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Abstract 

In this paper we specify five abstract algorithms for the 

parallel execution of production systems on the DAD0 

machine. Each algorithm is designed to capture the 

inherent parallelism in a variety of different production 

system programs. Ongoing research aims to substantiate 

our conclusions by empirically evaluating the performance 

of each algorithm on the DAD02 prototype, presently 

under construction at Columbia University. 

1 Introduction 

In this paper we outline five abstract algorithms 

specifying parallel execution of production s stem (PS) 

programs on the DAD0 machine. Each algorit m offers a !I 

number of advantages for particular types of PS programs. 

We expect to implement these algorithms on the DAD02 

prototype and critically evaluate the performance of each 

on a variety of application programs. Software 

development is presently underway using the DAD01 

prototype that has been operational at Columbia University 

since April, 1983. 

We begin with a brief description of PS’s and 

identify various possible characteristics of PS programs 

which may not be immediately apparent from a general 

description of the basic formalism. These characteristics 

lead to different algorithms which will be discussed in the 

remaining sections of this paper. 

2 Production Systems 

In general, a Production Systenl (PS 

Davis and King 1975, Rychener 1976, A 

[Newell 1973, 

orgy 19821 IS 

defined by a set of rules, or prodzlctions, which form the 

Production Memory (PM), together with a database of 

assert ions, called the Worlcing Memory (WM). Each 

production consists of a conjunction of pattern elements, 

called the left-hand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAside (LHS 

R 

of the rule, along with a 

set of actions called the rzgfzt- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand side (RHS). The RHS 

specifies information that is to be added to (asserted) or 

removed from WM when the LHS successfully matches 

against the contents of WM. 

Pattern elements in the LHS may have a variety of 

forms which are dependent on the form and content of 

WM elements. In the simplest case, patterns are lists 

composed of constants and variables (prefixed with an 
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equals sign), while WM elements are simple lists of 

constant symbols (corresponding to tuples of the relational 

algebra). An example production, borrowed from the 

blocks world, is illustrated in figure 1. 

(Goal Clear-top-of Block) 

(Isa =x Block) 

(On-top-of =y =x) 

(Isa =y Block) -- > delete( On-top-of =y =x) 

assert(On-top-of =y Table) 

If the goal is to clear the top of a block, 

and there is a block (=x) 

covered by something (=y) 

which is also a block, 

then remove the fact that =y is on =x 

and assert that =y is on the table. 

Figure 1: An Example Production. 

In operation., the production system repeatedly 

executes the followmg cycle of operations: 

Match: For each rule, determine whether the 

LHS matches the current environment of WM: 

each pattern element is matched by some WM 

element with variables consistently bound 

throughout the LHS. All matching instances of 

the rules are collected in the conflict set of 

rules. 

Select: Choose exactly one of the matching rules 

according to some predefined criterion. 

Act: Add to or delete from WM all assertions 

specified in the RHS of the selected rule or 

perform some operation. 

During the selection phase of production system 

execution, a typical interpreter provides confht resolution 
strategies based on the recency of matched data in WM, 

as well as syntactic discrimination. Other resolution 

schemes are possible, but for the present paper such issues 

will not significantly change our analysis, and hence will 

not be discussed. 

We shall only consider the parallel execution of PS 

programs with the goal of accelerating the rule firing rate 

of the recognize/act cycle as well as the number of Wh4 

transactions perrormed. In a later section of this paper, 

we shall consider other possible parallel activities as, for 

example, the concurrent execution of multiple PS programs. 
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algebraic operation. 

processed by a parallel update of WM. 

this approach by the abstract algorithm illustrated in 

figure 2. 

1. Assign some subset of rules to a set of (distinct) 

processors. 

2. Assign some subset of WM elements to a set of 

processors (possibly distinct from those in step 

1). 
3. Repeat until no rule is active: 6. 

a. Broadcast an instruction to all processors 

storing rules to begin the match phase, 

resulting in the formation of a local 

conflict set of matching instances. 

b. Considering each maximally rated instance 

within each processor, compute the 

maximally rated rule within the entire 

system. Report its instantiated RHS. 

c. Broadcast the changes to WM reported in 

step 3.b to all processors, which update 

their local WM accordingly. end Repeat; 

Figure 2: Abstract Production System Algorithm. 

This very simple view of the parallel implementatjon 

of the PS cycle forms the basis of our subsequent analysis. 

3 Characteristics of Production System Programs 

In this section we enumerate various characteristics of 

PS programs in general terms. The reader will note that 

these characteristics are less indicative of a specific PS 

formalism, but rather are characteristics of various 

problems whose solutions are encoded in rule form. It 

should be noted, though, that the “inherent parallelism” 
problems may 

Ert;gc0u;“a”r PS f 
not be represented by the 

ormalksm used for their solution. 

1. Temporal Redundancy. Few WM changes are 

made on each cycle. Thus, by saving state 

between each cycle, previous matching operations 

need not be repeated. The Rete algorithm 

[Forgy 19821 is probably the best example of a 

PS interpreter incorporating this strategy. 

2. Few Affected Rules. Few rules are affected 

by changes to WM on each cycle, and thus 

relatively few rules need be matched against the 

3. 

4. 

5. 

7 

8 

9 

10. 

11. 

new state of WM. Note, however, that 

temporal redundancy alone does not guarantee 

this to be always the case. 

Many Affected Rules. Many rules are 

affected by the changes to WM on each cycle. 

This may arise, for example, in situations where 

similar pattern elements appear in many rules. 

Massive changes to WM (non-temporally 

redundant). In this case, action specifications in 

the RHS of a rule may have large global effects 

on WM. Thus, restricting the scope of the 

match operation seems unlikely, i.e., saving state. 

is not appropriate. 

Restricted scope of pattern matches. The 

number of WM elements which may potentially 

match each rule is relatively small. Thus, a 

single rule may not need access to all of WM 

but to a relatively small subset of data 

elements. 

Global tests of WM. Pattern elements in the 

LHS of a rule may test conditions requiring 

access to large portions of WM, rather than 

individual elements (for example, tests which 

compare the number of WM elements against 

some constant threshold value). This case may 

be viewed as the converse of characteristic 5. 

Multiple rule firings. On each cycle of 

operation, a number of conflict rules may be 

executed prior to initiating the match phase of 

the next cycle. 

Small PM. The number of rules is restricted 

to only a few hundred. 

Small WM. Similarly, WM may consist of only 

a few hundred elements. 

Large PM. A PS may consist of several 

thousands of rules in PM. 

Large WM. Similarly, WM may consist of 

thousands of data elements. 

4 Five Algorithms 

In this section we outline five different algori;ha;; 

suitable for direct execution on the DAD0 machine. 

will be independently discussed leadin to various 

conclusions about which characteristics fl t ey are most 

appropriate for capturing. Ongoing research aims to verify 

our conclusions by empirically evaluating their performance 

for different classes of PS programs. 

The reader is assumed to be knowledgeable about the 

Rete match algorithm (see [Forgy 19791 and [Forgy 19821 . 
We will thus freely discuss the details of the Rete mate h 

when needed without prior explication. We begin with a 

brief description of the DAD0 architecture. (The reader is 

encouraged to see 

19841 for complete d 

Stolfo 19831 and [Stolfo and Miranker 

etails of the system.) 
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4.1 The DAD0 Machine 

DAD0 is a fine-grain, parallel machine where 

processing and memory are extensively intermingled. A 
full-scale production version of the DAD0 machine would 

comprise a very large (on the order of a hundred 

thousand) set of processing elements (PE’s , each 

containing its own processor, a small amount (16 k 

in the current design of the 

random access memory P 

rototype version 

(RAM , and a I 

bytes, 

of local 

specia ized I/O 
switch. The PE’s are interconnected to form a complete 

binary tree. 

Within the DAD0 machine, each PE is capable of 

executing in either of two modes under the control of run- 

time software. In the first, which we will call SIA4D 

mode 

Ii 

for single instruction stream, multiple data stream), 

the P executes instructions broadcast by some ancestor 

PE within the tree. (SIMD typically re&hs, t;A;;ingol; 

stream of “machine-level” instructions. 

the other hand, SIMD is generalized to mean a single 

stream of remote procedure invocation instructions. Thus, 

DAD0 makes more effective use of its communication bus 

by broadcasting more “meaningful” instructions.) In the 

second, which will be referred to as MIMD mode (for 

mult,iple instruction stream, mulifle data stream), each PE 

executes instructions stored its own local RAM, 

independently of the other PE’s. A single conventional 

coprocessor, adjacent to the root of the DAD0 tree, 

controls the operation of the entire ensemble of PE’s. 

state 

When a D,4DO PEsuE;ters MIMD mode, its logical 

is changed in a WaY as to effectively 

“disconnect” it and its descendants from all higher-level 

PE’s in the tree. In particular, a PE in MIMD mode does 

not receive any instructions that might be placed on the 

tree-structured communication bus by one of its ancestors. 

Such a PE may, however, broadcast instructions to be 

executed by its own descendants, providing all of these 

descendants have themselves been switched to SIMD mode. 

The DAD0 machine can thus be configured in such a way 
that an arbitrary internal node in the tree acts as the root 

of a tree-structured SIMD device in which all PE’s execute 

a single instruction (on different data) at a given point in 

time. This flexible architectural design supports multiple- 

SIMD execution (MSIMD). Thus, the machine may be 

logically divided into distinct partitions, each executing a 

distinct task, and is the primary source of DADO’s s eed 

in executing a large number of primitive pattern mate K ing 

operations concurrently. 

Our comments will be directed towards the DAD02 

prototype consisting of 1023 PE’s constructed from 

commercially available chips. Each PE contains an 8 bit 

Intel 8751 processor, 16K bytes of local RAM, 4K bytes of 

local ROM and a semi-custom I/O switch. The DAD02 

I/O swit,ch, which is being implemented in semi-custom 

gate array technology, has been designed to support rapid 

global communication. In addition, a specialized 

combinational circuit incorporated within the I/O switch 

will allow for the very rapid selection of a single 

distinguished PE from a set of candidate PE’s in the tree, 

a process we call mu-resolving. (The max-resolve 

instruction computes the maximum of a s ecified register 

in all PE’s in one instruction cycle, whit Tl can then be 

used to select a distinct PE from the entire set of PE’s 

taking part in the operation.) Currently, the 15 processing 

element version of DAD0 performs these operations in 

firmware embodied in its off-the-shelf components. 

4.2 Algorithm 1: Full Distribution of PM 

In this case, a very small number of distinct 

production rules are distributed to each of the 1023 

DAD02 PE’s, as well as all WM elements relevant to the 

rules in question, i.e., only those data elements which 

match some pattern in the LHS of the rules. Algorithm 1 
alternates the entire DAD0 tree between MIMD and SIMD 

modes of operation. 

an MIMD process, 

The match phase is implemented as 

whereas selection and act execute as 

SIMD operations. 

In simplest terms, each PE executes the match phase 

for its own small PS. One such PS is allowed to “fire” a 

rule, 

The 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

however, which is communicated to all other PE’s. 

algorithm is illustrated in figure 3. 

Initialize: Distribute a simple rule matcher to 

each PE. Distribute a few distinct rules to each 

PE. Set CHANGES to initial WM elements. 

Repeat the following: 

Act: For each WM-change in CHANGES do: 

a. Broadcast WM-change (add or delete a 

specific WM element) to all PE’s. 

b. Broadcast a command to locally match. 

[Each PE operates independently in MIMD 

mode and modifies its local WM. If this 

is a deletion, it checks its local conflict set 

and removes rule instances as appropriate. 

If this is an addition, it matches its set of 

rules and modifies its local conflict set 

accordingly]. 

C. end do; 

Find local maxima: Broadcast an instruction to 

each PE to rate its local matching instances 

according to some predefined criteria (conflict 

resolution strategy (see [McDermott and Forgy, 

19781). 

Select: Using the high-speed max-RESOLVE 

circuit of DADOB, identify a single rule for 

execution from among all PE’s with active rules. 

Instantiate: Report the instantiated RHS actions. 

Set CHANGES to the reported WM-changes. 

end Repeat; 

Figure 3: Full Distribution of Production Memory. 

4.2.1 Discussion of Algorithm 1 

We have left the details of the local match routine 

unspecified at step 3.b. Thus, a simple precompiled Rete 

match network and interpreter may be distributed to each 

processor. However, it is not clear whether a simple naive 

matching algorithm may be more appropriate since only a 

very small number of rules is present in each PE. 

Memory considerations may decide this issue: the overhead 

associated with linking and manipulating intermediate 

partial matches in a Rete network may be more expensive 

than direct pattern matching against the local W’M on 

each cycle. 

302 



Performance of this algorithm varies with the 

complexity of the local match. In the best case, the time 

to match the rule set is bounded by the time to match 

only a. few rules. The worst case is dependent on the 

maximum number of WM elements accessed during the 

match of the rules. If a simple naive match is used at 

each PE, this may require a considerable amount of 

computation even though the size of the local WM’s IS 

limited. Simple hashing of WM may dramatically improve 

a local naive matching operation, however. 

We conclude that this algorithm is probably best 

suited to implementing PS programs characterized by: 

1. 

3. 

5. 

9. 

11. 

case 

Temporal redundancy, since massive changes to WM 

would require a considerable amount of sequential 

execution at each PE to modify its local WM. 

Many rules are affected on each cycle. Thus, 

depending on the initial distribution of PM, it would 

be best to partition similar rules separately. Note, 

though, that characteristic 2 may also be suitable, 

but a relatively small number of PE’s would be 

actively computing new match results on each cycle. 

Restricted scope of pattern matches. Clearly, each 

rule is required to potentially match against a 

relatively small local WM. Hence, global tests of 

WM would not be particularly appropriate. 

Large PM is possible. Given the above 

characteristics, three or four rules stored at each PE 

make it possible for a PM consisting of 3000-4000 

rules. 

Similarly, depending on the average number of 

common pattern elements between rules, WM may be 

quite large. Even if an average of one unique WM 

element is resident in each PE (while a significant 

number of additional local WM elements are 

replicated in other PE’s), a minimum of 1000 

individual elements may be stored in WM. 

The most serious drawback of this algorithm is the 

where a local WM is too large to be conveniently 

stored in a PE. Clearly, characteristic 5 is appropriate for 

this algorithm only in the presence of characteristic 9, 

small WM. 

Multiple rule firings (characteristic 7) are indeed 

possible. A discussion of this case is deferred to a later 

section. 

4.3 Algorithm 2: Original DAD0 Algorithm 

The original DAD0 algorithm detailed in [Stolfo 19831 

makes direct use of the machine’s ability to execute in 

both MIMD and SIMD modes of operation at the same 

point in time. The machine is logically divided into three 

conceptually distinct components: a PM-/eve/, an upper 

tree and a number of WM-subtrees. The PM-level consists 

of MIMD-mode PE’s executing the match phase at one 

appropriately chosen level of the tree. A number of 

distinct rules are stored in each PM-level PE. The WM- 

subtrees rooted by the PM-level PE’s consist of a number 

of SIMD mode PE’s collectively operating as a hardware 

content-addressable memory. WM elements relevant to the 

rules stored at the PM-level root PE are fully distributed 

throughout the WM-subtree. The u per 

SIMD mode PE’s lying above rl 

tree consists of 

t e PM-level, which 

implement synchronization and selection operations. 

It is probably best to view WM as a distributed 

relation. Each WM-subtree PE thus stores relational 

tuples. The PM-level PE’s match the LHS’s of rules in a 

manner similar to processing relational 

of the Rete match, e’ntraconditkon tests o pattern elements ? 

ueries. In terms 

in the LHS of a rule are executed as relational selection, 
while intercondition tests correspond to equi-join 

operations. Each PM-level PE thus stores a set of 

relational tests compiled from the LHS of a rule set 

assigned to it. Concurrency is achieved between PM-level 

PE’s as well as in accessing PE’s of the WM-subtrees. 

The algorithm is illustrated in figure 4. 

4.3.1 Discussion of Algorithm 2 

This algorithm was specifically designed for PS 

programs characterized as: 

4. 

3. 

6. 

8. 

Non-temporally redundant. Indeed, the ability to 

distribute WM elements in a content-addressable 

memory allows not only parallel access to WM for 

matching, but large changes to WM may also be 

efficiently implemented. For such an environment, 

saving state between cycles has few advantages. 

Many rules are affected by WM-changes on each 

cycle. Since massive changes to WM may be 

permitted on each cycle, many rules may potentially 

be affected. The concurrency achieved at the PM- 

level would allow many rule matchings to be achieved 

efficiently. 

Global tests are also efficiently handled by the WM- 

subtrees operating as an SIMD mode parallel device. 

PM is, unfortunately, rather restricted in size. Since 

only one level of the tree is used for rule storage, the 

full capacity of the machine for PM is underutilized. 

In DAD02, for example, we envisage a PM-level at 

level 4 of the machine. Thus, 32 PE’s would each 

store roughly 30 rules for a thousand rule system, 

potentially decreasing performance. Rule systems 

with a few hundred rules are more appropriate. 

11 
A A ,  WM may be quite large, however. For example, the 

DAD02 configuration noted above would allow for 32 

WM-subtrees, each consisting of 32 PE’s. Since each 

DAD0 PE has considerable storage capacity, many 

thousands of WM elements may be easily stored. 

Furthermore, this allows a 32-way parallel access to 

WM for each PM-level PE. In total, nearly 1000 

WM elements may be accessed in parallel at a given 

point in time. 

While attempting to implement temporally redundant 

systems, Algorithm 2 may recompute much of its match 

results calculated on previous cycles. This indeed may not 

be the case if we modify Algorithm 2 to incorporate many 

of the capabilities of the Rete match. 

303 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Initialize: Distribute a match routine and a 

partitioned subset of rules to each PM-level PE. 

Set CHANGES to the initial WM elements. 

Repeat the following: 

Act: For each WM-change in CHANGES do; 

a. Broadcast WM-change to the PM-level 

PE’s 

b. The 

level 

i. 

ii. 

. . . 
111. 

and an instruction to match. 

match phase is initiated in each PM- 

PE: 

Each PM-level PE determines if WM- 

change is relevant to its local set of 

rules by a partial match routine. If 

SO, its WM-subtree is updated 

accordingly. [If th is is a deletion, an 

associative probe is performed on the 

element (relational selection) and any 

matching instances are deleted. If 

this is an addition, a free WM- 

subtree PE is identified, and the 

element is added.] 

Each pattern element of the rules 

stored at a PM-level PE is broadcast 

to the WM-subtree below for 

matching. Any variable bindings that 

occur are reported sequentially to the 

PM-level PE for matching of 

subsequent pattern elements 

(relational equi-join). 

A local conflict set of rules is formed 

and stored along with a priority 

rating in a distributed manner within 

the WM-subtree. 

C. end do; 

Upon termination of the match operation, the 

PM-level PE’s synchronize with the upper tree. 

Select: The max-RESOLVE circuit is used to 

identify the maximally rated conflict set 

instance. 

Report the instantiated RHS of the winning 

instance to the root of DADO. 

Set CHANGES to the reported action 

specifications. 

end Repeat; 

Figure 4: Original DAD0 Algorithm. 

Simple changes may _ dramatically improve the 

situation. For example, rather than lteratmg over each 

pattern element in each rule as in step S.b.ii, we may only 
execute the match for those rules affected by new WM 

changes. The selection of affected rules can be achieved 

quickly using the WM subtree as an associative memory. 

By distributing pattern elements as relational tu les in a 

manner similar to WM, associative probing P relational 

selection) can be used to 

faster than hashing). 

select rules for matching (perhaps 

Consideration of these techniques led us to investigate 

Rete for direct implementation on DAD02. Algorithms 3 

and 4 detail this approach. 

4.4 Algorithm 3: Miranker’e TREAT Algorithm 

Daniel Miranker has invented an algorithm which 

modifies Algorithm 2 to include several of the features of 

the Rete match for saving state. The TREe Associative 

Temporally redundant (TREAT) algorithm [Miranker 19841 

makes use of the same logical division of the DAD0 tree 

as in Algorithm 2. However, the state of the previous 

match operation is saved in distributed data structures 

within the WM-subtrees. 

TREAT views the pattern elements in the LHS of 

rules as relational algebra terms, as in Algorithm 2. Thus, 

the evaluation of such rela,tional algebra tests is also 

executed within the WM-subtrees. State is saved in a 

WM-subtree in the form of distributed Rete alpha 
memories corresponding to partial selections of tuples 

matching various pattern elements. Rule instances in the 

conflict set computed on previous cycles are also stored in 

a distributed manner within the WM-subtrees. These two 

additions substa,ntially improve the performance of 

A’gorithm 2. v e note that Anoop Gupta of Carnegie- 

Mellon University analyzed a similar 

algorithm in 

TREAT shoul d 

independently 

Gupta 1983. 

1 

Compared to Algorithm 2, 

perform su stantially better for temporally 

redundant systems. We note that Gupta’s analysis of 

algorithm 2, however, depends on certain assumptions that 

derive misleading results.) 

Another aspect of TREAT is the clever manner in 

which relevancy is computed. Pattern elements are first 

distributed to the WM subtrees. When a new WM 

element is added to the system, a simple match a,t each 

WM-subtree PE determines the set of rules at the PM- 

level which are affected by the change. Those identified 

rules are subsequently matched by the PM-level PE 

restricting the scope of the match to a smaller set of rules 

than would otherwise be possible with Algorithm 2. 

The TREAT algorithm is outlined in figure 5. 

4.4.1 Discussion of Algorithm 3 

The TREAT algorithm is a refinement of Algorithm 

2 incorporating temporal redundancy. Hence, TREAT is 

best suited for PS programs characterized as: 

1. Temporally redundant. 

3. Many rules are affected on each cycle. 

6. Global tests of WM are also efficiently handled. 

8. Small PM. 

11. Large WM. 

We note, though, that minor changes allow TREAT 

to implement Algorithm 2 directly (b setting L to all of 

the rules at the PM-level in step 3. B .ii and ignoring step 

3.d.i). Thus, TREAT may also efficiently execute: 

4. Non-temporally redundant systems. 

In step 3.d.iii, TREAT also implements a useful 



1. Initialize: Distribute to each PM-level PE a 

simple matcher (described below) and a compiled 

set of rules. Distribute to the WM-subtree PE’s 

the appropriate pattern elements appearing in 

the LHS of the rules appearing in the root PM- 

level PE. Set CHANGES to the initial WM 

elements. 

2. Repeat the following: 

3. Act: For each WM-change in CHANGES do; 

a. Broadcast WM-change to the WM-subtree 

PE’s. 

b. If this change is a deletion, broadcast an 

instruction to match and delete WM 

elements and any affected conflict set 

instances calculated on previous cycles. 

c. Broadcast an instruction to PM-level PE to 

enter the Match Phase. 

d. At each PM-level PE do; 

i. Broadcast 

instruction 

to 

to 

WM-subtree PE’s an 

match the WM-change 

against the local pattern element. 

ii. Report the affected rules and store in 

L. 

iii. Order the pattern elements of the 

rules in L appropriately. 

iv. For each rule in L do; 

1. Match remaining patterns of the 

rules specified in L as in 

Algorithm 2. 

2. For each new instance found, 

store in WM-subtree with a 

priority rating. 

3. end do; 

v. end do; 

e. end for each; 

4. Select: Use max-RESOLVE to find the 

maximally rated instance in the tree. 

5. Report the winning instance. 

6. Set CHANGES to the instantiated RHS of the 

winning rule instance. 

7. end Repeat; 

Figure 5: The TREAT Algorithm. 

strategy. When iterating over each of the rules in L 

affected by recent changes in WM, those pattern elements 

with the smallest alpha memories are processed first. This 

technique tends to process the join operations quickly by 

filtering out many potentially failing partial joins. 

As noted above, Gu ta’s 

algorithm, as well as f 

analysis of a TREAT-like 

Miranker [1984], 

su sequent analysis performed by 
show TREAT to be highly efficient 

compared to Algorithm 2 executing temporally redundant 

systems. (Th e implementation, study and detailed analysis 

of TREAT forms a major part of Daniel Miranker’s Ph.D. 

thesis.) 

4.5 Algorithm 4: Fine-grain Rete 

A Rete network compiIed from the LHS’s of a rule 

set consists of a number of simple nodes encoding match 

operations. Tokens, representing WM modifications, flow 

through the network in one direction and are processed by 

each node lying on their traversed paths. Fortunately, the 

maximum fan-m of any node in a Rete network is two. 

Hence, a Rete network can be represented as a binary tree 

(with some minimal amount of node splitting). 

This observation leads to Algorithm 4 whereby a 

logical Rete network is embedded on the ph sical 

i 

DAD0 

binary tree structure. In the simplest case, eaf nodes of 

the DAD0 tree store and execute the initial linear chains 

of one-input, test nodes, whereas internal DAD0 PE’s 

execute two-input node operations. The physical 

connections between processors correspond to the logical 

da.ta flow links in the Rete network. The entire DAD0 

machine operates in MIMD mode while executing this 

algorithm, behaving much like a pipelined data flow 

architecture. 

Algorithm 4 is illustrated in figure 6. 

4.5.1 Discussion of Algorithm 4 

Since this algorithm is a direct implementation of the 

Rete match, it is most suitable for PS programs 

characterized as: 

1. Temporally redundant 

2. Few rules are affected by WM changes. This 

observation is noted in [Forgy 19791. 

10. Large PM. We may, for instance, believe that only 

1023 Rete nodes may be processed by DADOB. 

However, a straight forward overlay technique can be 

implemented where several Rete networks are 

embedded in the tree and processed in turn. Thus, 

large PM may be achievable. 

9. Small WM. However, since Rete network nodes 

require significant storage for intermediate partial 

match results (stored at alpha and beta memories), 

the limited storage capacity of a DAD02 PE may 

require restricting the size of WM. 

Although overlayed Rete networks would be processed 

sequentially on DADOB, significant performance 

improvements can be achieved by a natural pipelinin 

effect. Immediately following a successful match an 3 

communication at a node, the next two-input test from the 

overlayed network is initiated. Thus, while the parent 

node is processing the first network node, its children are 

proceeding with their tests of the second overlayed network 

node. 

A second source of ninelining can improve 

performance as well. In this cker the &tire RHS action 

specification is broadcast at once to the DAD0 leaf PE’s 

at step 3.a. Immediately following the conclusion of the 

first match operation and communication of the first WM 
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1. Initialize: Map and load the compiled Rete 

network on the DAD0 tree. Each node is 

provided with the appropriate match code and 

network information (see [Forgy 19821 for 

details). Set CHANGES to initial WM 

elements. 

2. Repeat the following: 

3. Act: For each WM-change in CHANGES do; 

a. Broadcast WM-change (a Rete token) to 

the DAD0 leaf PE’s. 

b. Broadcast an instruction to all PE’s to 

Match. (First, the leaf processors execute 

their one-input test sequences on the new 

token. The interior nodes lay idle waiting 

for match results computed by their 

descendants. Those tokens passing the 

one-input tests are communicated to the 

immediate ancestors which immediately 

begin processing their two-input tests, The 

process is then repeated until the physical 

root of DAD0 reports changes to the 

conflict set maintained in the DAD0 

control processor). 

C. end do; 

Select: The root PE is provided with the chosen 

instance from the control processor. Set 

CHANGES to the instantiated RHS. 

4. end Repeat; 

Figure 6: Fine-grain Rete Algorithm. 

token, the leaf PE’s initiate processing of the second WM 

token. Hence, as a WM token flows up the DAD0 tree, 

subsequent WM tokens flow close behind at lower levels of 

the tree in pipeline fashion. 

4.0 Algorithm 5: Multiple Asynchronous Execution 

In our discussion so far, no mention was made about 

characteristic 7, multiple rule firings. We may view this 

as 

- multiple, independently executing PS programs, 

or 

- executing multiple conflict set rules of the same 

PS program concurrently. 

In this regard we offer not a single algorithm, but rather 

an observation that may be put to practical use in each of 

the abovementioned algorithms. 

We note that any DAD0 PE may be viewed as a 

root of a DAD0 machine. Thus, any algorithm operating 

at the physical root of DAD0 may also be executed by 

some descendant node. Hence, any of the aforementioned 

algorithms can be executed at various sites in the machine 

concurrently! (Th is was noted in [Stolfo and Shaw 1982 .) 

This coarse level of parallelism, however, will need to II e 

controlled by some algorithmic process executed in the 

upper part of the tree. The simplest case is represented 

by the procedure illustrated in figure 7, which is similar in 

some respects to Algorithm 2. 

1. Initialize. Logically divide DAD0 to incorporate 

a static Production System-level (PS-level), 

similar to the PM-level of Algorithm 2. 

Distribute the appropriate PS program to each 

of the PE’s at the PS-level. 

2. Broadcast an instruction to each PS-level PE to 

begin execution in MIMD mode. (Upon 

completion of their respective 

PS-level PE reconnects to the 

SIMD mode.) 

programs, each 

tree above in 

3. Repeat the following. 

a. Test if all PS-level PE’s are in SIMD 

mode. 

End Repeat; 

4. Execution Complete. Halt. 

Figure 7: Simple Multiple PS Program Execution. 

In the cases where various PS-level PE’s need to 

communicate results with eachother, step 3 is re laced with 

appropriate code sequences to report and broa cast values a 

from the PS-level in the proper manner. Each of the 
programs executed by PS-level PE’s are first modified to 

synchronize as necessary with the root PE to coordinate 

the communication acts, at, for example, termination of the 

Act phase. 

In addition to concurrent execution of multiple PS 

programs, methods may be employed to concurrently 
execute portions of a single PS program. These methods 

are intimately tied to the way rules are partitioned in the 

tree. Subsets of rules may be constructed by a static 

analysis of PM separating those rules which do not directly 

interact with each other. In terms of the match problem- 

solving paradigm, for example, it may be convenient to 

think of independent subproblems and the methods 
implementing their solution (see [Newell 19731). Each such 

method may be viewed as a high-level subroutine 

represented as an independent rule set rooted by some 

internal node of DADO. Algorithm 1, for example, may 

be applied in parallel for each rule set in question. 

Asynchronous execution of these subroutines proceeds in a 

straight forward manner. The complexity arises when one 

subset of rules infers data required by other rule sets. 

The coordination of these communication acts is the focus 

of our ongoing research. Space does not permit a 

complete specification of this approach, and thus the 

reader is encouraged to see [Ishida 1984) for details of our 

initial thinking in this direction. 
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