
The Astrophysical Journal Supplement Series, 180:306–329, 2009 February doi:10.1088/0067-0049/180/2/306
c© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE∗ OBSERVATIONS: LIKELIHOODS AND
PARAMETERS FROM THE WMAP DATA

J. Dunkley1,2,3, E. Komatsu4, M. R. Nolta5, D. N. Spergel2,6, D. Larson7, G. Hinshaw8, L. Page1, C. L. Bennett7,

B. Gold7, N. Jarosik1, J. L. Weiland9, M. Halpern10, R. S. Hill9, A. Kogut8, M. Limon11, S. S. Meyer12, G. S. Tucker13,

E. Wollack8, and E. L. Wright14

1 Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708, USA; j.dunkley@physics.ox.ac.uk
2 Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001, USA

3 Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK
4 Department of Astronomy, University of Texas, Austin, 2511 Speedway, RLM 15.306, Austin, TX 78712, USA

5 Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8, Canada
6 Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544, USA

7 Department of Physics & Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2686, USA
8 Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA

9 Adnet Systems, Inc., 7515 Mission Dr., Suite A100, Lanham, MD 20706, USA
10 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

11 Columbia Astrophysics Laboratory, 550 W. 120th Street, Mail Code 5247, New York, NY 10027-6902, USA
12 Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637, USA

13 Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912-1843, USA
14 UCLA Physics & Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547, USA

Received 2008 March 4; accepted 2008 July 23; published 2009 February 11

ABSTRACT

This paper focuses on cosmological constraints derived from analysis of WMAP data alone. A simple ΛCDM
cosmological model fits the five-year WMAP temperature and polarization data. The basic parameters of
the model are consistent with the three-year data and now better constrained: Ωbh

2 = 0.02273 ± 0.00062,
Ωch

2 = 0.1099 ± 0.0062, ΩΛ = 0.742 ± 0.030, ns = 0.963+0.014
−0.015, τ = 0.087 ± 0.017, and σ8 = 0.796 ± 0.036,

with h = 0.719+0.026
−0.027. With five years of polarization data, we have measured the optical depth to reionization, τ > 0,

at 5σ significance. The redshift of an instantaneous reionization is constrained to be zreion = 11.0 ± 1.4 with 68%
confidence. The 2σ lower limit is zreion > 8.2, and the 3σ limit is zreion > 6.7. This excludes a sudden reionization of
the universe at z = 6 at more than 3.5σ significance, suggesting that reionization was an extended process. Using two
methods for polarized foreground cleaning we get consistent estimates for the optical depth, indicating an error due to
the foreground treatment of τ ∼ 0.01. This cosmological model also fits small-scale cosmic microwave background
(CMB) data, and a range of astronomical data measuring the expansion rate and clustering of matter in the universe.
We find evidence for the first time in the CMB power spectrum for a nonzero cosmic neutrino background, or a
background of relativistic species, with the standard three light neutrino species preferred over the best-fit ΛCDM
model with Neff = 0 at > 99.5% confidence, and Neff > 2.3 (95% confidence limit (CL)) when varied. The five-
year WMAP data improve the upper limit on the tensor-to-scalar ratio, r < 0.43 (95% CL), for power-law models,
and halve the limit on r for models with a running index, r < 0.58 (95% CL). With longer integration we find no
evidence for a running spectral index, with dns/d ln k = −0.037 ± 0.028, and find improved limits on isocurvature
fluctuations. The current WMAP-only limit on the sum of the neutrino masses is

∑

mν < 1.3 eV (95% CL), which
is robust, to within 10%, to a varying tensor amplitude, running spectral index, or dark energy equation of state.
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1. INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP),
launched in 2001, has mapped out the cosmic microwave back-
ground (CMB) with unprecedented accuracy over the whole
sky. Its observations have led to the establishment of a simple
concordance cosmological model for the contents and evolution
of the universe, consistent with virtually all other astronomical
measurements. The WMAP first-year and three-year data have
allowed us to place strong constraints on the parameters de-
scribing the ΛCDM model, a flat universe filled with baryons,
cold dark matter (CDM), neutrinos, and a cosmological con-
stant, with initial fluctuations described by nearly scale-invariant
power-law fluctuations, as well as placing limits on extensions

∗ WMAP is the result of a partnership between Princeton University and
NASA’s Goddard Space Flight Center. Scientific guidance is provided by the
WMAP Science Team.

to this simple model (Spergel et al. 2003, 2007). With all-sky
measurements of the polarization anisotropy (Kogut et al. 2003;
Page et al. 2007), 2 orders of magnitude smaller than the in-
tensity fluctuations, WMAP has not only given us an additional
picture of the universe as it transitioned from ionized to neu-
tral at redshift z ∼ 1100, but also an observation of the later
reionization of the universe by the first stars.

In this paper, we present cosmological constraints from
WMAP alone, for both theΛCDM model and a set of possible ex-
tensions. We also consider the consistency of WMAP constraints
with other recent astronomical observations. This is one of the
seven five-year WMAP papers. Hinshaw et al. (2009) describe
the data processing and basic results, Hill et al. (2009) present
new beam models and window functions, Gold et al. (2009) de-
scribe the emission from Galactic foregrounds, and Wright et al.
(2009) describe the emission from extra-Galactic point sources.
The angular power spectra are described by Nolta et al. (2009),
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and Komatsu et al. (2009) present and interpret cosmological
constraints based on combining WMAP with other data.

WMAP observations are used to produce full-sky maps of
the CMB in five frequency bands centered at 23, 33, 41,
61, and 94 GHz (Hinshaw et al. 2009). With five years of
data, we are now able to place better limits on the ΛCDM
model, as well as to move beyond it to test the composition of
the universe, details of reionization, subdominant components,
characteristics of inflation, and primordial fluctuations. We
have more than doubled the amount of polarized data used
for cosmological analysis, allowing a better measure of the
large-scale E-mode signal (Nolta et al. 2009). To this end we
test two alternative ways to remove Galactic foregrounds from
low-resolution polarization maps, marginalizing over Galactic
emission, providing a cross-check of our results. With longer
integration we also better probe the second and third acoustic
peaks in the temperature angular power spectrum, and have
many more year-to-year difference maps available for cross-
checking systematic effects (Hinshaw et al. 2009).

The paper is structured as follows. In Section 2 we focus
on the CMB likelihood and parameter estimation methodology.
We describe two methods used to clean the polarization maps,
describe a fast method for computing the large-scale temperature
likelihood, based on work described by Wandelt et al. (2004),
which also uses Gibbs sampling, and outline more efficient
techniques for sampling cosmological parameters. In Section 3
we present cosmological parameter results from five years of
WMAP data for theΛCDM model, and discuss their consistency
with recent astronomical observations. Finally, we consider
constraints from WMAP alone on a set of extended cosmological
models in Section 4, and conclude in Section 5.

2. LIKELIHOOD AND PARAMETER ESTIMATION
METHODOLOGY

2.1. Likelihood

The WMAP likelihood function takes the same format as for
the three-year release, and software implementation is available
on LAMBDA (http://lambda.gsfc.nasa.gov) as a standalone
package. It takes in theoretical CMB temperature (TT), E-mode
polarization (EE), B-mode polarization (BB), and temperature–
polarization cross-correlation (TE) power spectra for a given
cosmological model. It returns the sum of various likelihood
components: low-ℓ temperature, low-ℓ TE/EE/BB polarization,
high-ℓ temperature, high-ℓ TE cross-correlation, and additional
terms due to uncertainty in the WMAP beam determination,
and possible error in the extra-galactic point source removal.
Now, there is also an additional option to compute the TB and
EB likelihood. We describe the method used for computing the
low-ℓ polarization likelihood in Section 2.1.1, based on maps
cleaned by two different methods. The main improvement in
the five-year analysis is the implementation of a faster Gibbs
sampling method for computing the ℓ � 32 TT likelihood,
which we describe in Section 2.1.2.

For ℓ > 32, the TT likelihood uses the combined pseudo-Cℓ

spectrum and covariance matrix described by Hinshaw et al.
(2007), estimated using the V and W bands. We do not use the
EE or BB power spectra at ℓ > 23, but continue to use the
TE likelihood described by Page et al. (2007), estimated using
the Q and V bands. The errors due to beam and point sources
are treated the same as in the three-year analysis, described
in Appendix A of Hinshaw et al. (2007). A discussion of this
treatment can be found in Nolta et al. (2009).

2.1.1. Low-ℓ Polarization Likelihood

We continue to evaluate the exact likelihood for the polariza-
tion maps at low multipole, ℓ � 23, as described in Appendix
D of Page et al. (2007). The input maps and inverse covariance
matrix used in the main analysis are produced by coadding the
template-cleaned maps described by Gold et al. (2009). In both
cases these are weighted to account for the P06 mask using
the method described by Page et al. (2007). In the three-year
analysis we conservatively used only the Q and V bands in the
likelihood. We are now confident that the Ka band is cleaned
sufficiently for inclusion in analyses (see Hinshaw et al. 2009
for a discussion).

We also cross-check the polarization likelihood by using
polarization maps obtained with an alternative component-
separation method, described by Dunkley et al. (2008). The
low-resolution polarization maps in the K, Ka, Q, and V bands,
degraded to HEALPix Nside = 8,15 are used to estimate a single
set of marginalized Q and U CMB maps and associated in-
verse covariance matrix, that can then be used as inputs for the
ℓ < 23 likelihood. This is done by estimating the joint posterior
distribution for the amplitudes and spectral indices of the syn-
chrotron, dust, and CMB Q and U components, using a Markov
Chain Monte Carlo (MCMC) method. One then marginalizes
over the foreground amplitudes and spectral indices to estimate
the CMB component. A benefit of this method is that errors
due to both instrument noise and foreground uncertainty are
accounted for in the marginalized CMB covariance matrix.

2.1.2. Low-ℓ Temperature Likelihood

For a given set of cosmological parameters with theoretical
power spectrum Cℓ, the likelihood function returns p(d|Cℓ),
the likelihood of the observed map d, or its transformed alm

coefficients. Originally, the likelihood code was written as a
hybrid combination of a normal and log-normal distribution
(Verde et al. 2003). This algorithm did not properly model the
tails of the likelihood at low multipoles (Efstathiou 2004; Slosar
et al. 2004; O’Dwyer et al. 2004; Hinshaw et al. 2007), and so
for the three-year data the ℓ � 30 likelihood was computed
exactly, using

p(d|Cℓ) = exp[(−(1/2)dT C−1d]√
det C

, (1)

where C is the covariance matrix of the data including both
the signal covariance matrix and noise C(Cℓ) = S(Cℓ) + N
(e.g., Tegmark 1997; Bond et al. 1998; Hinshaw et al. 2007).
This approach is computationally intensive, however, since it
requires the inversion of a large covariance matrix each time the
likelihood is called.

In Jewell et al. (2004), Wandelt et al. (2004), and Eriksen
et al. (2004a), a faster method was developed and implemented
to compute p(d|Cℓ), which we now adopt. It is described in
detail in those papers, so we only briefly outline the method
here. The method uses Gibbs sampling to first sample from
the joint posterior distribution p(Cℓ, s|d), where Cℓ is the
power spectrum and s is the true sky signal. From these
samples, a Blackwell–Rao (BR) estimator provides a continuous
approximation to p(Cℓ|d). When a flat prior, p(Cℓ) = const,
is used in the sampling, we have p(Cℓ|d) ∝ p(d|Cℓ), where
the constant of proportionality is independent of Cℓ. The

15 The number of pixels is 12N2
side, where Nside = 23 for resolution 3 (Gorski

et al. 2005).

http://lambda.gsfc.nasa.gov
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BR estimator can then be used as an accurate representation
of the likelihood, p(d|Cℓ) (Wandelt et al. 2004; Chu et al.
2005).

The first step requires drawing samples from p(Cℓ, s|d). We
cannot draw samples from the joint distribution directly, but
we can from the two conditional distributions p(s|Cℓ, d) and
p(Cℓ|s, d), each a slice through the (Np × ℓmax)-dimensional
space. Samples are drawn alternately, forming a Markov Chain
of points by the Gibbs algorithm. For the case of one Cℓ

parameter and one s parameter the sampling goes as follows. We
start from some arbitrary point (Ci

ℓ, s
i) in the parameter space,

and then draw
(

Ci+1
ℓ , si+1

)

,
(

Ci+2
ℓ , si+2

)

, . . . (2)

by first drawing Ci+1
ℓ from p(Cℓ|si, d) and then drawing si+1

from p
(

s
∣

∣Ci+1
ℓ , d

)

. Then we iterate many times. The result is a
Markov chain whose stationary distribution is p(Cℓ, s|d). This
is extended to vectors for Cℓ (of length ℓmax) and s (of length
Np) following the same method:

si+1 ← p
(

si
∣

∣Ci
ℓ, d

)

(3)

Ci+1
ℓ ← p

(

Ci
ℓ

∣

∣si+1, d
)

, (4)

sampling the joint distribution p(Cℓ, s|d). This sampling pro-
cedure is also described by Jewell et al. (2004), Wandelt et al.
(2004), and Eriksen et al. (2007).

The first conditional distribution is a multivariate Gaussian
with mean Si(Si + N)−1d and variance [(Si)−1 + N−1]−1, so at
each step a new signal vector si+1, of size Np, can be drawn.
This is computationally demanding, however, as described by
Eriksen et al. (2004a) and Wandelt et al. (2004), requiring
the solution of a linear system of equations Mv = w, with
M = 1 + S1/2N−1S1/2. These are solved at each step using
the conjugate gradient technique, which is sped up by finding
an approximate inverse for M, a preconditioner. This requires
computation of the inverse noise matrix, N−1, in spherical
harmonic space, which is done by computing the components
of N−1 term-by-term using spherical harmonics in pixel space.
There are more efficient ways to compute N−1 (Hivon et al.
2002; Eriksen et al. 2004b), but computing the preconditioner
is a one-time expense, and it is only necessary to compute
harmonics up to ℓ = 30.

The second conditional distribution, p(Cℓ|s, d), is an inverse
Gamma distribution, from which a new Cℓ vector of size
ℓmax can be rapidly drawn using the method by Wandelt
et al. (2004). Sampling from these two conditional distributions
is continued in turn until convergence, at which point the
sample accurately represents the underlying distribution. This
is checked in practice using a jacknife test that compares
likelihoods from two different samples.

Finally, once the joint distribution p(Cℓ, s|d) has been pre-
computed, the likelihood for any given model Cℓ is obtained
by marginalizing over the signal s, p(d|Cℓ) ∝

∫

p(Cℓ, s|d)ds,
which holds for a uniform prior distribution p(Cℓ). In practice
this is computed using the BR estimator,

p(d|Cℓ) ∝
∫

p(Cℓ|s)p(s|d)ds ≈ 1

nG

nG
∑

i=1

p(Cℓ|si), (5)

where the sum is over all nG samples in the Gibbs chain.
Since p(Cℓ|si) = p(Cℓ|σ i

ℓ ), where σℓ = (2ℓ + 1)−1
∑

m |sℓm|2,
and sℓm are the spherical harmonic coefficients of s, one only

needs to store σ i
ℓ at each step in the Gibbs sampling. Then,

each time the likelihood is called for a new Cℓ, one computes
L =

∑nG

i=1 p
(

Cℓ

∣

∣σ i
ℓ

)

/nG. This requires only O(ℓmaxnG) com-

putations, compared to the full O
(

N3
p

)

evaluation of Equation
(1). This speed-up also means that the exact likelihood can be
used to higher resolution than is feasible with the full evaluation,
providing a more accurate estimation.

2.1.3. Code Details: Choice of ℓ Limits, Smoothing, and Resolution

The code used for WMAP is adapted from the MAGIC
Gibbs code described by Wandelt (2003) and Wandelt et al.
(2004). The input temperature map is the five-year internal lin-
ear combination (ILC) map described by Gold et al. (2009).
To produce correct results, the Gibbs sampler requires an ac-
curate model of the data. This means that the signal covari-
ance matrix S(Cℓ) cannot be approximated to be zero except
for multipoles where the smoothing makes the signal much
less than the noise. For the full WMAP dataset, this would
require sampling out to ℓ ∼ 1000, with Nside = 512. This
is computationally expensive, taking more than of order 104

processor hours to converge (O’Dwyer et al. 2004). Instead
we reduce the resolution and smooth the data to substan-
tially reduce the required multipole range, speeding up the
computation.

The ILC map is smoothed to 5◦ FWHM, and sampled at
Nside = 32. The process of smoothing the data has the side
effect of correlating the noise. Properly modeling the correlated
noise slows down the Gibbs sampling, as it takes longer to draw
a sample from p(s|Cℓ, d). We therefore add uncorrelated white
noise to the map such that it dominates over the smoothed noise.
However, the added noise must not be so large that it changes
the likelihood of the low-ℓ modes; cosmic variance must remain
dominant over the noise (Eriksen et al. 2007), so we add 2 μK
of noise per pixel. In Appendix A the noise power spectra are
shown.

The Gibbs sampler converges more slowly in regions of low
signal-to-noise ratio (S/N). Because of this, we only sample
spectra out to ℓ = 51 and fix the spectrum for 51 < ℓ � 96 to
a fiducial value, and set it to zero for ℓ > 96. The BR estimator
is only used up to ℓ = 32 for cosmological analysis, so we
marginalize over the 32 < ℓ � 51 spectrum. The likelihood
is therefore p(L|d) =

∫

p(L,H |d)dH , where L and H refer
to the low, ℓ � 32, and higher, 32 < ℓ � 51, parts of the
power spectrum. Examination of the BR estimator shows it
to have a smooth distribution. Tests of the results to various
input choices, including the choice of resolution, are given
in Appendix A. We note that by using the low-ℓ likelihood
only up to ℓ � 32, this breaks the likelihood into a low- and
high-ℓ part, which introduces a small error by ignoring the
correlation between these two parts of the spectrum. However,
this error is small, and it is unfeasible, in a realistic sampling
time, to use the BR estimator over the entire ℓ range probed by
WMAP.

In Figure 1 we show slices through the Cℓ distribution ob-
tained from the BR estimator, compared to the pixel likelihood
code. The estimated spectra agree well. Some small discrepan-
cies are due to the pixel code using Nside = 16, compared to the
higher resolution Nside = 32 used for the Gibbs code.

2.2. Parameter Estimation

We use the MCMC methodology described by Spergel et al.
(2003, 2007) to explore the probability distributions for various
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Figure 1. This figure compares the low-ℓ TT power spectrum computed with
two different techniques. At each ℓ value, we plot the maximum likelihood value
(tic mark), the region where the likelihood is greater than 50% of the peak value
(thick line) and the region where the likelihood is greater than 95% of the peak
value (thin line). The black lines (left side of each pair) are estimated by Gibbs
sampling using the ILC map smoothed with a 5◦ Gaussian beam (at HEALPIX
Nside = 32). The light blue line (right side of the pair) is estimated with a
pixel-based likelihood code with Nside = 16. The slight differences between
the points are primarily due to differences in resolution. At each multipole, the
likelihood is sampled by fixing the other Cℓ values at a fiducial spectrum (red).

cosmological models, using the five-year WMAP data and other
cosmological datasets. We map out the full distribution for each
cosmological model, for a given dataset or data combination,
and quote parameter results using the means and 68% confidence
limits (CL) of the marginalized distributions, with

〈xi〉 =
∫

dNxL(d|x)p(x)xi = 1

M

M
∑

j=1

x
j

i , (6)

where x
j

i is the jth value of the ith parameter in the chain. We
also give 95% upper or lower limits when the distribution is
one-tailed. We have made a number of changes in the five-year
analysis, outlined here and in Appendix B.

We parameterize our basic ΛCDM cosmological model in
terms of the following parameters:

{

ωb, ωc,ΩΛ, τ, ns,Δ
2
R

}

, {ASZ} (7)

defined in Table 1.Δ2
R

is the amplitude of curvature perturbations
and ns is the spectral tilt, both defined at the pivot scale k0 =
0.002 Mpc−1. In this simplest model we assume “instantaneous”
reionization of the universe, with optical depth τ , in which the
universe transitions from being neutral to fully ionized during
a change in redshift of z = 0.5. The contents of the universe,
assuming a flat geometry, are quantified by the baryon density
ωb, the CDM density ωc, and a cosmological constant ΩΛ.
We treat the contribution to the power spectrum by Sunyaev–
Zel’dovich (SZ) fluctuations (Sunyaev & Zel’dovich 1970) as
in Spergel et al. (2007), adding the predicted template spectrum
from Komatsu & Seljak (2002), multiplied by an amplitude ASZ,
to the total spectrum. This template spectrum is scaled with
frequency according to the known SZ frequency dependence.
We limit 0 < ASZ < 2 and impose unbounded uniform priors
on the remaining six parameters.

We also consider extensions to this model, parameterized by

{dns/d ln k, r, α−1, α0,ΩK , w, ων, Neff, YP , xe, zr} (8)

also defined in Table 1. These include cosmologies in which
the primordial perturbations have a running scalar spectral
index dns/d ln k, a tensor contribution with tensor-to-scalar
ratio r, or an anticorrelated or uncorrelated isocurvature
component, quantified by α−1, α0. They also include models
with a curved geometry Ωk , a constant dark energy equation of
state w, and those with massive neutrinos

∑

mν = 94Ωνh
2eV,

varying numbers of relativistic species Neff , and varying pri-
mordial helium fraction YP. There are also models with non-
instantaneous “two-step” reionization as in Spergel et al. (2007),
with an initial ionized step at zr with ionized fraction xe, fol-
lowed by a second step at z = 7 to a fully ionized universe.

These parameters all take uniform priors, and are all sampled
directly, but we bound Neff < 10, w > −2.5, zr < 30 and
impose positivity priors on r, α−1, α0, ων , Yp, and ΩΛ, as
well as requiring 0 < xe < 1. The tensor spectral index is
fixed at nt = −r/8. We place a prior on the Hubble constant
of 20 < H0 < 100, but this only affects nonflat models.
Other parameters, including σ8, the redshift of reionization,
zreion, and the age of the universe, t0, are derived from these
primary parameters and described in Table 1. A more extensive
set of derived parameters are provided on the LAMBDA Web
site. In this paper we assume that the primordial fluctuations
are Gaussian, and do not consider constraints on parameters
describing deviations from Gaussianity in the data. These
are discussed in the cosmological interpretation presented by
Komatsu et al. (2009).

We continue to use the CAMB code (Lewis et al. 2000),
based on the CMBFAST code (Seljak & Zaldarriaga 1996), to
generate the CMB power spectra for a given set of cosmological
parameters.16 Given the improvement in the WMAP data,
we have determined that distortions to the spectra due to
weak gravitational lensing should now be included (see, e.g.;
Blanchard & Schneider 1987; Seljak 1997; Hu & Okamoto
2002). We use the lensing option in CAMB which roughly
doubles the time taken to generate a model, compared to the
unlensed case.

We have made a number of changes in the parameter-
sampling methodology. Our main pipeline now uses an MCMC
code originally developed for use in Bucher et al. (2004), which
has been adapted for WMAP. For increased speed and reliability,
it incorporates two changes in the methodology described by
Spergel et al. (2007). It uses a modified sampling method that
generates a single chain for each model (instead of the four,
or eight, commonly used in cosmological analyses). We also
use an alternative spectral convergence test that can be run on
a single chain, developed by Dunkley et al. (2005), instead of
the Gelman & Rubin test used in Spergel et al. (2007). These
are both described in Appendix B. We also use the publicly
available CosmoMC sampling code (Lewis & Bridle 2002) as
a secondary pipeline, used as an independent cross-check for a
limited set of models.

3. THE ΛCDM COSMOLOGICAL MODEL

3.1. WMAP Five-Year Parameters

TheΛCDM model, described by just six parameters, is still an
excellent fit to the WMAP data. The temperature and polarization
angular power spectra are shown by Nolta et al. (2009). With
more observation the errors on the third acoustic peak in the

16 We use the pre-2008 March version of CAMB that treats reionization as
“instantaneous” (with width z ∼ 0.5) and fully ionizes hydrogen but not
helium at reionization.
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Figure 2. Temperature angular power spectrum corresponding to the WMAP-only best-fit ΛCDM model. The gray dots are the unbinned data; the black data points
are binned data with 1σ error bars including both noise and cosmic variance computed for the best-fit model.

Table 1
Cosmological Parameters Used in the Analysis

Parameter Description

ωb Baryon density, Ωbh
2

ωc CDM density, Ωch
2

ΩΛ Dark energy density, with w = −1 unless stated

Δ2
R

Amplitude of curvature perturbations at k0 = 0.002 Mpc−1

ns Scalar spectral index at k0 = 0.002 Mpc−1

τ Reionization optical depth

ASZ SZ marginalization factor

dns/d ln k Running in scalar spectral index

r Ratio of the amplitude of tensor fluctuations to scalar fluctuations

α−1 Fraction of anticorrelated CDM isocurvature (see Section 4.1.3)

α0 Fraction of uncorrelated CDM isocurvature (see Section 4.1.3)

Neff Effective number of relativistic species (assumed neutrinos)

ων Massive neutrino density, Ωνh
2

Ωk Spatial curvature, 1 −Ωtot

w Dark energy equation of state, w = pDE/ρDE

YP Primordial helium fraction

xe Ionization fraction of first step in two-step reionization

zr Reionization redshift of first step in two-step reionization

σ8 Linear theory amplitude of matter fluctuations on 8 h−1 Mpc scales

H0 Hubble expansion factor (100 h Mpc−1 km s−1)
∑

mν Total neutrino mass (eV)
∑

mν = 94Ωνh
2

Ωm Matter energy density Ωb + Ωc + Ων

Ωmh2 Matter energy density

t0 Age of the universe (billions of years)

zreion Redshift of instantaneous reionization

η10 Ratio of baryon-to-photon number densities, 1010(nb/nγ ) = 273.9Ωbh
2

Note. http://lambda.gsfc.nasa.gov lists the marginalized values for these parameters for all of the

models discussed in this paper.

temperature angular power spectrum have been reduced. The
TE cross-correlation spectrum has also improved, with a better
measurement of the second anticorrelation at ℓ ∼ 500. The low-
ℓ signal in the EE spectrum, due to reionization of the universe
(Ng & Ng 1995; Zaldarriaga & Seljak 1997), is now measured
with higher significance (Nolta et al. 2009). The best-fit six-
parameter model, shown in Figure 2, is successful in fitting
three TT acoustic peaks, three TE cross-correlation maxima/
minima, and the low-ℓ EE signal. The model is compared to the
polarization data in Nolta et al. (2009). The consistency of both

the temperature and polarization signals with ΛCDM continues
to validate the model.

The five-year marginalized distributions for ΛCDM, shown
in Table 2 and Figures 3 and 4, are consistent with the three-
year results (Spergel et al. 2007), but the uncertainties are all
reduced, significantly so for certain parameters. With longer
integration of the large-scale polarization anisotropy, there has
been a significant improvement in the measurement of the
optical depth to reionization. There is now a 5σ detection of
τ , with mean value τ = 0.087 ± 0.017. This can be compared

http://lambda.gsfc.nasa.gov
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Figure 3. Constraints on ΛCDM parameters from the five-year WMAP data. The two-dimensional 68% and 95% marginalized limits are shown in blue. They are
consistent with the three-year constraints (gray). Tighter limits on the amplitude of matter fluctuations, σ8, and the CDM densityΩch

2, arise from a better measurement
of the third temperature (TT) acoustic peak. The improved measurement of the EE spectrum provides a 5σ detection of the optical depth to reionization, τ , which is
now almost uncorrelated with the spectral index ns.

Table 2
ΛCDM Model Parameters and 68% Confidence Intervals From the Five-Year

WMAP Data Alone

Parameter Three-Year Mean Five-Year Mean Five-Year Max Like

100Ωbh
2 2.229 ± 0.073 2.273 ± 0.062 2.27

Ωch
2 0.1054 ± 0.0078 0.1099 ± 0.0062 0.108

ΩΛ 0.759 ± 0.034 0.742 ± 0.030 0.751

ns 0.958 ± 0.016 0.963+0.014
−0.015

0.961

τ 0.089 ± 0.030 0.087 ± 0.017 0.089

Δ2
R

(2.35 ± 0.13) × 10−9 (2.41 ± 0.11) × 10−9 2.41 × 10−9

σ8 0.761 ± 0.049 0.796 ± 0.036 0.787

Ωm 0.241 ± 0.034 0.258 ± 0.030 0.249

Ωmh2 0.128 ± 0.008 0.1326 ± 0.0063 0.131

H0 73.2+3.1
−3.2 71.9+2.6

−2.7 72.4

zreion 11.0 ± 2.6 11.0 ± 1.4 11.2

t0 13.73 ± 0.16 13.69 ± 0.13 13.7

Notes. The three-year values are shown for comparison. For best estimates of

parameters, the marginalized “Mean” values should be used. The “Max Like”

values correspond to the single model giving the highest likelihood.

to the three-year measure of τ = 0.089 ± 0.03. The central
value is little altered with two more years of integration, and
the inclusion of the Ka band data, but the limits have almost
halved. This measurement, and its implications, are discussed
in Section 3.1.1.

The higher acoustic peaks in the TT and TE power spectra
also provide more information about the ΛCDM model. Longer
integration has resulted in a better measure of the height and
position of the third peak. The highest multipoles have a slightly
higher mean value relative to the first peak, compared to the
three-year data. This can be attributed partly to improved beam
modeling, and partly to longer integration time reducing the
noise. The third peak position constrains Ω0.275

m h, while the

third peak height strongly constrains the matter density, Ωmh2

(Hu & White 1996; Hu & Sugiyama 1995). In this region of the
spectrum, the WMAP data are noise-dominated so that the errors
on the angular power spectrum shrink as 1/t . The uncertainty on
the matter density has dropped from 12% in the first-year data
to 8% in the three-year data and now 6% in the five-year data.
The CDM density constraints are compared to three-year limits
in Figure 3. The spectral index still has a mean value 2.5σ less
than unity, with ns = 0.963+0.014

−0.015. This continues to indicate
the preference of a red spectrum consistent with the simplest
inflationary scenarios (Linde 2005; Boyle et al. 2006), and our
confidence will be enhanced with more integration time.

Both the large-scale EE spectrum and the small-scale TT
spectrum contribute to an improved measure of the amplitude
of matter fluctuations. With the CMB we measure the amplitude
of curvature fluctuations, quantified by Δ2

R
, but we also derive

limits on σ8, the amplitude of matter fluctuations on 8h−1Mpc
scales. A higher value for τ produces more overall damping of
the CMB temperature signal, making it somewhat degenerate
with the amplitude, Δ2

R
, and therefore σ8. The value of σ8

also affects the height of the acoustic peaks at small scales, so
information is gained from both temperature and polarization.
The five-year data give σ8 = 0.796±0.036, slightly higher than
the three-year result, driven by the increase in the amplitude
of the power spectrum near the third peak. The value is
now remarkably consistent with new measurements from weak
lensing surveys, as discussed in Section 3.2.

3.1.1. Reionization

Our observations of the acoustic peaks in the TT and TE
spectrum imply that most of the ions and electrons in the
universe combined to make neutral hydrogen and helium at
z ≃ 1100. Observations of quasar spectra show diminishing
Gunn–Peterson troughs at z < 5.8 (Fan et al. 2000, 2001)
implying that the universe was nearly fully ionized by z = 5.7.
How did the universe make the transition from being nearly
fully neutral to fully ionized? The astrophysics of reionization
has been a very active area of research in the past decade.
Several recent reviews (Barkana & Loeb 2006; Fan et al. 2006;
Furlanetto et al. 2006; Meiksin 2007) summarize the current
observations and theoretical models. Here, we highlight a few
of the important issues and discuss some of the implications of
the WMAP measurements of optical depth.

What objects reionized the universe? While high-redshift
galaxies are usually considered the most likely source of reion-
ization, active galactic nuclei (AGNs) may also have played
an important role. As galaxy surveys push toward ever higher
redshift, it is unclear whether the known population of star-
forming galaxies at z ∼ 6 could have ionized the universe
(see, e.g. Bunker et al. 2007). The EE signal clearly seen in
the WMAP five-year data (2008, Section 2) implies an opti-
cal depth, τ ≃ 0.09. This large optical depth suggests that
higher redshift galaxies, perhaps the low-luminosity sources
appearing in z > 7 surveys (Stark et al. 2007), played an im-
portant role in reionization. While the known population of
AGNs cannot be a significant source of reionization (Bolton
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Figure 4. Constraints from the five-year WMAP data on ΛCDM parameters (blue), showing marginalized one-dimensional distributions and two-dimensional 68%
and 95% limits. Parameters are consistent with the three-year limits (gray) from Spergel et al. (2007), and are now better constrained.

& Haehnelt 2007; Srbinovsky & Wyithe 2007), an early gen-
eration of supermassive black holes could have played a
role in reionization (Ricotti & Ostriker 2004; Ricotti et al.
2007). This early reionization would also have an impact on
the CMB.

Most of our observational constraints probe the end of the
epoch of reionization. Observations of z > 6 quasars (Becker
2001; Djorgovski et al. 2001; Fan et al. 2006; Willott et al. 2007)
find that the Lyα optical depth rises rapidly. Measurements of
the afterglow spectrum of a gamma-ray burst at z = 6.3 (Totani
et al. 2006) suggest that universe was mostly ionized at z = 6.3.
Lyα emitter surveys (Taniguchi et al. 2005; Malhotra & Rhoads
2006; Kashikawa et al. 2006; Iye et al. 2006; Ota et al. 2008)
imply a significant ionized fraction at z = 6.5. The interpretation
that there is a sudden change in the properties of the intergalactic
medium (IGM) remains a subject of active debate (Becker et al.
2007; Wyithe et al. 2008).

The WMAP data place new constraints on the reionization
history of the universe. The WMAP data best constrains the
optical depth due to reionization at moderate redshift (z < 25)

and only indirectly constrains the redshift of reionization. If
reionization is sudden, then the WMAP data imply that zreion =
11.0 ± 1.4, as shown in Figure 5, and now excludes zreion = 6
at more than 99.9% CL. The combination of the WMAP data
implying that the universe was mostly reionized at z ∼ 11 and
the measurements of rapidly rising optical depth at z ∼ 6–6.5
suggest that reionization was an extended process rather than a
sudden transition. Many early studies of reionization envisioned
a rapid transition from a neutral to a fully ionized universe
occurring as ionized bubbles percolate and overlap. As Figure 5
shows, the WMAP data suggest a more gradual process with
reionization beginning perhaps as early as z ∼ 20 and strongly
favoring z > 6. This suggests that the universe underwent an
extended period of partial reionization. The limits were found
by modifying the ionization history in CAMB to include two
steps in the ionization fraction at late times (z < 30): the first at
zr with ionization fraction xe, the second at z = 7 with xe = 1.
Several studies (Cen 2003; Chiu et al. 2003; Wyithe & Loeb
2003; Haiman & Holder 2003; Yoshida et al. 2004; Choudhury
& Ferrara 2006; Iliev et al. 2007; Wyithe et al. 2008) suggest
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Figure 5. Left: marginalized probability distribution for zreion in the standard model with instantaneous reionization. Sudden reionization at z = 6 is ruled out at
3.5σ , suggesting that reionization was a gradual process. Right: in a model with two steps of reionization (with ionization fraction xe at redshift zr , followed by full
ionization at z = 7), the WMAP data are consistent with an extended reionization process.

Figure 6. Effect of foreground treatment and likelihood details on ΛCDM parameters. Left: the number of bands used in the template cleaning (denoted “T”) affects
the precision to which τ is determined, with the standard KaQV compared to QV and KaQVW, but has little effect on other cosmological parameters. Using maps
cleaned by Gibbs sampling (KKaQV (G)) also gives consistent results. Right: lowering the residual point source contribution (denoted lower ptsrc) and removing the
marginalization over an SZ contribution (no SZ) affects parameters by < 0.4σ . Using a larger mask (80% mask) has a greater effect, increasing Ωbh

2 by 0.5σ , but is
consistent with the effects of noise.

that feedback produces a prolonged or perhaps even, multiepoch
reionization history.

While the current WMAP data constrain the optical depth
of the universe, the EE data does not yet provide a detailed
constraint on the reionization history. With more data from
WMAP and upcoming data from Planck, the EE spectrum will
begin to place stronger constraints on the details of reionization
(Kaplinghat et al. 2003; Holder et al. 2003; Mortonson & Hu
2008). These measurements will be supplemented by measure-
ments of the Ostriker–Vishniac effect by high-resolution CMB
experiments which is sensitive to

∫

n2
edt (Ostriker & Vishniac

1986; Jaffe & Kamionkowski 1998; Gruzinov & Hu 1998), and
discussed in, e.g., Zhang et al. (2004).

3.1.2. Sensitivity to Foreground Cleaning

As the E-mode signal is probed with higher accuracy, it
becomes increasingly important to test how much the constraint
on τ , zreion, and the other cosmological parameters, depend on

details of the Galactic foreground removal. Tests were done
by Page et al. (2007) to show that τ was insensitive to a
set of variations in the dust template used to clean the maps.
In Figure 6 we show the effect on ΛCDM parameters of
changing the number of bands used in the template-cleaning
method: discarding the Ka band in the “QV” combination, or
adding the W band in the “KaQVW” combination. We find
that τ (and therefore zreion) is sensitive to the maps, but the
dispersion is consistent with noise. As expected, the error bars
are broadened for the QV-combined data, and the mean value
is τ = 0.080 ± 0.020. When the W band is included, the mean
value is τ = 0.100 ± 0.015. We choose not to use the W-band
map in our main analysis, however, because there appears to
be excess power in the cleaned map at ℓ = 7. This indicates a
potential systematic error, and is discussed further by Hinshaw
et al. (2009). The other cosmological parameters are only mildly
sensitive to the number of bands used. This highlights the fact
that τ is no longer as strongly correlated with other parameters,
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as in earlier WMAP data (Spergel et al. 2003, 2007), notably
with the spectral index of primordial fluctuations, ns (Figure 3).

We also test the parameters obtained using the Gibbs-cleaned
maps described by Dunkley et al. (2008) and in Section 2.1.1,
which use the K, Ka, Q, and V band maps. Their mean
distributions are also shown in Figure 6, and have mean
optical depth less than 1σ higher than the KaQV template-
cleaned maps, obtained using an independent method. The
other cosmological parameters are changed by less than 0.3σ
compared to the template-cleaned results. This consistency gives
us confidence that the parameter constraints are little affected
by foreground uncertainty. The difference in central values from
the two methods indicates an error due to foreground removal
uncertainty on τ , in addition to the statistical error, of ∼ 0.01.

3.1.3. Sensitivity to Likelihood Details

The likelihood code used for cosmological analysis has a
number of variable components that have been fixed using our
best estimates. Here we consider the effect of these choices on
the five-year ΛCDM parameters. The first two are the treatment
of the residual point sources, and the treatment of the beam
error, both discussed by Nolta et al. (2009). The multifrequency
data are used to estimate a residual point source amplitude
of Aps = 0.011 ± 0.001 μK2sr, which scales the expected
contribution to the cross-power spectra of sources below our
detection threshold. It is defined by Hinshaw et al. (2007) and
Nolta et al. (2009), and is marginalized over in the likelihood
code. The estimate comes from QVW data, whereas the VW data
give 0.007±0.003 μK2sr, both using the KQ85 mask described
by Hinshaw et al. (2009). The right panels in Figure 6 shows the
effect on a subset of parameters of lowering Aps to the VW value,
which leads to a slightly higher ns,Ωch

2, and σ8, all within 0.4σ
of the fiducial values, and consistent with more of the observed
high-ℓ signal being due to CMB rather than unresolved point
sources. We also use Aps = 0.011 μK2sr with no point source
error, and find a negligible effect on parameters (< 0.1σ ). The
beam window function error is quantified by 10 modes, and in
the standard treatment we marginalize over them, following the
prescription by Hinshaw et al. (2007). We find that removing
the beam error also has a negligible effect on parameters. This is
discussed further by Nolta et al. (2009), who consider alternative
treatments of the beam and point source errors.

The next issue is the treatment of a possible contribution
from SZ fluctuations. We account for the SZ effect in the
same way as in the three-year analysis, marginalizing over the
amplitude of the contribution parameterized by the Komatsu–
Seljak model (Komatsu & Seljak 2002). The parameter ASZ is
unconstrained by the WMAP data, but is not strongly degenerate
with any other parameters. In Figure 6 we show the effect on
parameters of setting the SZ contribution to zero. Similar to the
effect of changing the point source contribution, the parameters
depending on the third peak are slightly affected, with a < 0.25σ
increase in ns, Ωch

2, σ8, and a similar decrease in the baryon
density.

Another choice is the area of sky used for cosmological
interpretation, or how much we mask out to account for Galactic
contamination. Gold et al. (2009) discuss the new masks used for
the five-year analysis, with the KQ85 mask used as standard. We
test the effect of using the more conservative KQ80 mask, and
find a more noticeable shift. The quantity Ωbh

2 is increased by
0.5σ , and ns, Ωch

2, and σ8 all decreased by ∼ 0.4σ . This raised
concerns that the KQ85 mask contains residual foreground
contamination, but as discussed by Nolta et al. (2009), this shift

Figure 7. Best-fit temperature angular power spectrum from WMAP alone
(red), which is consistent with data from recent small-scale CMB experiments:
ACBAR, CBI, VSA, and BOOMERANG.

is found to be consistent with the effects of noise, tested with
simulations. We also confirm that the effect on parameters is
even less for ΛCDM models using WMAP with external data,
and that the choice of mask has only a small effect on the tensor
amplitude, raising the 95% confidence level by ∼ 5%.

Finally, we test the effect on parameters of varying aspects
of the low-ℓ TT treatment. These are discussed in Appendix B,
and in summary we find the same parameter results for the pixel-
based likelihood code compared to the Gibbs code, when both
use ℓ � 32. Changing the mask at low-ℓ to KQ80, or using the
Gibbs code up to ℓ � 51, instead of ℓ � 32, has a negligible
effect on parameters.

3.2. Consistency of the ΛCDM Model with Other Datasets

While the WMAP data alone place strong constraints on
cosmological parameters, there has been a wealth of results from
other cosmological observations in the last few years. These
observations can generally be used either to show consistency
of the simple ΛCDM model parameters, or to constrain more
complicated models. In this section we compare a broad range of
current astronomical data to the WMAPΛCDM model. A subset
of the data is used to place combined constraints on extended
cosmological models in Komatsu et al. (2009). For this subset,
we describe the methodology used to compute the likelihood
for each case, but do not report on the joint constraints in this
paper.

3.2.1. Small-Scale CMB Measurements

A number of recent CMB experiments have probed smaller
angular scales than WMAP can reach and are therefore more
sensitive to the higher order acoustic oscillations and the details
of recombination (e.g., Hu & Sugiyama 1994, 1996; Hu & White
1997). Since the three-year WMAP analysis, there have been new
temperature results from the Arcminute Cosmology Bolometer
Array Receiver (ACBAR), both in 2007 (Kuo et al. 2007) and in
2008 (Reichardt et al. 2008). They have measured the angular
power spectrum at 145 GHz to 5′ resolution, over ∼ 600 deg2.
Their results are consistent with the model predicted by the
WMAP five-year data, shown in Figure 7, although ACBAR
is calibrated using WMAP, so the data are not completely
independent.
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Figure 8. BAO expected for the best-fit ΛCDM model (red lines), compared to BAO in galaxy power spectra calculated from (left) combined SDSS and 2dFGRS
main galaxies, and (right) SDSS LRG galaxies, by Percival et al. (2007a). The observed and model power spectra have been divided by P (k)smooth, a smooth cubic
spline fit described by Percival et al. (2007a).

Figure 7 also shows data from the BOOMERANG, Cosmic
Background Imager (CBI), and Very Small Array (VSA) experi-
ments, which agree well with WMAP. There have also been new
observations of the CMB polarization from two ground-based
experiments, QUaD, operating at 100 and 150 GHz (Ade et al.
2008), and CAPMAP, at 40 and 100 GHz (Bischoff et al. 2008).
Their measurements of the EE power spectrum are shown by
Nolta et al. (2009), together with detections already made since
2005 (Leitch et al. 2005; Sievers et al. 2007; Barkats et al. 2005;
Montroy et al. 2006), and are all consistent with the ΛCDM
model parameters.

In our combined analysis in Komatsu et al. (2009) we use
two different data combinations. For the first we combine four
datasets. This includes the 2007 ACBAR data (Kuo et al.
2007), using 10 bandpowers in the range 900 < ℓ < 2000.
The values and errors were obtained from the ACBAR Web
site. We also include the three external CMB datasets used
in Spergel et al. (2003): the CBI (Mason et al. 2003; Sievers
et al. 2003; Pearson et al. 2003; Readhead et al. 2004), the
VSA (Dickinson et al. 2004), and BOOMERANG (Ruhl et al.
2003; Montroy et al. 2006; Piacentini et al. 2006). As in the
three-year release we only use bandpowers that do not overlap
with the signal-dominated WMAP data, due to nontrivial cross-
correlations, so we use seven bandpowers for CBI (in the range
948 < ℓ < 1739), five for VSA (894 < ℓ < 1407), and seven
for BOOMERANG (924 < ℓ < 1370), using the log-normal
form of the likelihood. Constraints are also found by combining
WMAP with the 2008 ACBAR data, using 16 bandpowers in the
range 900 < ℓ < 2000. In this case the other CMB experiments
are not included. We do not use additional polarization results for
parameter constraints as they do not yet improve limits beyond
WMAP alone.

3.2.2. Baryon Acoustic Oscillations (BAO)

The acoustic peak in the galaxy correlation function is a
prediction of the adiabatic cosmological model (Peebles & Yu
1970; Sunyaev & Zel’dovich 1970; Bond & Efstathiou 1984;
Hu & Sugiyama 1996). It was first detected using the Sloan
Digital Sky Survey (SDSS) luminous red galaxy (LRG) survey,
using the brightest class of galaxies at mean redshift z = 0.35
by Eisenstein et al. (2005). The peak was detected at 100 h−1

Mpc separation, providing a standard ruler to measure the ratio
of distances to z = 0.35 and the CMB at z = 1089, and the
absolute distance to z = 0.35. More recently, Percival et al.

(2007b) have obtained a stronger detection from over half a
million SDSS main galaxies and LRGs in the DR5 sample. They
detect BAO with over 99% confidence. A combined analysis
was then undertaken of SDSS and Two Degree Field Galaxy
Redshift Survey (2dFGRS) by Percival et al. (2007a). They find
evidence for BAO in three catalogs: at mean redshift z = 0.2
in the SDSS DR5 main galaxies plus the 2dFGRS galaxies, at
z = 0.35 in the SDSS LRGs, and in the combined catalog.
Their data are shown in Figure 8, together with the WMAP best-
fit model. The BAO are shown by dividing the observed and
model power spectra by P (k)smooth, a smooth cubic spline fit
described by Percival et al. (2007a). The observed power spectra
are model-dependent, but were calculated using Ωm = 0.25
and h = 0.72, which agrees with our maximum-likelihood
model.

The scale of the BAO is analyzed to estimate the geometrical
distance measure at z = 0.2 and z = 0.35,

DV (z) =
[

(1 + z)2D2
Acz

/

H (z)
]1/3

, (9)

where DA is the angular diameter distance and H (z) is the
Hubble parameter. They find rs/DV (0.2) = 0.1980 ± 0.0058
and rs/DV (0.35) = 0.1094 ± 0.0033. Here, rs is the comoving
sound horizon scale at recombination. OurΛCDM model, using
the WMAP data alone, gives rs/DV (0.2) =0.1946 ± 0.0079
and rs/DV (0.35) =0.1165 ± 0.0042, showing the consistency
between the CMB measurement at z = 1089 and the late-
time galaxy clustering. However, while the z = 0.2 measures
agree to within 1σ , the z = 0.35 measurements have mean
values almost 2σ apart. The BAO constraints are tighter than
the WMAP predictions, which shows that they can improve upon
the WMAP parameter determinations, in particular on ΩΛ and
Ωmh2.

In Komatsu et al. (2009) the combined bounds from both
surveys are used to constrain models as described by Percival
et al. (2007a), adding a likelihood term given by −2 ln L =
XT C−1X, with

XT = [rs/DV (0.2) − 0.1980, rs/DV (0.35) − 0.1094] (10)

and C11 = 35, 059, C12 = −24, 031, C22 = 108, 300, includ-
ing the correlation between the two measurements. Komatsu
et al. (2009) also consider constraints using the SDSS LRG lim-
its derived by Eisenstein et al. (2005), using the combination

A(z) = DV (z)

√

ΩmH 2
0

/

cz (11)
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for z = 0.35 and computing a Gaussian likelihood

−2 ln L = (A − 0.469(ns/0.98)−0.35)2/0.0172. (12)

3.2.3. Galaxy Power Spectra

We can compare the predicted fluctuations from the CMB to
the shape of galaxy power spectra, in addition to the scale of
acoustic oscillations (e.g., Eisenstein & Hu 1998). The SDSS
galaxy power spectrum from DR3 (Tegmark et al. 2004) and
the 2dFGRS spectrum (Cole et al. 2005) were shown to be in
good agreement with the WMAP three-year data, and used to
place tighter constraints on cosmological models (Spergel et al.
2007), but there was some tension between the preferred
values of the matter density (Ωm = 0.236 ± 0.020 for WMAP
combined with 2dFGRS and 0.265±0.030 with SDSS). Recent
studies used photometric redshifts to estimate the galaxy power
spectrum of LRGs in the range 0.2 < z < 0.6 from the SDSS
fourth data release (DR4), finding Ωm = 0.30 ± 0.03 (for
h = 70, Padmanabhan et al. 2007) and Ωmh = 0.195 ± 0.023
for h = 0.75 (Blake et al. 2007).

More precise measurements of the LRG power spectrum were
obtained from redshift measurements: Tegmark et al. (2006)
used LRGs from SDSS DR4 in the range 0.01 h Mpc−1 <
k < 0.2 h Mpc−1 combined with the three-year WMAP data
to place strong constraints on cosmological models. However,
there is a disagreement between the matter density predicted
using different minimum scales, if the nonlinear modeling
used by Tegmark et al. (2006) is adopted. Using the three-
year WMAP data combined with the LRG spectrum we find
Ωm = 0.228 ± 0.019, using scales with k < 0.1 h Mpc−1, and
Ωm = 0.248 ± 0.018 for k < 0.2 h Mpc−1. These constraints
are obtained for the six-parameter ΛCDM model, following
the nonlinear prescription described by Tegmark et al. (2006).
The predicted galaxy power spectrum Pg(k) is constructed from
the “dewiggled” linear matter power spectrum Pm(k) using
Pg(k) = b2Pm(k)(1 + Qk2)/(1 + 1.4k), and the parameters b
and Q are marginalized over. The dewiggled spectrum is a
weighted sum of the matter power spectrum at z = 0 and a
smooth power spectrum (Tegmark et al. 2006). Without this
dewiggling, we find Ωm = 0.246±0.018 for k < 0.2 h Mpc−1,
so its effect is small. We also explored an alternative form for
the bias, motivated by third-order perturbation theory analysis,
with Pg(k) = b2P nl

m (k) + N (see, e.g. Seljak 2001; Schulz &

White 2006). Here, P nl
m is the nonlinear matter power spectrum

using the Halofit model (Smith et al. 2003) and N is a constant
accounting for nonlinear evolution and scale-dependent bias.
Marginalizing over b and N we still find a discrepancy with scale,
with Ωm = 0.230 ± 0.021 using scales with k < 0.1 h Mpc−1,
and Ωm = 0.249 ± 0.018 for k < 0.2 h Mpc−1. Constraints
using this bias model are also considered in Hamann et al.
(2008a). These findings are consistent with results obtained from
the DR5 main galaxy and LRG sample (Percival et al. 2007c),
who argue that this shows evidence for scale-dependent bias on
large scales, which could explain the observed differences in
the early SDSS and 2dFGRS results. While this will likely be
resolved with future modeling and observations, we choose not
to use the galaxy power spectra to place joint constraints on the
models reported by Komatsu et al. (2009).

3.2.4. Type Ia Supernovae

In the last decade, Type Ia supernovae have become an im-
portant cosmological probe, and have provided the first direct
evidence for the acceleration of the universe by measuring the

Figure 9. Red line shows the luminosity–distance relationship predicted for the
best-fit WMAP-only model (the right column in Table 2). The points show binned
supernova observations from the Union compilation (Kowalski et al. 2008),
including high-redshift SNIa from Hubble Space Telescope (HST; Riess et al.
2007), ESSENCE (Miknaitis et al. 2007), and SNLS (Astier et al. 2006). The plot
shows the deviation of the luminosity distances from the empty universe model.

luminosity distance as a function of redshift. The observed dim-
ness of high-redshift supernovae (z ∼ 0.5) was first measured
by Riess et al. (1998), Schmidt et al. (1998), and Perlmutter
et al. (1999), confirmed with more recent measurements in-
cluding those of Nobili et al. (2005), Krisciunas et al. (2005),
Clocchiatti et al. (2006), and Astier et al. (2006), and extended to
higher redshift by Riess et al. (2004) who found evidence for the
earlier deceleration of the universe. The sample of high-redshift
supernovae has grown by over 80 since the three-year WMAP
analysis. Recent HST measurements of 21 new high-redshift su-
pernova by Riess et al. (2007) include 13 at z > 1, allowing the
measurement of the Hubble expansion H (z) at distinct epochs
and strengthening the evidence for a period of deceleration fol-
lowed by acceleration. The ESSENCE Supernova Survey has
also recently reported results from 102 supernovae discovered
from 2002 to 2005 using the 4-m Blanco Telescope at the Cerro
Tololo Inter-American Observatory (Miknaitis et al. 2007), of
which 60 are used for cosmological analysis (Wood-Vasey
et al. 2007). A combined cosmological analysis was performed
for a subset of the complete supernova dataset by Davis et al.
(2007) using the MCLS2k2 light curve fitter (Jha et al. 2007).
More recently, a broader “Union” compilation of the currently
observed SNIa, including a new nearby sample, was analyzed
by Kowalski et al. (2008) using the SALT1 light curve fitter
(Guy et al. 2005).

In Figure 9, we confirm that the recently observed supernovae
are consistent with the ΛCDM model, which predicts the lumi-
nosity distance μth as a function of redshift and is compared
to the Union combined dataset (Kowalski et al. 2008). In the
cosmological analysis described by Komatsu et al. (2009), the
Union data is used, consisting of 307 supernovae that pass vari-
ous selection cuts. These include supernovae observed using the
HST (Riess et al. 2007), from the ESSENCE survey (Miknaitis
et al. 2007), and the Supernova Legacy Survey (SNLS; Astier
et al. 2006). For each supernova the luminosity distance pre-
dicted from theory is compared to the observed value. This is
derived from measurements of the apparent magnitude m and
the inferred absolute magnitude M, to estimate a luminosity dis-
tance μobs = 5 log[dL(z)/Mpc] + 25. The likelihood is given by

− 2 ln L =
∑

i

[μobs,i(zi) − μth,i(zi,M0)]2
/

σ 2
obs,i (13)
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summed over all supernovae, where a single absolute magnitude
is marginalized over (Lewis & Bridle 2002), and σobs is the
observational error accounting for extinction, intrinsic redshift
dispersion, K-correction, and light curve stretch factors.

3.2.5. Hubble Constant Measurements

The WMAP estimated value of the Hubble constant, H0 =
71.9+2.6

−2.7 km s−1 Mpc−1, assuming a flat geometry, is consistent

with the HST Key Project measurement of 72±8 km s−1 Mpc−1

(Freedman et al. 2001). It also agrees within 1σ with mea-
surements from gravitationally lensed systems (Koopmans
et al. 2003), SZ and X-ray observations (Bonamente et al. 2006),
Cepheid distances to nearby galaxies (Riess et al. 2005), the dis-
tance to the Maser-host galaxy NGC4258 as a calibrator for the
Cepheid distance scale (Macri et al. 2006), and a new measure
of the Tully–Fisher zero point (Masters et al. 2006), the lat-
ter two giving H0 = 74 ± 7 km s−1 Mpc−1. Lower measures
are favored by a compilation of the Cepheid distance mea-
surements for 10 galaxies using the HST by Sandage et al.
(2006; H0 = 62 ± 6 km s−1 Mpc−1), and new measurements
of an eclipsing binary in M33 which reduce the Key Project
measurement to H0 = 61 km s−1 Mpc−1 (Bonanos et al.
2006). Higher measures are found using revised parallaxes for
Cepheids (van Leeuwen et al. 2007), raising the Key Project
value to 76 ± 8 km s−1 Mpc−1. In Komatsu et al. (2009) the
Hubble Constant measurements are included for a limited set
of parameter constraints, using the Freedman et al. (2001) mea-
surement as a Gaussian prior on H0.

3.2.6. Weak Lensing

Weak gravitational lensing is produced by the distortion
of galaxy images by the mass distribution along the line
of sight (see Refregier 2003 for a review). There have
been significant advances in its measurement in recent years,
and in the understanding of systematic effects (e.g., Massey
et al. 2007), and intrinsic alignment effects (Hirata et al. 2007),
making it a valuable cosmological probe complementary to
the CMB. Early results by the RCS (Hoekstra et al. 2002),
VIRMOS-DESCART (Van Waerbeke et al. 2005), and the
Canada–France–Hawaii Telescope Legacy Survey (CFHTLS;
Hoekstra et al. 2006) lensing surveys favored higher ampli-
tudes of mass fluctuations than preferred by WMAP. However,
new measurements of the two-point correlation functions from
the third year CFHTLS Wide survey (Fu et al. 2008) favor a
lower amplitude consistent with the WMAP measurements, as
shown in Table 3. This is due to an improved estimate of the
galaxy redshift distribution from CFHTLS-Deep (Ilbert et al.
2006), compared to that obtained from photometric redshifts
from the small Hubble Deep Field, which were dominated by
systematic errors. Their measured signal agrees with results
from the 100 Square Degree Survey (Benjamin et al. 2007), a
compilation of data from the earlier CFHTLS-Wide, RCS, and
VIRMOS-DESCAT surveys, together with the GABoDS survey
(Hetterscheidt et al. 2007), with average source redshift z ∼ 0.8.
Both these analyses rely on a two-dimensional measurement of
the shear field. Cosmic shear has also been measured in two
and three dimensions by the HST COSMOS survey (Massey
et al. 2007), using redshift information to providing an improved
measure of the mass fluctuation. Their measures are somewhat
higher than the WMAP value, as shown in Table 3, although not
inconsistent. Weak lensing is also produced by the distortion
of the CMB by the intervening mass distribution (Zaldarriaga

Table 3
Measurements of Combinations of the Matter Density, Ωm, and Amplitude of

Matter Fluctuations, σ8, From Weak Lensing Observations (Fu et al. 2008;
Benjamin et al. 2007; Massey et al. 2007), Compared to WMAP

Data Parameter Lensing Limits Five-Year WMAP Limits

CFHTLS Wide σ8(Ωm/0.25)0.64 0.785 ± 0.043 0.814 ± 0.090

100 Sq Deg σ8(Ωm/0.24)0.59 0.84 ± 0.07 0.832 ± 0.088

COSMOS 2D σ8(Ωm/0.3)0.48 0.81 ± 0.17 0.741 ± 0.069

COSMOS 3D σ8(Ωm/0.3)0.44 0.866+0.085
−0.068 0.745 ± 0.067

& Seljak 1999; Hu & Okamoto 2002), and can be probed by
measuring the correlation of the lensed CMB with tracers of
large-scale structure. Two recent analyses have found evidence
for the cross-correlated signal (Smith et al. 2007; Hirata et al.
2008), both consistent with the five-year WMAP ΛCDM model.
They find a 3.4σ detection of the correlation between the three-
year WMAP data and NRAO VLA Sky Survey (NVSS) radio
sources (Smith et al. 2007), and a correlation at the 2.1σ level
of significance between WMAP and data from NVSS, and from
SDSS LRGs and quasars (Hirata et al. 2008).

3.2.7. Integrated Sachs–Wolfe Effect

Correlation between large-scale CMB temperature fluctua-
tions and large-scale structure is expected in the ΛCDM model
due to the change in gravitational potential as a function of time,
and so provides a test for dark energy (Boughn et al. 1998).
Evidence of a correlation was found in the first-year WMAP
data (e.g., Boughn & Crittenden 2004; Nolta et al. 2004). Two
recent analyses combine recent large-scale structure data (Two
Micron All Sky Survey, SDSS LRGs, SDSS quasars, and NVSS
radio sources) with the WMAP three-year data, finding a 3.7σ
(Ho et al. 2008) and 4σ (Giannantonio et al. 2008) detection of
ISW at the expected level. Other recent studies using individual
datasets find a correlation at the level expected with the SDSS
DR4 galaxies (Cabré et al. 2006), at high redshift with SDSS
qusars (Giannantonio et al. 2006), and with the NVSS radio
galaxies (Pietrobon et al. 2006; McEwen et al. 2007).

3.2.8. Lyα Forest

The Lyα forest seen in quasar spectra probes the underlying
matter distribution on small scales (Rauch 1998). However, the
relationship between absorption line structure and mass fluctu-
ations must be fully understood to be used in a cosmological
analysis. The power spectrum of the Lyα forest has been used to
constrain the shape and amplitude of the primordial power spec-
trum (Viel et al. 2004; McDonald et al. 2005; Seljak et al. 2005;
Desjacques & Nusser 2005), and recent results combine the
three-year WMAP data with the power spectrum obtained from
the LUQAS sample of VLT-UVES spectra (Viel et al. 2006)
and SDSS QSO spectra (Seljak et al. 2006). Both groups found
results suggesting a higher value for σ8 than consistent with
WMAP. However, measurements by Kim et al. (2007) of the
probability distribution of the Lyα flux have been compared to
simulations with different cosmological parameters and thermal
histories (Bolton et al. 2008). They imply that the temperature–
density relation for the IGM may be close to isothermal or in-
verted, which would result in a smaller amplitude for the power
spectrum than previously inferred, more in line with the five-
year WMAP value of σ8 = 0.796 ± 0.036. Simulations in larger
boxes by Tytler et al. (2007) fail to match the distribution of flux
in observed spectra, providing further evidence of disagreement
between simulation and observation. Given these uncertainties,
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the Lyα forest data are not used for the main results presented
by Komatsu et al. (2009). However, constraints on the running
of the spectral index are discussed, using data described by
Seljak et al. (2006). With more data and further analyses, the
Lyα forest measurements can potentially place powerful con-
straints on the neutrino mass and a running spectral index.

3.2.9. Big Bang Nucleosynthesis (BBN)

WMAP measures the baryon abundance at decoupling, with
Ωbh

2 = 0.02273 ± 0.00062, giving a baryon-to-photon ratio
of η10(WMAP) = 6.225 ± 0.170. Element abundances of deu-
terium, helium, and lithium also depend on the baryon abun-
dance in the first few minutes after the big bang. Steigman
(2007) reviews the current status of BBN measurements. Deu-
terium measurements provide the strongest test, and are con-
sistent with WMAP, giving η10(D) = 6.0 ± 0.4 based on new
measurements by O’Meara et al. (2006). The 3He abundance is
more poorly constrained at η10(3He) = 5.6+2.2

−1.4 from the mea-
sure of y3 = 1.1 ± 0.2 by Bania et al. (2002). The neutral
lithium abundance, measured in low-metallicity stars, is two
times smaller than the CMB prediction, η(Li), from measures
of the logarithmic abundance, [Li]P = 12 + log10(Li/H), in the
range [Li]P ∼ 2.1–2.4 (Charbonnel & Primas 2005; Meléndez
& Ramı́rez 2004; Asplund et al. 2005). These measurements
could be a signature of new early universe physics, e.g., Coc et al.
(2004), Richard et al. (2005), and Jedamzik (2004), with recent
attempts to simultaneously fit both the 7Li and 6Li abundances
by Bird et al. (2008), Jedamzik (2008a, 2008b), Cumberbatch
et al. (2007), and Jittoh et al. (2008). The discrepancy could
also be due to systematics, destruction of lithium in an earlier
generation of stars, or uncertainties in the stellar temperature
scale (Fields et al. 2005; Steigman 2006; Asplund et al. 2005).
A possible solution has been proposed using observations of
stars in the globular cluster NGC 6397 (Korn et al. 2006, 2007).
They find evidence that as the stars age and evolve toward hot-
ter surface temperatures, the surface abundance of lithium in
their atmospheres drops due to atomic diffusion. They infer an
initial lithium content of the stars [Li]P = 2.54 ± 0.1, giving
η10(Li) = 5.4 ± 0.6 in good agreement with BBN predictions.
However, further observations are needed to determine whether
this scenario explains the observed uniform depletion of primor-
dial 7Li as a function of metallicity. The measured abundance of
4He is also lower than predicted, with η10(4He) = 2.7+1.2

−0.9 from a
measure of YP = 0.240±0.006, incorporating data from Izotov
& Thuan (2004), Olive & Skillman (2004), and Gruenwald et al.
(2002) by Steigman (2007). However, observations by Peimbert
et al. (2007) and Fukugita & Kawasaki (2006) predict higher
values more consistent with WMAP.

3.2.10. Strong Lensing

The number of strongly lensed quasars has the potential to
probe cosmology, as a dark-energy-dominated universe predicts
a large number of gravitational lenses (Turner 1990; Fukugita
et al. 1990). The CLASS radio band survey has a large statistical
sample of radio lenses (Myers et al. 2003; Koopmans et al.
2003; York et al. 2005), yielding estimates for ΩΛ ≃ 0.72–0.78
(Mitchell et al. 2005; Chae 2007). Oguri et al. (2008) have
recently analyzed the large statistical lens sample from the Sloan
Digital Sky Quasar Lens Search (Oguri et al. 2006). For w =
−1, flat cosmology, they find ΩΛ = 0.74+0.11

−0.15(stat.)+0.13
−0.06(syst.).

These values are all consistent with our best-fit cosmology.
The abundance of giant arcs also has the potential to probe
the underlying cosmology. However, although recent surveys

have detected larger numbers of giant arcs (Gladders et al.
2003; Sand et al. 2005; Hennawi et al. 2008) than argued to be
consistent with ΛCDM (Li et al. 2006; Broadhurst & Barkana
2008), numerical simulations (Meneghetti et al. 2007; Hennawi
et al. 2007; Hilbert et al. 2007; Neto et al. 2007) find that the lens
cross-sections are sensitive to the mass distribution in clusters as
well as to the baryon physics (Wambsganss et al. 2007; Hilbert
et al. 2008). These effects must be resolved in order to test
ΛCDM consistency.

3.2.11. Galaxy Clusters

Clusters are easily detected and probe the high-mass end
of the mass distribution, so probe the amplitude of density
fluctuations and of large-scale structure. Cluster observations
at optical wavelengths provided some of the first evidence for
a low-density universe with the current preferred cosmological
parameters (see, e.g., Fan et al. 1997). Observers are now using
a number of different techniques for identifying cluster samples:
large optical samples, X-ray surveys, lensing surveys (see, e.g.,
Wittman et al. 2006), and SZ surveys. The ongoing challenge is
to determine the selection function and the relationship between
astronomical observables and mass. This has recently seen
significant progress in the optical (Lin et al. 2006; Sheldon
et al. 2007; Reyes et al. 2008; Rykoff et al. 2008) and the X-
ray (Sheldon et al. 2001; Reiprich & Böhringer 2002; Kravtsov
et al. 2006; Arnaud et al. 2007; Hoekstra 2007). With large new
optical cluster samples (Bahcall et al. 2003; Hsieh et al. 2005;
Miller et al. 2005; Koester et al. 2007) and X-ray samples from
ROSAT, XMM-LSS, and Chandra (Pierre et al. 2006; Burenin
et al. 2007; Vikhlinin et al. 2008), cosmological parameters can
be further tested, and most recent results for σ8 are converging on
values close to the WMAP best-fit value of σ8 = 0.796 ± 0.036.
Constraints from the RCS survey (Gladders et al. 2007) give
Ωm = 0.30+0.12

−0.11 and σ8 = 0.70+0.27
−0.1 . Rozo et al. (2007) argue

for σ8 > 0.76 (95% CL) from SDSS BCG samples. Mantz et al.
(2008) find Ωm = 0.27+0.06

−0.05 and σ8 = 0.77+0.07
−0.06 for a flat model

based on the Jenkins et al. (2001) mass function and the Reiprich
& Böhringer (2002) mass–luminosity calibration. With a 30%
higher zero point, Rykoff et al. (2008) find that their data are
best fit by σ8 = 0.85 and Ωm = 0.24. Bergé et al. (2007) report
σ8 = 0.92+0.26

−0.30 for Ωm = 0.24 from their joint CFHTLS/XMM-
LSS analysis. In Rines et al. (2007) redshift data from SDSS
DR4 is used to measure virial masses for a large sample of
X-ray clusters. For Ωm = 0.3, they find σ8 = 0.84 ± 0.03.

3.2.12. Galaxy Peculiar Velocities

With deep large-scale structure surveys, cosmologists have
now been able to measure β, the amplitude of redshift space
distortions as a function of redshift. Combined with a measure-
ment of the bias, b, this yields a determination of the growth
rate of structure f ≡ d ln G/d ln a = βb, where G is the growth
factor. For Einstein gravity theories we expect f ≃ Ωγ with
γ ≃ 6/11 (see Polarski & Gannouji 2008 for a more accu-
rate fitting function). Analysis of redshift space distortions in
the 2dFGRS (Peacock et al. 2001; Verde et al. 2002; Hawkins
et al. 2003) find β = 0.47 ± 0.08 at z ≃ 0.1, consistent with
the ΛCDM predictions for the best-fit WMAP parameters. The
Tegmark et al. (2006) analysis of the SDSS LRG sample finds
β = 0.31 ± 0.04 at z = 0.35. The Ross et al. (2007) anal-
ysis of the 2dF-SDSS LRG sample find β = 0.45 ± 0.05 at
z = 0.55. The Guzzo et al. (2008) analysis of 10,000 galaxies
in the VIMOS-VLT Deep Survey finds that β = 0.70 ± 0.26
at z = 0.8 and infer d ln G/d ln a = 0.91 ± 0.36, consistent
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Figure 10. Two-dimensional marginalized constraints (68% and 95% CLs) on inflationary parameters r, the tensor-to-scalar ratio, and ns, the spectral index of
fluctuations, defined at k0 = 0.002 Mpc−1. One-dimensional 95% upper limits on r are given in the legend. Left: the five-year WMAP data place stronger limits on r

(shown in blue) than three-year data (gray). This excludes some inflationary models including λφ4 monomial inflaton models with r ∼ 0.27, ns ∼ 0.95 for 60 e-folds
of inflation. Right: for models with a possible running spectral index, r is now more tightly constrained due to measurements of the third acoustic peak. Note: the
two-dimensional 95% limits correspond to Δ(2 ln L) ∼ 6, so the curves intersect the r = 0 line at the ∼ 2.5σ limits of the marginalized ns distribution.

Table 4
Selection of Cosmological Parameter Constraints for Extensions to the ΛCDM

Model Including Tensors and/or a Running Spectral Index

Parameter Tensors Running Tensors+Running

r < 0.43 (95% CL) < 0.58 (95% CL)

dns/d ln k −0.037 ± 0.028 −0.050 ± 0.034

ns 0.986 ± 0.022 1.031+0.054
−0.055

1.087+0.072
−0.073

σ8 0.777+0.040
−0.041 0.816 ± 0.036 0.800 ± 0.041

with the more rapid growth due to matter domination at this

epoch expected in a ΛCDM model. The da Ângela et al. (2008)
analysis of a QSO sample finds β = 0.60+0.14

−0.11 at z = 1.4 and
use the clustering length to infer the bias. Extrapolating back to
z = 0, they find a matter density ofΩm = 0.25+0.09

−0.07. A second ap-
proach is to use objects with well-determined distances, such as
galaxies and supernovae, to look for deviations from the Hubble
flow (Strauss & Willick 1995; Dekel 2000; Zaroubi et al. 2001;
Riess et al. 1995; Haugbølle et al. 2007). The Park & Park (2006)
analysis of the peculiar velocities of galaxies in the SFI sample
find σ8Ω0.6

m = 0.56+0.27
−0.21. Gordon et al. (2007) correlate pecu-

liar velocities of nearby supernova and find σ8 = 0.79 ± 0.22.
These measurements provide an independent consistency check
of the ΛCDM model (see Nesseris & Perivolaropoulos 2008 for
a recent review).

4. EXTENDED COSMOLOGICAL MODELS WITH WMAP

The WMAP data place tight constraints on the simplest
ΛCDM model parameters. In this section we describe to
what extent WMAP data constrain extensions to the simple
model, in terms of quantifying the primordial fluctuations and
determining the composition of the universe beyond the standard
components. Komatsu et al. (2009) present constraints for
WMAP combined with other data, and offer a more detailed
cosmological interpretation of the limits.

4.1. Primordial Perturbations

4.1.1. Tensor Fluctuations

In the ΛCDM model, primordial scalar fluctuations are
adiabatic and Gaussian, and can be described by a power-law
spectrum,

Δ2
R

(k) ∝
(

k

k0

)ns−1

, (14)

producing CMB angular power spectra consistent with the data.
Limits can also be placed on the amplitude of tensor fluctuations,
or gravitational waves, that could have been generated at very
early times. They leave a distinctive large-scale signature in
the polarized B-mode of the CMB (e.g., Basko & Polnarev
1980; Bond & Efstathiou 1984) that provides a clean way
to distinguish them from scalar fluctuations. However, we
have not yet reached sensitivities to strongly constrain this
signal with the polarization data from WMAP. Instead we
use the tensor contribution to the temperature fluctuations at
large scales to constrain the tensor-to-scalar ratio r. We define
r = Δ2

h(k0)
/

Δ2
R

(k0), where Δ2
h is the amplitude of primordial

gravitational waves (see Komatsu et al. 2009), and choose a
pivot scale k0 = 0.002 Mpc−1.

The WMAP data now constrain r < 0.43 (95% CL). This is
an improvement over the three-year limit of r < 0.65 (95%
CL), and comes from the more accurate measurement of the
second and third acoustic peaks. The dependence of the tensor
amplitude on the spectral index is shown in Figure 10, showing
the ns −r degeneracy (Spergel et al. 2007): a larger contribution
from tensors at large scales can be offset by an increased spectral
index, and an overall decrease in the amplitude of fluctuations,
shown in Table 4. The degeneracy is partially broken with
a better measure of the TT spectrum. There is a significant
improvement in the limit on models whose scalar fluctuations
can vary with scale, with a power spectrum with a “running”
spectral index,

ns(k) = ns(k0) +
1

2

dns

d ln k
ln

(

k

k0

)

. (15)

The limit from WMAP is now r < 0.58 (95% CL), about half
the three-year value r < 1.1 (Spergel et al. 2007).

What do these limits tell us about the early universe? For
models that predict observable gravitational waves, it allows
us to exclude more of the parameter space. The simplest
inflationary models predict a nearly scale-invariant spectrum
of gravitational waves (Grishchuk 1975; Starobinsky 1979).
In a simple classical scenario where inflation is driven by the
potential V (φ) of a slowly rolling scalar field, the predictions
(Lyth & Riotto 1999) are

r ≃ 4α/N, (16)

1 − ns ≃ (α + 2)/2N, (17)

for V (φ) ∝ φα , where N is the number of e-folds of inflation
between the time when the horizon scale modes left the horizon
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Figure 11. Two-dimensional marginalized limits for the spectral index, ns,
defined at k0 = 0.002 Mpc−1, and the running of the index dns/d ln k (marked
nrun). Models with no tensor contribution, and with a tensor contribution
marginalized over, are shown. In both cases the models are consistent with
a power-law spectral index, with dns/d ln k = 0, as expected from the simplest
inflationary models.

and the end of inflation. For N = 60, the λφ4 model with
r ≃ 0.27, ns ≃ 0.95 is now excluded with more than 95%
confidence. An m2φ2 model with r ≃ 0.13, ns ≃ 0.97 is still
consistent with the data. Komatsu et al. (2009) discuss in some
detail what these measurements, and constraints for combined
datasets, imply for a large set of possible inflationary models
and potentials.

With r = 0 also fitting the data well, models that do not
predict an observable level of gravitational waves, including
multi-field inflationary models (Polarski & Starobinsky 1995;
Garcia-Bellido & Wands 1996), D-brane inflation (Baumann &
McAllister 2007), and ekpyrotic or cyclic scenarios (Khoury et
al. 2001; Boyle et al. 2004), are not excluded if one fits for both
tensors and scalars.

4.1.2. Scale Dependence of Spectral Index

The running of the spectral index has been the subject of
some debate in light of WMAP observations, with the three-
year data giving limits of dns/d ln k = −0.055 ± 0.030,
showing some preference for decreasing power on small scales
(Spergel et al. 2007). Combined with high-ℓ CBI and VSA
CMB data, a negative running was preferred at ∼ 2σ . A
running index is not predicted by the simplest inflationary
models (see, e.g., Kosowsky & Turner 1995), and the detection
of a scale dependence would have interesting consequences
for early universe models. Deviations from a power-law index,
and their consequences, have been considered by a number of
groups in light of three-year data, including Easther & Peiris
(2006), Kinney et al. (2006), Shafieloo & Souradeep (2008),
and Verde & Peiris (2008), using various parameterizations. In
this analysis, and in Komatsu et al. (2009), we consider only a
running index parameterized as in Equation (15).

We show in Figure 11 that with a better determination of the
third acoustic peak, coupled with improved beam determination,
the five-year WMAP data do not significantly prefer a scale-
dependent index. The limit on the running is dns/d ln k =

−0.037 ± 0.028 for models with no tensor contribution. The
running is anticorrelated with the tensor amplitude (Spergel
et al. 2003, 2007), so the positive prior on the tensor amplitude
leads to a more negative running preferred, dns/d ln k =
−0.050±0.034, when a tensor contribution is marginalized over.
Both limits are well within 2σ of zero, showing no evidence of
departure from a power-law spectral index.

4.1.3. Entropy Perturbations

The simplest classical single-field inflation models predict
solely adiabatic fluctuations, but entropy (or isocurvature) fluc-
tuations are also predicted in a wide range of scenarios, including
axions (Seckel & Turner 1985; Linde 1985), multifield inflation
(Polarski & Starobinsky 1994; Garcia-Bellido & Wands 1996;
Linde & Mukhanov 1997), and decay of fields such as the curva-
ton (Lyth & Wands 2002; Moroi & Takahashi 2001; Bartolo &
Liddle 2002; Lyth et al. 2003). They may be correlated with the
adiabatic fluctuations to some degree, depending on the model.
Most physical scenarios generate only CDM or baryon entropy
fluctuations (Bond & Efstathiou 1987; Peebles 1987), with per-
turbation

Sc = δρc

ρc

− 3δργ

4ργ

, (18)

for CDM with density ρc. Neutrino modes are also possible
(Bucher et al. 2000). It has been known for some time that the
CMB data cannot be fit by pure entropy fluctuations (Stompor
et al. 1996; Langlois & Riazuelo 2000), but a contribution may
be allowed. Several groups have placed limits on a variety of
models using the WMAP one-year and three-year data (Peiris
et al. 2003; Valiviita & Muhonen 2003; Bucher et al. 2004;
Beltran et al. 2004; Dunkley et al. 2005; Kurki-Suonio et al.
2005; Lewis 2006; Bean et al. 2006; Trotta 2007; Keskitalo
et al. 2007), finding no strong evidence for entropy fluctuations.
Significant levels have been found to be consistent with the
CMB data (Bucher et al. 2004; Moodley et al. 2004; Bean et al.
2006), but require correlated admixtures of CDM and neutrino
isocurvature perturbations that are hard to motivate physically.

Here, and in Komatsu et al. (2009), we quantify the relative
contributions to the angular power spectrum following Beltran
et al. (2004) and Bean et al. (2006), with

Cℓ = (1 − α)CR

ℓ + αCS

ℓ + 2β
√

α(1 − α)CX
ℓ , (19)

summing the spectra from curvature fluctuations CR

ℓ , entropy

fluctuations CS

ℓ with power spectrum

Δ2
S(k)δ3(k − k′) = (k/2π )3〈Sc(k)Sc(k′)〉, (20)

and a cross-correlation spectrum CX
ℓ with power spectrum

Δ2
X(k)δ3(k − k′) = (k/2π )3〈−R(k)Sc(k′)〉. (21)

This follows the definition of the curvature perturbation R by
Komatsu et al. (2009), which gives large-scale temperature
anisotropy ΔT/T = −R/5. An anticorrelated spectrum with
β = −1 gives a positive CX

ℓ on large scales.
Limits are found for α−1, corresponding to anticorrelated

models with β = −1. This could correspond to a curvaton sce-
nario in which inflation is driven by an inflaton field, but CDM
perturbations are generated by the decay of a distinct curvaton
field (see, e.g., Lyth & Wands 2002). In this case, we make
the assumption that the spectral index of the anti-uncorrelated
entropy fluctuations is equal to the adiabatic spectral index.
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Figure 12. Marginalized two-dimensional limits (68% and 95%) on the amplitude of possible CDM entropy (or isocurvature) fluctuations. The one-dimensional
95% upper limits are given in the legend. Left: anticorrelated fluctuations are tightly constrained, placing limits on curvaton models. Right: uncorrelated fluctuations,
corresponding to axion models for dark matter, add less power to the CMB spectrum than the anticorrelated case, for a given α, so higher values of α0 are allowed
(than α−1), by the data. In both cases the amplitude is correlated with the spectral index of curvature fluctuations ns, which compensates for the large-scale power
added by the CDM entropy fluctuations.

We do not find evidence for curvaton entropy perturbations,
finding a limit from the WMAP of α−1 < 0.011 (95% CL),
shown in Figure 12 and Table 5. This is half the three-year
limit, and places strong lower limits on the possible density
of the curvaton at its decay, in this scenario, compared to
the total energy density (Komatsu et al. 2009). If the curva-
ton field dominated at its decay, the perturbations would be
purely adiabatic. Where has the improvement come from? The
pure entropy spectrum and the cross-correlated spectrum both
add large-scale power, so a similar degeneracy is seen with
the spectral index, and σ8, as in the case where the tensor am-
plitude is varied. The entropy spectrum is also out of phase
with the adiabatic spectrum, so the improved TE measure-
ments combine with the third-peak TT spectrum to tighten the
limits.

We also place limits on α0, corresponding to an uncorrelated
model with β = 0. In this case the entropy spectral index is set
to be scale invariant. Komatsu et al. (2009) describe how this
corresponds to entropy perturbations created by axions, which
would constitute some part of the dark matter budget. The limit
is α0 < 0.16 (95% CL), 10 times higher than the anticorrelated
amplitude, but still preferring pure adiabatic fluctuations. With-
out the large-scale power contribution from the anticorrelated
spectrum, a much larger amplitude is permitted, but with the
same degeneracy with the spectral index and σ8. This has impli-
cations for the maximum deviation from adiabaticity of axion
dark matter and photons. Komatsu et al. (2009) provide a dis-
cussion of the theoretical implications of these limits, and those
for combined data, for both models considered.

4.2. Composition and Geometry of the Universe

4.2.1. Number of Relativistic Species

Neutrinos are expected to play an important role in the
dynamics of the early universe. For standard parameters, they
contribute about 40% of the energy density of the universe
during the radiation epoch and about 11% of the energy density
of the universe at z ∼ 1100 (very close to the energy density in
baryons). Because neutrinos contribute to the expansion of the
universe and stream relativistically out of density fluctuations,
they produce a significant imprint on the growth rate of structure
and on the structure of the microwave background fluctuations
(e.g., Ma & Bertschinger 1995). The amplitude of these effects
depend upon Neff , the number of effective neutrino species.
By “effective neutrinos species,” we are counting any particle

Table 5
Subset of Cosmological Parameter Constraints for ΛCDM Models with
Additional Anticorrelated (β = −1) or Uncorrelated (β = 0) Entropy

Fluctuations

Parameter β = −1 β = 0

α−1 < 0.011 (95% CL)

α0 < 0.16 (95% CL)

ns 0.983 ± 0.017 0.987 ± 0.022

σ8 0.778+0.039
−0.038 0.777 ± 0.038

that is relativistic at z ∼ 1000–3000, couples very weakly
to the baryon–electron–photon fluid, and has very weak self-
interactions. Because we know neutrinos exist, we associate
“neutrinos” with “light relativistic particle,” but note that in
the strictest sense we limit only light relativistic species, as
the cosmological constraints are sensitive to the existence
of any light species produced during the big bang or any
additional contribution to the energy density of the universe
(e.g., primordial magnetic fields).

Measurements of the width of z provide very tight limits on
the number of neutrino species: Nν = 2.984 ± 0.008 (Particle
Data Book), consistent with the three light neutrino species in the
standard model. Because of nonthermal effects due to the partial
heating of neutrinos during the e± annihilations, and other small
corrections, the effective number of species is 3.0395 (Dicus et
al. 1982; Mangano et al. 2002). Most analyses of the number
of neutrino species with three-year WMAP data (Spergel et al.
2007; Ichikawa et al. 2008; Mangano et al. 2007; Hamann et
al. 2007; de Bernardis et al. 2008) relied on combining CMB
measurements with probes of the growth rate of structure. Since
one of the signatures of the number of neutrino species is a
change in the growth rate of structure, there are degeneracies
between the properties of the neutrinos and of the dark energy.
Neutrinos, however, leave a distinctive signature directly on
the CMB power spectrum (see Bashinsky & Seljak 2004 for
detailed discussion): the neutrinos not only suppress the CMB
peak heights, they also shift the acoustic peak positions. While
the effects that depend on shifts in the epoch of matter/radiation
equality are degenerate with changes in the matter density, the
effects of neutrino free streaming are distinct. Changes in the
baryon/matter ratio and the baryon/photon ratio also have their
own imprints on the Silk damping scale and on the acoustic
scale. With five years of data, we are now able to see evidence
of the effects of the neutrinos on the CMB power spectrum.
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Figure 13. Evidence for a nonzero effective number of neutrino species, Neff . Left: the marginalized probability distribution gives Neff > 2.3 (95% CL) from WMAP

alone. The best-fit ΛCDM model with Neff = 0 is a poorer fit to the data than Neff = 3, with Δχ2 = 8.2. Inferred 95% limits from BBN observations are highlighted.
Right: joint two-dimensional distribution for Neff and the CDM density, Ωch

2, with five-year limits in blue, compared to three-year limits in gray. The degeneracy
valley of constant zeq is shown dashed, indicating that the CMB is now sensitive to the effect of neutrino anisotropic stress, which breaks the degeneracy.

Figure 13 shows the limits on the number density of neutrinos
and the density in dark matter. The degeneracy valley, shown
in the right panel, corresponds to a constant ratio of matter
density to radiation density, or equivalently a measurement of
the expansion factor at matter radiation equality:

1 + zeq = a−1
eq = ρc + ρb

ργ + ρν

≃ 40500
Ωch

2 + Ωbh
2

1 + 0.23Neff

. (22)

With only three years of data and a lack of precision on
the third peak position and height, WMAP was not able to
make a clear detection of neutrinos (or relativistic species);
however, the data did provide a ∼ 2σ hint of the effects of
neutrino anisotropic stresses (Melchiorri & Serra 2006). Figure
13 shows that with the five-year data alone we now constrain
the number density of relativistic species: Neff > 2.3 (95% CL).
By bounding Neff < 10, and choosing a uniform prior on Neff ,
this level of significance depends somewhat on the prior. We
therefore test the significance of the constraint by comparing two
ΛCDM models: one with Neff = 0, and one with the standard
Neff = 3.04. We find that the data prefer Neff = 3.04. The
best-fit model has Δ(−2 ln L) = 8.2 less than the Neff = 0 best-
fit model, corresponding to evidence for relativistic species at
> 99.5% confidence. The CMB power spectra corresponding
to these two models, and their fractional difference, are shown
in Figure 14. The model with no neutrinos has a lower matter
density, Ωmh2, in order to keep zeq fixed. The improvement in
likelihood between the two models comes from both the low-ℓ
and high-ℓ TT spectrum, with a small contribution from the TE
spectrum. We also check that this evidence does not go away
if we relax the assumption of a power-law spectral index, by
testing a model with a variable running, dns/d ln k �= 0.

Komatsu et al. (2009) combine WMAP data with other dis-
tance indicators (which constrain Ωch

2) and finds a stronger
limit on the number density of neutrino species: Neff = 4.4±1.5.
These limits will continue to improve as CMB measurements
of the higher peaks improve. The CMB constraints on the num-
ber of relativistic species at redshift ∼ 1000–3000 complement
constraints from BBN and from particle accelerators. Measure-
ments of the abundance of helium are sensitive to the expan-
sion rate of the universe during its first few minutes (Steigman
et al. 1977). The agreement between the best-fit value from
BBN, Neff = 3.24 ± 1.2 (95% confidence interval; Cyburt et al.

Figure 14. Comparison of the CMB angular power spectrum for the best-fit
ΛCDM models with the standard Neff = 3.04 neutrino species (red), and with
Neff = 0 species (blue). The lower panel shows the fractional difference between
the two spectra when Neff is increased from 0 to 3.04. The Neff = 0 model has
a lower Ωmh2 in order to fit the third peak, and a lower spectral index, ns,
compared to the Neff = 3.04 model.

2005; Particle Data Book 2007), with the best-fit CMB value is
another consistency check for standard cosmology.

4.2.2. Neutrino Mass

Cosmological data places limits on the mass of neutrinos.
Atmospheric and solar neutrino experiments show that neutrinos
are massive (see Mohapatra et al. 2007), and measure the
difference between the square of their masses, m2

νi − m2
νj .

Cosmological measurements constrain the sum of the masses
∑

mν due to their effect on the propagation of perturbations,
on the clustering of matter, and on the expansion rate of the
universe (Bond & Szalay 1983; Ma 1996; Hu et al. 1998). The
mass has a large effect on the matter power spectrum, as massive
neutrinos do not cluster as well as cold dark matter, leading to
a suppression in power on small scales. Neutrinos also affect
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the CMB at earlier times: if the fraction of dark matter that
is warm is raised, acoustic oscillations in the photon–baryon
plasma are less strongly damped for modes that entered the
horizon while the neutrinos were relativistic, raising the acoustic
peak amplitudes. The radiationlike behavior at early times also
changes the expansion rate, shifting the peak positions.

These effects are somewhat degenerate with other parameters,
so CMB data alone cannot limit the mass as well as when
combined with other data. With the three-year WMAP data
alone the limits were

∑

mν < 1.8 eV (Spergel et al. 2007), and
< 0.66 eV when combined with other data. Since the three-year
WMAP analysis there have been many studies of the constraints,
as discussed by Komatsu et al. (2009).

The five-year WMAP data now give an upper limit on the
total mass to be

∑

mν < 1.3 eV (95% CL), as shown in Table
6. We have checked that this upper limit is robust to the choice
of cosmological models. The upper limit is raised by < 10%
when we include tensor fluctuations, a running spectral index,
or a constant w �= −1 equation of state of dark energy, as
shown in Figure 15. This dependence on additional parameters is
consistent with earlier investigations by, e.g., Crotty et al. (2004)
and Zunckel & Ferreira (2007). A larger neutrino mass raises
the amplitude of the higher acoustic peaks, hence the observed
degeneracy with σ8 (Figure 15). Stronger constraints come from
combining the CMB data with probes of the expansion rate and
clustering of matter at later times: Komatsu et al. (2009) find
∑

mν < 0.61 (95% CL) for WMAP combined with additional
data.

4.2.3. Primordial Helium Abundance

In most cosmological analyses the primordial helium abun-
dance is fixed to be YP = 0.24, motivated by observations
discussed in Section 3.2.9. The effect of the abundance on the
CMB spectrum is small, but provides an independent cross-
check of the BBN results, and probes for any difference be-
tween the helium abundance during the first few minutes, and
after 300,000 years. The abundance affects the CMB at small
scales due to the recombination process. The number density of
electrons before recombination depends on the helium fraction
through ne = nb(1 − YP ), where nb is the baryon number den-
sity. Changing the electron number density changes the mean
free path of Compton scattering, which affects the Silk damping
scale. A larger Yp increasingly damps the power on small scales,
as shown by Trotta & Hansen (2004).

Constraints from the first-year WMAP data were presented
by Trotta & Hansen (2004), Huey et al. (2004), and Ichikawa &
Takahashi (2006), with 99% upper limits of YP < 0.65 inferred
(Trotta & Hansen 2004). A subsequent analysis of the three-year
data gave YP < 0.61 at 95% confidence, tightened to 0.25±0.10
with small-scale CMB data (Ichikawa et al. 2008). We now find
YP < 0.45 (95% CL) with the five-year WMAP data. Higher
values allowed by the three-year data are disfavored with a
better measure of the third acoustic peak height. With future
small-scale CMB measurements, for example from the Planck
satellite, constraints should significantly improve (Ichikawa
et al. 2008; Hamann et al. 2008b).

4.2.4. Curvature of the Universe

In combination with other data, WMAP observations place
strong constraints on the geometry of the universe (Spergel et al.
2007). The CMB measures with high accuracy the angular scale
at which acoustic oscillations are imprinted at the last scattering
surface, θ∗ = 0◦.5952 ± 0◦.0017. However, this alone does not

Table 6
Constraints on Neutrino Properties and the Primordial Helium Fraction

Parameter Limits

Neff > 2.3 (95% CL)
∑

mν < 1.3 eV (95% CL)

YP < 0.45 (95% CL)

provide a good measure of the geometry, as there is a degeneracy
with the expansion rate of the universe since last scattering. This
is shown in Figure 16, indicating the degeneracy between the
dark energy densityΩΛ and the curvatureΩk . With WMAP alone
the curvature is weakly constrained, with marginalized limits
Ωk = −0.099+0.085

−0.100, and ΩΛ < 0.76 (95% CL), assuming a
Hubble prior of 20 < H0 < 100 andΩΛ > 0. Without this prior
on the positivity of ΩΛ, limits on the curvature are weakened.
The same degeneracy is seen, although slightly broadened, when
the dark energy equation of state is allowed to vary. However,
in both cases the Hubble constant decreases with increasingly
negative curvature, taking values inconsistent with observation.
This degeneracy can be used to constrain the curvature by
combining observations (Jungman et al. 1996). In the three-
year WMAP analysis, Spergel et al. (2007) showed that the
degeneracy is truncated with the addition of only one piece of
additional cosmological data (Type Ia supernovae, or the HST
measurement of the Hubble constant, or galaxy power spectra),
tightly constraining any deviations from flatness. Komatsu et al.
(2009) draw similar conclusions with currently available data,
and discuss the current limits on the spatial curvature from recent
observations.

4.2.5. Dark Energy Properties

The ΛCDM model requires a nonzero dark energy density
ΩΛ = 0.742 ± 0.030 to fit the data, which is assumed to
be in the form of a cosmological constant. We do not have
an explanation for this component of the universe. A natural
explanation could be a vacuum energy density (Carroll et al.
1992), but if so, we are faced with the fine-tuning problem to
explain its observed value, 120 orders of magnitude smaller than
expected from field theory arguments. Alternative explanations
include quintessence (Peebles & Ratra 1988; Wetterich 1988;
Ferreira & Joyce 1998) or modifications to gravity (Deffayet
et al. 2002). Testing the dark energy equation of state today,
and as a function of cosmic time will help identify the possible
explanation.

The CMB by itself cannot place strong limits on the equation
of state w = p/ρ, but by measuring the acoustic peak positions
and heights, and constraining Ωmh2 with the third peak, limits
the range of models to a degeneracy between Ωm and w, as
shown in Figure 16. The dark energy in these models is allowed
to cluster. With a prior on the Hubble constant H0 < 100, WMAP
alone places weak limits w = −1.06+0.41

−0.42, withΩΛ = 0.73+0.10
−0.11.

If flatness is not assumed, the WMAP data cannot constrain w or
ΩΛ due to the geometric degeneracy, also shown in Figure 16.
However, the situation is significantly improved when WMAP
is combined with astronomical data measuring the expansion
rate and clustering of matter at late times. Komatsu et al. (2009)
discuss limits obtained from various data in combination with
WMAP, and find w constrained to be −1 to within 6% for a flat
universe and constant equation of state.
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Figure 15. Limits on the sum of neutrino masses with the WMAP five-year data. Left: marginalized one-dimensional limit from WMAP alone is
∑

mν <

1.3 eV (95% CL). This is raised by < 10% with marginalization over a running spectral index, tensor fluctuations, or a dark energy equation of state w.
Right: the neutrino mass is anticorrelated with σ8, the amplitude of matter fluctuations.

Figure 16. Left: the points show the set of nonflat models consistent with the WMAP data, colored by the Hubble constant values. WMAP measures the acoustic
peak scale to high accuracy, but does not constrain the curvature, Ωk , by itself. However, the highly curved models have a low Hubble constant, inconsistent with
observation. Right: constraints on the dark energy equation of state, w, and the dark energy density, ΩΛ, from WMAP alone. With a Hubble constant H0 < 100, weak
limits can be placed on w in a flat universe, shown by the blue contours, but the dark energy density and equation of state are unconstrained (with the 95% CL; shaded
gray) if the assumption of flatness is relaxed. Limits are significantly improved when WMAP is combined with additional data (Komatsu et al. 2009).

5. CONCLUSIONS

The simple six-parameter ΛCDM model continues to fit the
WMAP data. With five years of observations, we have better
measured both the temperature and polarization anisotropy of
the CMB. This has allowed us to measure with smaller errors,
compared to the three-year analysis, the third acoustic peak in
the temperature spectrum, and the low-ℓ polarization signal,
leading to improved constraints on the cosmological parame-
ters describing the contents of the universe, and the primordial
fluctuations that seeded structure. The observations continue to
be well fit by the predictions of the simplest inflationary mod-
els, with a scale-invariant spectrum of fluctuations disfavored.
Consistency with the TE cross-correlation spectrum, now mea-
sured with better accuracy, provides additional confidence in
this simple model.

We have detected the optical depth to reionization with high
significance. This measurement implies that reionization of the
universe likely took place gradually, as it constrains a sudden
reionization to be earlier than consistent with other observa-
tions. With more data, it will become possible to use the polar-

ization data to better quantify the ionization history. Given the
improvement in this measurement, and with a view to interpret-
ing future large-scale polarization measurements, we develop
an alternative way to remove Galactic foregrounds from low-
resolution polarization maps, which includes marginalization
over uncertainties in the Galactic signal. We find consistent
results using this method and the standard template-cleaning
method.

Considering a range of extended models, we continue to find
that the standard ΛCDM model is consistently preferred by
the data. The improved measurement of the third peak now
requires the existence of light relativistic species, assumed to
be neutrinos, at high confidence. The standard scenario has
three neutrino species, but the three-year WMAP data could
not rule out models with none. The ΛCDM model also con-
tinues to succeed in fitting a substantial array of other obser-
vations. Certain tensions between other observations and those
of WMAP, such as the amplitude of matter fluctuations mea-
sured by weak lensing surveys and using the Lyα forest, and the
primordial lithium abundance, have either been resolved with
improved understanding of systematics, or show some promise
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Figure 17. Angular power spectra of signal and noise components in the
smoothed ILC map used for Gibbs sampling the low-ℓ temperature spectrum.
Uncorrelated noise, at 2 μK per pixel (red), is added to the smoothed ILC map
to speed up the sampling, and then is assumed to be the only noise present.
This assumption is inaccurate at low ℓ, as it ignores the true noise (blue),
but the error is negligible since it is significantly lower than cosmic variance
(green).

of being explained by recent observations. With further WMAP
observations we will better probe both the universe at a range of
epochs, measuring fluctuation characteristics to probe the initial
inflationary process, or other non-inflationary scenario, improv-
ing measurements of the composition of the universe at the
recombination era, and characterizing the reionization process
in the universe.
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APPENDIX A

LOW-ℓ TT LIKELIHOOD CROSS CHECKS

We have switched from the pixel likelihood to a Blackwell–
Rao (BR) estimator at low-ℓ, so we perform several tests
to verify that the new likelihood (1) is consistent with the
pixel likelihood, (2) is insensitive to several choices of in-
put data, and (3) is properly converged. Many of our checks
involve comparing likelihoods. Because the likelihood is a
function on a high-dimensional space, we do not check it
everywhere. Instead we choose some fiducial spectrum and
compute slices through the likelihood. We compare these con-
ditional likelihoods, typically in the form of maximum like-
lihood values and full-width-half-maximum error bars be-
tween different low-ℓ likelihood methods. We also com-

Figure 18. Level of variation in the low-ℓ TT Gibbs likelihood that arises
from different input parameters. The spectrum estimated from the standard
input (black) is compared to results obtained using a different white noise
realization (blue), using a larger mask (KQ80, red), and degrading to Nside = 16
(green) rather than 32. The likelihood does fluctuate with these changes, but
has a negligible effect on cosmological parameters. The values shown at each
multipole correspond to maximum likelihood values obtained by fixing the
spectrum of other multipoles at fiducial values. The error bars show where the
likelihood is at 50% and 5% of its peak value.

Table 7
Parameters Used for Sampling the Low-ℓ TT Likelihood at Two Different

Resolutions

Resolution parameter 4 5

Smoothing FWHM 9◦.1831 5◦.0
σnoise/pixel (μK) 1.0 2.0

ℓmax sampled 32 51

ℓmax conditioned 48 96

pare ΛCDM cosmological parameters obtained using different
inputs.

The first comparison is between the pixel-based code and the
Gibbs code. Figure 1 showed a comparison of the Cℓ likelihoods,
with no significant differences, even though they use different
resolutions. The cosmological parameters are unchanged for the
two codes. The next comparison is between likelihoods from
Gibbs sampling at two different resolutions, Nside = 16 and 32.
Table 7 lists details of runs at these two different resolutions,
including the standard deviation of the Gaussian white noise
added to the smoothed maps. The power spectrum of the white
noise for the Nside = 32 case, is compared to the input noise and
cosmic variance in Figure 17. Power spectra are sampled up to
ℓmax (sampled), and the sampled CMB skies are constructed with
the sampled power spectra and by conditioning on a constant
fiducial spectrum out to a higher value of ℓmax (conditioned). In
Figure 18 the estimated spectra are compared, using the fiducial
KQ85 mask. There are some small differences, but the spectra
are consistent.

We also show in Figure 18 that the spectra obtained are
almost identical for two different realizations for the added
uncorrelated white noise, and that using the larger KQ80 mask,
compared to the fiducial KQ85, has a small effect on the spectra
and cosmological parameters, consistent with noise. Finally, we
compare results for different ℓmax used in the BR estimator. The
standard set-up uses ℓmax = 32; using the low-ℓ likelihood up
to ℓ = 51 has almost no effect on cosmological parameters.
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APPENDIX B

PARAMETER ESTIMATION DETAILS

B1. Sampling Method

In the primary pipeline, only one chain is run for each model,
rather than the typical four or eight parallel chains used in most
MCMC cosmological analyses. This is possible as our spectral
convergence test only requires a single chain. The starting points
are picked as good-fitting points from previous analyses (e.g.,
a good-fitting value from the three-year WMAP analysis), or
previous test chains, which means that no initial burn-in need be
removed. Starting afresh with the five-year data, one can always
use a point lying in the WMAP three-year limits as a starting
point. This would not be the case for entirely new distributions,
or much improved data, in which case we run a short initial
exploratory chain to find the high-likelihood region.

The covariance matrix from which trial steps are drawn, is
chosen using a best guess for the covariance C of the distribution
being sampled. For a multivariate Gaussian with covariance C,
the optimal trial covariance matrix, if all parameters are sampled
simultaneously, is CT = (σT /σ0)2C, where

σT

σ0

≈ 2.4√
D

(B1)

for D-dimensional distributions (Gelman et al. 1996; Hanson
& Cunningham 1998; Dunkley et al. 2005). This relation also
holds for somewhat non-Gaussian distributions. At each step we
draw a vector G of D Gaussian unit variance zero mean random
variates, and compute a trial set of parameters xT , starting from
the current position xi , where

xT = xi +
√

CT G. (B2)

Using an appropriate covariance matrix can speed up the
sampling time by a factor of hundreds. In practice, we have
a good idea of the covariance from previous cosmological
analyses, so this is always used as a starting point. With
significantly different data, or with new parameters, a best guess
is made. The chains are then run for a few thousand steps, and
then updated if the matrix is inadequate. This is determined by
the acceptance rate of the chain, which should be ∼ 15%–25%
and by the chain efficiency, using the spectral test described in
the following section. A second or third update may be required
for models such as those with curved geometries with variable
dark energy equation of state. Once a good covariance matrix
is found, the chains are run for typically 20,000 steps, and then
tested for convergence. Convergence forΛCDM chains typically
takes place after only ∼ 6000 iterations, although at this point
the 1D and 2D distributions are noisy. In practice, we then run
all the chains for longer than the convergence limit, typically
for 100,000 iterations, in order to get well-sampled histograms.
The chains are not thinned before analysis.

B2. Spectral Convergence Test

A chain has “converged” when its statistical properties reflect
those of the underlying distribution with sufficient accuracy. To
determine this stopping point, we use the spectral convergence
test described by Dunkley et al. (2005) in our main parameter
pipeline. The power spectrum of each parameter of the chain is
used as a diagnostic, to check whether the chain has (1) sampled
the distribution in such a way that it is unbiased by correlations

and (2) sampled enough points that statistics can be estimated
with sufficient accuracy. The Gelman & Rubin test (Gelman &
Rubin 1992), commonly used in cosmology, can sometimes fail
to test the first point, producing a false positive.

To estimate the power spectrum P (k) from a chain of length

N we construct P̂j = |aj |2, where j = 2πk/N , by taking
the discrete Fourier Transform of the chain of values for each
parameter, x,

aj = 1√
N

N−1
∑

n=0

x(n) exp
[

i2π (jn/N )
]

, (B3)

where −(N/2 − 1) < j < N/2. x(n) is the value at each
iteration n, so chains stored in weighted format are converted to
unweighted arrays for analysis. Since the Metropolis algorithm
produces chains which are correlated on small scales, the power
spectrum tends to a white noise spectrum on large scales, and
turns over to a spectrum with suppressed power at large k, with
the turnover position reflecting the inverse correlation length. In
Dunkley et al. (2005) it is shown that the spectrum can be fit by
the following template:

P (k) = P0

(k∗/k)α

(k∗/k)α + 1
, (B4)

with P0 giving the amplitude of the white noise spectrum in
the k → 0 limit. k∗ indicates the position of the turnover to
a different power-law behavior, characterized by α, at large k.
This model is shown in Figure 3 of Dunkley et al. (2005), fitting
the noisy spectrum of a parameter from a chain. The model
fits the noise-averaged spectrum of a real chain obtained from
Monte Carlo simulations, also shown in Dunkley et al. (2005).

To fit the parameters ln P0, k
∗ and α to P̂j using least squares

for a finite chain, we have

ln P̂j = ln[P0] + ln

[

(Nk∗/2πj )α

1 + (Nk∗/2πj )α

]

− γ + rj , (B5)

where γ = 0.577216 is the Euler–Mascheroni constant, and rj

are random measurement errors. The parameters are fit over the
range of Fourier modes 1 � j � 10j ∗, for a spectrum with
j ∗ = k∗(N/2π ), so we iterate twice to converge on the j ∗ limit.

For convergence, the largest scales probed must be in the
white noise regime P (k) ∼ k0, defined by the requirement
j ∗ > 20 for each parameter. This ensures that the correlated
points are not biasing the distribution and indicates that the chain
is drawing points throughout the full region of high probability.
To test sufficient accuracy, we require the convergence ratio
r = σ 2

x̄

/

σ 2
0 to be less than 1% for each parameter, where σ 2

x̄

is the variance in the sample mean, and σ 2
0 is the variance of

the sampled parameter. The Gelman & Rubin test incorporates
a similar ratio: their R-statistic roughly translates to R ∼ 1 + r ,
but the quantity is calculated using multiple parallel chains. It
is shown in Dunkley et al. (2005) that r can be estimated using
a single chain, since estimating the sample mean variance of a
long chain, with zero mean, is equivalent to estimating P (k) at
k = 0:

σ 2
x̄ = 〈x̄2〉 ≈ 1

N
· P (k = 0). (B6)

In practice, we rescale each parameter to have zero mean
and unit variance before computing its power spectrum. Then
we estimate the value of P0 for each parameter, to compute
r = P0/N . We require r < 0.01, but in practice obtain much
smaller values, typically with r < 0.001.
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Cabré, A., Gaztañaga, E., Manera, M., Fosalba, P., & Castander, F. 2006,
MNRAS, 372, L23

Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARA&A, 30, 499

Cen, R. 2003, ApJ, 591, L5

Chae, K.-H. 2007, ApJ, 658, L71

Charbonnel, C., & Primas, F. 2005, A&A, 442, 961

Chiu, W. A., Fan, X., & Ostriker, J. P. 2003, ApJ, 599, 759

Choudhury, T. R., & Ferrara, A. 2006, MNRAS, 371, L55
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