
Five Practical Attacks

for “Optimistic Mixing for Exit-Polls”

Douglas Wikström

Swedish Institute of Computer Science (SICS)
Box 1263, S-164 29 Kista, Sweden

douglas@sics.se

Abstract. Golle, Zhong, Boneh, Jakobsson, and Juels [9] recently pre-
sented an efficient mix-net, which they claim to be both robust and
secure. We present five practical attacks for their mix-net, and break
both its privacy and robustness.
The first attack breaks the privacy of any given sender without corrupt-
ing any mix-server. The second attack requires that the first mix-server
is corrupted. Both attacks are adaptations of the “relation attack” in-
troduced by Pfitzmann [24, 23].
The third attack is similar to the attack of Desmedt and Kurusawa [4]
and breaks the privacy of all senders. It requires that all senders are
honest and that the last mix-server is corrupted.
The fourth attack may be viewed as a novel combination of the ideas
of Lim and Lee [16] and Pfitzmann [24, 23]. It breaks the privacy of
any given sender, and requires that the first and last mix-servers are
corrupted. This attack breaks also Jakobsson [14], including the fixed
version of Mitomo and Kurosawa [18].
The fifth attack breaks the robustness in a novel way. It requires cor-
ruption of some senders and the first mix-server. This attack breaks also
Jakobsson and Juels [15].

1 Introduction

The notion of a mix-net was invented by Chaum [3] and further developed by
a number of people. Properly constructed a mix-net enables a set of senders to
send messages anonymously.

Informally the requirements on a mix-net are: correctness, privacy, robust-
ness, availability, and efficiency. Correctness implies that the result is correct
given that all mix-servers are honest. Privacy implies that if a fixed minimum
number of mix-servers are honest privacy of the sender of a message is ensured.
Robustness implies that if a fixed number of mix-servers are honest, then any
attempt to cheat is detected and defeated.

A mix-net consists of a number of mix-servers that collectively execute a pro-
tocol. The idea is that each mix-server receives a list of encrypted messages,
transforms them, using partial decryption or random re-encryption, reorders
them, and then outputs the randomly transformed and reordered list of cleart-
ext messages. The secret permutation is shared among the mix-servers.

M. Matsui and R. Zuccherato (Eds.): SAC 2003, LNCS 3006, pp. 160–175, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 161

1.1 Previous Work and Applications of Mix-Nets

The mixing paradigm has been used to accomplish privacy in many different
scenarios. Chaum’s original “anonymous channel” [3, 21] enables a sender to
securely send mail anonymously. When constructing election schemes [3, 6, 22,
25, 20] the mix-net is used to ensure that the vote of a given voter can not be
revealed. Also in the construction of electronic cash systems [13] mix-nets have
been used to ensure privacy.

Abe gives an efficient construction of a general mix-net [1] and argues about
its properties. Jakobsson has written a number of more general papers on the
topic of mixing [12, 14] also focusing on efficiency.

There has been a breakthrough in the construction of zero-knowledge proofs
of a correct shuffle recently. Furukawa and Sako [7], and Neff [19] respectively
have both found efficient ways to design such proofs.

A new approach to practical mixing is given by Golle et al. [9]. They com-
bine a robustness test based partly on work by Jakobsson and Juels, with the
notion of “double enveloping”. The latter notion is introduced independently by
Wikström [29], except that he uses different keys for the two layers, and a proof
of knowledge of the inner most cleartext.

Desmedt and Kurosawa [4] describe an attack on a protocol by Jakobsson [12].
Similarly Mitomo and Kurosawa [18] exhibit a weakness in another protocol by
Jakobsson [14]. Pfitzmann has given some general attacks on mix-nets [24, 23],
and Michels and Horster give additional attacks in [17].

This paper is based on two technical reports [30, 31]. Apparently Abe [2] has
independently found attacks similar to those of the first of our technical reports,
i.e. the first two attacks in this paper.

2 Review of “Optimistic Mixing for Exit-Polls”

We present a short review of the relevant parts of the protocol of Golle et al. [9].
The description given here is as close as possible to the original, but we avoid
details irrelevant to our attacks and change some notation to simplify the expo-
sition of the attacks. For details we refer the reader to [9].

2.1 Participants and Setup

The protocol assumes the existence of a bulletin board on which each participant
has a dedicated area on which only she can write. No participant can erase
anything on the bulletin board, but all participants can read everything.

The participants of the protocol are N senders, and a relatively small number
of mix-servers, M1, . . . , Mk. Each sender encrypts its message, and writes it on
the bulletin board. The mix-servers then execute the mix-net protocol.

The protocol employs an El Gamal [5] cryptosystem in a subgroup GQ of
prime order Q of the multiplicative group modulo a prime P , i.e. Z

∗
P . A pri-

vate key x is generated by choosing x ∈ ZQ uniformly and independently at

162 Douglas Wikström

random. The corresponding public key is (g, y), where g is a generator of GQ,
and y = gx. Encryption of a message m ∈ GQ using the public key (g, y) is
given by E(g,y)(m, r) = (gr, yrm), where r is chosen uniformly at random from
ZQ, and decryption of a cryptotext on the form (u, v) = (gr, yrm) using the
private key x is given by Dx(u, v) = u−xv = m. The El Gamal system also
has the re-encryptability1 property, i.e. given (u, v) and the public key (g, y),
anybody can “update” the randomness used in the encryption of m, by forming
(gr′

u, yr′
v) = (gr+r′

, yr+r′
m) = E(g,y)(m, r + r′).

In the setup stage each mix-server Mj is somehow given a random xj ∈
ZQ, and yl = gxl for l �= j. The value xj is also shared with the other mix-
servers using a threshold verifiable secret sharing (VSS) scheme2. Thus, if any
mix-server Mj is deemed to be cheating the other mix-servers can verifiably
reconstruct its private key xj . The mix-servers can also compute y =

∏k
j=1 yj ,

which gives a joint public key (g, y), with secret corresponding private key x =
∑k

j=1 xj .
A practical advantage of the mix-net is that it can be used to execute several

mix-sessions using the same set of keys, i.e. the El Gamal keys are not changed
between mix-sessions. To be able to do this the proofs of knowledge below are
bound to a mix-session identifier id that is unique to the current mix-session.

2.2 Sending a Message to the Mix-Net

A typical honest sender, Alice, computes the following to send a message m to
the mix-net:

(u, v) = E(g,y)(m), w = h(u, v), and
α = [E(g,y)(u), E(g,y)(v), E(g,y)(w)] = [(µ1, µ2), (ν1, ν2), (ω1, ω2)] ,

where h : {0, 1}∗ → GQ is a hash function modeled by a random oracle. Then
Alice computes a zero-knowledge proof of knowledge πid(u, v, w), in the random
oracle model of u, v and w, which depends on the current mix-session identifier
id. Finally Alice writes (α, πid(u, v, w)) on the bulletin board.

2.3 Execution of the Mix-Net

First the mix-servers remove any duplicate inputs to the mix-net, and discard
input tuples that contain components not in the subgroup GQ. Then the mix-
servers discard all input tuples where the proof of knowledge is not valid for
the current mix-session. Let L0 = {[(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]}N

i=1 be the
resulting list of triples of El Gamal pairs. The mixing then proceeds in the
following stages.
1 Related terms are “homomorphic property”, or “malleability property”.
2 Golle et al. [9] discuss different variants for sharing keys, but we choose to present

a simple variant, since it has no impact on our attacks.

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 163

First Stage: Re-randomization and Mixing. This step proceeds as in all
re-randomization mix-nets based on El Gamal. One by one, the mix-servers
M1, . . . , Mk randomize all the inputs and their order. (Note that the components
of triples are not separated from each other during the re-randomization.) In
addition, each mix-net must give a proof that the product of the plaintexts of
all its inputs equals the product of the plaintexts of all its outputs. The protocol
proceeds as follows.

1. Each mix-server Mj reads from the bulletin board the list Lj−1 output by
the previous mix-server.

2. The mix-server then chooses rji, sji, tji ∈ ZQ, for i = 1, . . . , N , randomly
and computes the re-randomized list:

{[(grjiaj−1,i, y
rjibj−1,i), (gsjicj−1,i, y

sjidj−1,i), (gtjiej−1,i, y
tjifj−1,i)]}N

i=1 .

The above list of triples is then randomly permuted, and the resulting
list: Lj = {[(aj,i, bj,i), (cj,i, dj,i), (ej,i, fj,i)]}N

i=1 is written on the bulletin
board.

3. Define aj =
∏N

i=1 aj,i, and define bj, cj , dj , ej, and fj correspondingly.
The mix-server proves in zero-knowledge that logg aj/aj−1 = logy bj/bj−1,
logg cj/cj−1 = logy dj/dj−1, and logg ej/ej−1 = logy fj/fj−1. This implies
that Dx(aj , bj) = Dx(aj−1, bj−1), and similarly for the pairs (cj , dj) and
(ej , fj), i.e. the component-wise product of the inner triples remains un-
changed by the mix-server.

Remark 1. Since logy bj/bj−1 = logg aj/aj−1 =
∑N

i=1 rji, and Mj knows the lat-
ter sum, the proof in Step 3) can be implemented by a standard zero-knowledge
proof of knowledge in the random oracle model, and similarly for the pairs
(cj , dj), and (ej , fj). Such proofs are similar to Schnorr signatures [26].

Second Stage: Decryption of the Inputs.

1. A quorum of mix-servers jointly decrypt each triple of ciphertexts in Lk to
produce a list L on the form L = {(ui, vi, wi)}N

i=1. Since the method used to
do this is irrelevant to our attacks, we do not present it here.

2. All triples for which wi = h(ui, vi) are called valid.
3. Invalid triples are investigated according to the procedure described below.

If the investigation proves that all invalid triples are benign (only senders
cheated), we proceed to Step 4. Otherwise, the decryption is aborted, and
we continue with the back-up mixing.

4. A quorum of mix-servers jointly decrypt the ciphertexts (ui, vi) for all valid
triples. This successfully concludes the mixing. The final output is defined
as the set of plaintexts corresponding to valid triples.

Special Step: Investigation of Invalid Triples. The mix-servers must re-
veal the path of each invalid triple through the various permutations. For each

164 Douglas Wikström

invalid triple, starting from the last server, each server reveals which of its in-
puts corresponds to this triple, and how it re-randomized this triple. One of two
things may happen:

– Benign case (only senders cheated): if the mix-servers successfully pro-
duce all such paths, the invalid triples are known to have been submitted by
users. The decryption resumes after the invalid triples have been discarded.

– Serious case (one or more servers cheated): if one or more servers fail
to recreate the paths of invalid triples, these mix-servers are accused of cheat-
ing and replaced, and the mix-net terminates producing no output. In this
case, the inputs are handed over to the back-up mixing procedure below.

Back-Up Mixing. The outer-layer encryption of the inputs posted to the mix-
net is decrypted by a quorum of mix-servers. The resulting list of inner-layer
ciphertexts becomes the input to a standard re-encryption mix-net based on El
Gamal (using, for example Neff’s scheme described in [19]). Then the output of
the standard mix-net is given as output by the mix-net.

Remark 2. It is impossible to find two lists {(ui, vi)}N
i=1 �= {(u′

i, v
′
i)}N

i=1 such
that

∏N
i=1 h(ui, vi) =

∏N
i=1 h(u′

i, v
′
i), if the product is interpreted in a group

where the discrete logarithm problem is hard. This is stated as a theorem by
Wagner3 [28], and appears as a lemma in Golle et al. [9].

During the re-encryption and mixing stage each mix-server proves in zero-
knowledge that it leaves the component-wise product (

∏
ui,

∏
vi,

∏
wi), of the

inner triples (ui, vi, wi) unchanged, but individual triples may still be corrupted.
Then invalid triples are traced back. This leaves only valid inner triples in the
output and the proofs of knowledge of each server are used to conclude that the
component-wise product of these valid inner triples was left unchanged by the
mix-net. Golle et al. [9] then refer to the lemma and conclude that the set of
valid triples in the output is identical to the set of valid triples hidden in the
double encrypted input to the mix-net.

Unfortunately, this intuitively appealing construction is flawed as we explain
in Section 3.5. Furthermore, our third attack in Section 3.3 shows that it is
possible to cheat without changing the set of inner triples.

3 The Attacks

The goal of the adversary Eve is to break the privacy of our typical honest sender
Alice and cheat without detection. Each of our attacks illustrates a separate
weakness of the protocol. The first two attacks are adaptations of the “relation
attack”, introduced by Pfitzmann [24, 23], to the setting with double enveloping.
The idea of the “relation attack” is that to break the privacy of Alice, Eve
computes a cryptotext of a message related to Alice’s message. Then the mix-
net is run as usual. The output of the mix-net contains two messages related in
3 Wagner credits Wei Dai with this observation.

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 165

a way chosen by Eve. Some relations enable Eve to determine the message sent
by Alice. The third attack is similar to the attack of Desmedt and Kurosawa [4]
in that it exploits intermediate results of the protocol and fools a “product test”.
The fourth attack may be viewed as a novel combination of the ideas of Lim and
Lee [16] and Pfitzmann [24, 23]. The fifth attack is novel.

3.1 First Attack: Honest Mix-Servers

We show that the adversary Eve can break the privacy of the typical sender Alice.
All that is required is that Eve can send two messages to the mix-net, which is
a natural assumption in most scenarios. In the following we use the notation for
the cryptotext of Alice introduced in Section 2.2. Eve does the following:

1. Eve chooses δ and γ randomly in ZQ, and computes:

wδ = h(µδ
1, µ

δ
2), αδ = (E(g,y)(µδ

1), E(g,y)(µδ
2), E(g,y)(wδ)) , and

wγ = h(µγ
1 , µγ

2), αγ = (E(g,y)(µ
γ
1), E(g,y)(µ

γ
2), E(g,y)(wγ)) .

Then Eve computes corresponding proofs of knowledge πid(µδ
1, µ

δ
2, wδ) and

πid(µγ
1 , µγ

2 , wγ). This gives Eve two perfectly valid pairs (αδ, πid(µδ
1, µ

δ
2, wδ)),

(αγ , πid(µγ
1 , µγ

2 , wγ)), that she sends to the bulletin board (possibly by cor-
rupting two senders).

2. Eve waits until the mix-net has successfully completed its execution. Dur-
ing the execution of the mix-net the mix-servers first jointly decrypt the
“outer layer” of the double encrypted messages. After benign tuples have
been removed the result is a list of valid triples

((u1, v1, w1), . . . , (uN , vN , wN)) . (1)

The final output of the mix-net is the result of decrypting each inner El
Gamal pair (ui, vi) and results in a list of cleartext messages (m1, . . . , mN).

3. Eve computes the list (m′
1, . . . , m

′
N) = (mδ/γ

1 , . . . , m
δ/γ
N), and then finds

a pair (i, j) such that mi = m′
j. From this she concludes that with very

high probability mj = uγ . Then she computes z = m
1/γ
j , and finds a triple

(ul, vl, wl) in the list (1) such that z = ul. Finally she concludes that with
very high probability ml was the message sent by Alice to the mix-net.

Remark 3. At additional computational cost it suffices for Eve to send 2 mes-
sages to break the privacy of K senders. Suppose Eve wants to break the pri-
vacy also of Bob who sent m′ encrypted as (u′, v′) = E(g,y)(m′), w′ = h(u′, v′),
and α′ = [E(g,y)(u′), E(g,y)(v′), E(g,y)(w′)] = [(µ′

1, µ
′
2), (ν

′
1, ν

′
2), (ω

′
1, ω

′
2)]. Then

Eve performs the attack above with the change that she starts with a single
pair (µζ

1µ
′
1, µ

ζ
2µ

′
2) for some randomly chosen ζ instead of the two distinct pairs

(µ1, µ2), and (µ′
1, µ

′
2) that would have given two “unrelated” attacks. The origi-

nal third step of the attack first gives Eve z = uζu′. To finish the attack she finds
a pair (l, l′) such that uζ

l ul′ = z, and concludes that with high probability Alice
sent ml and Bob sent ml′ . The approach is generalized to higher dimensions
in the natural way to break the privacy of several senders (K must clearly be
reasonably sized).

166 Douglas Wikström

Why the Attack Is Possible. The attack exploits two different flaws of the
protocol. The first is that the sender of a message, e.g. Alice, proves only knowl-
edge of the inner El Gamal pair (u, v) and the hash value w = h(u, v), and not
knowledge of the message m. The second flaw is that identical El Gamal keys
are used for both the inner and outer El Gamal system.

Anybody can compute a single encrypted message (µδ
1, µ

δ
2) = (grδ, yrδuδ) =

E(g,y)(uδ, rδ) of a power uδ of the first component u of the inner El Gamal
pair (u, v) of the triple α sent by Alice. Anybody can also compute a proof of
knowledge of (µδ

1, µ
δ
2) and wδ = h(µδ

1, µ
δ
2) (and similarly for (µγ

1 , µγ
2) and ωγ).

The first flaw allows Eve to input triples of El Gamal pairs with such proofs
of knowledge to the mix-net. The second flaw allows Eve to use the mix-net to
decrypt (µδ

1, µ
δ
2), and thus get her hands on uδ (and similarly for uγ). Eve can

then identify (u, v) as the inner El Gamal pair of Alice and break her privacy.

3.2 Second Attack: Different Keys and Corrupt Mix-Server

Suppose we change the protocol slightly by requiring that the mix-servers gen-
erate separate keys for the outer and inner El Gamal systems, to avoid the
first attack of Section 3.1. We assume that there are two different key pairs
((g, yin), xin) and ((g, yout), xout), for the inner and outer El Gamal layers re-
spectively. We also assume that these keys have been shared similarly as the
original key pair ((g, y), x). This is the type of double enveloping proposed by
Wikström [29]. For the second attack to succeed we need some additional as-
sumptions.

Unclear Details and Additional Assumptions. We start by quoting Sec-
tion 5, under “Setup.” point 4 of Golle et al. [9], which presents the proof of
knowledge πid(u, v, w) of the sender Alice:

4. This proof of knowledge should be bound to a unique mix-session
identifier to achieve security over multiple invocations of the mix. Any
user who fails to give the proof is disqualified, and the corresponding
input is discarded.

If different keys are used for each mix-session, then the above makes no sense,
since the proof of knowledge of u, v and w already depends on the public key of
the outer El Gamal system. There is clearly practical value in not changing keys
between mix-sessions. We assume that the keys are not changed between mix-
sessions even if a mix-server is found to be cheating. If a mix-server is found to be
cheating, its shared keys are instead reconstructed by the remaining mix-servers
using the VSS-scheme, and in later mix-sessions the actions of the cheating mix-
server are performed in the open (the details of this does not matter to our
attack). Under these assumptions we can give an attack on the protocol.

The original paper of Golle et al. [9] does not explicitly say if the discovery
of the corrupted mix-server results in a new execution of the key generation

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 167

protocol. Apparently the intention of the authors is to let the remaining mix-
servers generate a new set of keys if any cheating is discovered [10].

The attack is interesting even though this interpretation is not the one in-
tended by the authors, since it shows the importance of explicitly defining all
details of protocols and highlights some issues with running several concurrent
mix-sessions using the same set of keys.

The Attack. Apart from the above assumptions, the attack only requires that
the first mix-server in the mix-chain is corrupted. The attack is employed during
two mix-sessions using the same keys and the corrupted mix-server is identified
as a cheater in the first mix-session. In the following we describe the actions of
Eve during the first and second mix-sessions, respectively.

The First Mix-Session. We assume that Alice and some other arbitrary sender
Bob have sent inputs to the mix-net (and use the notation of Remark 3 for the in-
put of Bob). Eve corrupts M1. It then replaces α and α′ with: [Eyout(u), Eyout(v),
Eyout(w′)], and [Eyout(u′), Eyout(v′), Eyout(w)] respectively, in its input list, i.e.
the third components of the two triples are shifted. Then Eve forces M1 to
simulate a completely honest mix-server on the resulting altered list L′

0 =
{[(a′

0,i, b
′
0,i), (c

′
0,i, d

′
0,i), (e

′
0,i, f

′
0,i)]}N

i=1. Note that
∏N

i=1 a′
0,i = a0, and similarly

for b0, c0, d0, e0, and f0. Thus the simulated honest mix-server outputs perfectly
valid zero-knowledge proofs that the product of the inner triples are unchanged.

At the end of the mixing the mix-servers verify the tuples and discover the
invalid tuples (u, v, w′) and (u′, v′, w). These tuples are traced back all the way
to the first mix-server, which is revealed as a cheater. In this process Eve is able
to link Alice to (u, v) (and Bob to (u′, v′)). Finally the honest mix-servers finish
the protocol by using the general constructions based on the work by Neff [19]
as in Golle et al. [9].

The Second Mix-Session. To allow the mix-net to execute a second mix-
session using the same set of keys, the cheater’s key is reconstructed and revealed
by a quorum of the mix-servers.

To determine the contents of the El Gamal pair (u, v), Eve waits for the
second mix-session using the same set of keys. Then she uses a “relation at-
tack” [24, 23, 12] in the second mix-session to decrypt (u, v), i.e. Eve does the
following:

1. Eve chooses δ and γ randomly in ZQ, and computes:
wδ = h(uδ, vδ), αδ = (Eyout(uδ), Eyout(vδ), Eyout(wδ)), and
wγ = h(uγ , vγ), αγ = (Eyout(uγ), Eyout(vγ), Eyout(wγ)).
Then Eve computes corresponding proofs of knowledge πid(uδ, vδ, wδ) and
πid(uγ , vγ , wγ). This gives Eve two perfectly valid pairs (αδ, πid(uδ, vδ, wδ)),
(αγ , πid(uγ , vγ , wγ)), which she sends to the bulletin board (possibly by cor-
rupting two senders).

2. Eve waits until the mix-net has successfully completed its execution. The
final output of the mix-net is a list of cleartext messages (m1, . . . , mN).

168 Douglas Wikström

3. Note that mi = mδ and mj = mγ for some i and j. Eve computes δγ−1 mod
Q, computes the list (m′

1, . . . , m
′
N) = (mδ/γ

1 , . . . , m
δ/γ
N), and finally finds

a pair (i, j) such that mi = m′
j . Then she concludes that with high probabil-

ity m
1/γ
j is the message sent by Alice to the mix-net in the first mix-session.

Remark 4. The attack is easily generalized to break the privacy of several senders
by using a circular shift of the third components during the first mix-session.
It is also easy to see that Remark 3 can be applied to reduce the number of
messages sent by Eve during the second mix-session.

Why the Attack Is Possible. The attack exploits that the sender of a mes-
sage only proves knowledge of the inner triple (u, v, w). At the cost of detected
cheating Eve finds a (u, v) corresponding to Alice, and then uses the second
mix-session as a decryption oracle to get her hands on m.

A Note on Concurrent Mix-Sessions. Ignoring the other attacks, a simple
countermeasure to the second attack above, is to stipulate that if a cheating
mix-server is identified new keys must be generated for the next mix-session.

A disadvantage of this countermeasure is that the mix-net can not be allowed
to execute several concurrent mix-sessions using the same keys. If one mix-session
is still receiving messages while another mix-session discovers a cheating mix-
server the second attack of Section 3.2 can still be applied. The problem is not
solved by running the back-up mix-net of Neff [19] on all mix-sessions using the
same keys at this point.

This problem of concurrency may seem academic, since in most election sce-
narios it is not very cumbersome to have different keys for each mix-session,
but in future applications of mix-nets it may be useful to run several concurrent
mix-sessions using the same keys.

3.3 Third Attack: Honest Senders and One Corrupt Mix-Servers

In this section we assume that all senders and all mix-servers, except the last
mix-server Mk, are honest. The last mix-server Mk is corrupted by the adversary
Eve and performs the attack. The attack breaks both robustness and privacy.

To simplify our notation we write L0 = {αi}N
i=1 for the input list, where we

define αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)] to be the tuple sent by sender Si.
Instead of following the protocol, Mk proceeds as follows in the first stage.

1. It computes the 6-tuple: (a′, b′, . . . , f ′) = (ak−1/a0, bk−1/b0, . . . , fk−1/f0),
and the tuple α′

1 = [(a′a0,1, b
′b0,1), (c′c0,1, d

′d0,1), (e′e0,1, f
′f0,1)].

2. Then it forms the list L′
k−1 = {α′

1, α2, . . . , αN}, i.e. a copy of L0 with the
first tuple α1 replaced by α′

1.
3. When Mk is supposed to re-randomize and permute the output Lk−1 of Mk−1

it instead simulates the actions of an honest mix-server on the corrupted
input L′

k−1. The output list written to the bulletin board by the simulated
mix-server is denoted Lk.

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 169

4. Eve waits until the inner layer has been decrypted and uses her knowledge
of the permutation that relates Lk to L0 to break the privacy of all senders.

We show that the attack goes undetected, i.e. the mix-servers decrypt the inner
layer. This implies that the attack succeeds.

Firstly, consider the proof of knowledge that Mk produces during the re-
encryption and mixing stage. Define a′

k−1 = (a′a0,1)
∏N

i=2 a0,i, and similarly
for for b′k−1, c′k−1, d′k−1, e′k−1, and f ′

k−1. In Step 3 above, the simulated hon-
est mix-server outputs proofs of knowledge of the logarithms: logg ak/a′

k−1 =
logy bk/b′k−1, logg ck/c′k−1 = logy dk/d′k−1, and logg ek/e′k−1 = logy fk/f ′

k−1. By
construction we have that a′

k−1 = (a′a0,1)
∏N

i=2 a0,i = a′ ∏N
i=1 a0,i = ak−1

a0
a0 =

ak−1, and similarly for bk−1, ck−1, dk−1, ek−1, and fk−1. This implies that the
proof of knowledge produced by Mk is deemed valid by the other mix-servers.

Secondly, consider the investigation of invalid inner triples. Tracing back
invalid triples is difficult to Mk, since it does not know the re-encryption ex-
ponents and the permutation relating Lk−1 and Lk. We show that there are
no invalid inner triples. Suppose we define the sums r =

∑k−1
j=1

∑N
i=1 rji, s =

∑k−1
j=1

∑N
i=1 sji, and t =

∑k−1
j=1

∑N
i=1 tji, i.e. we form the sum of all re-encryption

exponents used by all mix-servers except the last, for the first second and third
El Gamal pairs respectively. Since all mix-servers except Mk are honest, we
have (a′, b′, c′, d′, e′, f ′) = (gr, yr, gs, ys, gt, yt), which implies that α′

1 is a valid
re-encryption of α1. Thus Mk does not corrupt any inner triple by simulating
an honest mix-server on the input L′

k−1. Since all senders are honest and the set
of inner triples hidden in L0 and L′

k−1 are identical, there are no invalid inner
triples. Thus cheating is not detected and robustness is broken.

We conclude that the mix-servers decrypt the inner triples, i.e. the privacy
of all senders is broken.

Why the Attack Is Possible. The third attack above exploits that the last
mix-server Mk is not forced to take the output Lk−1 of the next to last mix-
server as input. This allows Mk to use a slightly modified version of L0 instead,
which breaks the privacy of all senders.

3.4 Fourth Attack: Two Corrupt Mix-Servers

In this section we assume that the first and last mix-servers, M1 and Mk, are
corrupted. We give a novel attack that breaks the privacy of any given sender
Alice. Let L0 = {αi}N

i=1, where αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]. Without
loss we let α1 and α2 be the tuples sent by Alice and Bob respectively. Let
ξ ∈ Z

∗
P \GQ. Eve corrupts M1 and Mk, and they proceed as follows.

1. M1 computes the elements α′
1 = [(ξa0,1, b0,1), (c0,1, d0,1), (e0,1, f0,1)] and

α′
2 = [(ξ−1a0,2, b0,2), (c0,2, d0,2), (e0,2, f0,2)], and forms the modified list L′

0 =
{α′

1, α
′
2, α3, . . . , αN}. Then M1 simulates an honest mix-server on input L′

0.

170 Douglas Wikström

2. Mk simulates an honest mix-server on input Lk−1, but it does not write
the output Lk of this simulation on the bulletin board. Let Lk = {βi}N

i=1,
where βi = [(ak,i, bk,i), (ck,i, dk,i), (ek,i, fk,i)]. Mk finds l, l′ ∈ {1, . . . , N} such
that aQ

k,l = ξQ and aQ
k,l′ = ξ−Q.

Then it computes the tuples β′
l = [(ξ−1ak,l, bk,l), (ck,l, dk,l), (ek,l, fk,l)] and

β′
l′ = [(ξak,l′ , bk,l′), (ck,l′ , dk,l′), (ek,l′ , fk,l′)], and writes L′

k, where L′
k =

{β1, . . . , βl−1, β
′
l, βl+1, . . . , βl′−1, β

′
l′ , βl′+1, . . . , βN}, on the bulletin board.

3. The mix-net outputs (m1, . . . , mN) and Eve concludes that Alice sent ml.

Since all mix-servers except M1 and Mk are honest there exists l, l′ ∈ {1, . . . , N}
and r, r′ ∈ ZQ such that ak,l = grξa0,1 and ak,l′ = gr′

ξ−1a0,2. This implies
that aQ

k,l = ξQ(gra0,1)Q = ξQ and a−Q
k,l′ = ξ−Q, since βQ = 1 for any β ∈ GQ. We

have ξQ �= 1 �= ξ−Q, since the order of ξ does not divide Q. On the other hand
we have aQ

k,i = 1 for i �= l, l′, since ak,i ∈ GQ for i �= l, l′. Thus Eve successfully
identifies Alice’s cryptotext if the cheating of M1 and Mk is not detected.

Clearly, the values of b1, c1, d1, e1, and f1 are not changed by replacing L0

with L′
0 in Step 1. Neither is a1, since (ξa0,1)(ξ−1a0,2)

∏N
i=3 a0,i =

∏N
i=1 a0,i =

a1. Similarly, bk, ck, dk, ek, and fk are not changed by replacing Lk with L′
k in

Step 2. Neither is ak, since (ξ−1ak,l)(ξak,l′)
∏N

i�=l,l′ ak,i =
∏N

i=1 ak,i. Similarly as
in the second attack of Section 3.3, we conclude that the proofs of knowledge
produced by M1 and Mk are deemed valid by the other mix-servers. If we assume
that Alice and Bob are honest, their inner triples are never traced back and
cheating is not detected.

If ξ = ξ−1 Eve can only conclude that Alice sent a message from the set
{ml, ml′}. This breaks the privacy of Alice, but Eve can also identify Alice’s
message uniquely by choosing Bob to be a corrupted sender.

Remark 5. Our attack may be viewed as a novel combination of the ideas in Lim
and Lee [16] and Pfitzmann [24, 23] in that we use elements in Z

∗
P \GQ to execute

a “relation attack”. However, Lim and Lee [16] focus on extracting the secret key,
and their attack requires that P − 1 contains a relatively large smooth factor.
Their proposed countermeasure is to choose P such that (P − 1)/2 consists of
large prime factors. This implies that the protocol leaks at most one bit. Our
attack on the other hand use elements of Z

∗
P \GQ more subtly, and is applicable4

and practical for any choice of P . In particular the type of P proposed by Lim
and Lee.

Why the Attack Is Possible. The attack exploits that a mix-server Mj does
not verify that all elements in its input Lj−1 are in GQ. M1 uses this to “tag”
elements in L0, which lets them be identified by the last mix-server Mk.
4 More generally, if the implementation of arithmetic for GQ is induced from a larger

group G ⊃ GQ such that |G| is known and the protocol fails to verify that inputs
are in GQ and not only in G, then our attack is applicable.

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 171

3.5 Fifth Attack: One Corrupt Mix-Server

In Proposition 3 of Golle et al. [9] the authors claim that their protocol satisfies
the following strong definition of public verifiability if there is a group GQ in
which the discrete logarithm problem is hard.
Definition 1. (Public Verifiability (cf. [9])) A mix net is public verifable if there
exists a polynomially bounded verifier that takes as input the transcript of the
mixing posted on the bulletin board, outputs “valid” if the set of valid outputs is
a permuted decryption of all valid inputs, and otherwise outputs “invalid” with
overwhelming probability. Note that to prove public verifiability, we consider an
adversary that can control all mix-servers and all users.
Unfortunately, Proposition 3 of [9] is false. This is seen as follows.

Suppose that there are 4 senders, and that the adversary corrupts two of
the senders and the first mix-server M1. Let (ui, vi, wi) = (gri , yrimi, H(ui, vi)),
and set αi = ((a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)) = (Ey(ui), Ey(vi), Ey(wi)) for
i = 1, 2, 3, 4. Then define α′

3 = ((a0,3, b0,3), (c0,3, ad0,3), (e0,3, f0,3)) and α′
4 =

((a0,4, b0,4), (c0,4, a
−1d0,4), (e0,4, f0,4)), for some 1 �= a ∈ GQ. Suppose that α1

and α2 are sent to the mix-net by honest senders, and α′
3 and α′

4 are sent to the
mix-net by the corrupted senders, with corresponding proofs of knowledge.

M1 replaces α′
3, and α′

4 with α3 and α4. This does not change the value of
the component-wise product d1 = v1v2v

′
3v

′
4 since v′3v′4 = v3v4, and the cheating

is not detected, since α3 and α4 corresponds to valid inner triples, and thus not
traced back. On the other hand the tuples α′

3 and α′
4 correspond to invalid inner

triples (u3, v3, aw3) and (u4, v4, a
−1w4). We conclude that the sets of valid inner

triples in the input and output respectively differ, public verifiability is broken,
and Proposition 3 of [9] is false.

Some may argue that this is not important since the adversary may only
choose to correct invalid messages which she has previously prepared for this
particular purpose. However, note that the adversary may choose whether to
correct α′

3 and α′
4. If she chooses not to correct invalid triples they are simply

traced back and considered benign.
The following application shows the importance of this subtlety. We use the

mix-net construction to run two independent elections (using different keys).
First all votes for both elections are collected, and after some time both elections
are closed. Then the mix-net is executed for the first election. Finally the mix-
net is executed for the second election. In this scenario the adversary can insert
specially prepared invalid triples (i.e. votes) in the second election, and then
decide whether to correct these triples based on the outcome of the first election.
This should clearly not be allowed, but may be acceptable in certain non-voting
scenarios.

Why the Attack Is Possible. The attack exploits the fact that the first mix-
server can choose whether to correct specially prepared invalid inner triples or
not without detection.

172 Douglas Wikström

4 Further Applications and Future Work

The attacks of sections 3.1, 3.2, and 3.3 all exploit the particular structure of
the protocol of Golle et al. [9]. We have found no other protocol vulnerable to
these attacks. In particular the protocol by Jakobsson [14] with similar structure
is not vulnerable to the attack of Section 3.2.

The attack of Section 3.4 can be applied to break the privacy of Jakobs-
son [14], including the fixed protocol5 Mitomo and Kurosawa [18], and the attack
of Section 3.5 breaks the robustness of Jakobsson and Juels [15]. These attacks
are sketched in Appendices A and B.

An interesting open question is what other protocols are vulnerable to attacks
based on malicious use of elements in Z

∗
P \GQ.

5 Conclusion

We have presented several practical attacks for the mix-net recently proposed by
Golle, Zhong, Boneh, Jakobsson, and Juels [9], claimed secure by the authors.
In particular we break privacy of any sender without corrupting any mix-server.
Two of our attacks are easily adapted to break Jakobsson [14], including the
Mitomo and Kurosawa [18] variant, and Jakobsson and Juels [15].

The attacks for mix-nets, presented here and in other papers [23, 23, 17, 4, 18],
suggest that we should be careful with unproven claims of security for mix-nets.

Acknowledgements

I am grateful to Johan H̊astad for his advise and support, and for providing
a missing piece of the 4:th attack. My results would have been far fetched without
the discussions I had with Gunnar Sjödin, Torsten Ekedahl, and Björn Grönvall.
I also had discussions with Markus Jakobsson, Philippe Golle, Ari Juels, and
Sheng Zhong. An anonymous referee pointed me to the work of Lim and Lee.

References

[1] M. Abe, Universally Verifiable mix-net with Verification Work Independent of the
Number of Mix-centers, Eurocrypt ’98, pp. 437-447, LNCS 1403, 1998. 161

[2] M. Abe, Personal Communication, april 2003, a paper will appear at ACISP ’03.
161

[3] D. Chaum, Untraceable Electronic Mail, Return Addresses and Digital Pseudo-
nyms, Communications of the ACM - CACM ’81, Vol. 24, No. 2, pp. 84-88, 1981.
160, 161

[4] Y. Desmedt, K. Kurosawa, How to break a practical MIX and design a new one,
Eurocrypt 2000, pp. 557-572, LNCS 1807, 2000. 160, 161, 165, 172

[5] T. El Gamal, A Public Key Cryptosystem and a Signiture Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory, Vol. 31, No. 4, pp.
469-472, 1985. 161

5 We note that their proposal is given without security claims.

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 173

[6] A. Fujioka, T. Okamoto and K. Ohta, A practical secret voting scheme for large
scale elections, Auscrypt ’92, LNCS 718, pp. 244-251, 1992. 161

[7] J. Furukawa, K. Sako, An efficient scheme for proving a shuffle, Crypto 2001,
LNCS 2139, pp. 368-387, 2001. 161

[8] S. Goldwasser, S. Micali, Probabilistic Encryption, Journal of Computer and Sys-
tem Sciences (JCSS), Vol. 28, No. 2, pp. 270-299, 1984.

[9] Golle, Zhong, Boneh, Jakobsson, Juels, Optimistic Mixing for Exit-Polls, Asi-
acrypt 2002, LNCS, 2002. 160, 161, 162, 164, 166, 167, 171, 172

[10] Golle, Zhong, Boneh, Jakobsson, Juels, Private Communication, 16 October 2002.
167

[11] M. Hirt, K. Sako, Efficient Reciept-Free Voting Based on Homomorphic Encryp-
tion, Eurocrypt 2000, LNCS 1807, pp. 539-556, 2000.

[12] M. Jakobsson, A Practical Mix, Eurocrypt ’98, LNCS 1403, pp. 448-461, 1998.
161, 167

[13] M. Jakobsson, D. M’Raihi, Mix-based Electronic Payments, 5:th Workshop on
Selected Areas in Cryptography - SAC’98, LNCS 1556, pp. 157-173, 1998. 161

[14] M. Jakobsson, Flash Mixing, 18:th ACM Symposium on Principles of Distributed
Computing - PODC ’98, pp. 83-89, 1998. 160, 161, 172, 174

[15] M. Jakobsson, A. Juels, An optimally robust hybrid mix network, 20:th ACM
Symposium on Principles of Distributed Computing - PODC ’01, pp. 284-292,
2001. 160, 172, 174

[16] C.H. Lim, P. J. Lee, A Key Recovery Attack on Discrete Log-based Schemes Using
a Prime Order Subgroup, Crypto ’97, LNCS 1294, pp. 249-263, 1997. 160, 165,
170

[17] M. Michels, P. Horster, Some remarks on a reciept-free and universally verifiable
Mix-type voting scheme, Asiacrypt ’96, pp. 125-132, LNCS 1163, 1996. 161, 172

[18] M. Mitomo, K. Kurosawa, Attack for Flash MIX, Asiacrypt 2000, pp. 192-204,
LNCS 1976, 2000. 160, 161, 172, 174

[19] A. Neff, A verifiable secret shuffle and its application to E-Voting, 8:th ACM
Conference on Computer and Communications Security - CCS 2001, pp. 116-125,
2001. 161, 164, 167, 168

[20] V. Niemi, A. Renvall, How to prevent buying of votes in computer elections, Asi-
acrypt’94, LNCS 917, pp. 164-170, 1994. 161

[21] W. Ogata, K. Kurosawa, K. Sako, K. Takatani, Fault Tolerant Anonymous Chan-
nel, Information and Communications Security - ICICS ’97, pp. 440-444, LNCS
1334, 1997. 161

[22] C. Park, K. Itoh, K. Kurosawa, Efficient Anonymous Channel and All/Nothing
Election Scheme, Eurocrypt ’93, LNCS 765, pp. 248-259, 1994. 161

[23] B. Pfitzmann, Breaking an Efficient Anonymous Channel, Eurocrypt ’94, LNCS
950, pp. 332-340, 1995. 160, 161, 164, 165, 167, 170, 172

[24] B. Pfitzmann, A. Pfitzmann, How to break the direct RSA-implementation of
mixes, Eurocrypt ’89, LNCS 434, pp. 373-381, 1990. 160, 161, 164, 165, 167,
170

[25] K. Sako, J. Killian, Reciept-free Mix-Type Voting Scheme, Eurocrypt ’95, LNCS
921, pp. 393-403, 1995. 161

[26] C. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology,
No. 4, pp. 161-174, 1991. 163

[27] Y. Tsiounis, M. Yung, On the Security of El Gamal based Encryption, Interna-
tional workshop on Public Key Cryptography, LNCS 1431, pp. 117–134, 1998.

[28] D. Wagner, A Generalized Birthday Problem, Crypto 2002, LNCS 2442, pp. 288-
304, 2002. 164

174 Douglas Wikström

[29] D. Wikström, An Efficient Mix-Net, Swedish Institute of Computer Science
(SICS) Technical Report T2002:21, ISSN 1100-3154, SICS-T-2002/21-SE, 2002,
http://www.sics.se, (An implementation was demonstrated during the Confer-
ence of the Swedish Research Institute for Information Technology (SITI), feb 7,
2002). 161, 166

[30] D. Wikström, How to Break, Fix, and Optimize “Optimistic Mix for Exit-Polls”,
Swedish Institute of Computer Science (SICS) Technical Report T2002:24, ISSN
1100-3154, ISRN SICS-T-2002/24-SE, 6 december 2002, http://www.sics.se.
161

[31] D. Wikström, Four Practical Attacks for “Optimistic Mixing for Exit-Polls”,
Swedish Institute of Computer Science (SICS) Technical Report T2003:04, ISSN
1100-3154, ISRN SICS-T-2003/04-SE, 25 february 2003, http://www.sics.se.
161

A Attack for “Flash Mix”

Jakobsson [14] presents an efficient mix-net. We assume familiarity with his
protocol, and sketch how it is broken using the attack of Section 3.3.

The adversary corrupts M1 and Mk. During the “second re-encryption”, M1

“tags” two arbitrary El Gamal pairs in its input by multiplying their first com-
ponents with ξ and ξ−1 respectively. Then the honest mix-servers perform their
re-encryption and mixing. When the last mix-server Mk is about to re-encrypt
and mix the output of the previous mix-server Mk−1, it identifies the “tagged”
El Gamal pairs, removes the “tags” by multiplying the first components by ξ−1

and ξ respectively, and then finally re-encrypts and mix the resulting list hon-
estly. After the verification of the “first re-encryption”, this breaks the privacy
of some randomly chosen sender, if the cheating goes undetected.

Cheating is detected if one of two things happen; the adversary by chance
chooses a “dummy element” that is later traced back through the mix-chain, or
if M1 or Mk fails to play its part in the computation of the “relative permuta-
tions” correctly. The first event is very unlikely since by construction there are
very few “dummy elements”. Since the “tags” are removed by Mk, and both M1

and Mk follow the protocol except for the use of the tags, it follows that the
cheating is not detected. It is easy to see that the changes introduced by Mitomo
and Kurosawa [18] do not counter the above attack.

B Attack for
“An Optimally Robust Hybrid Mix Network”

Jakobsson and Juels [15] presents a hybrid mix-net. We assume familiarity with
their protocol and sketch how it is broken using the attack of Section 3.5.

Suppose that there are four senders, and that the i:th sender forms a crypto-
text (c(i)

0 , µ
(i)
0 , y

(i)
0) of a message mi. The adversary corrupts the last two senders

and modifies their cryptotexts as follows before they hand them to the mix-net.
It replaces y

(3)
0 by y

(3)
0 = ay

(3)
0 by and y

(4)
0 by y

(4)
0 = a−1y

(4)
0 for some a �= 1.

http://www.sics.se
http://www.sics.se
http://www.sics.se

Five Practical Attacks for “Optimistic Mixing for Exit-Polls” 175

The adversary corrupts M1. M1 then replaces y
(3)
0 by y

(3)
0 and y

(4)
0 by y

(4)
0

and simulates an honest M1 on the modified input. Similarly as in the original
attack this does not change the component-wise product P0 = y

(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 =

y
(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 . The VerifyComplaint procedure is never invoked, since all cryp-

totexts are valid. Thus the cheating is not detected.
We conclude that the set of cleartext messages corresponding to the set of

valid cryptotexts in the input differs from the set of cleartext messages in the
output of the mix-net. This breaks the robustness, i.e. Definition 4(b).

	Five Practical Attacks for ``Optimistic Mixing for Exit-Polls''
	Introduction
	Previous Work and Applications of Mix-Nets

	Review of ``Optimistic Mixing for Exit-Polls''
	Participants and Setup
	Sending a Message to the Mix-Net
	Execution of the Mix-Net

	The Attacks
	First Attack: Honest Mix-Servers
	Second Attack: Different Keys and Corrupt Mix-Server
	Third Attack: Honest Senders and One Corrupt Mix-Servers
	Fourth Attack: Two Corrupt Mix-Servers
	Fifth Attack: One Corrupt Mix-Server

	Further Applications and Future Work
	Conclusion
	A Attack for ``Flash Mix''
	B Attack for ``An Optimally Robust Hybrid Mix Network''

