical and
D ∼Q −δKX for some δ ∈ Q such that 0 < δ < 2. Arguing as in the proof of [10, Lemma 2.11],
we see that we can replace D by (µ−ǫ)M+ǫ′H, where ǫ ∈ Q>0 ∋ ǫ′ such that ǫ≪ 1 and ǫ′ ≪ 1,
and H is a Ḡ-invariant linear system such that H ∼ −nKX holds for some n≫ 0, the base locus
of the linear system H coincides with LCS(X,D), and δ = (µ − ǫ)/λ + ǫ′n. Thus, without loss
of generality, we can replace D by µM (cf. Lemma 2.13). Therefore, without loss of generality,
we may assume that the set LCS(X,µM) also consists of irreducible components of the Ḡ-orbit
of S.

Let I be the multiplier ideal sheaf of (X,µM), and let L be the subscheme given by I. Then

(5.6) h0
(

OL ⊗OX

(
2H

))

= h0
(

OX

(
2H

))

− h0
(

OX

(
2H

)
⊗ I

)

= 15− h0
(

OX

(
2H

)
⊗ I

)

by Theorem 2.4.

Lemma 5.7. The center S is not a singular point of the threefold X.

Proof. Suppose that S is a singular point of the threefold X. Then LCS(X,µM) = Sing(X),
because Ḡ acts transitively on the set Sing(X). Recall that |Sing(X)| = 10.

Let F̄ ⊂ Ḡ be a stabilizer of the point S. Then F̄ ∼= (Z3 × Z3)⋊ Z4 by Lemma 5.3.
Let π : U → X be a blow up of the points Sing(X), and let E1, . . . , E10 be the π-exceptional

divisors. Then there is a positive rational number m such that

KU + µM̄+
(
m− 1

)
10∑

i=1

Ei ∼Q π
∗
(

KX + µM
)

,

where M̄ is the proper transforms of the linear system M on the variety U .
Note that it follows from [7, Theorem 1.7.20] that m > 1 (cf. [13, Theorem 3.10]).
We may assume that π(E1) = S. There is a natural homomorphism υ : F̄ → Aut(E1). Then

lct(E1, υ(F̄ )) > 1 by Lemmas 2.16 and 5.3, because E1
∼= P1 × P1.

Let us show that lct(E1, υ(F̄ )) < 1 to derive a contradiction.
One can easily check that there exists a two-dimensional linear subspace Π ⊂ P4 such that

|Π∩Sing(X)| = 4 and Π ⊂ X (see [23, Section 3.2]). Let C be a general conic in Π that contains
Π ∩ Sing(X). Then C is not contained in the base locus of the linear system M, and C is
irreducible. Let C̄ be a proper transform of the curve C on the threefold U . Then

8

µ
− 4

m

µ
>

4

λ
− 4

m

µ
= M̄ · C̄ > 0,

which implies thatm < 2. In particular, the log pair (U, µM̄+(m−1)
∑10

i=1Ei) is not Kawamata
log terminal along E1. Hence lct(E1, υ(F̄ )) < 1 by Theorem 2.6. �

Lemma 5.8. The center S is a curve.
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Proof. Suppose that S is a point. Then S 6∈ Sing(X) by Lemma 5.8. It follows from (5.6) that
|LCS(X,µM)| 6 15, so that LCS(X,µM) is the Ḡ-orbit of the point [0 : 0 : 0 : 0 : 1 : −1] by
Lemma 5.2. There are 15 two-dimensional linear subspaces Π1, . . . ,Π15 in P4 such that |Πi ∩
LCS(X,µM)| = 6 and X ∩ Πi = L1

i + L2
i + L3

i for any i ∈ {1, . . . , 15}, where Lj
i is a line such

that ((
L1
i ∩ L2

i

)
∪
(
L1
i ∩ L3

i

)
∪
(
L2
i ∩ L3

i

))⋂

LCS
(
X,µM

)
= ∅

and Lj
i = Ls

r if and only if (i, j) = (r, s). Note that the curve
∑15

i=1(L
1
i + L2

i + L3
i ) is a Ḡ-orbit

of the line L1
1. Without loss of generality, we may assume that S ∈ L1

1.
Let M1 and M2 be general surfaces in the linear system M. Put

M1 ·M2 = γ

15∑

i=1

(L1
i + L2

i + L3
i ) + Ω,

where Ω is an effective cycle such that Lj
i 6⊆ Supp(Ω) for every i ∈ {1, . . . , 15} and j ∈ {1, 2, 3},

and γ is a non-negative rational number. Put m = multS(M1 ·M2), and let D be a general
surface in |H| that contains the lines L1

1, L
2
1 and L3

1. Then

12

λ2
− 3γ = D ·

(

Ω+ γ
15∑

i=2

(

L1
i + L2

i + L3
i

))

> 6(m− γ),

which implies that γ > 2m− 4/λ2. Therefore, we see that

12

λ2
= H ·M1 ·M2 = 45γ +H · Ω > 45γ > 45

(

2m− 4

λ2

)

,

which implies that m 6 32/(15λ2). In particular, we see that

(5.9) multS
(
M

)
6

√
m 6

2
√
2√

15λ
<

3

2λ
<

3

µ
.

Let π : U → X be a blow up of the point S, and let E be the π-exceptional divisor. Then

KU + µM̄+
(

µmultS
(
M

)
− 2

)

E ∼Q π
∗
(

KX + µM
)

,

where M̄ is the proper transforms of M on the variety U .
Let F̄ ⊂ Ḡ be a stabilizer of the point S. Then F̄ ∼= S4 by Lemma 5.4, and there is a natural

homomorphism υ : F̄ → Aut(E). Note that υ is a monomorphism by Lemma 5.4.
There is an irreducible proper subvariety C ( E ∼= P2 such that

g(C) ∈ LCS(U, µM̄+ (µmultS(M)− 2)E)

for every g ∈ υ(F̄ ). Then C is a curve by Theorem 2.5 and Lemma 5.4.
Let M̄1 and M̄2 be general surfaces in M̄. Then it follows from [13, Theorem 3.1] that

multg(C)

(

M̄1 · M̄2

)

>
4

µ2

(

3− µmultS
(
M

))

.

for every g ∈ υ(F̄ ). Let δ be the degree in E ∼= P2 of the υ(F̄ )-orbit of the curve C. Then

128

15µ2
>

32

15λ2
> m > mult2S

(
M

)
+ δmultC

(

M̄1 · M̄2

)

> mult2S
(
M

)
+

8

µ2

(

3− µmultS
(
M

))

,

because δ > 2 by Lemma 5.4. The latter value is greater than 9/µ2, which can be easily
seen using the elementary properties of quadratic forms and (5.9). The obtained contradiction
completes the proof. �

By Theorem 2.8, the curve S is a smooth curve in P4 of degree d and genus g 6 d. Put
q = h0(OX(2H) ⊗ I), let Z be the Ḡ-orbit of the curve S, let r be the number of irreducible
components of the curve Z.
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Lemma 5.10. The equality r(2d− g + 1) = 15− q holds.

Proof. The equality follows from (5.6) and the Riemann–Roch theorem, because d > g. �

Corollary 5.11. The inequality g 6 14 holds.

Note that Z is not contained in a hyperplane in P4, sinceW is an irreducible Ḡ-representation.

Lemma 5.12. The equality r = 1 holds.

Proof. Suppose that r > 2. Then r 6 15 by Lemma 5.10, which implies that r ∈ {6, 10, 15} by
Lemma 3.3. If q = 0, then 2d− g + 1 = 1 by Lemma 5.10, which is impossible, because g 6 d.

We have q > 1. Then r(g+1) 6 14 and g 6 1. If g = 0, then r(2d+1) 6 14 by Lemma 5.10,
which implies a contradictory inequality d 6 0. We see that g = 1. Thus 2rd 6 14 by
Lemma 5.10, which implies that d = 1 and g = 0, that contradicts the equality g = 1. �

There is a natural monomorphism θ : Ḡ→ Aut(S) (see Lemma 5.2).

Lemma 5.13. The equality g = 10 holds.

Proof. The required assertion follows from Lemmas 5.10 and 2.10. �

The equality g = 10 and Lemma 5.10 imply that d 6 12.

Lemma 5.14. The equality q = 0 holds.

Proof. Let Ψ̄ ⊂ Ḡ be a subgroup such that Ψ̄ ∼= A5 and the embedding A5
∼= Ψ̄ ⊂ Ḡ ∼= A6

is standard. There is a Ψ̄-invariant hyperplane section H ⊂ X. Note that S 6⊂ H. We have
|H ∩S| 6 d 6 12, which implies that |H ∩S| = 12 by Lemma 2.9, because H ∩S is Ψ̄-invariant.
Then q = 0 by Lemma 5.10. �

Let Q be the Ḡ-invariant quadric in P4 (cf. Example 1.18). Then S 6⊂ Q, because q = 0.
Put ∆ = Q ∩ S. Then |∆| 6 24. Let Ψ̄ ⊂ Ḡ be a stabilizer of a point in ∆. Then

∣
∣Ψ̄

∣
∣ >

|Ḡ|
|∆| >

360

24
> 6,

which is impossible by Lemma 2.9.
The obtained contradiction completes the proof of Theorem 5.5.

6. Quadric threefold

Let G ⊂ SL5(C) be a subgroup such that G ∼= A6, and let φ : SL5(C) → Aut(P4) be the natural
projection. Put W = C5 and Ḡ = φ(G). Then there is a smooth quadric hypersurface Q ⊂ P4

that is Ḡ-invariant. Let us identify Q with a smooth complete intersection in P5 that is given
by the equation

5∑

i=0

xi =

5∑

i=0

x2i = 0 ⊂ P5 ∼= Proj
(

C
[
x0, x1, x2, x3, x4, x5

])

,

and let us identify Ḡ with a subgroup of the group Aut(Q) (cf. Example 1.18).
Let O ∈ Q be a point, let F̄ ⊂ Ḡ be its stabilizer, and let Σ be its Ḡ-orbit.

Lemma 6.1. Suppose that |Σ| 6 30. Then |Σ| = 30, and there exists a cubic hypersurface
X ⊂ P4 such that Σ ⊂ X and Q 6⊂ X.

Proof. One has |Σ| 6= 1, because W is an irreducible representation of the group Ḡ. Then
|Σ| ∈ {6, 10, 15, 20, 30} by Lemma 3.3. Arguing as in the proof of Lemmas 4.2, 5.2, 5.3 and 5.4,
we see that |Σ| ∈ {20, 30}.
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Let us considerW as a representation of the group F̄ . ThenW contains some one-dimensional
subrepresentation U of the group F̄ corresponding to the point O ∈ Q.

Suppose that |Σ| = 20. Then F̄ ∼= (Z3 × Z3)⋊ Z2 by Lemma 3.3.
Let Wt and W1 be the trivial one-dimensional and the non-trivial one-dimensional represen-

tations of F̄ (see the proof of Lemma 5.3), respectively. Then either U ∼=Wt or U ∼=W1.
Let χ and χ1 be the characters of the representations W and W1, respectively. The values of

the characters χ1 and χ and the structure of the subgroup F̄ are given in the following table:

[3, 3] [3, 1, 1, 1] [2, 2, 1, 1] e

# 4 4 9 1

χ −1 2 1 5

χ1 1 1 −1 1

where we use notation similar to the ones used in the proofs of Lemmas 3.7, 5.3 and 5.4.
We see that U ∼=W1. Thus [1 : −1 : 1 : −1 : 1 : −1] ∈ Σ. But [1 : −1 : 1 : −1 : 1 : −1] 6∈ Q.
Therefore, we see that |Σ| = 30. Then F̄ ∼= A4 by Lemma 3.3. The embedding A4

∼= F̄ ⊂
Ḡ ∼= A6 must be standard, because otherwise the representation W would be an irreducible
representation of the group F̄ (cf. the proof of Lemma 5.4).

There are exactly two F̄ -invariant points in Q. These points form a subset
{[

1 : 1 : 1 : 1 : −2 +
√
−2 : −2−

√
−2

]
,
[
1 : 1 : 1 : 1 : −2−

√
−2 : −2 +

√
−2

]}

⊂ Σ.

Let X be the cubic threefold in P5 that is given by

5∑

i=0

xi =
(
x0 − x1

)(
x2 − x3

)(
x4 − x5

)
= 0,

let P be the point [1 : ω : ω2 : 1 : ω : ω2] ∈ P5, where ω is a non-trivial cube root of unity. Then
Σ ⊂ X 6∋ P ∈ Q, which completes the proof. �

The main purpose of this section is to prove the following result.

Theorem 6.2. The quadric threefold Q is Ḡ-birationally superrigid and BirḠ(Q) ∼= S6.

By Corollary 1.12, the isomorphism BirḠ(Q) ∼= S6 follows from Ḡ-birational superrigidity
of Q and classification of primitive subgroups in SL5(C) (see [17]). In the remaining part of this
section, we will prove that Q is Ḡ-birationally superrigid.

Suppose that Q is not Ḡ-birationally superrigid. Arguing as in the proof of Theorem 5.5,
we see that there is a Ḡ-invariant effective Q-divisor D on Q such that the set LCS(Q,D)
consists of irreducible components of the Ḡ-orbit of S, the log pair (Q,D) is log canonical, and
D ∼Q −δKQ for some positive rational number δ < 2, where S is a minimal center in LCS(Q,D)
such that either S is a point or a smooth curve.

Let I be the multiplier ideal sheaf of the log pair (Q,D), let L be subscheme that is given by
the ideal sheaf I, and let H be a general hyperplane section of the threefold Q ⊂ P3. Then

(6.3) h0
(

OL ⊗OQ

(
3H

))

= h0
(

OQ

(
3H

))

− h0
(

OQ

(
3H

)
⊗ I

)

= 30− h0
(

OQ

(
3H

)
⊗ I

)

by Theorem 2.4.

Lemma 6.4. The center S is a curve.

Proof. The required assertion follows from (6.3) and Lemma 6.1. �
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By Theorem 2.8, the curve S is a smooth curve of degree d and genus g such that

(6.5) g 6
3d+ 1

2
.

Put q = h0(OQ(3H)⊗I), let Z be the Ḡ-orbit of the curve S, let r be the number of irreducible
components of the curve Z.

Lemma 6.6. The equality r(3d− g + 1) = 30− q holds.

Proof. The equality follows from (6.3) and the Riemann–Roch theorem, because 3d > 2g−1. �

Let X be the cubic threefold in P5 that is given by
∑5

i=0 xi =
∑5

i=0 x
3
i = 0 (cf. Example 1.19).

Lemma 6.7. Suppose that q > 2. Then q > 5.

Proof. Suppose that 2 6 q 6 4. It follows from [15] that Ḡ acts trivially on the q-dimensional
vector space H0(OQ(3H)⊗ I). But Q ∩X is the only Ḡ-invariant surface in |OQ(3H)|. �

Note that Z is not contained in a hyperplane in P4, sinceW is an irreducible Ḡ-representation.

Lemma 6.8. The curve S is irreducible.

Proof. Suppose that r > 2. By Lemma 3.3, either r = 6, or r > 10.
Suppose that q = 0. If r = 6, then it follows from Lemma 6.6 that

(6.9) 3d− g + 1 = 5.

From (6.5) and (6.9) we obtain that g 6 5. Applying (6.9) we see that d 6 3 and thus g 6 1.
Applying (6.9) once again, we obtain a contradiction. Therefore, we see that r > 10 and

(6.10) 3d− g + 1 6 3

by Lemma 6.6. By (6.5) and (6.10) we have g 6 3. Applying (6.10) again, we obtain d = 1 and
thus g = 0, which is incompatible with (6.10).

Suppose that q = 1. Then r(3d−g+1) = 29 by Lemma 6.6, which is impossible by Lemma 3.3.
Therefore, we see that q > 2. Hence q > 5 by Lemma 6.7. It follows from Lemma 6.6 that

r(3d − g + 1) 6 25, which implies that 3d − g 6 3. We have g 6 4, because 2g − 1 6 3d. Thus
d 6 2 and g = 0.

Applying Lemma 6.6, we get d = 1 and r = 6. Then S is a line, and Z is a union of six lines.
Let Ψ̄ ⊂ Ḡ be a stabilizer of the line S. Then Ψ̄ ∼= A5 by Lemma 3.3.
Let us consider W as a representation of the group Ψ̄ ∼= A5. Then either W is irreducible,

or W ∼= Wt ⊕ W4, where Wt and W4 are the trivial one-dimensional and the standard four-
dimensional representations of the group Ψ̄ ∼= A5, respectively. In both cases, the line S can not
be Ψ̄-invariant. �

We see that r = 1. Hence g 6 30 and d 6 19 by (6.3), because 3d > 2g − 1.

Lemma 6.11. The equalities d = 12 and g = 10 hold.

Proof. Let Πi ⊂ Q be a hyperplane section that is cut out by xi = 0, where i ∈ {0, . . . , 5}. Then
Π0 ∩ . . . ∩Π5 = ∅, which implies that, without loss of generality, we may assume that S 6⊂ Π0.

Let Ψ̄ ⊂ Ḡ be a stabilizer of the surface Π0. Then Ψ̄ ∼= A5 and the embedding Ψ̄ ⊂ Ḡ must
be standard. Hence we have

19 > d = Π0 · S >
∣
∣Π0 ∩ S

∣
∣,

which implies that d = Π0 · S = |Π0 ∩ S| = 12 by Lemma 2.15, because Π0
∼= P1 × P1.

It follows from Theorem 2.20 that g 6 15. Thus g = 10 by Lemma 2.10. �

Thus, it follows from Lemma 6.6 that q = 3, which is impossible by Lemma 6.7.
The obtained contradiction completes the proof of Theorem 6.2.
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Appendix A. Klein cubic threefold

Put Γ̄ = PSL2(F11). Let V be a Fano threefold with terminal singularities such that V admits
a non-trivial action of the group Γ̄, and the Γ̄-invariant subgroup of the group Cl(V ) is Z.

Example A.1. If V is a smooth hypersurface in P4 that is given by the equation

x20x1 + x21x2 + x22x3 + x23x4 + x24x0 = 0 ⊂ P4 ∼= Proj
(

C
[
x0, x1, x2, x3, x4

])

,

then V is non-rational by [11, Theorem 0.12], and Aut(V3) ∼= Γ̄ by [1].

Example A.2 ([38, Example 2.9]). There is a non-trivial action of the group Γ̄ on Gr(2, 6),
and Pic(Gr(2, 6)) = Z[H] for some very ample divisor H. The linear system |H| gives an
embedding ζ : Gr(2, 6) → P14, which induces a non-trivial action of the group Γ̄ on P14. Put
V = ζ(Gr(2, 6)) ∩ Π, where Π is the unique Γ̄-invariant linear subspace Π ⊂ P14 such that
dim(Π) = 9. Then the variety V is a smooth Fano threefold such that Pic(V ) ∼= Z and −K3

V = 14
(see [25]). Furthermore, the variety V admits a non-trivial action of the group Γ̄.

Let V3 and V14 be the threefolds that are constructed in Examples A.1 and A.2, respectively.

Theorem A.3 ([38, Theorem 1.5]). There is a Γ̄-equivariant birational map χ : V 99K U
such that either U ∼= V3 or U ∼= V14.

Remark A.4 (see [38, Remark 2.10]). The varieties V3 and V14 are birationally equivalent.

The main purpose of this section is to prove the following result (cf. [38, Remark 2.10]).

Theorem A.5. The varieties V3 and V14 are Γ̄-birationally superrigid.

Corollary A.6. The birational map χ : V 99K U in Theorem A.3 is biregular.

Corollary A.7. There exists no Γ̄-equivariant birational map V14 99K V3.

Corollary A.8. Up to conjugation, the group Bir(V3) ∼= Bir(V14) contains exactly 2 sub-
groups that are isomorphic to the simple group PSL2(F11).

Let us prove that V14 is Γ̄-birationally superrigid. Suppose that V14 is not Γ̄-birationally
superrigid. There is a (non-empty) Γ̄-invariant linear system M without fixed components such
that λM ∼Q −KV14

for some λ ∈ Q>0. Then (V14, λM) is not canonical (see [7, Theorem 1.4.1]).
There is µ ∈ Q such that µ < 2λ and (V14, µM) is strictly log canonical.
Let S ⊂ V14 be a minimal center in LCS(V14, µM). Then dim(S) ∈ {0, 1}.
By Lemma 2.13, there is a Γ̄-invariant effective Q-divisor D on the threefold V14 such that

the set LCS(V14,D) consists of irreducible components of the Γ-orbit of S, and D ∼Q −ǫKV14
,

where ǫ is a positive rational number such that ǫ < 2.
Let I be the multiplier ideal sheaf of the log pair (V14,D), and let L(V14,D) be the log

canonical singularities subscheme of the log pair (V14,D). Then it follows from Theorem 2.4
that

(A.9) h0
(

OL(V14,D)⊗OV14

(
H
))

= h0
(

OV14

(
H
))

−h0
(

OV14

(
H
)
⊗I

)

= 10−h0
(

OV14

(
H
)
⊗I

)

,

where H ∈ | −KV14
|.

Lemma A.10. The equality dim(S) = 0 is impossible.

Proof. Suppose that dim(S) = 0. Let F̄ ⊂ Γ̄ be a stabilizer of a point in LCS(V14,D). Then
|LCS(V14,D)| 6 10 by (A.9). Thus, we see that |F̄ | > |Γ̄|/10 = 66. Hence, we must have
LCS(V14,D) = S and F̄ = Γ̄, because there are no proper subgroups of Γ̄ of order greater
than 60 (see [15]).

The action of Γ̄ on the tangent space to V14 at the point S gives a faithful three-dimensional
representation of the group Γ̄, which does not exist (see [15]). �
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It follows from Theorem 2.8 that S is a smooth curve of genus g such that 2g − 2 < S ·H.

Lemma A.11. The curve S is Γ̄-invariant.

Proof. Let Z be the Γ̄-orbit of the curve S. Then Z = L(V14,D), because (V14,D) is log
canonical.

Suppose that S 6= Z. Let r be the number of irreducible components of Z. Then r > 11,
because there is no nontrivial homomorphism Γ̄ → Sr if 1 < r 6 10.

Using (A.9) and the Riemann–Roch theorem, we see that

10 > 10− h0
(

OV14

(
H
)
⊗ I

)

= h0
(

OL(V14,D) ⊗OV14

(
H
))

= r
(

S ·H − g + 1
)

> r,

because L(V14,D) = Z and 2g − 2 < S ·H. Thus, we see that r 6 10. �

Therefore, there is a natural homomorphism θ : Γ̄ → Aut(S).

Lemma A.12. The homomorphism θ is a monomorphism.

Proof. Suppose that θ is not a monomorphism. Then ker(θ) = Γ̄, because Γ̄ simple. Let P
be a point in S. Then P is Γ̄-invariant. The action of the group Γ̄ on the tangent space to
the threefold V14 at the point P gives its faithful three-dimensional representation, which does
not exist (see [15]). �

Lemma A.13. The inequality g > 11 holds.

Proof. Suppose that g 6 10. Then g 6 1 by Theorem 2.18 since |Γ̄| = 660.
Moreover, it follows from the classification of finite subgroups of PSL2(C) that the monomor-

phism θ does not exist if g = 0. Thus, we see that g = 1 and Aut(S) contains a simple
non-abelian subgroup θ(Γ̄) ∼= PSL2(F11), which is impossible, because Aut(S) is solvable. �

Using (A.9) and the Riemann–Roch theorem, we see that

10 > h0
(

OL(V14,D) ⊗OV14

(
H
))

= S ·H − g + 1,

because L(V14,D) = Z and 2g − 2 < S · H. Then g > S · H − 9. But 2g − 2 < S · H. Hence
2(S · H) − 20 6 2g − 2 < S · H, which implies that S · H 6 19. Therefore, g 6 10, which is
impossible by Lemma A.13.

The obtained contradiction shows that V14 is Γ̄-birationally superrigid.
To complete the proof of Theorem A.5, we assume that the threefold V3 is not Γ̄-birationally

superrigid. Then there is a Γ̄-invariant linear system M without fixed components such that
λM ∼Q −KV3

for some λ ∈ Q>0. Then (V3, λM) is not canonical (see [7, Theorem 1.4.1]).
There is µ ∈ Q such that µ < 2λ and (V3, µM) is strictly log canonical.
Let S ⊂ V3 be a minimal center in LCS(V3, µM). Then dim(S) ∈ {0, 1}.
By Lemma 2.13, there is a Γ̄-invariant effective Q-divisor D on the threefold V3 such that

the set LCS(V3,D) consists of irreducible components of the Γ̄-orbit of S, and D ∼Q −ǫKV3
,

where ǫ is a positive rational number such that ǫ < 2.
Let I be the multiplier ideal sheaf of the log pair (V3,D), and let L(V3,D) be the log canonical

singularities subscheme of the log pair (V3,D). Then it follows from Theorem 2.4 that

(A.14) h0
(

OL(V3,D)⊗OV3

(
2H

))

= h0
(

OV3

(
2H

))

−h0
(

OV3

(
2H

)
⊗I

)

= 15−h0
(

OV3

(
2H

)
⊗I

)

,

where H is an ample generator of the group Pic(V3).

Lemma A.15. The equality dim(S) = 0 is impossible.
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Proof. Suppose that dim(S) = 0. Let F̄ ⊂ Γ̄ be a stabilizer of a point in LCS(V3,D). Then

∣
∣F̄

∣
∣ =

∣
∣Γ̄
∣
∣

∣
∣
∣LCS

(

V3,D
)∣
∣
∣

>

∣
∣Γ̄
∣
∣

15
= 44

by (A.14). Thus, if F̄ 6= Γ̄, then F̄ is isomorphic to either A5 or Z11 ⋊ Z5 (see [15]).
We may identify Γ̄ with a subgroup in Aut(P4). There is a subgroup G ⊂ SL5(C) such that

Γ̄ = φ
(
G
)
⊂ Aut

(

P4
)

∼= PGL5

(

C
)

and G ∼= Γ̄, where φ : SL5(C) → Aut(P4) is the natural projection.
Put W = C5. Then W is an irreducible representation of the group G (see [1]), which implies

that F̄ 6= Γ̄. If F is a subgroup of the group G such that φ(F ) = F̄ , then one can show that W
is an irreducible representation of the group F , which is a contradiction. �

It follows from Theorem 2.8 that S is a smooth curve of genus g such that g 6 S ·H.

Lemma A.16. The curve S is Γ̄-invariant.

Proof. Let Z be the Γ̄-orbit of the curve S. Then Z = L(V3,D), because (V3,D) is log canonical.
Suppose that S 6= Z. Let r be the number of irreducible components of Z. Then r > 11,

because there is no non-trivial homomorphism Γ̄ → Sr in the case when 1 < r 6 10.
Using (A.14) and the Riemann–Roch theorem, we see that

15 > 15− h0
(

OV3

(
2H

)
⊗ I

)

= h0
(

OL(V3,D) ⊗OV3

(
2H

))

= r
(

2S ·H − g + 1
)

,

because L(V3,D) = Z and g 6 S ·H. Since r > 11, one has 2S ·H−g+1 6 1, which contradicts
the inequality g 6 S ·H. �

We see that there is a natural homomorphism θ : Γ̄ → Aut(S). Arguing as in Lemma A.12,
we see that θ is a monomorphism. Arguing as in Lemma A.13, one obtains g > 11.

By Theorem 2.18 we may assume that g = 14. Let ai be the number of points on S whose
stabilizers in Γ̄ are isomorphic to Zi. Using the Riemann–Hurwitz formula, we see that

2g − 2 =
(
2ḡ − 2

)
·
∣
∣Γ̄
∣
∣+ 330a2 + 440a3 + 528a5 + 550a6 + 600a11,

where ḡ is the genus of the quotient curve S/Γ̄ (cf. the proof of Lemma 2.10). Then ḡ = 0.
We have

1294 − 528a5 = 330a2 + 440a3 + 550a6 + 600a11,

which leads to a contradiction. The obtained contradiction completes the proof of Theorem A.5.

Appendix B. Del Pezzo fibrations

by Yuri Prokhorov∗

Let X be a threefold with at worst terminal singularities such that the group Aut(X) has
a subgroup Ḡ ∼= A6, and let π : X → P1 be a Ḡ-Mori fibration.

The goal of this appendix is to prove the following result.

Theorem B.1. The isomorphism X ∼= P1×P2 holds, and π is the projection to the first factor.

Recall that there exists no monomorphism Ḡ→ PGL2(C).

Lemma B.2 (cf. [38, Lemma 4.5]). Let Y be a threefold with at worst terminal singularities
such that Aut(Y ) has a subgroup Ḡ ∼= A6. Then Y contains no Ḡ-invariant points.

∗This work is partially supported by the grants RFBR 08-01-00395-a, NSh-1983.2008.1 and NSh-1987.2008.1.
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Proof. Suppose that Y contains a Ḡ-invariant point P ∈ Y . Let us show that this assumption
leads to a contradiction. Let TP,Y be the Zariski tangent space to Y at the point P . Then
dim(TP,Y ) > 5, because Ḡ has no faithful representations of dimension less than 5. We see that
Y is not Gorenstein at the point P (see [39, Section 3]). Let us regard (Y ∋ P ) as an analytic
germ.

Let r be the Gorenstein index of the singularity (Y, P ), let π : (Y ♯, P ♯) → (Y, P ) be the index
one cover (see [39, Section 3.5]), where P ♯ = π−1(P ). Then

π : Y ♯ \
{
P ♯

}
→ Y \

{
P
}

is the topological universal cover (of degree r). Thus, there is an exact sequence of groups

1 // Zr
α // Ḡ♯ β

// Ḡ // 1 ,

where Ḡ♯ is a finite subgroup in Aut(Y ♯, P ♯). Since Ḡ is simple, this is a central extension.
The group Ḡ♯ naturally acts on the Zariski tangent space TP ♯,Y ♯ to Y ♯ at the point P ♯.

Recall that (Y ♯, P ♯) is a hypersurface singularity. Hence, we have dim(TP ♯,Y ♯) 6 4.
By the classification of three-dimensional terminal singularities (see [39, Section 6.1]) the ac-

tion of the group α(Zr) on TP ♯,Y ♯ in some coordinate system has one of the following forms:

• either dim(TP ♯,Y ♯) = 3 and (x1, x2, x3) 7−→ (εx1, ε
−1x2, ε

ax3),

• or dim(TP ♯,Y ♯) = 4 and (x1, x2, x3, x4) 7−→ (εx1, ε
−1x2, ε

ax3, x4),

• or dim(TP ♯,Y ♯) = r = 4 and (x1, x2, x3, x4) 7−→ (
√
−1x1,−

√
−1x2,±

√
−1x3,−x4),

where ε is a primitive r-th root of unity and gcd(r, a) = 1.
The case dim(TP ♯,Y ♯) = 3 and r = 2 is impossible, because the group 2.A6 does not have faith-

ful three-dimensional representations. Therefore, the central subgroup α(Zr) ⊂ Ḡ♯ has at least 2
different eigenvalues. Then TP ♯,Y ♯ is a reducible representation of the group Ḡ♯.

If dim(TP ♯,Y ♯) = 4, then the subgroup α(Zr) has at least 3 different eigenvalues.

Hence, in every possible case, the group Ḡ♯ has a subrepresentation of dimension at least 2,
which is impossible, because the group Ḡ ∼= A6 does no admit any embedding to PGL2(C). �

Lemma B.3 (cf. [16]). Let S be a smooth del Pezzo surface such that S admits a non-trivial
action of the group Ḡ. Then S ∼= P2.

Proof. Note that S 6∼= P1 × P1, because there exists no monomorphism Ḡ→ PGL2(C).
Suppose that S 6∼= P2. Let us derive a contradiction.
If K2

S > 5, then the action of Ḡ on Pic(S) is trivial, because rkPic(S) 6 5 and the canonical
class KS is Ḡ-invariant. Then any (−1)-curve on S must be invariant, a contradiction.

Let C be a Ḡ-invariant curve in |−KS |. Then every component of the curve C is either rational
or elliptic curve. Moreover, the curve C consists of at most 4 components, which immediately
implies that C is not Ḡ-invariant, because Ḡ is simple.

Put V = H0(OS(−KS)). By the above, the group Ḡ acts non-trivially on V . Then

4 > K2
S = h0

(

OS

(
−KS

))

− 1 > 4,

which implies that K2
S = 4, and the space V is an irreducible five-dimensional representation of

the group Ḡ, because Ḡ has no non-trivial representations of dimension less than 5 (see [15]).
We see that S = Q1 ∩Q2 ⊂ P4, where Q1 and Q2 are irreducible quadric hypersurfaces.
The action of the group Ḡ on the space V induces its action on P4.
Let P be the pencil generated by Q1 and Q2 is Ḡ-invariant. Then P is Ḡ-invariant. Since

there is no monomorphism Ḡ → PGL2(C), both quadrics Q1 and Q2 are Ḡ-invariant, which is
impossible, because otherwise the vertex of a degenerate quadric in pencil is a fixed point. �

Corollary B.4. Let Fπ be a general fiber of the morphism π. Then K2
Fπ

= 9



34 IVAN CHELTSOV AND CONSTANTIN SHRAMOV

Let F be any scheme fiber of the morphism π : X → P1. Then F is Ḡ-invariant.

Lemma B.5. The threefold X is smooth and F ∼= P2.

Proof. First we show that Supp(F ) is irreducible, normal and has at worst Kawamata log ter-
minal singularities. This step is similar to the proof of [34, Proposition 2.6].

Take µ ∈ Q such that (X,µF ) is strictly log-canonical. Then there are a Ḡ-invariant π-ample
divisor H and small positive δ1 and δ2 ∈ Q such that (X, (µ− δ1)F + δ2H) is log canonical and

LCS
(

X,
(
µ− δ1

)
F + δ2H

)

=
⋃

g∈Ḡ

g
(
S
)
,

where S is a minimal center in LCS(X,µF ) (cf. Lemma 2.13 or the proof of [34, Proposition 2.6]).
Put D = (µ− δ1)F + δ2H. Then LCS(X,D) is a Ḡ-orbit of the center S.
By Theorem 2.5, the locus LCS(X,D) is connected. It follows from Lemma 2.7 that

LCS(X,D) = S, which implies that S is not a point by Lemma B.2.
If S is a curve, then S ∼= P1 by Theorem 2.8, which is again impossible by Lemma B.2.
We see that S is a Ḡ-invariant surface. Then S = Supp(F ), because π is a Ḡ-Mori fibred space.
By Theorem 2.8, the surface S is normal and has Kawamata log terminal singularities.
Let Σ ⊂ S be a subset consisting of points where S is not Cartier. If F is not reduced, then

1 6 |Σ| 6 4 by [34, Theorem 1.1]. Since Σ is Ḡ-invariant, we see that Σ = ∅ by Lemma B.2.
We see that F is a reduced normal surface having only quotient singularities, which implies

that F is a degeneration of P2 by Corollary B.4. Hence, the inequality |Sing(F )| 6 3 holds
(see [32, Main Theorem], [20, Corollary 1.2]). So, the surface F is smooth by Lemma B.2, which
immediately implies that F ∼= P2. �

Proof of Theorem B.1. It follows from Lemma B.5 that every scheme fiber of the morphism π is
isomorphic to P2. By [3, Proposition V.4.1], there are integers b > a > 0 such that

X ∼= Proj
(

OP1 ⊕OP1

(
a
)
⊕OP1

(
b
))

.

Recall that the action of the group Ḡ on the base P1 is trivial.
By Lemma B.2, every fiber of the morphism π contains no Ḡ-fixed points nor Ḡ-invariant

lines, which implies that a = b = 0 and so X ∼= P1 × P2. �
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