
FIVE PARALLEL ALGORITHMS FOR PRODUCTION SYSTEM EXECUTION
ON THE DAD0 MACHINE*

Salvatore J. Stolfo

Computer Science Department

Columbia University

New York City, N.Y. 10027 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract

In this paper we specify five abstract algorithms for the

parallel execution of production systems on the DAD0

machine. Each algorithm is designed to capture the

inherent parallelism in a variety of different production

system programs. Ongoing research aims to substantiate

our conclusions by empirically evaluating the performance

of each algorithm on the DAD02 prototype, presently

under construction at Columbia University.

1 Introduction

In this paper we outline five abstract algorithms

specifying parallel execution of production s stem (PS)

programs on the DAD0 machine. Each algorit m offers a !I

number of advantages for particular types of PS programs.

We expect to implement these algorithms on the DAD02

prototype and critically evaluate the performance of each

on a variety of application programs. Software

development is presently underway using the DAD01

prototype that has been operational at Columbia University

since April, 1983.

We begin with a brief description of PS’s and

identify various possible characteristics of PS programs

which may not be immediately apparent from a general

description of the basic formalism. These characteristics

lead to different algorithms which will be discussed in the

remaining sections of this paper.

2 Production Systems

In general, a Production Systenl (PS

Davis and King 1975, Rychener 1976, A

[Newell 1973,

orgy 19821 IS

defined by a set of rules, or prodzlctions, which form the

Production Memory (PM), together with a database of

assert ions, called the Worlcing Memory (WM). Each

production consists of a conjunction of pattern elements,

called the left-hand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAside (LHS

R

of the rule, along with a

set of actions called the rzgfzt- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand side (RHS). The RHS

specifies information that is to be added to (asserted) or

removed from WM when the LHS successfully matches

against the contents of WM.

Pattern elements in the LHS may have a variety of

forms which are dependent on the form and content of

WM elements. In the simplest case, patterns are lists

composed of constants and variables (prefixed with an

*This research h as been supported by the Defense

Advanced Research Projects Agency through contract

N00039-84-C-0165, as well as gr&ts from Intel, Digital

Eauinment. Hewlett-Packard. Valid Logic Svstems. AT&T

Be’11 &Labor&tories and IBM Corporations-and -the New York

State Science and Technology Foundation. We gratefully

acknowledge their support.

equals sign), while WM elements are simple lists of

constant symbols (corresponding to tuples of the relational

algebra). An example production, borrowed from the

blocks world, is illustrated in figure 1.

(Goal Clear-top-of Block)

(Isa =x Block)

(On-top-of =y =x)

(Isa =y Block) -- > delete(On-top-of =y =x)

assert(On-top-of =y Table)

If the goal is to clear the top of a block,

and there is a block (=x)

covered by something (=y)

which is also a block,

then remove the fact that =y is on =x

and assert that =y is on the table.

Figure 1: An Example Production.

In operation., the production system repeatedly

executes the followmg cycle of operations:

Match: For each rule, determine whether the

LHS matches the current environment of WM:

each pattern element is matched by some WM

element with variables consistently bound

throughout the LHS. All matching instances of

the rules are collected in the conflict set of

rules.

Select: Choose exactly one of the matching rules

according to some predefined criterion.

Act: Add to or delete from WM all assertions

specified in the RHS of the selected rule or

perform some operation.

During the selection phase of production system

execution, a typical interpreter provides confht resolution
strategies based on the recency of matched data in WM,

as well as syntactic discrimination. Other resolution

schemes are possible, but for the present paper such issues

will not significantly change our analysis, and hence will

not be discussed.

We shall only consider the parallel execution of PS

programs with the goal of accelerating the rule firing rate

of the recognize/act cycle as well as the number of Wh4

transactions perrormed. In a later section of this paper,

we shall consider other possible parallel activities as, for

example, the concurrent execution of multiple PS programs.

300

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

algebraic operation.

processed by a parallel update of WM.

this approach by the abstract algorithm illustrated in

figure 2.

1. Assign some subset of rules to a set of (distinct)

processors.

2. Assign some subset of WM elements to a set of

processors (possibly distinct from those in step

1).
3. Repeat until no rule is active: 6.

a. Broadcast an instruction to all processors

storing rules to begin the match phase,

resulting in the formation of a local

conflict set of matching instances.

b. Considering each maximally rated instance

within each processor, compute the

maximally rated rule within the entire

system. Report its instantiated RHS.

c. Broadcast the changes to WM reported in

step 3.b to all processors, which update

their local WM accordingly. end Repeat;

Figure 2: Abstract Production System Algorithm.

This very simple view of the parallel implementatjon

of the PS cycle forms the basis of our subsequent analysis.

3 Characteristics of Production System Programs

In this section we enumerate various characteristics of

PS programs in general terms. The reader will note that

these characteristics are less indicative of a specific PS

formalism, but rather are characteristics of various

problems whose solutions are encoded in rule form. It

should be noted, though, that the “inherent parallelism”
problems may

Ert;gc0u;“a”r PS f
not be represented by the

ormalksm used for their solution.

1. Temporal Redundancy. Few WM changes are

made on each cycle. Thus, by saving state

between each cycle, previous matching operations

need not be repeated. The Rete algorithm

[Forgy 19821 is probably the best example of a

PS interpreter incorporating this strategy.

2. Few Affected Rules. Few rules are affected

by changes to WM on each cycle, and thus

relatively few rules need be matched against the

3.

4.

5.

7

8

9

10.

11.

new state of WM. Note, however, that

temporal redundancy alone does not guarantee

this to be always the case.

Many Affected Rules. Many rules are

affected by the changes to WM on each cycle.

This may arise, for example, in situations where

similar pattern elements appear in many rules.

Massive changes to WM (non-temporally

redundant). In this case, action specifications in

the RHS of a rule may have large global effects

on WM. Thus, restricting the scope of the

match operation seems unlikely, i.e., saving state.

is not appropriate.

Restricted scope of pattern matches. The

number of WM elements which may potentially

match each rule is relatively small. Thus, a

single rule may not need access to all of WM

but to a relatively small subset of data

elements.

Global tests of WM. Pattern elements in the

LHS of a rule may test conditions requiring

access to large portions of WM, rather than

individual elements (for example, tests which

compare the number of WM elements against

some constant threshold value). This case may

be viewed as the converse of characteristic 5.

Multiple rule firings. On each cycle of

operation, a number of conflict rules may be

executed prior to initiating the match phase of

the next cycle.

Small PM. The number of rules is restricted

to only a few hundred.

Small WM. Similarly, WM may consist of only

a few hundred elements.

Large PM. A PS may consist of several

thousands of rules in PM.

Large WM. Similarly, WM may consist of

thousands of data elements.

4 Five Algorithms

In this section we outline five different algori;ha;;

suitable for direct execution on the DAD0 machine.

will be independently discussed leadin to various

conclusions about which characteristics fl t ey are most

appropriate for capturing. Ongoing research aims to verify

our conclusions by empirically evaluating their performance

for different classes of PS programs.

The reader is assumed to be knowledgeable about the

Rete match algorithm (see [Forgy 19791 and [Forgy 19821 .
We will thus freely discuss the details of the Rete mate h

when needed without prior explication. We begin with a

brief description of the DAD0 architecture. (The reader is

encouraged to see

19841 for complete d

Stolfo 19831 and [Stolfo and Miranker

etails of the system.)

301

4.1 The DAD0 Machine

DAD0 is a fine-grain, parallel machine where

processing and memory are extensively intermingled. A
full-scale production version of the DAD0 machine would

comprise a very large (on the order of a hundred

thousand) set of processing elements (PE’s , each

containing its own processor, a small amount (16 k

in the current design of the

random access memory P

rototype version

(RAM , and a I

bytes,

of local

specia ized I/O
switch. The PE’s are interconnected to form a complete

binary tree.

Within the DAD0 machine, each PE is capable of

executing in either of two modes under the control of run-

time software. In the first, which we will call SIA4D

mode

Ii

for single instruction stream, multiple data stream),

the P executes instructions broadcast by some ancestor

PE within the tree. (SIMD typically re&hs, t;A;;ingol;

stream of “machine-level” instructions.

the other hand, SIMD is generalized to mean a single

stream of remote procedure invocation instructions. Thus,

DAD0 makes more effective use of its communication bus

by broadcasting more “meaningful” instructions.) In the

second, which will be referred to as MIMD mode (for

mult,iple instruction stream, mulifle data stream), each PE

executes instructions stored its own local RAM,

independently of the other PE’s. A single conventional

coprocessor, adjacent to the root of the DAD0 tree,

controls the operation of the entire ensemble of PE’s.

state

When a D,4DO PEsuE;ters MIMD mode, its logical

is changed in a WaY as to effectively

“disconnect” it and its descendants from all higher-level

PE’s in the tree. In particular, a PE in MIMD mode does

not receive any instructions that might be placed on the

tree-structured communication bus by one of its ancestors.

Such a PE may, however, broadcast instructions to be

executed by its own descendants, providing all of these

descendants have themselves been switched to SIMD mode.

The DAD0 machine can thus be configured in such a way
that an arbitrary internal node in the tree acts as the root

of a tree-structured SIMD device in which all PE’s execute

a single instruction (on different data) at a given point in

time. This flexible architectural design supports multiple-

SIMD execution (MSIMD). Thus, the machine may be

logically divided into distinct partitions, each executing a

distinct task, and is the primary source of DADO’s s eed

in executing a large number of primitive pattern mate K ing

operations concurrently.

Our comments will be directed towards the DAD02

prototype consisting of 1023 PE’s constructed from

commercially available chips. Each PE contains an 8 bit

Intel 8751 processor, 16K bytes of local RAM, 4K bytes of

local ROM and a semi-custom I/O switch. The DAD02

I/O swit,ch, which is being implemented in semi-custom

gate array technology, has been designed to support rapid

global communication. In addition, a specialized

combinational circuit incorporated within the I/O switch

will allow for the very rapid selection of a single

distinguished PE from a set of candidate PE’s in the tree,

a process we call mu-resolving. (The max-resolve

instruction computes the maximum of a s ecified register

in all PE’s in one instruction cycle, whit Tl can then be

used to select a distinct PE from the entire set of PE’s

taking part in the operation.) Currently, the 15 processing

element version of DAD0 performs these operations in

firmware embodied in its off-the-shelf components.

4.2 Algorithm 1: Full Distribution of PM

In this case, a very small number of distinct

production rules are distributed to each of the 1023

DAD02 PE’s, as well as all WM elements relevant to the

rules in question, i.e., only those data elements which

match some pattern in the LHS of the rules. Algorithm 1
alternates the entire DAD0 tree between MIMD and SIMD

modes of operation.

an MIMD process,

The match phase is implemented as

whereas selection and act execute as

SIMD operations.

In simplest terms, each PE executes the match phase

for its own small PS. One such PS is allowed to “fire” a

rule,

The

1.

2.

3.

4.

5.

6.

7.

however, which is communicated to all other PE’s.

algorithm is illustrated in figure 3.

Initialize: Distribute a simple rule matcher to

each PE. Distribute a few distinct rules to each

PE. Set CHANGES to initial WM elements.

Repeat the following:

Act: For each WM-change in CHANGES do:

a. Broadcast WM-change (add or delete a

specific WM element) to all PE’s.

b. Broadcast a command to locally match.

[Each PE operates independently in MIMD

mode and modifies its local WM. If this

is a deletion, it checks its local conflict set

and removes rule instances as appropriate.

If this is an addition, it matches its set of

rules and modifies its local conflict set

accordingly].

C. end do;

Find local maxima: Broadcast an instruction to

each PE to rate its local matching instances

according to some predefined criteria (conflict

resolution strategy (see [McDermott and Forgy,

19781).

Select: Using the high-speed max-RESOLVE

circuit of DADOB, identify a single rule for

execution from among all PE’s with active rules.

Instantiate: Report the instantiated RHS actions.

Set CHANGES to the reported WM-changes.

end Repeat;

Figure 3: Full Distribution of Production Memory.

4.2.1 Discussion of Algorithm 1

We have left the details of the local match routine

unspecified at step 3.b. Thus, a simple precompiled Rete

match network and interpreter may be distributed to each

processor. However, it is not clear whether a simple naive

matching algorithm may be more appropriate since only a

very small number of rules is present in each PE.

Memory considerations may decide this issue: the overhead

associated with linking and manipulating intermediate

partial matches in a Rete network may be more expensive

than direct pattern matching against the local W’M on

each cycle.

302

Performance of this algorithm varies with the

complexity of the local match. In the best case, the time

to match the rule set is bounded by the time to match

only a. few rules. The worst case is dependent on the

maximum number of WM elements accessed during the

match of the rules. If a simple naive match is used at

each PE, this may require a considerable amount of

computation even though the size of the local WM’s IS

limited. Simple hashing of WM may dramatically improve

a local naive matching operation, however.

We conclude that this algorithm is probably best

suited to implementing PS programs characterized by:

1.

3.

5.

9.

11.

case

Temporal redundancy, since massive changes to WM

would require a considerable amount of sequential

execution at each PE to modify its local WM.

Many rules are affected on each cycle. Thus,

depending on the initial distribution of PM, it would

be best to partition similar rules separately. Note,

though, that characteristic 2 may also be suitable,

but a relatively small number of PE’s would be

actively computing new match results on each cycle.

Restricted scope of pattern matches. Clearly, each

rule is required to potentially match against a

relatively small local WM. Hence, global tests of

WM would not be particularly appropriate.

Large PM is possible. Given the above

characteristics, three or four rules stored at each PE

make it possible for a PM consisting of 3000-4000

rules.

Similarly, depending on the average number of

common pattern elements between rules, WM may be

quite large. Even if an average of one unique WM

element is resident in each PE (while a significant

number of additional local WM elements are

replicated in other PE’s), a minimum of 1000

individual elements may be stored in WM.

The most serious drawback of this algorithm is the

where a local WM is too large to be conveniently

stored in a PE. Clearly, characteristic 5 is appropriate for

this algorithm only in the presence of characteristic 9,

small WM.

Multiple rule firings (characteristic 7) are indeed

possible. A discussion of this case is deferred to a later

section.

4.3 Algorithm 2: Original DAD0 Algorithm

The original DAD0 algorithm detailed in [Stolfo 19831

makes direct use of the machine’s ability to execute in

both MIMD and SIMD modes of operation at the same

point in time. The machine is logically divided into three

conceptually distinct components: a PM-/eve/, an upper

tree and a number of WM-subtrees. The PM-level consists

of MIMD-mode PE’s executing the match phase at one

appropriately chosen level of the tree. A number of

distinct rules are stored in each PM-level PE. The WM-

subtrees rooted by the PM-level PE’s consist of a number

of SIMD mode PE’s collectively operating as a hardware

content-addressable memory. WM elements relevant to the

rules stored at the PM-level root PE are fully distributed

throughout the WM-subtree. The u per

SIMD mode PE’s lying above rl

tree consists of

t e PM-level, which

implement synchronization and selection operations.

It is probably best to view WM as a distributed

relation. Each WM-subtree PE thus stores relational

tuples. The PM-level PE’s match the LHS’s of rules in a

manner similar to processing relational

of the Rete match, e’ntraconditkon tests o pattern elements ?

ueries. In terms

in the LHS of a rule are executed as relational selection,
while intercondition tests correspond to equi-join

operations. Each PM-level PE thus stores a set of

relational tests compiled from the LHS of a rule set

assigned to it. Concurrency is achieved between PM-level

PE’s as well as in accessing PE’s of the WM-subtrees.

The algorithm is illustrated in figure 4.

4.3.1 Discussion of Algorithm 2

This algorithm was specifically designed for PS

programs characterized as:

4.

3.

6.

8.

Non-temporally redundant. Indeed, the ability to

distribute WM elements in a content-addressable

memory allows not only parallel access to WM for

matching, but large changes to WM may also be

efficiently implemented. For such an environment,

saving state between cycles has few advantages.

Many rules are affected by WM-changes on each

cycle. Since massive changes to WM may be

permitted on each cycle, many rules may potentially

be affected. The concurrency achieved at the PM-

level would allow many rule matchings to be achieved

efficiently.

Global tests are also efficiently handled by the WM-

subtrees operating as an SIMD mode parallel device.

PM is, unfortunately, rather restricted in size. Since

only one level of the tree is used for rule storage, the

full capacity of the machine for PM is underutilized.

In DAD02, for example, we envisage a PM-level at

level 4 of the machine. Thus, 32 PE’s would each

store roughly 30 rules for a thousand rule system,

potentially decreasing performance. Rule systems

with a few hundred rules are more appropriate.

11
A A , WM may be quite large, however. For example, the

DAD02 configuration noted above would allow for 32

WM-subtrees, each consisting of 32 PE’s. Since each

DAD0 PE has considerable storage capacity, many

thousands of WM elements may be easily stored.

Furthermore, this allows a 32-way parallel access to

WM for each PM-level PE. In total, nearly 1000

WM elements may be accessed in parallel at a given

point in time.

While attempting to implement temporally redundant

systems, Algorithm 2 may recompute much of its match

results calculated on previous cycles. This indeed may not

be the case if we modify Algorithm 2 to incorporate many

of the capabilities of the Rete match.

303

1.

2.

3.

4.

5.

6.

7.

8.

Initialize: Distribute a match routine and a

partitioned subset of rules to each PM-level PE.

Set CHANGES to the initial WM elements.

Repeat the following:

Act: For each WM-change in CHANGES do;

a. Broadcast WM-change to the PM-level

PE’s

b. The

level

i.

ii.

. . .
111.

and an instruction to match.

match phase is initiated in each PM-

PE:

Each PM-level PE determines if WM-

change is relevant to its local set of

rules by a partial match routine. If

SO, its WM-subtree is updated

accordingly. [If th is is a deletion, an

associative probe is performed on the

element (relational selection) and any

matching instances are deleted. If

this is an addition, a free WM-

subtree PE is identified, and the

element is added.]

Each pattern element of the rules

stored at a PM-level PE is broadcast

to the WM-subtree below for

matching. Any variable bindings that

occur are reported sequentially to the

PM-level PE for matching of

subsequent pattern elements

(relational equi-join).

A local conflict set of rules is formed

and stored along with a priority

rating in a distributed manner within

the WM-subtree.

C. end do;

Upon termination of the match operation, the

PM-level PE’s synchronize with the upper tree.

Select: The max-RESOLVE circuit is used to

identify the maximally rated conflict set

instance.

Report the instantiated RHS of the winning

instance to the root of DADO.

Set CHANGES to the reported action

specifications.

end Repeat;

Figure 4: Original DAD0 Algorithm.

Simple changes may _ dramatically improve the

situation. For example, rather than lteratmg over each

pattern element in each rule as in step S.b.ii, we may only
execute the match for those rules affected by new WM

changes. The selection of affected rules can be achieved

quickly using the WM subtree as an associative memory.

By distributing pattern elements as relational tu les in a

manner similar to WM, associative probing P relational

selection) can be used to

faster than hashing).

select rules for matching (perhaps

Consideration of these techniques led us to investigate

Rete for direct implementation on DAD02. Algorithms 3

and 4 detail this approach.

4.4 Algorithm 3: Miranker’e TREAT Algorithm

Daniel Miranker has invented an algorithm which

modifies Algorithm 2 to include several of the features of

the Rete match for saving state. The TREe Associative

Temporally redundant (TREAT) algorithm [Miranker 19841

makes use of the same logical division of the DAD0 tree

as in Algorithm 2. However, the state of the previous

match operation is saved in distributed data structures

within the WM-subtrees.

TREAT views the pattern elements in the LHS of

rules as relational algebra terms, as in Algorithm 2. Thus,

the evaluation of such rela,tional algebra tests is also

executed within the WM-subtrees. State is saved in a

WM-subtree in the form of distributed Rete alpha
memories corresponding to partial selections of tuples

matching various pattern elements. Rule instances in the

conflict set computed on previous cycles are also stored in

a distributed manner within the WM-subtrees. These two

additions substa,ntially improve the performance of

A’gorithm 2. v e note that Anoop Gupta of Carnegie-

Mellon University analyzed a similar

algorithm in

TREAT shoul d

independently

Gupta 1983.

1

Compared to Algorithm 2,

perform su stantially better for temporally

redundant systems. We note that Gupta’s analysis of

algorithm 2, however, depends on certain assumptions that

derive misleading results.)

Another aspect of TREAT is the clever manner in

which relevancy is computed. Pattern elements are first

distributed to the WM subtrees. When a new WM

element is added to the system, a simple match a,t each

WM-subtree PE determines the set of rules at the PM-

level which are affected by the change. Those identified

rules are subsequently matched by the PM-level PE

restricting the scope of the match to a smaller set of rules

than would otherwise be possible with Algorithm 2.

The TREAT algorithm is outlined in figure 5.

4.4.1 Discussion of Algorithm 3

The TREAT algorithm is a refinement of Algorithm

2 incorporating temporal redundancy. Hence, TREAT is

best suited for PS programs characterized as:

1. Temporally redundant.

3. Many rules are affected on each cycle.

6. Global tests of WM are also efficiently handled.

8. Small PM.

11. Large WM.

We note, though, that minor changes allow TREAT

to implement Algorithm 2 directly (b setting L to all of

the rules at the PM-level in step 3. B .ii and ignoring step

3.d.i). Thus, TREAT may also efficiently execute:

4. Non-temporally redundant systems.

In step 3.d.iii, TREAT also implements a useful

1. Initialize: Distribute to each PM-level PE a

simple matcher (described below) and a compiled

set of rules. Distribute to the WM-subtree PE’s

the appropriate pattern elements appearing in

the LHS of the rules appearing in the root PM-

level PE. Set CHANGES to the initial WM

elements.

2. Repeat the following:

3. Act: For each WM-change in CHANGES do;

a. Broadcast WM-change to the WM-subtree

PE’s.

b. If this change is a deletion, broadcast an

instruction to match and delete WM

elements and any affected conflict set

instances calculated on previous cycles.

c. Broadcast an instruction to PM-level PE to

enter the Match Phase.

d. At each PM-level PE do;

i. Broadcast

instruction

to

to

WM-subtree PE’s an

match the WM-change

against the local pattern element.

ii. Report the affected rules and store in

L.

iii. Order the pattern elements of the

rules in L appropriately.

iv. For each rule in L do;

1. Match remaining patterns of the

rules specified in L as in

Algorithm 2.

2. For each new instance found,

store in WM-subtree with a

priority rating.

3. end do;

v. end do;

e. end for each;

4. Select: Use max-RESOLVE to find the

maximally rated instance in the tree.

5. Report the winning instance.

6. Set CHANGES to the instantiated RHS of the

winning rule instance.

7. end Repeat;

Figure 5: The TREAT Algorithm.

strategy. When iterating over each of the rules in L

affected by recent changes in WM, those pattern elements

with the smallest alpha memories are processed first. This

technique tends to process the join operations quickly by

filtering out many potentially failing partial joins.

As noted above, Gu ta’s

algorithm, as well as f

analysis of a TREAT-like

Miranker [1984],

su sequent analysis performed by
show TREAT to be highly efficient

compared to Algorithm 2 executing temporally redundant

systems. (Th e implementation, study and detailed analysis

of TREAT forms a major part of Daniel Miranker’s Ph.D.

thesis.)

4.5 Algorithm 4: Fine-grain Rete

A Rete network compiIed from the LHS’s of a rule

set consists of a number of simple nodes encoding match

operations. Tokens, representing WM modifications, flow

through the network in one direction and are processed by

each node lying on their traversed paths. Fortunately, the

maximum fan-m of any node in a Rete network is two.

Hence, a Rete network can be represented as a binary tree

(with some minimal amount of node splitting).

This observation leads to Algorithm 4 whereby a

logical Rete network is embedded on the ph sical

i

DAD0

binary tree structure. In the simplest case, eaf nodes of

the DAD0 tree store and execute the initial linear chains

of one-input, test nodes, whereas internal DAD0 PE’s

execute two-input node operations. The physical

connections between processors correspond to the logical

da.ta flow links in the Rete network. The entire DAD0

machine operates in MIMD mode while executing this

algorithm, behaving much like a pipelined data flow

architecture.

Algorithm 4 is illustrated in figure 6.

4.5.1 Discussion of Algorithm 4

Since this algorithm is a direct implementation of the

Rete match, it is most suitable for PS programs

characterized as:

1. Temporally redundant

2. Few rules are affected by WM changes. This

observation is noted in [Forgy 19791.

10. Large PM. We may, for instance, believe that only

1023 Rete nodes may be processed by DADOB.

However, a straight forward overlay technique can be

implemented where several Rete networks are

embedded in the tree and processed in turn. Thus,

large PM may be achievable.

9. Small WM. However, since Rete network nodes

require significant storage for intermediate partial

match results (stored at alpha and beta memories),

the limited storage capacity of a DAD02 PE may

require restricting the size of WM.

Although overlayed Rete networks would be processed

sequentially on DADOB, significant performance

improvements can be achieved by a natural pipelinin

effect. Immediately following a successful match an 3

communication at a node, the next two-input test from the

overlayed network is initiated. Thus, while the parent

node is processing the first network node, its children are

proceeding with their tests of the second overlayed network

node.

A second source of ninelining can improve

performance as well. In this cker the &tire RHS action

specification is broadcast at once to the DAD0 leaf PE’s

at step 3.a. Immediately following the conclusion of the

first match operation and communication of the first WM

305

1. Initialize: Map and load the compiled Rete

network on the DAD0 tree. Each node is

provided with the appropriate match code and

network information (see [Forgy 19821 for

details). Set CHANGES to initial WM

elements.

2. Repeat the following:

3. Act: For each WM-change in CHANGES do;

a. Broadcast WM-change (a Rete token) to

the DAD0 leaf PE’s.

b. Broadcast an instruction to all PE’s to

Match. (First, the leaf processors execute

their one-input test sequences on the new

token. The interior nodes lay idle waiting

for match results computed by their

descendants. Those tokens passing the

one-input tests are communicated to the

immediate ancestors which immediately

begin processing their two-input tests, The

process is then repeated until the physical

root of DAD0 reports changes to the

conflict set maintained in the DAD0

control processor).

C. end do;

Select: The root PE is provided with the chosen

instance from the control processor. Set

CHANGES to the instantiated RHS.

4. end Repeat;

Figure 6: Fine-grain Rete Algorithm.

token, the leaf PE’s initiate processing of the second WM

token. Hence, as a WM token flows up the DAD0 tree,

subsequent WM tokens flow close behind at lower levels of

the tree in pipeline fashion.

4.0 Algorithm 5: Multiple Asynchronous Execution

In our discussion so far, no mention was made about

characteristic 7, multiple rule firings. We may view this

as

- multiple, independently executing PS programs,

or

- executing multiple conflict set rules of the same

PS program concurrently.

In this regard we offer not a single algorithm, but rather

an observation that may be put to practical use in each of

the abovementioned algorithms.

We note that any DAD0 PE may be viewed as a

root of a DAD0 machine. Thus, any algorithm operating

at the physical root of DAD0 may also be executed by

some descendant node. Hence, any of the aforementioned

algorithms can be executed at various sites in the machine

concurrently! (Th is was noted in [Stolfo and Shaw 1982 .)

This coarse level of parallelism, however, will need to II e

controlled by some algorithmic process executed in the

upper part of the tree. The simplest case is represented

by the procedure illustrated in figure 7, which is similar in

some respects to Algorithm 2.

1. Initialize. Logically divide DAD0 to incorporate

a static Production System-level (PS-level),

similar to the PM-level of Algorithm 2.

Distribute the appropriate PS program to each

of the PE’s at the PS-level.

2. Broadcast an instruction to each PS-level PE to

begin execution in MIMD mode. (Upon

completion of their respective

PS-level PE reconnects to the

SIMD mode.)

programs, each

tree above in

3. Repeat the following.

a. Test if all PS-level PE’s are in SIMD

mode.

End Repeat;

4. Execution Complete. Halt.

Figure 7: Simple Multiple PS Program Execution.

In the cases where various PS-level PE’s need to

communicate results with eachother, step 3 is re laced with

appropriate code sequences to report and broa cast values a

from the PS-level in the proper manner. Each of the
programs executed by PS-level PE’s are first modified to

synchronize as necessary with the root PE to coordinate

the communication acts, at, for example, termination of the

Act phase.

In addition to concurrent execution of multiple PS

programs, methods may be employed to concurrently
execute portions of a single PS program. These methods

are intimately tied to the way rules are partitioned in the

tree. Subsets of rules may be constructed by a static

analysis of PM separating those rules which do not directly

interact with each other. In terms of the match problem-

solving paradigm, for example, it may be convenient to

think of independent subproblems and the methods
implementing their solution (see [Newell 19731). Each such

method may be viewed as a high-level subroutine

represented as an independent rule set rooted by some

internal node of DADO. Algorithm 1, for example, may

be applied in parallel for each rule set in question.

Asynchronous execution of these subroutines proceeds in a

straight forward manner. The complexity arises when one

subset of rules infers data required by other rule sets.

The coordination of these communication acts is the focus

of our ongoing research. Space does not permit a

complete specification of this approach, and thus the

reader is encouraged to see [Ishida 1984) for details of our

initial thinking in this direction.

5 Conclusion References

We have outlined five abstract, algorithms for the

parallel execution of PS programs on the DAD0 machine

and indicated what characteristics they are best suited for.

We summarize our results in tabular form as follows:

Algorithm PS Characteristics

Davis, R. and J. King. An Overview of Production

Systems. Technical Report, Department of Computer

Science, Stanford University, 1975.

1. Fully Distributed PM 1, 3, 5, 7, 9, 11

2. Original DAD0 3, 4, 6, 7, 8, 11

3. Miranker’s TREAT 1, 3, 4, 6, 7, 8, 11

4. Fine-grain Rete 1, 2, 5, 7, 9, 10

5. Multiple Asynchronous Applies to all cases.

Of the five reported algorithms, only the original

DAD0 algorithm (number 2) has been carefullv studied

analyticallj;. The ‘performanie statistics of the ;emaining

four algorithms have yet to be analyzed in detail.

However, much of the performance statistics cannot be

analyzed without specific examples and detailed
implementations. Working in close collaboration with

researchers at AT&T Bell Laboratories, in the course of
the next year of our research we intend to implement each

of the stated algorithms on a working prototype of DADO.

In this paper, we have outlined our expectations

concerning the suitability of each of the algorithms for a

variety of possible PS programs.

findings to substantiate our

We expect ouirtreenyrted

claims, and to
demonstrate this with working examples in the near future.

Forgy, C. L. On the Efficient Implementation of

Production Systems. Technical Report, Carnegie-

Mellon University, Department of Computer Science,

1979. Ph.D. Thesis.

Forgy C. L. Rete: A Fast Algorithm for the Many

Pattern/Many Object Pattern Matching Problem.

Artificial Intelligence, 1982, 19, 17-37.

Gupta, A. Implementing OPS5 Production Systems on

DA-DO. Technical Report, Department of Computer

Science, Carnegie-Mellon University, 1983.

Ishida T., and S. J. Stolfo. Simultaneous Firing of

Production Rules on Tree-structured Machines.

Technical Report, Department of Computer Science,

Columbia University, 1984.

McDermott, J. and C. Forgy. Production System Conflict

Resolution Strategies. In Waterman and Hayes-Roth

(EW, Pattern-directed Inference Systems,

Academic Press, 1978.

Miranker D. P. Performance Estimates for the DAD0

Machine. A Comparison of TREAT and RETE.

Technical Report, Department of Computer Science,

Columbia University, April 1984.

Newell, A. Production Systems: Models of Control

Structures. In W. Chase (Ed.), Vi’aual Information

Processing, Academic Press, 1973.

Rychener, M. Production Systems as a Programming

Language for Artificial Intelligence. Technical

Report, Carnegie-Mellon University, Department of

Computer Science, 1976. Ph.D. Thesis.

Stolfo S. J. The DAD0 Parallel Computer. Technical

Report, Department of Computer Science, Columbia

University, August 1983. (Submitted to AI Journal).

Stolfo S. J., and D. E. Shaw. DADO: A Tree-structured

Machine Architecture for Production Systems.

Proceedings National Conference on Artificial

Intelligence, Carnegie-Mellon University, August, 1982.

Stolfo S. J., and D. P. Miranker. The DAD0 Production

System Maclaine: System-level Details. Technical

Report, Department of Computer Science, Columbia

University, 1984. (Submitted to IEEE Transactions on

Computers).

307

