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1. Introduction

We study a class of 2d N = (0, 2) theories T [M4] labeled by 4-manifolds (with boundary)

that enjoys all the standard operations on 4-manifolds, such as cutting, gluing, and the Kirby

moves [1]. Since the world-sheet SCFT of a heterotic string is a prominent member of this

class of 2d N = (0, 2) theories we shall call it “class H” in what follows. By analogy with

theories of class S and class R that can be thought of as compactifications of six-dimensional
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(2, 0) theory on 2-manifolds [2–4] and 3-manifolds [5–7], respectively, a theory T [M4] of class

H can be viewed as the effective two-dimensional theory describing the physics of fivebranes

wrapped on a 4-manifold M4.

If 2d theories T [M4] are labeled by 4-manifolds, then what are 4-manifolds labeled by?

Unlike the classification of 2-manifolds and 3-manifolds that was of great help in taming the

zoo of theories T [M2] and T [M3], the world of 4-manifolds is much richer and less understood.

In particular, the answer to the above question is not known at present if by a 4-manifold one

means a smooth 4-manifold. And, not surprisingly, there will be many points in our journey

where this richness of the world of 4-manifolds will translate into rich physics of 2d N = (0, 2)

theories T [M4]. We hope that exploring the duality between 4-manifolds and theories T [M4]

sufficiently far will provide insights into classification of smooth structures in dimension four.

In dimensions ≤ 6, every combinatorial manifold — a.k.a. simplicial complex or a man-

ifold with piecewise linear (PL) structure — admits a unique compatible smooth (DIFF)

structure. However, not every topological 4-manifold admits a smooth structure:

DIFF = PL ⊂ TOP (1.1)

and, furthermore, the smooth structure on a given topological 4-manifold may not be unique

(in fact, M4 can admit infinitely many smooth structures). When developing a dictionary

between M4 and T [M4], we will use various tools from string theory and quantum field

theory which directly or indirectly involve derivatives of various fields on M4. Therefore,

in our duality between M4 and T [M4] all 4-manifolds are assumed to be smooth, but not

necessarily compact. In particular, it makes sense to ask what the choice of smooth or PL

structure onM4 means for the 2d theory T [M4], when the 4-manifold admits multiple smooth

structures.

Returning to the above question, the basic topological invariants of a (compact) 4-

manifold M4 are the Betti numbers bi(M4) or combinations thereof, such as the Euler char-

acteristic and the signature:

b2 = b+2 + b−2

σ = b+2 − b−2 =
1

3

∫

M4

p1 (1.2)

χ = 2− 2b1 + b+2 + b−2

At least in this paper, we will aim to understand fivebranes on simply-connected 4-manifolds.

In particular, all compact 4-manifolds considered below will have b1(M4) = 0. We will be

forced, however, to deviate from this assumption (in a minimal way) when discussing cutting

and gluing, where non-trivial fundamental groups |π1(M4)| <∞ will show up.

As long as b1 = 0, there are only two non-trivial integer invariants in (1.2), which some-

times are replaced by the following topological invariants

χh(M4) =
χ(M4) + σ(M4)

4
(1.3)

c(M4) = 2χ(M4) + 3σ(M4) (= c21 when M4 is a complex surface)
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also used in the literature on 4-manifolds. These two integer invariants (or, simply b2 and σ)

determine the rank and the signature of the bilinear intersection form

QM4 : Γ⊗ Γ → Z (1.4)

on the homology lattice

Γ = H2(M4;Z)/Tors (1.5)

The intersection pairing QM4 (or, simply, Q) is a nondegenerate symmetric bilinear integer-

valued form, whose basic characteristics include the rank, the signature, and the parity (or

type). While the first two are determined by b2(M4) and σ(M4), the type is defined as follows.

The form Q is called even if all diagonal entries in its matrix are even; otherwise it is odd.

We also define

Γ∗ = H2(M4;Z)/Tors (1.6)

The relation between the two lattices Γ and Γ∗ will play an important role in construction of

theories T [M4] and will be discussed in section 2.

For example, the intersection form for the Kümmer surface has a matrix representation

E8 ⊕ E8 ⊕ 3

(
0 1

1 0

)
(1.7)

where
(
0 1
1 0

)
is the intersection form for S2 × S2 and E8 is minus the Cartan matrix for the

exceptional Lie algebra by the same name. A form Q is called positive (resp. negative)

definite if σ(Q) = rank(Q) (resp. σ(Q) = −rank(Q)) or, equivalently, if Q(γ, γ) > 0 (resp.

Q(γ, γ) < 0) for all non-zero γ ∈ Γ. There are finitely many unimodular1 definite forms of

a fixed rank. Thus, in the above example the intersection form for S2 × S2 is indefinite and

odd, whereas E8 is the unique unimodular negative definite even form of rank 8.

If M4 is a closed simply-connected oriented 4-manifold, its homeomorphism type is com-

pletely determined by Q. To be a little more precise, according to the famous theorem of

Michael Freedman [8], compact simply-connected topological 4-manifolds are completely char-

acterized by an integral unimodular symmetric bilinear form Q and the Kirby-Siebenmann

triangulation obstruction invariant α(M4) ∈ H4(M4;Z2) ∼= Z2, such that σ
8 ≡ α mod 2 if Q

is even. In particular, there is a unique topological 4-manifold with the intersection pairing

E8. This manifold, however, does not admit a smooth structure. Indeed, by Rokhlin’s theo-

rem, if a simply-connected smooth 4-manifold has an even intersection form Q, then σ(M4)

is divisible by 16. There is, however, a non-compact smooth manifold with E8 intersection

form that will be one of our examples below: it corresponds to a nice 2d theory T [E8], which

for a single fivebrane we propose to be a realization of level-1 E8 current algebra used in the

world-sheet SCFT of a heterotic string [9, sec.6] or in the construction of E-strings [10]:

T [E8] = (bosonization of) 8 Fermi multiplets (1.8)

1that is detQ = ±1
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In the case of compact smooth 4-manifolds, the story is a lot more complicated and the

complete classification is not known at present. One major result that will be important to

us in what follows is the Donaldson’s theorem [11], which states that the intersection form Q

of a smooth simply-connected positive (resp. negative) definite 4-manifold is equivalent over

integers to the standard diagonal form diag(1, 1, . . . , 1) or diag(−1,−1, . . . ,−1), respectively.
(This result applies to compact M4 and admits a generalization to 4-manifolds bounded by

homology spheres, which we will also need in the study of 2d theories T [M4].) In particular,

since E8 ⊕E8 is not diagonalizable over integers, the unique topological 4-manifold with this

intersection form does not admit a smooth structure.2 Curiously, this, in turn, implies that

R4 does not have a unique differentiable structure.

We conclude this brief introduction to the wild world of 4-manifolds by noting that any

non-compact topological 4-manifold admits a smooth structure [12]. In fact, an interesting

feature of non-compact 4-manifolds considered in this paper — that can be viewed either as

a good news or as a bad news — is that they all admit uncountably many smooth structures.

4-manifold M4 2d (0, 2) theory T [M4]

handle slides dualities of T [M4]

boundary conditions vacua of T [M3]

3d Kirby calculus dualities of T [M3]

cobordism domain wall (interface)

from M−
3 to M+

3 between T [M−
3 ] and T [M+

3 ]

gluing fusion

Vafa-Witten flavored (equivariant)

partition function elliptic genus

ZVW(cobordism) branching function

instanton number L0

embedded surfaces chiral operators

Donaldson polynomials chiral ring relations

Table 1: The dictionary between geometry and physics.

In order to preserve supersymmetry in two remaining dimensions, the 6d theory must

be partially “twisted” along the M4. The standard way to achieve this is to combine the

Euclidean Spin(4) symmetry of the 4-manifold with (part of) the R-symmetry. Then, dif-

ferent choices — labeled by homomorphisms from Spin(4) to the R-symmetry group, briefly

summarized in appendix A — lead to qualitatively different theories T [M4], with different

2Note, this can not be deduced from the Rokhlin’s theorem as in the case of the E8 manifold.
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amount of supersymmetry in two dimensions, etc. The choice we are going to consider in this

paper is essentially (the 6d lift of) the topological twist introduced by Vafa and Witten [13],

which leads to (0, 2) supersymmetry in two dimensions. In fact, the partition function of the

Vafa-Witten TQFT that, under certain conditions, computes Euler characteristics of instan-

ton moduli spaces also plays an important role in the dictionary beteen 4-manifolds and the

corresponding 2d N = (0, 2) theories T [M4].

The basic “protected quantity” of any two-dimensional theory with at least N = (0, 1)

supersymmetry is the elliptic genus [14] defined as a partition function on a 2-torus T 2

with periodic (Ramond) boundary conditions for fermions. In the present case, it carries

information about all left-moving states of the 2d N = (0, 2) theory T [M4] coupled to the

supersymmetric Ramond ground states from the right. To be more precise, we shall consider

the “flavored” version of the elliptic genus (studied in this context e.g. in [15,16]),

IT [M4](q, x) := TrH(−1)F qL0xf , (1.9)

that follows the standard definition of the superconformal index in radial quantization and

carries extra information about the flavor symmetry charges f . In general, the flavor symme-

try group of T [M4] is U(1)b2 ×G3d, where the second factor is associated with the boundary

M3 = ∂M4 and is gauged upon gluing operations. Defined as a supersymmetric partition

function on a torus T 2 with a modular parameter τ (where, as usual, q = e2πiτ ), the in-

dex IT [M4](q;x) has a nice interpretation as an invariant of the 4-manifold computed by the

topological theory on M4.

Indeed, since the theory T [M4] was obtained by compactification from six dimensions

on a 4-manifold, its supersymmetric partition function on a torus can be identified with the

partition function of the 6d (2, 0) theory on T 2 ×M4. As usual, by exchanging the order of

compactificaion, we obtain two perspecties on this fivebrane partition function

6d (2, 0) theory

on T 2 ×M4

ւ ց
N = 4 super-Yang-Mills 2d (0, 2) theory T [M4]

on M4 on T 2

that are expected to produce the same result. If we compactify first on M4, we obtain a 2d

theory T [M4], whose partition function on T 2 is precisely the flavored elliptic genus (1.9).

On the other hand, if we first compactify on T 2, we get N = 4 super-Yang-Mills3 with the

Vafa-Witten twist onM4 and coupling constant τ . This suggests the following natural relation

ZGVW[M4](q, x) = IT [M4;G](q, x) (1.10)

3Sometimes, to avoid clutter, we suppress the choice of the gauge group, G, which in most of our applications

will be either G = U(N) or G = SU(N) for some N ≥ 1. It would be interesting to see if generalization to G

of Cartan type D or E leads to new phenomena. We will not aim to do this analysis here.
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that will be one of our main tools in matching 4-manifolds with 2d N = (0, 2) theories T [M4].

Note, this in particular requires M4 to be a smooth 4-manifold. Both sides of (1.10) are

known to exhibit nice modular properties under certain favorable assumptions [13, 14] that

we illustrate in numerous examples below.

In this paper, we approach the correspondence between 4-manifolds and 2d N = (0, 2)

theories T [M4] mainly from the viewpoint of cutting and gluing. For this reason, not only

4-manifolds with boundary are unavoidable, they also are the main subject of interest. As

a result, interesting new phenomena, such as a generalization of the Freed-Witten anomaly

[17] to manifolds with boundary, come into play. It also affects the relation (1.10), where

the left-hand side naturally becomes a function of boundary conditions, and leads to one

interesting novelty discussed in section 3.6. Namely, in order to interpret the Vafa-Witten

partition function on a non-compact 4-manifold as the index (1.9), it is convenient to make a

certain transformation — somewhat akin to a change of basis familiar in the literature on the

superconformal index [18] — changing discrete labels associated with boundary conditions to

continuous variables.

The type of the topological twist that leads to 2d (0, 2) theory T [M4], namely the Vafa-

Witten twist, can be realized on the world-volume of fivebranes wrapped on a coassociative

submanifold M4 inside a seven-dimensional manifold with G2 holonomy [19, 20]. Locally,

in the vicinity of M4, this 7-dimensional manifold always looks like the bundle of self-dual

2-forms over M4 (see e.g. [21] for a pedagogical review). This realization of the 6d (2, 0)

theory on the world-volume of M-theory fivebranes embedded in 11d space-time can provide

some useful clues about the 2d superconformal theory T [M4], especially when the number of

fivebranes is large, N ≫ 1, and the system admits a holographic dual supergravity description

(cf. appendix A for a brief survey).

In the case of fivebranes on coassociative 4-manifolds, the existence of the holographic

dual supergravity solution [22–24] requires M4 to admit a conformally half-flat structure, i.e.

metric with anti-self-dual Weyl tensor. Since the signature of the 4-manifold can be expressed

as the integral

σ(M4) =
1

12π2

∫

M4

(
|W+|2 − |W−|2

)
(1.11)

where W± are the self-dual and anti-self-dual components of the Weyl tensor, it suggests to

focus on 2d N = (0, 2) superconformal theories T [M4] associated with negative definite M4.

As we explained earlier, negative definite 4-manifolds are very simple in the smooth category

and, curiously, W+ = 0 also happens to be the condition under which instantons on M4

admit a description [25] that involves holomorphic vector bundles (on the twistor space of

M4), monads, and other standard tools from (0, 2) model building.

The holographic dual and the anomaly of the fivebrane system also allow to express left

and right moving central charges of the 2d N = (0, 2) superconformal theory T [M4] via basic

topological invariants (1.2) of the 4-manifold. Thus, in the case of the 6d (2, 0) theory of type
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G one finds [24,26]:

cR =
3

2
(χ+ σ)rG + (2χ+ 3σ)dGhG (1.12)

cL = χrG + (2χ+ 3σ)dGhG

where rG = rank(G), dG = dim(G), and hG is the Coxeter number. In particular, for a single

fivebrane (rG = 1 and dGhG = 0) these expressions give cL = χ and cR = 3+3b+2 , suggesting

that b−2 is the number of Fermi multiplets4 in the 2d N = (0, 2) theory T [M4;U(1)]. This con-

clusion agrees with the direct counting of bosonic and fermionic Kaluza-Klein modes [27] and

confirms (1.8). As we shall see in the rest of this paper, the basic building blocks of 2d theories

T [M4] are indeed very simple and, in many cases, can be reduced to Fermi multiplets charged

under global flavor symmetries (that are gauged in gluing operations). However, the most

interesting part of the story is about operations on 2d (0, 2) theories that correspond to gluing.

The paper is organized as follows. In section 2 we describe the general ideas relating

4-manifolds and the corresponding theories T [M4], fleshing out the basic elements of the

dictionary in Table 1. Then, we study the proposed rules in more detail and present various

tests as well as new predictions for Vafa-Witten partition functions on 4-manifolds (in section

3) and for 2d walls and boundaries in 3d N = 2 theories (in section 4).

The relation between Donaldson invariants ofM4 and Q+-cohomology of the correspond-

ing 2d (0, 2) theory T [M4] will be discussed elsewhere. More generally, and as we already

remarked earlier, it would be interesting to study to what extent T [M4], viewed as an invari-

ant of 4-manifolds, can detect smooth structures. In particular, it would be interesting to

explore the relation between T [M4] and other invariants of smooth 4-manifolds originating

from physics, such as the celebrated Seiberg-Witten invariants [28, 29] or various attempts

based on gravity [30–33].

2. 2d theories labeled by 4-manifolds

Building theories T [M4] in many ways follows the same set of rules and tricks as building

4-manifolds. Here, we describe some of the basic operations in the world of 4-manifolds and

propose their realization in the world of supersymmetric gauge theories. While the emphasis

is certainly on explaining the general rules, we supplement each part with concrete examples

and/or new calculations. More examples, with further details, and new predictions based on

the proposed relations in Table 1 will be discussed in sections 3 and 4.

2.1 Kirby diagrams and plumbing

We start by reviewing the standard construction of 4-manifolds, based on a handle decompo-

sition, mostly following [1] (see also [34]). Thus, if M4 is connected, we take a single 0-handle

4Recall, that a free Fermi multiplet contributes to the central charge (cL, cR) = (1, 0).
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(∼= D4) and successively attach to it k-handles (∼= Dk × D4−k) with k = 1, 2, 3. Then, de-

pending on the application in mind, we can either stop at this stage (if we are interesting in

constructing non-compact 4-manifolds) or cap it off with a 4-handle (∼= D4) if the goal is to

build a compact 4-manifold.

The data associated with this process is usually depicted in the form of a Kirby diagram,

on which every k-handle (∼= Dk ×D4−k) is represented by its attaching region, Sk−1×D4−k,

or by its attaching sphere, Sk−1. To be a little more precise, a Kirby diagram of a smooth

connected 4-manifold M4 usually shows only 1-handles and 2-handles because 3-handles and

4-handles attach essentially in a unique way [35]. Moreover, in our applications we typically

will not see 1-handles either (due to our intention to work with simply-connected 4-manifolds).

Indeed, regarding a handle decomposition of M4 as a cell complex, its k-th homology group

becomes an easy computation in which k-handles gives rise to generators and (k+1)-handles

give rise to relations. The same interpretation of the handlebody as a cell complex can

be also used for the computation of the fundamental group, where 1-handles correspond to

generators and 2-handles lead to relations. Therefore, the easiest way to ensure that M4 is

simply-connected is to avoid using 1-handles at all.

Then, for this class of 4-manifolds, Kirby diagrams only contain framed circles, i.e. at-

taching spheres of 2-handles, that can be knotted and linked inside S3 (= boundary of the

0-handle). To summarize, we shall mostly work with 4-manifolds labeled by framed links in

a 3-sphere,

M4 : Ka1
1 Ka2

2 . . . Kan
n (2.1)

where Ki denotes the i-th component of the link and ai ∈ Z is the corresponding framing

coefficient. Examples of Kirby diagrams for simple 4-manifolds are shown in Figures 1, 2,

and 3.

At this stage, it is important to emphasize that Kirby diagrams are not quite unique:

there are certain moves which relate different presentations of the same 4-manifold. We refer

the reader to excellent monographs [1, 34] on Kirby calculus, of which most relevant to us

is the basic tool called 2-handle slide. Indeed, since our assumptions led us to consider 4-

manifolds built out of 2-handles,5 occasionally we will encounter the operation of sliding a

2-handle i over a 2-handle j. It changes the Kirby diagram and, in particular, the framing

coefficients:

aj 7→ ai + aj ± 2lk(Ki,Kj) (2.2)

ai 7→ ai

where the sign depends on the choice of orientation (“+” for handle addition and “−” for

handle subtraction) and lk(Ki,Kj) denotes the linking number. We will see in what follows

that this operation corresponds to changing the basis of flavor charges.

5Another nice property of such 4-manifolds is that they admit an achiral Lefschetz fibration over the

disk [36].
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In the class of non-compact simply-connected 4-manifolds (2.1) labeled by framed links,

the simplest examples clearly correspond to Kirby diagrams where all Ki are copies of the

unknot. Many6 such 4-manifolds can be equivalently represented by graphs with integer

“weights” assigned to the vertices, somewhat similar to quiver diagrams that conveniently

encode the spectrum of fields and interactions in a large class of gauge theories. The 4-

manifolds in question are constructed by gluing together n copies of disk bundles over 2-

spheres, D2
i → S2

i , each labeled by an integer Euler class ai ∈ Z. Switching the role of

the base and the fiber in the gluing process, one builds a simply-connected 4-manifold M4,

called plumbing, whose handle decomposition involves n two-handles (besides the “universal”

0-handle at the bottom). As usual, we represent such 4-manifolds by Kirby diagrams drawing

the attaching framed circles Ki of 2-handles inside S
3.

The simplest non-trivial plumbing manifold corresponds to the Kirby diagram:

−p
(2.3)

In other words, its handlebody decomposition contains only one 2-handle with framing −p,
and the resulting manifold M4 is a twisted D2 bundle over S2 or, as a complex manifold, the

total space of the O(−p) bundle over CP1,

M4 : O(−p)→ CP1 (2.4)

For p > 0, which we are going to assume in what follows, M4 is a negative definite plumbing

manifold bounded by the Lens space L(p, 1).

a1 a2 a1 a2
an an

= ........

Figure 1: A Kirby diagram and the corresponding plumbing graph for the plumbing 4-manifold

associated to the string (a1, a2, . . . , an).

Another, equivalent way to encode the same data is by a plumbing graph Υ. In this

presentation, each attaching circle Ki of a 2-handle is replaced by a vertex with an integer

label ai, and an edge between two vertices i and j indicates that the corresponding attaching

circles Ki and Kj are linked. Implicit in the plumbing graph is the orientation of edges, which,

unless noted otherwise, is assumed to be such that all linking numbers are +1. More generally,

6but not all! See Figure 3 for an instructive (counter)example.

– 9 –



one can consider plumbings of twisted D2 bundles over higher-genus Riemann surfaces, see

e.g. [34, sec. 2.1], in which case vertices of the corresponding plumbing graphs are labeled by

Riemann surfaces (not necessarily orientable) in addition to the integer labels ai. However,

such 4-manifolds typically have non-trivial fundamental group and we will not consider these

generalizations here, focusing mainly on plumbings of 2-spheres.

The topology of a 4-manifold M4 constructed via plumbing of 2-spheres is easy to

read off from its Kirby diagram or the corresponding plumbing graph. Specifically, M4

is a non-compact simply-connected 4-manifold, and one can think of Ki as generators of

Γ = H2(M4;Z) with the intersection pairing

Qij =

{
lk(Ki,Kj), if i 6= j

ai, if i = j
(2.5)

For example, the Kirby diagram in Figure 1 corresponds to

Q =




a1 1 0 · · · 0

1 a2 1
...

0 1
. . . 0

...
. . .

. . . 1

0 · · · 0 1 an




(2.6)

A further specialization to (a1, a2, . . . , an) = (−2,−2, . . . ,−2) for obvious reasons is usually

referred to as An, whereas that in Figure 2 is called E8.

E8 =
−2  −2  −2  −2  −2  −2  −2

=
−2  −2  −2  −2  −2  −2  −2

−2
−2

Figure 2: A Kirby diagram and the corresponding plumbing graph for the E8 manifold with b2 =

−σ = 8 and ∂E8 ≈ Σ(2, 3, 5).

Similarly, given a weighted graph Υ, one can plumb disk bundles with Euler numbers ai
over 2-spheres together to produce a 4-manifold M4(Υ) with boundary M3(Υ) = ∂M4(Υ),

such that

b1(M4) = b1(Υ) (2.7a)

b2(M4) = #{vertices of Υ} (2.7b)
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In particular, aiming to construct simply-connected 4-manifolds, we will avoid plumbing

graphs that have loops or self-plumbing constructions. Therefore, in what follows we typi-

cally assume that Υ is a tree, relegating generalizations to future work. Besides the basic

topological invariants (2.7), the plumbing tree Υ also gives a nice visual presentation of the

intersection matrix Q(Υ) = (Qij), which in the natural basis of H2(M4;Z) has entries

Qij =





ai, if i = j

1, if i is connected to j by an edge

0, otherwise

(2.8)

The eigenvalues and the determinant of the intersection form Q can be also easily extracted

from Υ by using the algorithm described below in (2.20) and illustrated in Figure 4.

Note, this construction of non-compact 4-manifolds admits vast generalizations that do

not spoil any of our assumptions (including the simple connectivity of M4). Thus, in a Kirby

diagram of an arbitrary plumbing tree, we can replace every framed unknot (= attaching

circle of a 2-handle) by a framed knot, with a framing coefficient ai. This does not change the

homotopy type of the 4-manifold, but does affect the boundary M3 = ∂M4. Put differently,

all the interesting information about the knot can only be seen at the boundary.

Another important remark is that, although the description of 4-manifolds via plumbing

graphs is very nice and simple, it has certain limitations that were already mentioned in

the footnote 6. Indeed, if the 4-manifold has self-plumbings or Υ has loops, it may not be

possible to consistently convert the Kirby diagram into a plumbing graph without introducing

additional labels. An example of such Kirby diagram is shown in Figure 3, where each pair

of the attaching circles Ki with framing ai = 0 has linking number zero. The corresponding

4-manifold, however, is different from that associated to three unlinked copies of the unknot

(with plumbing graph that has three vertices and no edges) and the same values of framing

coefficients.

0

0

0

Figure 3: Kirby diagram of a 4-manifold bounded by a 3-torus T 3.

Finally, we point out that, since all 4-manifolds constructed in this section have a bound-

ary M3 = ∂M4, the corresponding 2d N = (0, 2) theory T [M4] that will be described below
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should properly be viewed as a boundary condition for the 3d N = 2 theory T [M3]. For

example, the plumbing on An has the Lens space boundary M3 = L(n + 1, n), while the

plumbing on E8 has the Poincaré sphere boundary M3 = Σ(2, 3, 5), where

Σ(a, b, c) := S5 ∩ {(x, y, z) ∈ C3 | xa + yb + zc = 0} (2.9)

is the standard notation for a family of Brieskorn spheres. This remark naturally leads us to

the study of boundaries M3 and the corresponding theories T [M3] for more general sphere

plumbings and 4-manifolds (2.1) labeled by framed links.

2.2 T [M4] as a boundary condition

Since we want to build 4-manifolds as well as the corresponding theories T [M4] by gluing

basic pieces, it is important to develop the physics-geometry dictionary for manifolds with

boundary, which will play a key role in gluing and other operations.

Vacua of the 3d N = 2 theory T [M3]

Our first goal is to describe supersymmetric vacua of the 3d N = 2 theory T [M3] associated

to the boundary7 of the 4-manifold M4,

M3 = ∂M4 (2.10)

This relation between M3 and M4 translates into the statement that 2d N = (0, 2) theory

T [M4] is a boundary theory for the 3d N = 2 theory T [M3] on a half-space R+ × R2. In

order to see this, it is convenient to recall that both theories T [M3] and T [M4] can be defined

as fivebrane configurations (or, compactifications of 6d (2, 0) theory) on the corresponding

manifolds, M3 and M4. This gives a coupled system of 2d-3d theories T [M4] and T [M3] since

both originate from the same configuration in six dimensions, which looks like M3×R+×R2

near the boundary and M4 × R2 away from the boundary. In other words, a 4-manifold M4

with a boundary M3 defines a half-BPS (B-type) boundary condition in a 3d N = 2 theory

T [M3].

Therefore, in order to understand a 2d theory T [M4] we need to identify a 3d theory

T [M3] or, at least, its necessary elements.8 One important characteristic of a 3d N = 2

7Depending on the context, sometimes M3 will refer to a single component of the boundary.
8While this problem has been successfully solved for a large class of 3-manifolds [6, 7, 37], unfortunately

it will not be enough for our purposes here and we need to resort to matching M3 with T [M3] based on

identification of vacua, as was originally proposed in [5]. One reason is that the methods of loc. cit. work best

for 3-manifolds with sufficiently large boundary and/or fundamental group, whereas in our present context

M3 is itself a boundary and, in many cases, is a rational homology sphere. As we shall see below, 3d N = 2

theories T [M3] seem to be qualitatively different in these two cases; typically, they are (deformations of)

superconformal theories in the former case and massive 3d N = 2 theories in the latter. Another, more serious

issue is that 3d theories T [M3] constructed in [6] do not account for all flat connections on M3, which will be

crucial in our applications below. This second issue can be avoided by considering larger 3d theories T (ref)[M3]

that have to do with refinement/categorification and mix all branches of flat connections [38, 39]. Pursuing

this approach should lead to new relations with rich algebraic structure and functoriality of knot homologies.

– 12 –



theory T [M3] is the space of its supersymmetric vacua, either in flat space-time R3, or on a

circle, i.e. in space-time S1 × R2. This will be the subject of our discussion here.

Specifically, when 3d N = 2 theory T [M3;G] is considered on a circle, its supersymmetric

ground states are in one-to-one correspondence with gauge equivalence classes of flat GC

connections on M3 [5]:

dA+A ∧A = 0 (2.11)

This follows from the duality between fivebranes on S1 and D4-branes combined with the

fact that D4-brane theory is partially twisted along the 3-manifold M3. The partial twist in

the directions of M3 is the dimensional reduction of the Vafa-Witten twist [13] as well as the

GL twist [40] of the N = 4 super-Yang-Mills in four dimensions. The resulting NT = 4 three-

dimensional topological gauge theory on M3 is the equivariant version of the Blau-Thompson

theory [20,41] that localizes on solutions of (2.11), where A = A+ iB is the Lie(GC)-valued

connection.

From the viewpoint of the topological Vafa-Witten theory on M4, solutions to the equa-

tion (2.11) provide boundary conditions for PDEs in four dimensions. To summarize,

boundary conditions

on M4
←→ complex flat

connections on M3
←→ vacua of T [M3]

In general, complex flat connections on M3 are labeled by representations of the funda-

mental group π1(M3) into GC, modulo conjugation,

VT [M3;G] = Rep (π1(M3)→ GC) /conj. (2.12)

In particular, in the basic case of abelian theory (i.e. a single fivebrane), the vacua of the 3d

N = 2 theory T [M3] are simply abelian representations of π1(M3), i.e. elements of H1(M3).

In the non-abelian case, GC flat connection on M3 are described by nice algebraic equations,

which play an important role in complex Chern-Simons theory and its relation to quantum

group invariants [42].

As will become clear shortly, for many simply-connected 4-manifolds (2.1) built from 2-

handles — such as sphere plumbings represented by trees (i.e. graphs without loops) — the

boundaryM3 is a rational homology sphere (b1(M3) = 0) in which case the theory T [M3;U(1)]

has finitely many isolated vacua,

#{vacua of T [M3;U(1)]} = |H1(M3;Z)| (2.13)

Therefore, the basic piece of data that characterizes M3 = ∂M4 and the corresponding 3d

theory T [M3] is the first homology groupH1(M3;Z). Equivalently, whenH1(M3;Z) is torsion,

by the Universal Coefficient Theorem we can label the vacua of T [M3;U(1)] by elements of

H2(M3;Z). Indeed, given a 1-cycle µ in M3, the Poincaré dual class [µ] ∈ H2(M3;Z) can

be interpreted as the first Chern class c1(L) = [µ] of a complex line bundle L, which admits

a flat connection whenever the first Chern class is torsion. The (co)homology groups of the
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boundary 3-manifold M3 — that, according to (2.13), determine the vacua of T [M3] — are

usually easy to read off from the Kirby diagram of M4.

Now, once we explained the physical role of the boundaryM3 = ∂M4, we need to discuss

its topology in more detail that will allow us to describe complex flat connections on M3 and,

therefore, determine the vacua of the 3d N = 2 theory T [M3]. In general, the boundary of

a simply-connected 4-manifold (2.1) labeled by a framed link is an integral surgery on that

link in S3. This operation consists of removing the tubular neighborhood N(Ki) ∼= S1 ×D2

of each link component and then gluing it back in a different way, labeled by a non-trivial

self-diffeomorphism φ : T 2 → T 2 of the boundary torus ∂N(Ki) ∼= T 2.

This description of the boundary 3-manifold M3 is also very convenient for describing

complex flat connections. Namely, from the viewpoint of T 2 that divides M3 into two parts,

complex flat connections on M3 are those which can be simultaneously extended from the

boundary torus to M3 \Ki and N(Ki) ∼= S1 ×D2, equivalently, the intersection points

VT [M3] = VT [M3\K] ∩ φ
(
VT [S1×D2]

)
(2.14)

Here, the representation varieties of the knot complement and the solid torus can be inter-

preted as (A,B,A) branes in the moduli space of G Higgs bundles on T 2. In this interpre-

tation, φ acts as an autoequivalence on the category of branes, see e.g. [43] for some explicit

examples and the computation of (2.14) in the case GC = SL(2,C).

Coming back to the vacua (2.13), the cohomology group H2(M3;Z) can be easily deduced

from the long exact sequence for the pair (M4,M3) with integer coefficients:

0 → H2(M4,M3) → H2(M4) → H2(M3) → H3(M4,M3) → H3(M4) → 0

‖ ‖ ‖ ‖
Zb2 ⊕ T2 Zb2 ⊕ T1 T1 T2

(2.15)

where T1 and T2 are torsion groups. Since T2 → T1 is injective, one can introduce t = |T1|/|T2|.
Then,

|H1(M3;Z)| = t2|detQ| (2.16)

In particular, when both torsion groups T1 and T2 are trivial, we simply have a short exact

sequence

0 −→ Γ
Q−−→ Γ∗ −→ H2(M3) −→ 0 (2.17)

so that H1(M3) ∼= H2(M3) is isomorphic to Zb2/Q(Zb2), generated by the meridians µi of the

link components Ki, modulo relations imposed by the intersection form Q of the 4-manifold

(2.1):

H1(M3;Z) = Z[µ1, . . . , µn]/imQ (2.18)

It follows that, in the case of G = U(1) (i.e. a single fivebrane), the representation variety

(2.12) is parametrized by the eigenvalues xi ∈ C∗ of the GC-valued holonomies along the

1-cycles µi, subject to the relations in (2.18):

n∏

i=1

x
Qij

i = 1 ∀j = 1, . . . , n (2.19)
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There is a similar description of VT [M3;G] for non-abelian groups as well [42]. One important

consequence of this calculation is that H1(M3;Z) is finite and, therefore, the 3d N = 2 theory

T [M3] has finitely many vacua if and only if all eigenvalues of the intersection form QM4 are

non-zero. If Q has zero eigenvalues, then H1(M3;Z) contains free factors. This happens, for

example, for knots with zero framing coefficients, a = 0. Every such Kirby diagram leads to

a boundary 3-manifold M3, whose first homology group is generated by the meridian µ of

the knot K with no relations. This clarifies, for instance, why the boundary of a 4-manifold

shown in Figure 3 has H1(M3;Z) ∼= Z3.

a2

a1
−− −

a1 a2 a1 a2

a2

an

an

an

an

an

....

b b

....

....0

b

c

1 .... 1

....1

c

−1

Figure 4: For a plumbing tree, the eigenvalues (and, therefore, the determinant) of the intersection

formQ can be computed by orienting the edges toward a single vertex and then successively eliminating

them using the two rules shown here.

If M4 is a sphere plumbing represented by a plumbing tree Υ, then the eigenvalues of

Q can be obtained using a version of the Gauss algorithm that consists of the following two

simple steps (see e.g. [44]):

1. Pick any vertex in Υ and orient all edges toward it. Since Υ is a tree, this is always

possible.

2. Recursively applying the rules in Figure 4 remove the edges, replacing the integer

weights ai (= framing coefficients of the original Kirby diagram) by rational weights.
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In the end of this process, when there are no more edges left, the rational weights ri are

precisely the eigenvalues of the intersection form Q and

det(Q) =
∏

i

ri (2.20a)

sign(Q) = #{i|ri > 0} −#{i|ri < 0} (2.20b)

For example, applying this algorithm to the plumbing tree in Figure 5 we get

det(Q) =

(
b+

k∑

i=1

qi
pi

)
·
k∏

i=1

pi (2.21)

where −pi
qi

= [ai1, . . . , aini ] are given by the continued fractions

−pi
qi

= ai1 −
1

ai2 −
1

. . . −
1

aini

(2.22)

The boundary 3-manifold in this case is the Seifert fibered homology 3-sphere M3(b; (p1, q1),

. . . , (pk, qk)) with singular fibers of orders pi ≥ 1. It is known that any Seifert fibred rational

homology sphere bounds at least one definite form. In our applications here, we are mostly

interested in the choice of orientation, such that a Seifert manifold M3 bounds a plumbed

4-manifold with negative definite intersection form. Then,M3 is the link of a complex surface

singularity.

a21 a22

a11 a12

ak1 ak2

....

b

1

2....

....

....

a

a

a1n

2n

knk

Figure 5: Plumbing tree of a 4-manifold bounded by a Seifert fibration. We assume b ≤ −1 and

aij ≤ −2.
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Quiver Chern-Simons theory

We already mentioned a striking similarity between plumbing graphs and quivers. The latter

are often used to communicate quickly and conveniently the field content of gauge theories,

in a way that each node of the quiver diagram represents a simple Lie group and every edge

corresponds to a bifundamental matter. Here, we take this hint a little bit more seriously

and, with a slight modification of the standard rules, associate a 3d N = 2 gauge theory to

a plumbing graph Υ, which will turn out to be an example of the sought-after theory T [M3].

Much as in the familiar quiver gauge theories, to every vertex of Υ we are going to

associate a gauge group factor. Usually, the integer label of the vertex represents the rank.

In our present example, however, we assign to each vertex a gauge group U(1) with pure

N = 2 Chern-Simons action at level k determined by the integer weight (= the framing

coefficient) of that vertex:

S =
k

4π

∫
d3xd4θ V Σ (2.23)

=
k

4π

∫
(A ∧ dA− λλ+ 2Dσ)

Here, V = (Aµ, λ, σ,D) is the three-dimensional N = 2 vector superfield and Σ = D
α
DαV is

the field strength superfield.

Similarly, to every edge of Υ that connects a vertex “i” with a vertex “j” we associate

3d N = 2 Chern-Simons coupling between the corresponding vector superfields Vi and Vj:

S =
1

2π

∫
d3xd4θ ViΣj (2.24)

Both of these basic building blocks can be combined together with the help of the symmetric

bilinear form (2.8). As a result, to a plumbing graph Υ we associate the following 3d N = 2

theory:

T [M3;U(1)] =





U(1)n quiver Chern-Simons theory with Lagrangian

L =

n∑

i,j=1

∫
d4θ

Qij
4π

ViΣj =
1

4π

∫
Q(A, dA) + . . .

(2.25)

where n = rank(Q) and the ellipses represent N = 2 supersymmetric completion of the

bosonic Chern-Simons action. Note, since the gauge group is abelian, the fermions in the

N = 2 supersymmetric completion of this Lagrangian decouple. As for the bosonic part,

quantum-mechanically it only depends on the discriminant group of the lattice (Γ, Q),

D = H1(M3;Z) (2.26)

and a Q/Z-valued quadratic form q on D [45].

We claim that the quiver Chern-Simons theory (2.25) provides a Lagrangian description

of the 3d N = 2 theory T [M3;U(1)] for any boundary 3-manifold M3. Indeed, by a theorem
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of Rokhlin, every closed oriented 3-manifold M3 bounds a 4-manifold of the form (2.1) and

can be realized as an integral surgery on some link in S3. Denoting by Q the intersection

form (resp. the linking matrix) of the corresponding 4-manifold (resp. its Kirby diagram),

we propose 3d N = 2 theory (2.25) with Chern-Simons coefficients Qij to be a Lagrangian

description of the boundary theory T [M3;U(1)].

To justify this proposal, we note that supersymmetric vacua of the theory (2.25) on

S1×R2 are in one-to-one correspondence with solutions to (2.19). Indeed, upon reduction on

a circle, each 3d N = 2 vector multiplet becomes a twisted chiral multiplet, whose complex

scalar component we denote σi = log xi. The Chern-Simons coupling (2.25) becomes the

twisted chiral superpotential, see e.g. [6, 39]:

W̃ =

n∑

i,j=1

Qij
2

log xi · log xj (2.27)

Extremizing the twisted superpotential with respect to the dynamical fields σi = log xi gives

equations for supersymmetric vacua:

exp

(
∂W̃

∂ log xi

)
= 1 (2.28)

which reproduce (2.19).

The Lens space theory

Of particular importance to the construction of two-dimensional theories T [M4] are special

cases that correspond to 4-manifolds bounded by Lens spaces L(p, q). We remind that the

Lens space L(p, q) is defined as the quotient of S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} by a

Zp-action generated by

(z1, z2) ∼ (e2πi/pz1, e
2πiq/pz2) (2.29)

We assume p and q to be coprime integers in order to ensure that Zp-action is free and the

quotient is smooth. Two Lens spaces L(p, q1) and L(p, q2) are homotopy equivalent if and

only if q1q2 ≡ ±n2 mod p for some n ∈ N, and homeomorphic if and only if q1 ≡ ±q±1
2

mod p. Reversing orientation means L(p,−q) = −L(p, q). Note, supersymmetry (of the cone

built on the Lens space) requires q + 1 ≡ 0 mod p.

In the previous discussion we already encountered several examples of 4-manifolds bounded

by Lens spaces. These include the disk bundle over S2 with the Kirby diagram (2.3) and the

linear plumbing on Ap−1, which are bounded by L(p, 1) and L(p,−1), respectively. In partic-

ular, for future reference we write

∂Ap = L(p+ 1, p) (2.30)

In fact, a more general linear plumbing of oriented circle bundles over spheres with Euler num-

bers a1, a2, . . . , an (see Figure 1) is bounded by a Lens space L(p, q), such that [a1, a2, . . . , an]
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is a continued fraction expansion for −p
q ,

−p
q

= a1 −
1

a2 −
1

. . . −
1

an

(2.31)

When p > q > 0 we may restrict the continued fraction coefficients to be integers ai ≤ −2,
for all i = 1, . . . , n, so that L(p, q) is the oriented boundary of the negative definite plumbing

associated to the string (a1, a2, . . . , an). With these orientation conventions, the Lens space

L(p, q) is defined by a (−p
q )-surgery on an unknot in S3. We also point out that any lens

space L(p, q) bounds both positive and negative definite forms Q. (Note, according to the

Donaldson’s theorem [11], the only definite forms that S3 bounds are the diagonal unimodular

forms.)

Next, let us discuss 3d N = 2 theory T [M3;G] for M3 = L(p, q) and G = U(N). First,

since H1(M3) = Zp we immediately obtain the number of vacua on S1 × R2, cf. (2.13):

#{vacua of T [L(p, q);U(N)]} =
(N + p− 1)!

N !(p− 1)!
(2.32)

which, according to (2.12), is obtained by counting U(N) flat connections on S3/Zp. Inci-

dentally, this also equals the number of SU(p) representations at level N , which is crucial for

identifying Vafa-Witten partition functions on ALE spaces with WZW characters [13,46].

There are several ways to approach the theory T [L(p, q);U(N)], in particular, to give a

Lagrangian description, that we illustrate starting with the simple case of N = 1 and q = 1.

For example, one approach is to make use of the Hopf fibration structure on the Lens space

L(p, 1) = S3/Zp and to reduce the M-theory setup with a fivebrane on the S1 fiber. This

reduction was very effective e.g. in analyzing a similar system of fivebranes on Lens spaces

with half as much supersymmetry [47]. It yields type IIA string theory with a D4-brane

wrapped on the base S2 of the Hopf fibration with −p units of Ramond-Ramond 2-form flux

through the S2. The effective theory on the D4-brane is 3d N = 2 theory with U(1) gauge

group and supersymmetric Chern-Simons coupling at level −p induced by the RR 2-form

flux, thus, motivating the following proposal:

T [L(p, 1);U(1)] = U(1) SUSY Chern-Simons theory at level − p (2.33)

To be more precise, this theory as well as quiver Chern-Simons theories (2.25) labeled by

plumbing graphs in addition include free chiral multiplets, one for each vertex in the plumbing

graph. Since in the abelian, G = U(1) case these chiral multiplets decouple and do not affect

the counting of GC flat connections, we tacitly omit them in our present discussion. However,

they play an important role and need to be included in the case of G = U(N).
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4d
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3d 3d
T[M ]

3 3

+
3 3T[M ]−

Figure 6: (a) A genus-1 Heegaard splitting of a 3-manifoldM3 becomes a 4d N = 4 super-Yang-Mills

theory (b) coupled to 3-dimensional N = 2 theories T [M−

3 ] and T [M+
3 ] at the boundary.

Another approach, that also leads to (2.33), is based on the Heegaard splitting of M3.

Indeed, as we already mentioned earlier, L(p, q) is a Dehn surgery on the unknot in S3 with

the coefficient −p
q . It means that M3 = L(p, q) can be glued from two copies of the solid

torus, S1 ×D2, whose boundaries are identified via non-trivial map φ : T 2 → T 2. The latter

is determined by its action on homology H1(T
2;Z) ∼= Z⊕ Z which, as usual, we represent by

a 2× 2 matrix

φ =

(
p r

q s

)
(2.34)

with ps − qr = 1. If (−p
q ) = [a1, a2, . . . , an] is given by the continued fraction expansion

(2.31), we can explicitly write

(
p r

q s

)
=

(
−a1 −1
1 0

)(
−a2 −1
1 0

)
. . .

(
−an −1
1 0

)
(2.35)

This genus-1 Heegaard decomposition has a simple translation to physics, illustrated in Fig-

ure 6. Again, let us first consider the simple case with N = 1 and q = 1. Then, the 6d (0, 2)

theory on T 2 gives 4d N = 4 supersymmetric Maxwell theory, in which the SL(2,Z) action

(2.34) on a torus is realized as the electric-magnetic duality transformation. On the other

hand, each copy of the solid torus defines a “Lagrangian” boundary condition that imposes

Dirichlet boundary condition on half of the N = 4 vector multiplet and Neumann boundary

condition on the other half. Hence, the combined system that corresponds to the Heegaard

splitting of L(p, 1) is 4d N = 4 Maxwell theory on the interval with two Lagrangian boundary

conditions that are related by an S-duality transformation φ =
(
p −1
1 0

)
and altogether preserve

N = 2 supersymmetry in three non-compact dimensions.

Following the standard techniques [48,49], this theory can be realized on the world-volume

of a D3-brane stretched between two fivebranes, which impose suitable boundary conditions

at the two ends of the interval. If both boundary conditions were the same, we could take

both fivebranes to be NS5-branes. However, since in this brane approach the S-duality of

N = 4 gauge theory is realized as S-duality of type IIB string theory, it means that the two
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fivebranes on which D3-brane ends are related by a transformation (2.34). In particular, if we

choose one of the fivebranes to be NS5, then the second fivebrane must be a (p, q) fivebrane,

with D5-brane charge p and NS5-brane charge q, as shown in Figure 7. In the present case,

q = 1 and the effective theory on the D3-brane stretched between NS5-brane and a 5-brane

of type (p, 1) is indeed N = 2 abelian Chern-Simons theory (2.23) at level −p, in agreement

with (2.33).

(p,q)

D3

NS5

Figure 7: The effective 3d N = 2 theory on a D3-brane stretched between NS5-brane and a 5-brane

of type (p, q) is a Chern-Simons theory at level k = − p

q
. We describe it as a “quiver Chern-Simons

theory” with integer levels ai given by the continued fraction − p

q
= [a1, . . . , an].

This approach based on Heegaard splitting and the brane construction suggests that

T [L(p, q);U(1)] associated to a more general gluing automorphism (2.34) should be a 3d

N = 2 theory on the D3-brane stretched between NS5-brane and a 5-brane of type (p, q).

This theory on the D3-brane, shown in Figure 7, indeed has the effective Chern-Simons

coupling at level −p
q [50–52]. However, a better way to think about this N = 2 theory —

that avoids using fractional Chern-Simons levels and that we take as a proper Lagrangian

formulation of T [L(p, q);U(1)] — is based on writing the general SL(2,Z) element (2.34) as

a word in standard S and T generators that obey S4 = (ST )3 = id,

φ = S T a1 S T a2 · · · S T an (2.36)

and implementing it as a sequence of operations on the 3d N = 2 abelian gauge theory a

la [53]. Specifically, the T element of SL(2,Z) acts by adding a level-1 Chern-Simons term,

T : ∆L =
1

4π

∫
d4θ V Σ =

1

4π
A ∧ dA+ . . . (2.37)

while the S transformation introduces a new U(1) gauge (super)field Ã coupled to the “old”

gauge (super)field A via Chern-Simons term

S : ∆L =
1

2π

∫
d4θ Ṽ Σ =

1

2π
Ã ∧ dA+ . . . (2.38)
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Equivalently, the new vector superfield containing Ã couples to the “topological” current

∗F = ∗dA carried by the magnetic charges for A.

Using this SL(2,Z) action on abelian theories in three dimensions, we propose the fol-

lowing candidate for the generalization of the Lens space theory (2.33) to |q| ≥ 1:

T [L(p, q);U(1)] = U(1)n theory with Chern-Simons coefficients Qij (2.39)

where the matrix Q is given by (2.6) and −p
q = [a1, . . . , an] is the continued fraction expan-

sion (2.31). Note, the matrix of Chern-Simons coefficients in this Lens space theory can be

conveniently represented by a quiver diagram identical to the plumbing graph in Figure 1.

The proposal (2.39) for the Lens space theory is, in fact, a special case of (2.25) and can

be justified in the same way, by comparing the critical points of the twisted superpotential

(2.27) with solutions to (2.19).

Both methods that we used to derive the basic 3d N = 2 Lens space theory (2.33) suggest

a natural generalization to G = U(N):

T [L(p, 1);U(N)] =

{
U(N) SUSY Chern-Simons theory at level − p
with a chiral multiplet in the adjoint representation

(2.40)

which corresponds to replacing a single D3-brane in the brane construction on Figure 7 by a

stack of N D3-branes. Indeed, the Witten index of N = 2 Chern-Simons theory with gauge

group SU(N) and level p (with or without super-Yang-Mills term) is equal to the number of

level p representations of affine SU(N), see [54] and also [51,52,55]:

ISU(N)p =
(N + p− 1)!

(N − 1)!p!
(2.41)

After multiplying by p
N to pass from the gauge group SU(N) to U(N) = U(1)×SU(N)

ZN
we

get the number of SU(p)N representations (2.32), which matches the number of U(N) flat

connections on the Lens space L(p, 1). Note, that the role of the level and the rank are

interchanged compared to what one might naturally expect. An alternative UV Lagrangian

for the theory (2.40), that makes contact with the cohomology of the Grassmannian [56,57],

is a N = 2 U(N) Chern-Simons action at level −p
2 coupled to a chiral multiplet in the adjoint

representation and p chiral multiplets in the anti-fundamental representation. This theory

was studied in detail in [58], where further connections to integrable systems and quantum

equivariant K-theory of vortex moduli spaces were found.

3d N = 2 theory T [M3;G] for general M3 and G

Now it is clear how to tackle the general case of N fivebranes on a 4-manifold M4 with

boundary M3 = ∂M4. This setup leads to a 2d N = (0, 2) theory T [M4;G] on the boundary

of the half-space coupled to a 3d N = 2 theory T [M3;G] in the bulk, with the group G of

rank N and Cartan type A, D, or E.
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For a general class of 4-manifolds (2.1) considered here, the boundary 3-manifold is an

integral surgery on a link K in S3. As usual, we denote the link components Ki, i = 1, . . . , n.

Therefore, the corresponding theory T [M3] can be built by “gluing” the 3d N = 2 theory

T [S3 \K] assoiated to the link complement with n copies of the 3d N = 2 theory T [S1×D2]

associated to the solid torus:

T [M3] = T [S3 \K] ⊗
(
φa1 ◦ T [S1 ×D2]

)
⊗ . . . ⊗

(
φan ◦ T [S1 ×D2]

)

︸ ︷︷ ︸
n copies

(2.42)

As pointed out in the footnote 8, it is important that the theory T [S3 \K] accounts for all

flat GC connections on the link complement, including the abelian ones. Such theories are

known for GC = SL(2,C) and for many simple knots and links [59,60], in fact, even in a more

“refined” form that knows about categorification and necessarily incorporates all branches of

flat connections. For GC of higher rank, it would be interesting to work out such T [S3 \K]

following [61]. In particular, the results of [61] elucidate one virtue of 3d N = 2 theories

T [M3;G]: they always seem to admit a UV description with only U(1) gauge fields (but

possibly complicated matter content and interactions). This will be especially important

to us in section 4: in order to identify a 2d (0, 2) theory T [M4] asociated to a 4-manifold

M4 bounded by M3 we only need to understand boundary conditions of abelian 3d N = 2

theories.

The second basic ingredient in (2.42) is the theory T [S1 × D2] associated to the solid

torus. This theory is very simple for any N ≥ 1 and corresponds to the Dirichlet (D5-brane)

boundary condition of N = 4 super-Yang-Mills theory, cf. Figure 6. To be more precise, if

we denote by T ⊂ G the maximal torus of G, then GC flat connections on T 2 = ∂
(
S1 ×D2

)

are parametrized by two TC-valued holonomies, modulo the Weyl group W of G,

(x, y) ∈ (TC × TC) /W (2.43)

Only a middle dimensional subvariety in this space corresponds to GC flat connections that

can be extended to the solid torus S1×D2. Namely, since one of the cycles of T 2 (the meridian

of Ki) is contractible in N(Ki) ∼= S1 ×D2, the GC holonomy on that cycle must be trivial,

i.e.

VT [S1×D2] =

{
(xi, yi) ∈

TC × TC

W

∣∣∣ xi = 1

}
(2.44)

The SL(2,Z) transformation φai gives a slightly more interesting theory φai ◦ T [S1 × D2],

whose space of supersymetric vacua (2.12) is simply an SL(2,Z) transform of (2.44):

Vφai◦T [S1×D2] =

{
(xi, yi) ∈

TC × TC

W

∣∣∣ xaii yi = 1

}
(2.45)

See e.g. [42] for more details on Dehn surgery in the context of complex Chern-Simons theory.

The space of vacua (2.45) essentially corresponds to N = 2 Chern-Simons theory at

level ai. Therefore, when performing a surgery on Ki, the operation of gluing back N(Ki) ∼=
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S1×D2 with a twist φai ∈ SL(2,Z) means gauging the i-th global symmetry of the 3d N = 2

theory T [S3 \ K] and introducing a Chern-Simons term at level ai. Before this operation,

in the theory T [S3 \ K] associated to the link complement, the twisted masses and Fayet-

Illiopoulos parameters (log xi, log yi) are expectation values of real scalars in background

vector multiplets that couple to flavor and topological currents, respectively

For instance, when GC = SL(2,C) and K is a knot (i.e. a link with a single component),

the holonomy eigenvalues x and y are both C∗-valued, and the space of vacua VT [S3\K] is the

algebraic curve AK(x, y) = 0, the zero locus of the A-polynomial. Therefore, modulo certain

technical details, the vacua of the combined theory (2.42) in this case can be identified with

the intersection points of the two algebraic curves, cf. (2.14):

VT [M3] = {AK(x, y) = 0} ∩ {xay = 1} (2.46)

modulo Z2 action of the SL(2,C) Weyl group (x, y) 7→ (x−1, y−1). Note, both the A-

polynomial AK(x, y) of any knot and the equation xay = 1 are invariant under this symmetry.

In particular, if K is the unknot we have A(unknot) = y − 1 and these two conditions give

an SL(2,C) analogue of (2.19).

As a simple illustration one can consider, say, a negative definite 4-manifold whose Kirby

diagram consists of the left-handed trefoil knot K = 31 with the framing coefficient a = −1:

−1
(2.47)

Using standard tools in Kirby calculus (that we review shortly), it is easy to verify that the

boundary of this 4-manifold is the Poincaré homology sphere Σ(2, 3, 5), cf. (2.9), realized here

as a −1 surgery on the trefoil knot in S3. Therefore, the corresponding theory T [Σ(2, 3, 5)] can

be constructed as in (2.42). The knot complement theory that accounts for all flat connections

is well known in this case [60]; in fact, [60] gives two dual descriptions of T [S3 \ 31]. In this

theory, the twisted mass log x is the vev of the real scalar in background vector multiplet V

that couples to the U(1)x flavor symmetry current. Gauging the flavor symmetry U(1)x by

adding a N = 2 Chern-Simons term for V at level a = −1 gives the desired Poincaré sphere

theory:

LT [Σ(2,3,5)] = LT [S3\31] −
1

4π

∫
d4θ V Σ (2.48)

Upon compactification on S1, the field σ = log x is complexified and the critical points (2.28)

of the twisted superpotential in the effective 2d N = (2, 2) theory T [Σ(2, 3, 5)],

exp
∂

∂ log x

(
W̃T [S3\K] +

a

2
(log x)2

)
= 1 , (2.49)

automatically reproduce the equations (2.46) for flat SL(2,C) connections.
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2.3 Gluing along a common boundary

Given two manifolds M+
4 and M−

4 which have the same boundary (component) M3, there is

a natural way to build a new 4-manifold labeled by a map ϕ : M3 → M3 that provides an

identification of the two boundaries:

M4 = M−
4 ∪ϕM+

4 (2.50)

For example, let M−
4 be the negative E8 plumbing, and let M

+
4 be the handlebody on

the left-handed trefoil knot with the framing coefficient a = −1. As we already mentioned

earlier, both of these 4-manifolds are bounded by the Poincaré homology sphere Σ(2, 3, 5),

i.e.

E8
∂≈

−1
(2.51)

Therefore, in order to glue these 4-manifolds “back-to-back” as illustrated in Figure 8, we need

to reverse the orientation of one of them, which in the language of Kirby diagrams amounts

to replacing all knots with mirror images and flipping the sign of all framing numbers:

M4(K
a1
1 , . . . ,Kan

n )
orientation−−−−−−−−→
reversal

M4(K
−a1
1 , . . . ,K

−an
n ) (2.52)

Thus, in our example we need to change the left-handed trefoil knot K = 31 with framing

a = −1 to the right-handed trefoil knot K with framing coefficient +1. The resulting 4-

manifold M+
4 with a single 2-handle that corresponds to this Kirby diagram has boundary

M3 = ∂M+
4 = −∂M−

4 , so that now it can be glued to M−
4 = E8 plumbing.

a) b)

M3− +
M M

+−

3T[M ]
3d

2d2d
T[M ]4 T[M ]4

44

Figure 8: (a) Two 4-manifolds glued along a common boundary M3 = ±∂M±

4 correspond to (b)

three-dimensional N = 2 theory T [M3] on the interval coupled to two-dimensional N = (0, 2) theories

T [M−

4 ] and T [M+
4 ] at the boundaries of the interval.

Gluing 4-manifolds along a common boundary, as in (2.50), has a nice physical interpreta-

tion. Namely, it corresponds to the following operation on the 2d N = (0, 2) theories T [M±
4 ]

that produces a new theory T [M4] associated to the resulting 4-manifold M4 =M−
4 ∪ϕM+

4 .

– 25 –



As we already explained in section 2.2, partial topological reduction of the 6d fivebrane theory

on a 4-manifold with a boundary M3 leads to a coupled 2d-3d system of 3d N = 2 theory

T [M3] with a B-type boundary condition determined by the 4-manifold. (If the 4-manifold in

question has other boundary components, besides M3, then the reduction of the 6d fivebrane

theory leads to a wall / interface between T [M3] and other 3d N = 2 theories; this more

general possibility will be discussed in the next section.)

In the case at hand, we have two such 4-manifolds, M−
4 and M+

4 , with oppositely ori-

ented boundaries ∂M±
4 = ±M3. What this means is that T [M+

4 ] defines a B-type boundary

condition — with 2d N = (0, 2) supersymmetry on the boundary — in 3d N = 2 theory

T [M3], while T [M
−
4 ] likewise defines a B-type boundary condition in the theory T [−M3].

Equivalently, T [−M3] can be viewed as a theory T [M3] with the reversed parity:

T [−M3] = P ◦ T [M3] (2.53)

where P : (x0, x1, x2) → (x0, x1,−x2). This operation, in particular, changes the signs of all

Chern-Simons couplings in T [M3].

Therefore, thanks to (2.53), we can couple T [M−
4 ] and T [M+

4 ] to the same 3d N = 2

theory T [M3] considered in space-time R2×I, where I is the interval. In this setup, illustrated

in Figure 8, theories T [M±
4 ] define boundary conditions at the two ends of the interval I. As

a result, we get a layer of 3d N = 2 theory T [M3] on R2× I sandwiched between T [M−
4 ] and

T [M+
4 ]. Since the 3d space-time has only two non-compact directions of R2, in the infra-red

this system flows to a 2d N = (0, 2) theory, which we claim to be T [M4].

The only element that we need to explain is the map ϕ : M3 → M3 that enters the

construction (2.50) of the 4-manifold M4. If exist, non-trivial self-diffeomorphisms of M3 cor-

respond to self-equivalences (a.k.a. dualities) of the theory T [M3]. Therefore, a choice of the

map ϕ :M3 →M3 in (2.50) means coupling theories T [M±
4 ] to different descriptions/duality

frames of the 3d N = 2 theory T [M3] or, equivalently, inserting a duality wall (determined by

ϕ) into the sandwich of T [M−
4 ], T [M3], and T [M

+
4 ]. Of course, one choice of ϕ : M3 → M3

that always exists is the identity map; it corresponds to the most natural coupling of theories

T [M±
4 ] to the same description of T [M3]. Since ϕ : M3 → M3 can be viewed as a special

case of a more general cobordism between two different 3-manifolds that will be discussed

in section 2.4, when talking about gluing 4-manifolds we assume that ϕ = id unless noted

otherwise. Then, we only need to know which 4-manifolds have the same boundary.

3d Kirby moves

Since our list of operations includes gluing 4-manifolds along their common boundary com-

ponents, it is important to understand how M3(Υ) depends on the plumbing graph Υ and

which 4-manifolds M4(Υ) have the same boundary (so that they can be glued together). Not

surprisingly, the set of moves that preserve the boundary M3(Υ) = ∂M4(Υ) is larger than

the set of moves that preserve the 4-manifold M4(Υ).
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a2
...

.a1 blow up

blow down

blow up

blow down

a1 a2

1−+

1−+ 1−+

1−+

1−+
...

.

...
.

...
.

...
. a

...
. a

Figure 9: Blowing up and blowing down does not change the boundary M3 = ∂M4.

Specifically, plumbing graphs Υ1 and Υ2 describe the same 3-manifoldM3(Υ1) ∼=M3(Υ2)

if and only if they can be related by a sequence of “blowing up” or “blowing down” operations

shown in Figure 9, as well as the moves in Figure 10. The blowing up (resp. blowing down)

operations include adding (resp. deleting) a component of Υ that consists of a single vertex

with label ±1. Such blow ups have a simple geometric interpretation as boundary connected

sum operations with very simple 4-manifolds CP2 \ {pt} and CP
2 \ {pt}, both of which have

S3 as a boundary and, therefore, only change M4 but not M3 = ∂M4. As will be discussed

shortly, this also has a simple physical counterpart in physics of 3d N = 2 theory T [M3],

where the blowup operation adds a decoupled “trivial” N = 2 Chern-Simons term (2.40) at

level ±1, which carries only boundary degrees of freedom and has a single vacuum, cf. (2.32).

For this reason, blowing up and blowing down does not change T [M3;G] and only changes

T [M4;G] by free Fermi multiplets, for abelian as well as non-abelian G.

Applying these moves inductively, it is easy to derive a useful set of rules illustrated in

Figure 11 that, for purposes of describing the boundary of M4, allow to collapse linear chains

of sphere plumbings with arbitrary framing coefficients ai via continued fractions

p

q
= a1 −

1

a2 −
1

. . . −
1

an

(2.54)

To illustrate how this works, let us demonstrate that the An−1 plumbing, as in Figure 1, with

ai = −2 can be glued to a disc bundle with Euler number −n over S2 to produce a smooth

4-manifold (CP
2
)#n. In particular, we need to show that these two 4-manifolds we are gluing

naturally have the same boundary with opposite orientation. This is a simple exercise in

Kirby calculus.
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a1 a2

...
. +

...
. a2a1

...
.

...
.0

Υ1

Υs

...
.0 aΥ1 Υs+ +

(disjoint union)

....

Figure 10: “3d Kirby moves” that do not change M3 = ∂M4.

Starting with the An−1 linear plumbing, we can take advantage of the fact that ±1
vertices can be added for free and consider instead

+1• −2• −2• −2• · · · −2• (2.55)

Clearly, this operation (of blowing up) changes the 4-manifold, but not the boundary M3.

Now, we slide the new +1 handle over the −2 handle. According to (2.2), this preserves the

framing +1 of the new handle and changes the framing of the −2 handle to −2 + 1 = −1
(since they were originally unlinked), resulting in

+1• −1• −2• −2• · · · −2• (2.56)

Note, this plumbing graph with n vertices is a result of applying the first move in Figure 9

to the An−1 linear plumbing, which we have explained “in slow motion.” Since we now have

a vertex with weight −1, we can apply the second move in Figure 9 to remove this vertex at

the cost of increasing the weights of the two adjacent vertices by +1, which gives

+2• −1• −2• · · · −2• (2.57)

This last step made the plumbing graph shorter, of length n − 1, and there is a new vertex

with weight −2 + 1 = −1 on which we can apply the blow down again. Doing so will change

the weight of the leftmost vertex from +2 to +3 and after n− 3 more steps we end up with

a plumbing graph
n− 1• −1• (2.58)

Applying the first move in Figure 9 we finally get the desired relation

An−1
∂≈ +n• (2.59)
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Since reversing orientation on the 4-manifold is equivalent (2.52) to replacing all knots with

mirror images and flipping the sign of all framing numbers, this shows that An−1 linear

plumbing has the same Lens space boundary as the disc bundle with Euler number −n
over S2, but with opposite orientation. In particular, it follows that these 4-manifolds with

boundary can be glued along their common boundary in a natural way. (No additional

orientation reversal or other operation is needed.)

a2

a1

~~
boundary

an

....

p/q

Figure 11: Boundary diffeomorphisms relating integral surgery and Dehn surgery.

Following these arguments, it is easy to show a more general version of the first move in

Figure 9 called slam-dunk:

p/q
• a• · · · ∂≈

a− q
p• · · · (2.60)

which, of course, is just a special case of the boundary diffeomorphism in Figure 11. Another

useful rule in 3d Kirby calculus that can be deduced by the same argument allows to collapse

a (sub)chain of (−2)’s:

a• −2• · · · −2•
︸ ︷︷ ︸

n times

b• ∂≈ a+ 1• n+ 1• b+ 1•

which is a generalization of (2.59).

Physical interpretation of 3d Kirby moves

All these moves that preserve the boundary 3-manifold M3(Υ) = ∂M4(Υ) have an elegant

and simple interpretation as equivalences (dualities) of the corresponding 3d N = 2 theory

T [M3(Υ);U(N)]. Let us illustrate this in the basic case of N = 1, i.e. a single fivebrane.

Then, as we explained in section 2.2, all theories T [M3(Υ);U(1)] admit a description as

supersymmetric Chern-Simons theories, and 3d Kirby moves are precisely the equivalence

relations on the matrix of Chern-Simons coefficients in the quantum theory.
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Indeed, the simplest version of blowing up (resp. blowing down) operation that adds

(resp. removes) an isolated vertex with label ±1 in the theory T [M3(Υ);U(1)] correspond to

changing the matrix of Chern-Simons coefficients

Q → Q⊕ 〈±1〉 (2.61)

that is, adds (resp. removes) a U(1) vector multiplet V with the Lagrangian

∆L = ± 1

4π

∫
d4θ V Σ = ± 1

4π
A ∧ dA+ . . . (2.62)

A theory defined by this Lagrangian is trivial. In particular, it has one-dimensional Hilbert

space. Therefore, tensor products with copies of this trivial theory are indeed equivalences

of T [M3(Υ);U(1)]. The same is true in the non-abelian case as well, where blowups change

T [M3;G] by “trivial” Chern-Simons terms at level ±1 that carry only boundary degrees of

freedom (and, therefore, only affect the physics of the 2d boundary theory T [M4;G], but not

the 3d bulk theory T [M3;G]).

Similarly, we can consider blowing up and blowing down operations shown in Figure 9. If

in the plumbing graph Υ a vertex with label ±1 is only linked by one edge to another vertex

with label a ± 1, it means that the Lagrangian of the 3d N = 2 theory T [M3(Υ);U(1)] has

the following terms

L =
1

4π

∫
d4θ

(
±V Σ+ 2Ṽ Σ+ (a± 1)Ṽ Σ̃ + . . .

)
(2.63)

where ellipses stand for terms that do not involve the vector superfield V or its field strength

Σ. Since the action is Gaussian in V , we can integrate it out by solving the equations of

motion ±V + Ṽ = 0. The resulting Lagrangian is

L′ =
1

4π

∫
d4θ

(
±Ṽ Σ̃∓ 2Ṽ Σ̃ + (a± 1)Ṽ Σ̃ + . . .

)
=

1

4π

∫
d4θ

(
aṼ Σ̃ + . . .

)
(2.64)

This gives a physics realization of the blowing up and blowing down operations in the top

part of Figure 9. We can easily generalize it to that in the lower part of Figure 9. Starting

with the right side of the relation, the terms in the Lagrangian which involve the superfield

V at Chern-Simons level ±1 look like

L =
1

4π

∫
d4θ (±V Σ+ 2V1Σ+ (a1 ± 1)V1Σ1 + 2V2Σ+ (a2 ± 1)V2Σ2 + . . .) (2.65)

Integrating out V yields ±V + V1 + V2 = 0 and the effective Lagrangian

L′ =
1

4π

∫
d4θ (a1V1Σ1 ∓ 2V1Σ2 + a2V2Σ2 + . . .) (2.66)

which, as expected, describes the left side of the relation in the lower part of Figure 9. From

this physical interpretation of the blowing up and blowing down operations in the N = 1
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case one can draw a more general lesson: the reason that 2-handles with framing coefficients

a = ±1 are “nice” corresponds to the fact that 3d N = 2 theory T
[
M3

(±1
•
)]

is trivial.

The physical interpretation of 3d Kirby moves in Figure 10 is even simpler: 2-handles

with framing coefficients ai = 0 correspond to superfields in 3d theory T [M3(Υ)] that serve as

Lagrange multipliers. Again, let us explain this in the basic case of a single fivebrane (N = 1).

Let us consider the first move in Figure 10 and, as in the previous discussion, denote by V

the U(1) vector superfield associated with a 2-handle (vertex) with framing label 0. Then,

the relevnt terms in the Lagrangian of the theory T [M3(Υ);U(1)] associated to the right part

of the diagram are

L =
1

4π

∫
d4θ

(
2V Σ̃ + aṼ Σ̃ + . . .

)
(2.67)

Note, there is no Chern-Simons term for V itself, and it indeed plays the role of the Lagrange

multiplier for the condition Σ̃ = 0. Therefore, integrating out V makes Ṽ pure gauge and

removes all Chern-Simons couplings involving Ṽ . The resulting quiver Chern-Simons theory

is precisely the one associated with the left diagram in the upper part of Figure 10.

Now, let us consider the second move in Figure 10, again starting from the right-hand

side. The relevant part of the Lagrangian for T [M3(Υ);U(1)] looks like

L =
1

4π

∫
d4θ (2V Σ1 + a1V1Σ1 + 2V Σ2 + a2V2Σ2 + . . .) (2.68)

where the dependence on V is again only linear. Hence, integrating it out makes the “diago-

nal” combination V1 + V2 pure gauge, and for V ′ = V1 = −V2 we get

L′ =
1

4π

∫
d4θ

(
(a1 + a2)V

′Σ′ + . . .
)

(2.69)

which is precisely the Lagrangian of the quiver Chern-Simons theory associated to the plumb-

ing graph in the lower left corner of Figure 10.

Finally, since all other boundary diffeomorphisms in 3d Kirby calculus follow from these

basic moves, it should not be surprising that the manipulation in Figure 11 as well as the slam-

dunk move (2.60) also admit an elegant physical interpretation. However, for completeness,

and to practice a little more with the dictionary between 3d Kirby calculus and equivalences

of 3d N = 2 theories, we present the details here. Based on the experience with the basic

moves, the reader might have (correctly) guessed that both the boundary diffeomorphism in

Figure 11 and the slam-dunk move (2.60) correspond to integrating out vector multiplets.

Specifically, for the plumbing graph on the left side of (2.60) the relevant terms in the

Lagrangian of the theory T [M3(Υ);U(1)] look like

L =
1

4π

∫
d4θ

(
p

q
V Σ+ 2Ṽ Σ+ aṼ Σ̃ + . . .

)
(2.70)

Since there are no other terms in the Lagrangian of T [M3(Υ);U(1)] that contain the superfield

V or its (super)field strength Σ, we can integrate it out. Replacing V by the solution to the
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equation p
qV + Ṽ = 0 gives the Lagrangian for the remaining fields

L =
1

4π

∫
d4θ

((
a− q

p

)
Ṽ Σ̃ + . . .

)
(2.71)

which is an equivalent description of the theory T [M3(Υ);U(1)], in fact, the one associated

with the right-hand side of the slam-dunk move (2.60). By now it should be clear what is

going on. In particular, by iterating this process and integrating in or integrating out U(1)

vector superfields, it is easy to show that quiver Chern-Simons theories associated to Kirby

diagrams in Figure 11 are indeed equivalent.

2.4 Cobordisms and domain walls

Now, it is straightforward to generalize the discussion in previous sections to 4-manifolds with

two (or more) boundary components. The lesson we learned is that each boundary component

of M4 corresponds to a coupling with 3d N = 2 theory labeled by that component.

In general, when a 4-manifold M4 has one or more boundary components, it is convenient

to view it as a (co)bordism from M−
3 to M+

3 , where M±
3 is allowed to be empty or contain

several connected components, see Figure 12a. If M−
3 = ∅ (or M+

3 = ∅), then the corre-

sponding 3d N = 2 theory T [M−
3 ] (resp. T [M+

3 ]) is trivial. And, when M±
3 has more than

one connected component, the corresponding theory T [M±
3 ] is simply a tensor product of 3d

N = 2 theories associated with those components. (In fact, we already encountered similar

situations, e.g. in (2.42), when we discussed 3-manifolds with several boundary components.)

b)a)

+T[M ]3
M−

3 M+
3

3d 3dM4

3
−T[M ]

2d
 d

om
ai

n 
w

al
l

Figure 12: (a) A cobordism between 3-manifolds M−

3 and M+
3 corresponds to (b) a 2d N = (0, 2)

theory T [M4] on the domain wall (interface) coupled to 3d N = 2 theories T [M−

3 ] and T [M+
3 ] on both

sides.

What kind of 2d theory T [M4] corresponds to a cobordism from M−
3 to M+

3 ? There are

several ways to look at it. First, trying to erase any distinction between M+
3 and M−

3 , we

can view any such 4-manifold as a cobordism from ∅ to M+
3 ⊔ −M−

3 , i.e. as a 4-manifold
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with boundary M3 =M+
3 ⊔−M−

3 , thus reducing the problem to the one already considered.

Indeed, using (2.53), to a 4-manifold M4 with boundaryM+
3 ⊔−M−

3 we associate a 3d N = 2

theory T [M+
3 ]⊗

(
P ◦ T [M−

3 ]
)
on a half-space R+ ×R2 coupled to a boundary theory T [M4].

In turn, this product 3d theory on a half-space is equivalent — via the so-called “folding”

trick [62–64] — to a 3d theory T [M+
3 ] or T [M−

3 ] in two regions of the full three-dimensional

space R3, separated by a 2d interface (that in 3d context might be naturally called a “defect

wall”). This gives another, perhaps more natural way to think of 2d N = (0, 2) theory T [M4]

associated to a cobordism from M−
3 to M+

3 , as a theory trapped on the interface separating

two 3d N = 2 theories T [M−
3 ] or T [M+

3 ], as illustated in Figure 12.

In order to understand the physics of fivebranes on 4-manifolds, it is often convenient

to compactify one more direction, i.e. consider the fivebrane world-volume to be S1 × R ×
M4. In the present context, it leads to an effective two-dimensional theory with N = (2, 2)

supersymmetry and a B-type defect9 labeled by M4. In fact, we already discussed this

reduction on a circle in section 2.2, where it was noted that the effective 2d N = (2, 2)

theory — which, with some abuse of notations, we still denote T [M3] — is characterized by

the twisted superpotential W̃(xi). Therefore, following the standard description of B-type

defects in N = (2, 2) Landau-Ginzburg models [65–68], one might expect that a defect T [M4]

between two theories T [M−
3 ] and T [M+

3 ] can be described as a matrix (bi-)factorization of

the difference of the corresponding superpotentials

W̃T [M+
3 ](xi)− W̃T [M−

3 ](yi) (2.72)

While conceptually quite helpful, this approach is less useful for practical description of the

defect walls between T [M−
3 ] and T [M+

3 ], which we typically achieve by other methods. The

reason, in part, is that superpotentials W̃ are non-polynomial for most theories T [M3]. We

revisit this approach and make additional comments in section 4.

Note, if 2d theories in question were N = (2, 2) sigma-models based on target mani-

folds XT [M+
3 ] and XT [M−

3 ], respectively, then B-type defects between them could be similarly

represented by correspondences, or (complexes of) coherent sheaves, or sometimes simply by

holomorphic submanifolds

∆ ⊂ XT [M+
3 ] ×XT [M−

3 ] (2.73)

Much like defect lines in 2d, defect walls in 3d can be classified according to their prop-

erties and the symmetries they preserve: topological, conformal, reflective or transmissive,

parameter walls, (duality) transformation walls, etc. Various examples of such walls in 3d

N = 2 theories were studied in [15]. For instance, parameter walls are labeled by (homotopy

types of) paths on the moduli space VT [M3] and correspond to (autoequivalence) functors act-

ing on the category of B-type boundary conditions. Transformation walls, on the other hand,

in general change 3d N = 2 theory, e.g. by implementing the SL(2,Z) action [53] described

in (2.37)-(2.38). Topological defects in abelian Chern-Simons theories — which, according

to our proposal (2.25), are relevant to cobordisms between 3-manifolds — have been studied

9The converse is not true since some line defects in 2d come from line operators in 3d.
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e.g. in [45, 69, 70]. In supersymmetric theories, topological defects are quite special as they

are of A-type and B-type at the same time.

The next best thing to topological defects are conformal ones, which in 2d are usually

characterized by their reflective or transmissive properties. Extending this terminology to

walls in 3d, below we consider two extreme examples, which, much like Neumann and Dirichlet

boundary conditions, provide basic ingredients for building mixed types. See Figure 13a for

an illustration of a generic defect wall (neither totally reflective nor fully transmissive).
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Figure 13: A generic defect wall between two 3d N = 2 theories (a) in flat space-time and (b) the

corresponding configuration on S1 × S2. The index of the latter system is obtained from two copies

of the “half-index” IS1×qD±(T±) ≃ Zvortex(T
±) convoluted via the index (flavored elliptic genus) of

the defect wall supported on S1 × S1
eq, where D

± is the disk covering right (resp. left) hemisphere of

the S2 and S1
eq := ∂D+ = −∂D− is the equator of the S2.

Fully transmissive walls

The simplest example of a totally transmisive wall (which is also conformal) is a trivial wall

between the theory T [M3] and itself. It corresponds to the identity cobordism M3× I and in

the language of boundary conditions (2.73) is represented by the “diagonal”

∆X ⊂ X ×X (2.74)

and similarly for the LG models (2.72).

In view of (2.25) and (2.40), more interesting examples of maximally transmissive defects

are walls between N = 2 Chern-Simons theories with gauge groups G and H ⊂ G that have

H-symmetry throughout. Such defects can be constructed by decomposing the Lie algebra

g = (g/h)⊥ ⊕ h‖ (2.75)

and imposing Dirichlet type boundary conditions on the coset degrees of freedom and Neu-

mann boundary conditions on degrees of freedom for H ⊂ G. Equivalently, via the level-rank
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or, in the supersymmetric context, Giveon-Kutasov duality [71] equally important are level-

changing defect walls in N = 2 Chern-Simons theories. See e.g. [70] for the study of defect

walls with these properties in a purely bosonic theory and [72, 73] for various constructions

in closely related WZW models one dimension lower.

Maximally reflective walls

Maximally reflective domain walls between 3d theories T [M−
3 ] or T [M+

3 ] do not allow these

theories to communicate at all. Typical examples of such walls are products of boundary

conditions, B− and B+, for T [M−
3 ] and T [M+

3 ], respectively:

T [M4] = B− ⊗ B+ (2.76)

In the correspondence between 4-manifolds and 2d N = (0, 2) theories trapped on the walls,

they correspond to disjoint unions M4 =M−
4 ⊔M+

4 , such that ∂M±
4 =M±

3 .

Fusion

Finally, the last general aspect of domain walls labeled by cobordisms that we wish to mention

is composition (or, fusion), illustrated e.g. in Figure 15. As we explain in the next section,

the importance of this operation is that any 4-manifold of the form (2.1) and, therefore, any

2d N = (0, 2) theory associated to it can built — in general, in more than one way — as

a sequence of basic fusions. Notice, while colliding general defect walls can be singular, the

fusion of B-type walls on S1 × R2 is smooth (since they are compatible with the topological

twist along R2).

2.5 Adding a 2-handle

We introduced many essential elements of the dictionary (in Table 1) between 4-manifolds

and the corresponding 2d theories T [M4], and illustrated some of them in simple examples.

Further aspects of this dictionary and more examples will be given in later sections and future

work. One crucial aspect — which, hopefully, is already becoming clear at this stage — is

that a basic building block is a 2-handle. Indeed, adding 2-handles one-by-one, we can build

any 4-manifold of the form (2.1)! And the corresponding 2d theory T [M4] can be built in

exactly the same way, following a sequence of basic steps, each of which corresponds to adding

a new 2-handle.

In this section, we shall look into details of this basic operation and, in particular, ex-

plain that adding a new 2-handle at any part of the Kirby diagram can be represented by a

cobordism. Then, using the dictionary between cobordisms and walls (interfaces) in 3d, that

we already explained in section 2.4, we learn that the operation of adding a 2-handle can be

described by a fusion with the corresponding wall, as illustrated in Figures 14 and 15.

This interpretation of adding 2-handles is very convenient and very powerful, especially

for practical ways of building theories T [M4]. For instance, it can be used to turn a small

sample of concrete examples into a large factory for producing many new ones. Indeed,
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suppose one has a good understanding of a (possibly rather small) family of 4-manifolds that

can be obtained from one another by adding 2-handles. Then, by extracting10 the “difference”

one gets a key to a much larger class of 4-manifolds and the corresponding theories T [M4]

that can be constructed by composing the basic steps (of adding 2-handles) in a variety of

new ways, thus, potentially taking us well outside of the original family. A good starting

point for implementing this algorithm and deducing the set of basic cobordisms (resp. the

2d (0, 2) domain wall theories) can be a class of ADE sphere plumbings, as in Figures 1 and

2, for which the Vafa-Witten partition function is known to be the level N character of the

corresponding WZW model [13, 46]. We pursue this approach in section 3 and identify the

corresponding basic operations of adding 2-handles with certain coset models.
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Figure 14: The operation of attaching a 2-handle to M−

4 can be represented by a cobordism, namely

the closure of M+
4 \M−

4 . This operation corresponds to fusing a 2d wall (interface) determined by the

cobordism with a boundary theory T [M−

4 ] to produce a new boundary theory T [M+
4 ]. Equivalently,

the system on the left — with a domain wall sandwiched between 3d N = 2 theories T [M−

3 ] and

T [M+
3 ] — flows in the infra-red to a new boundary condition determined by T [M+

4 ].

Suppose our starting point is a 4-manifold M−
4 with boundary

∂M−
4 =M−

3 (2.77)

Attaching to it an extra 2-handle we obtain a new 4-manifold M+
4 with a new boundary

∂M+
4 =M+

3 (2.78)

10Explaining how to do this is precisely the goal of the present section.
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A convenient way to describe this operation — which admits various generalizations and a

direct translation into operations on T [M−
4 ] — is to think of (the closure of) M+

4 \M−
4 as

a (co)bordism, B, from M−
3 to M+

3 . In other words, we can think of M+
4 as a 4-manifolds

obtained by gluing M−
4 to a cobordism B with boundary

∂B = −M−
3 ∪M+

3 (2.79)

Therefore,

M+
4 = M−

4 ∪ϕ B (2.80)

where ϕ :M3 →M3 is assumed to be the identity map, unless noted otherwise.

.... + + +
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T
[M

 ] 4

T
[M

 ] 4

T
[M

 ] 4

T
[M

 ] 4

a

b c d

dcba

Figure 15: The process of building a 4-manifold M4 labeled by a plumbing tree can be represented

by a sequence of basic cobordisms with b2 = 1, where each step adds a new 2-handle. Each cobordism

corresponds to a 2d wall (interface), and the process of building M4 corresponds to defining T [M4] as

the IR limit of the layered system of 3d theories trapped between walls shown on the lower part of

the figure. Note, in general, there are many equivalent ways of building the same 4-manifold M4 by

attaching 2-handles in a different order; they correspond to equivalent descriptions (dualities) of the

same 2d (0, 2) theory T [M4].
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We have H3(M
+
4 , B) ∼= H3(M

−
4 ,M

−
3 ) ∼= H1(M−

4 ) by Poincaré duality. The latter is

trivial, H1(M−
4 ) = 0. Then, comparing the exact sequence for the pair (M+

4 , B) with the

exact sequence for the triple (M+
4 , B,M

+
3 ) we get the following diagram

0 → H2(B) → H2(M
+
4 ) → H2(M

+
4 , B)

‖ ↓ ↓ ‖
0 → H2(B,M

+
3 ) → H2(M

+
4 ,M

+
3 ) → H2(M

+
4 , B) → H1(B,M

+
3 ) = 0

≀‖ P.D. ≀‖
H2(M+

4 ) H2(M
−
4 ,M

−
3 )

≀‖ ≀‖ P.D.
H2(M

+
4 )∗

ι∗−−→ H2(M
−
4 )∗

(2.81)

In this diagram, the map from H2(M
+
4 ) to its dual H2(M

+
4 )∗ ∼= H2(M+

4 ) is given by the

intersection form Q+ ≡ QM+
4
. Therefore, we get

0→ H2(B)→ H2(M
+
4 )

Q+

−−−→ H2(M
+
4 )∗

ι∗−−→ H2(M
−
4 )∗ (2.82)

Since the second map, from H2(B) to H2(M
+
4 ), is injective, it follows that

H2(B) = ker
(
ι∗ ◦Q+

)
(2.83)

This useful result can tell us everything we want to know about the cobordism B from the

data of M−
4 and M+

4 .

In particular, when both M+
4 and M−

4 are sphere plumbings, and the plumbing tree of

the former is obtained by adding a new vertex (with an edge) to the plumbing tree of the

latter, as in Figure 15, the second homology of the cobordism B is one-dimensional,

b2(X) = 1 , (2.84)

and, therefore, its intersection form is determined by the self-intersection of a single generator

s ∈ H2(B). Thus, introducing a natural basis {si} for H2(M
+
4 ), such that the intersection

pairing

Q+(si, si) = Q+
ij (2.85)

is determined by the (weighted) plumbing tree, the generator s ∈ H2(B) can be expressed as

a linear combination

s =

b2(M
+
4 )∑

i=1

kisi (2.86)

where the coefficients ki ∈ Z are determined by (2.83):

Q+(s, x) = 0 , ∀x ∈ H2(M
−
4 ) (2.87)
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In practice, of course, it suffices to verify this orthogonality condition only on the basis

elements of H2(M
−
4 ). Then, it determines the cohomology generator (2.86) and, therefore,

the self-intersection number Q+(s, s).

As a warm-up, let us illustrate how this works in the case of a linear plumbing in Figure 1,

where for simplicity we start with the case where all Euler numbers ai = −2. Namely, if M−
4

has a linear plumbing graph with n− 1 vertices and M+
4 has a linear plumbing graph with n

vertices, then the condition (2.87) becomes

Q(s, si) = 0 , i = 1, . . . , n− 1 (2.88)

or, more explicitly,

−2k1 + k2 = 0 (2.89)

ki−1 − 2ki + ki+1 = 0 i = 2, . . . , n − 1

Solving these equations we find the generator s ∈ H2(B),

s = s1 + 2s2 + 3s3 + . . . + nsn (2.90)

for the cobordism B that relates An−1 and An linear plumbings. Now, the self-intersection is

easy to compute:

Q+(s, s) = −n(n+ 1) (2.91)

It is easy to generalize this calculation to linear plumbings with arbitrary framing co-

efficients ai, as well as plumbing graphs which are not necessarily linear. As the simplest

example of the latter, let us consider a 2-handle attachment in the first step of Figure 15 that

turns a linear plumbing graph with three vertices

M−
4 :

a• b• c• (2.92)

into a non-linear plumbing graph with a trivalent vertex:

M+
4 :

d•

a• •
b

c•
(2.93)

In order to determine the cobordism B that does the job we are again going to use (2.83) or,

better yet, its more explicit version (2.87) suitable for arbitrary plumbing trees. As before,

denoting by si the generators of H2(M
+
4 ) with the intersection pairing (2.85), which is easy

to read off from (2.93), we get the system of linear equations (2.87) that determines the

generator (2.86) of the cobordism B:

Q+(s, s1) = ak1 + k2 = 0

Q+(s, s2) = k1 + bk2 + k3 + k4 = 0 (2.94)

Q+(s, s3) = k2 + ck3 = 0
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Of course, in case of negative-definite 4-manifolds a, b, c, and d are all supposed to be negative.

Solving these equations we find the integer coefficients in (2.86),

k1 =
c

gcd(a, c)
, k2 = − ac

gcd(a, c)
, k3 =

a

gcd(a, c)
, k4 =

abc− a− c
gcd(a, c)

(2.95)

which, in turn, determine the intersection form on B:

Q+(s, s) =
(abcd − ac− ad− cd)(abc − a− c)

gcd(a, c)2
(2.96)

For instance, if a = b = c = d = −2, we get QB = 〈−4〉.

3. Top-down approach: fivebranes and instantons

In this section we approach the correspondence between 4-manifolds and 2d N = (0, 2)

theories T [M4;G] by studying the (flavored) elliptic genus (1.9) which, according to (1.10),

should match the Vafa-Witten partition function.

In particular, we propose the “gluing rules” that follow operations on 4-manifolds in-

troduced in section 2 and identify the set of basic cobordisms with branching functions in

certain coset models. In the non-abelian case, the key ingredient in the gluing construction

is the integration measure, which we propose to be the index of a 2d (0, 2) vector multiplet.

Another key ingredient, which plays an important role in (1.10) for non-compact 4-manifolds,

is a relation between discrete basis and continuous basis introduced in section 3.6.

3.1 Vafa-Witten theory

In order to realize the Vafa-Witten twist of 4d N = 4 super-Yang-Mills [13] in M-theory, we

start with the six-dimensional (2, 0) theory realized on the world-volume of N fivebranes. The

R-symmetry group of the (2, 0) theory is Sp(2)r ∼= SO(5)r and can be viewed as a group of

rotations in the five-dimensional space transverse to the fivebranes. A (2, 0) tensor multiplet

in six dimensions contains 5 scalars, 2 Weyl fermions and a chiral 2-form, which under Sp(2)r
transform as 5, 4, and 1, respectively.

We are interested in the situation when the M-theory space is S1 ×Rt ×M7 ×C, where

M7 is a 7-manifold with G2 holonomy and Rt may be considered as the time direction. We

introduce a stack of N fivebranes supported on the subspace S1 × Rt ×M4, where M4 is a

coassociative cycle in M7. This means that the normal bundle of M4 inside M7 is isomorphic

to the self-dual part of Λ2T ∗M4:

TM7/M4
∼= Λ2

+T
∗M4 . (3.1)

Moreover, the neighborhood of M4 in M7 is isomorphic (as a G2-manifold) to the neighbor-

hood of the zero section of Λ2
+T

∗M4.

Since both the eleven-dimensional space-time and the fivebrane world-volume in this setup

have S1 as a factor, we can reduce on this circle to obtain N D4-branes supported on R×M4
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in type IIA string theory. The D4-brane world-volume theory is maximally supersymmetric

(N = 2) super-Yang-Mills in five dimensions with the following field content:

spectrum of 5d super-Yang-Mills

Spin(5)E Sp(2)r
1-form 5 1

scalars 1 5

fermions 4 4

The rotation symmetry in the the tangent bundle of M4 is Spin(4)E ∼= SU(2)L × SU(2)R
subgroup of the Spin(5)E symmetry of the Euclidean five-dimensional theory. Five normal

direction to the branes are decomposed into three directions normal to M4 insideM7 and two

directions of C-plane. This corresponds to the following decomposition of the R-symmetry

group:

SO(5)r → SO(3)A × SO(2)U ∼= SU(2)A × U(1)U . (3.2)

The fields of the 5d super-Yang-Mills transform under the resulting SU(2)L × SU(2)R ×
SU(2)A × U(1)U symmetry group as

bosons : (5,1) ⊕ (1,5)→ (2,2,1)0 ⊕ (1,1,1)0 ⊕ (1,1,3)0 ⊕ (1,1,1)±2

fermions : (4,4)→ (2,1,2)±1 ⊕ (1,2,2)±1 (3.3)

Non-trivial embedding of the D4-branes in space-time with the normal bundle (3.1) cor-

responds [19] to identifying SU(2)L with SU(2)A and gives precisely the topological twist

introduced by Vafa in Witten [13]. The spectrum of the resulting theory looks like:

bosons : (2,2)0 ⊕ (1,1)0 ⊕ (3,1)0 ⊕ (1,1)±2

fermions : (1,1)±1 ⊕ (3,1)±1 ⊕ (2,2)±1 (3.4)

where we indicate transformation under the symmetry group SU(2)′L×SU(2)R×U(1)U . Here,

the subgroup SU(2)′L × SU(2)R is the new rotation symmetry along M4, whereas U(1)U is

the R-symmetry11 of the effective N = 2 supersymmetric quantum mechanics T1d[M4] on Rt.

The U(1)U quantum number is called the ghost number.

From (3.4) it is clear that the resulting supersymmetric quantum mechanics T1d[M4] has

two supercharges, which are scalar from the viewpoint of the 4-manifold M4 and which carry

ghost number U = +1 and U = −1, respectively. When the quantum mechanics is lifted

to the 2d theory T [M4] on S
1 × Rt they become supercharges of N = (0, 2) SUSY. Among

the bosons, two states (1,1)±2 with non-zero ghost number are scalars φ and φ that are not

affected by the twist, the state (3,1)0 is the self-dual 2-form field B, and finally the state

(1,1)0 is the scalar field C, all transforming in the adjoint representation of the gauge group.

The state (2,2)0 is, of course, the gauge connection on M4:

11Note, in [13] the symmetry group U(1)U is enhanced to the global symmetry group SU(2)U due to larger

R-symmetry of the starting point.
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(2,2)0 gauge connection A

(3,1)0 self-dual 2-form B

(1,1)±2 complex scalar φ

(1,1)0 real scalar C

(3.5)

Now let us consider a situation where the time direction is also compactified to a circle:

Rt  S1
t in a way that allows the M-theory circle S1 to fiber non-trivially over S1

t , so that

the twisted product S1 ⋊ S1
t is a torus with the complex modulus τ . Then, the theory on

the fivebranes can be described as a theory on D4-branes supported on M4, i.e. the four-

dimensional topologically twisted N = 4 SYM with coupling constant τ [13].

The path integral of the Vafa-Witten theory localizes on the solutions to the following

equations

F+
A −

1

2
[B ×B] + [C,B] = 0

d∗AB − dAC = 0
where

A ∈ GP
B ∈ Ω2,+(M4; adP )

C ∈ Ω0(M4; adP )

(3.6)

where GP denotes the space of connections of a principal bundle P . Under certain conditions

(see [13] for details) the only non-trivial solutions are given by configurations with vanishing

self-dual part of the curvature

F+
A = 0 (3.7)

and trivial other fields (B = 0 and dAC = 0). The partition function is then given by the

generating function of the Euler numbers of instanton moduli spaces:

ZVW[M4](q) =
∑

m

χ(Mm)q
m− c

24 (3.8)

where

Mm =

{
A ∈ GP : F+

A = 0, 〈ch, [M4]〉 ≡
1

8π2

∫

M4

TrF 2 = m

}
/Gauge ,

q = e2πiτ

and c is a constant that depends on the topology of M4. In [13] it was proposed that

c = N · χ(M4) (3.9)

where N is the rank of the gauge group and χ(M4) is the Euler characteristic12 of M4. The

constant c can be interpreted as the left-moving central charge cL of the dual 2d (0, 2) theory

T [M4].

12When M4 is non-compact χ(M4) should be replaced by the regularized Euler characteristic, and when

G = U(N) one needs to remove by hand the zero-mode to ensure that the partition function does not vanish

identically.
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In general, when the manifold M4 is not compact and the gauge group is U(N), anti-self-

dual configurations can also be distinguished by the first Chern class c1 and the boundary

conditions at infinity. In order to have finite action, the connection should be asymptotically

flat:

A|∂M4
= Aρ, FAρ = 0 . (3.10)

Therefore, as we already mentioned in section 2.2, different asymptotics can be labeled by

flat connections on the boundary 3-manifold M3 = ∂M4:

ρ ∈ Mflat[M3] ≡ Hom(π1(M3), U(N)) /Gauge . (3.11)

The dependence on the first Chern class can be captured by introducing the following topo-

logical term in the action, cf. [74]:

∆S =
1

2π

∫

ξ
TrF ≡ 〈c1, ξ〉 (3.12)

where ξ ∈ H2(M4)⊗ C. It is useful to define the following exponential map:

exp : H2(M4)⊗ C −→ (C∗)b2

ξ 7−→ x
(3.13)

such that ker(exp) = H2(M4,Z) and also the “power” operation

(C∗)b2 ×H2(M4) −→ C∗

(x, h) 7−→ xh ≡ e2πi〈h,ξ〉 (3.14)

for some preimage ξ of x. The refined Vafa-Witten partition function then depends on b2(M4)

additional fugacities and is given by

ZVW[M4]ρ(q, x) =
∑

m,c1

χ(Mm,c1,ρ) q
m− c

24 xc1 (3.15)

where

Mm,c1,ρ =
{
A ∈ GP : F+

A = 0, 〈ch, [M4]〉 = m, [TrF ] = 2πc1, A|M3 = Aρ
}
/Gauge.

From the point of view of the 2d theory T [M4;U(N)], the fugacities x in (3.15) play

the role of flavor fugacities in the elliptic genus. This tells us that T [M4;U(N)] has flavor

symmetry of rank b2 associated to 2-cycles of M4.

In what follows, if not explicitly stated otherwise, we will consider 4-manifolds (2.1) with

b+2 (M4) = 0 , π1(M4) = 0 , H2(M3,Z) = 0 , H1(M3,R) = 0

Γ ≡ H2(M4,Z) ∼= Zb2 , Γ∗ ≡ H2(M4,Z) ∼= Zb2
(3.16)

The last two conditions mean that there is no torsion in second (co)homology. As explained

in section 2.1, such manifolds are uniquely defined by the intersection form or, alternatively,

by the plumbing graph.
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3.2 Gluing along 3-manifolds

In this section we will describe how the Vafa-Witten partition function behaves under cutting

and gluing of 4-manifolds. Suppose one can produce a 4-manifold M4 by gluing M+
4 and

M−
4 along a common boundary component M3. For simplicity, in the following we actually

assume that M3 is the only boundary component for bothM+
4 and M−

4 (that is, the resulting

manifold M4 does not have any boundary). The generalization to the case when M±
4 have

other boundary components (that will become boundary components of M4 after the gluing)

is straightforward. For the same reason we will also suppress the dependence of the moduli

spaces on the first Chern class c1 or, equivalently, the dependence of the Vafa-Witten partition

function on the fugacities x in (3.15).

Figure 16: Gluing of M+
4 and M−

4 along the common boundary M3.

Since for b+2 > 1 we expect the topology of the instanton moduli spaces to be independent

under smooth deformations of the 4-manifold, consider the situation where the boundary

neighborhoods of M±
4 look like long “half-necks” of the form R+ × M3, as illustrated in

Figure 16. Very naively the Vafa-Witten partition function on M4 is given by a sum of

products of partition functions on M±
4 with identified boundary conditions. However in this

way we count instantons living on the long neck M3×R twice and we need to cancel out this

contribution.

Let us address this issue more systematically. Let M̃αβ
m be the moduli space of m instan-

tons13 on M3×R with boundary conditions α, β ∈ Mflat[M3]. One can always factor out the

part of the moduli space associated to translations along R:

M̃αβ
m =Mαβ

m × R. (3.17)

Let us denote the corresponding generating function for Euler characteristics as follows:

Kαβ[M3] ≡
∑

m

χ(M̃αβ
m )qm. (3.18)

Now letMm andM±
m,α be instanton moduli spaces for M4 and M±

4 respectively. Then

Mm =
⋃

α
m++m−=m

M+
m+,α ×M−

m−,α. (3.19)

13Here and in what follows the instanton number is not necessarily an integer.
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The problem, however, is that this union is not disjoint. Various terms have common bound-

ary components corresponding to particular degeneration of instanton configurations. Com-

mon codimension-1 boundary components have the following form:

M+
m+,α ×M

αβ
∆ ×M−

m−,β
⊂

∂
(
M+

m++∆,β ×M−
m−,β

)

and

∂
(
M+

m+,α ×M−
∆+m−,α

)
.

(3.20)

The first case can be intuitively understood from a limit when we separate a localized config-

uration with instanton number ∆ inM+
4 and push it to the boundary. And in the second case

we do the same for M−
4 . Similarly, there are common codimension-2 boundary components:

M+
m+,α ×M

αβ
∆1
×Mβγ

∆2
×M−

m−,γ ⊂
∂
(
M+

m++∆1+∆2,γ
×M−

m−,γ

)

∂
(
M+

m++∆1,β
×M−

∆2+m−,β

)

∂
(
M+

m+,α ×M−
∆1+∆2+m−,α

) (3.21)

and so on.

Then, applying inclusion-exclusion principle for Euler characteristic we get

χ(Mm) =
∑

α
m++m−=m

χ
(
M+

m+,α ×M−
m−,α

)

−
∑

α,β; ∆>0
m++∆+m−=m

χ
(
M+

m+,α ×M
αβ
∆ ×M−

m−,β

)

+
∑

α,β,γ; ∆1,2>0
m++∆1+∆2+m−=m

χ
(
M+

m+,α ×M
αβ
∆1
×Mβγ

∆2
×M−

m−,γ

)
− . . . (3.22)

which translates into the following relation for the generating functions:

ZVW[M4] =
∑

α

ZVW[M+
4 ]αZVW[M−

4 ]α −
∑

α,β

ZVW[M+
4 ]α(K

αβ[M3]− δαβ)ZVW[M−
4 ]β

+
∑

α,β,γ

ZVW[M+
4 ]α(K

αβ[M3]− δαβ)(Kβγ [M3]− δβγ)ZVW[M−
4 ]γ − . . .

=
∑

α,β

ZVW[M+
4 ]α(K

−1[M3])
αβZVW[M−

4 ]β (3.23)

where K−1[M3] denotes the matrix inverse to K[M3] defined in (3.18). The relation (3.23)

obviously holds when M4 =M+
4 =M−

4 =M3×R. Let us note that in the case when M3 is a

lens space the “gluing kernel” K[M3] can be explicitly computed using the results of [75,76].

For later convenience, let us define a modified Vafa-Witten partition with an upper index

denoting the boundary condition:

ZVW[M−
4 ]α ≡

∑

β

(K−1[M3])
αβZVW[M−

4 ]β . (3.24)
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Intuitively this modification can be understood as excluding instantons approaching the

boundary. Then the relation between partition functions takes the following simple form:

ZVW[M4] =
∑

α

ZVW[M+
4 ]αZVW[M−

4 ]α. (3.25)

3.3 Relation to affine Lie algebras

Before we discuss cobordisms, let us review the relation between Vafa-Witten theory on ALE

spaces and affine Lie algebras [13, 46, 74], that will be our starting point for constructing

generalizations. Namely, let M4 be a hyper-Kähler ALE space obtained by a resolution of the

quotient singularity C2/H, where H is a finite subgroup of SU(2). According to the McKay

correspondence, finite subgroups of SU(2) have ADE classification and therefore for each

H there is a corresponding simple Lie algebra g of the same ADE type. From the work of

Nakajima [46] it follows that the partition function of the Vafa-Witten theory with the gauge

group U(N) is given by the character of the integrable representation of the corresponding

affine Lie algebra ĝ at level N :

Z
U(N)
VW [M4]ρ(q, x) = χĝN

ρ (q, x) . (3.26)

Let us explain in some detail the role of the parameters ρ, q and x on the right hand side of this

formula. First, the formula (3.26) exploits the fact that there is a one-to-one correspondence

between U(N) flat connections onM3
∼= S3/H and integrable representations of ĝN . The right

hand side of (3.26) can then be understood as a character of ĝN for a given representation ρ.

Let us consider how the identification between flat connections and integrable representations

works in a simple case when H = Zp, M4 = Ap−1 and g = su(p). The set of flat connections

(3.11) in this case is given by the ordered partitions of N with p parts, which are in one-to-one

correspondence with Young diagrams that have at most p− 1 rows and N columns:

Hom(Zp, U(N))/U(N) =







z1 0

. . .

0 zN




p

= 1




/SN =




diag(1, . . . , 1︸ ︷︷ ︸

N0

, e
2πi
p , . . . , e

2πi
p

︸ ︷︷ ︸
N1

, . . . , e
2πi p−1

p , . . . , e
2πi p−1

p

︸ ︷︷ ︸
Np−1

)




∼=









(3.27)
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Young diagrams of such type indeed describe integrable representation of ŝu(p)N . The vari-

ables (q, x) in the right hand side of (3.26) play the role of coordinates on the (complexified)

torus corresponding to the Cartan subalgebra ĥ of ĝN . In particular, τ is a coordinate on ĥ

in the direction of L0 and x can be interpreted as coordinates on the (complexified) maximal

torus of the Lie group G corresponding to the ordinary Lie algebra g. This is in agreement

with the fact that the lattice Γ∗ for an ALE space of the ADE type is the same as the weight

lattice of the corresponding simple Lie algebra g and ξ in (3.14) is then the element of the

dual space. The dual lattice Γ is the same as the root lattice of g and the intersection form

Q plays the role of the normalized Killing form. It follows that the abelian quiver CS with

coefficients Qij is the same as the ordinary CS with the gauge group G restricted to the

Cartan subalgebra, which can be interpreted as a level-rank duality.

Physics & Geometry Algebra

plumbing graph Dynkin diagram of g

fugacities x maximal torus of G

coupling τ coordinate on ĥ along L0

intersection form normalized Killing form of g

b2(M4) rank of g

H2(M4) root lattice of g

H2(M4) weight lattice of g

boundary condition integrable representation of ĝ

rank of the gauge group level of ĝ

ZVW[M4] character of ĝ

cobordism B: M+
4 = B ∪M−

4 embedding g− ⊂ g+

ZVW[B] branching functions

Table 2: Dictionary between Vafa-Witten theory and (affine) Lie algebras.

Now let us describe the gluing of 4-manifolds considered in section 2.3 in the language of

(affine) Lie algebras. Suppose the manifold M+
4 with boundaryM+

3 is defined by a plumbing

graph of ADE type which can be interpreted as a Dynkin diagram of Lie algebra g+ with root

lattice Γ+ ≡ H2(M
+
4 ). Let us pick up a subalgebra g− ⊂ g+ and consider the manifold M+

4

with properties (3.16) such that the lattice Γ− ≡ H2(M
−
4 ) is the root lattice of g−. The lattice

Γ− is a sublattice of Γ+ and the manifold M+
4 can be obtained by gluing M−

4 with a certain

(co)bordism B such that ∂B = M−
3 ⊔M+

3 along the common boundary component M−
3 , cf.

(2.80). In the rest of the paper we will sometimes use the following schematic (but intuitive)

notation for the process of obtaining a manifold M+
4 by gluing a cobordism B to M−

4 :

M−
4

B
 M+

4 . (3.28)

From the gluing principle described in the previous section we have:

Z
U(N)
VW [M+

3 ]ρ(q, x) =
∑

λ

Z
U(N)
VW [B]λρ(q, x

⊥)ZU(N)
VW [M−

3 ]λ(q, x
‖) (3.29)
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where the splitting of the parameters x = (x⊥, x‖) corresponds to the splitting14 of the

homology groups H2(M
+
4 )⊗ C = H2(B)⊗C⊕H2(M

−
4 )⊗ C. Using (3.26) one has

χ
ĝ+N
ρ (q, x) =

∑

λ

Z
U(N)
VW [B]λρ(τ, x

⊥) χ
ĝ−N
λ (q, x‖) . (3.30)

Therefore, Z
U(N)
VW [B]λρ are given by the branching functions of the embedding g− ⊂ g+,

Z
U(N)
VW [B]λρ = χ

ĝ+N/ĝ
−
N

λ,ρ (3.31)

Let us consider a particular example: M+
4 = Ap and M−

4 = Ap−1. As was shown in

section 2.5 via a variant of the “Norman trick” [77, 78], the cobordism B in this case is a 4-

manifold in family (3.16) with a single 2-cycle of self-intersection −(p+1)p and the boundary

L(p,−1) ⊔ L(p + 1,−1). The partition function on B is then given by the characters of

su(p + 1)/su(p) cosets:

Z
U(N)
VW [B]λρ = χ

ŝu(p+1)N/ŝu(p)N
λ,ρ . (3.32)

The relation between Vafa-Witten theory and (affine) Lie algebras is summarized in

Table 2 and will play an important role in the following sections. In the next section we

consider in detail the case of the gauge group U(1). Then, in section 3.5, we will make some

proposals about the non-abelian case.

3.4 Cobordisms and gluing in the abelian case

For a 4-manifold M4 that satisfies (3.16) one has the short exact sequence (2.17):

0 −→ H2(M4)
Q−→ H2(M4)

i∗M3−→ H2(M3) −→ 0 (3.33)

where the map Q is given by the intersection matrix and iM3 is the inclusion map of the

boundary M3 = ∂M4 into M4. Equivalently, H
2(M3) ∼= cokerQ.

In the case of abelian theory self-duality condition implies that

dF = 0 , d∗F = 0. (3.34)

For manifolds with asymptotically cylindrical or conical ends it has been shown (under certain

assumptions) [79, 80] that the space of L2 integrable 2-forms satisfying conditions (3.34)

coincides with the space harmonic 2-forms H2(M4) and is isomorphic to the image of the

natural map H2(M4,M3,R) −→ H2(M4,R). In our case this map is an isomorphism. Since

b+2 (M4) = 0 the space H2(M4) is an eigenspace of the Hodge ∗ operator with eigenvalue −1.
For an ordinary U(1) gauge theory the Dirac quantization condition implies that [F/2π] ∈

H2(M4) ≡ Γ∗. However, since we are interested in gauge theory on the world-volume of a

14Let us note that H2(M
+
4 ) 6= H2(B) ⊕H2(M

−
4 ). However, the lattice H2(M

+
4 ) can be obtained from the

lattice H2(B)⊕H2(M
−
4 ) by the so-called gluing procedure that will be described in detail shortly.
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D4-brane in type IIA string theory setup, we need to take into account the Freed-Witten

anomaly [17]. Specifically, the two-form F = dA should be viewed as a curvature of the U(1)

part of a connection on a Spinc(4) ≡ Spin(4)×Z2 U(1) principal bundle over M4 obtained by

a lift of the SO(4) orthonormal frame bundle. Let us note that such a lift is possible for any

4-manifold, i.e. any 4-manifold is Spinc. Not any 4-manifold, though, has a Spin structure.

The obstruction is given by the second Stiefel-Whitney class w2 ∈ H2(M4,Z2). Therefore, as

in [81, 82] we have a shifted quantization condition for the magnetic flux through a 2-cycle

C ⊂M4: ∫

C

F

2π
=

1

2

∫

C
w2 =

1

2
Q(C,C) mod Z (3.35)

where the second equality is the Wu’s formula. The class [F/2π] then takes values in the

shifted lattice: [
F

2π

]
∈ Γ̃∗ ≡ Γ∗ +∆ (3.36)

where 2∆ is a lift15 of w2 with respect to the map Γ∗ ≡ H2(M4,Z)→ H2(M4,Z2). From the

Wu’s formula it follows that w2 = 0 or, equivalently, the manifold M4 is Spin, if and only if

the lattice Γ is even.

Let us note that since π1(M4) = 0 there are no non-trivial flat connections and therefore

fixing [F/2π] in Γ̃∗ completely determines the anti-self-dual gauge connection. On the bound-

ary F |M3 = 0 and therefore A|M3 is a flat connection on M3 which determines [F/2π] modulo

H2(M4,M3) ≡ Γ. It is easy to see that the coset space Γ̃∗/Γ coincides with the space of flat

connections. From (3.33) it follows that H1(M3) is a finite abelian group of order |detQ|.
All such groups are isomorphic to a direct sum of finite cyclic groups. Therefore the space of

flat connections on the boundary is given by

Hom(π1(M3), U(1)) ∼= Hom(H1(M3), U(1)) ∼= H2(M3) ∼= Γ∗/Γ ∼= Γ̃∗/Γ (3.37)

where the last equality follows from (3.33) and (3.36).

The Vafa-Witten partition for U(1) gauge group can be calculated explicitly for general

4-manifold M4 in the family (3.16) for a prescribed boundary condition ρ ∈ Γ̃∗/Γ and a

fugacity x ∈ H2(M4,R), cf. [83, 84]:

Z
U(1)
VW [M4]ρ(q, x) =

1

ηχ(M4)(q)

∑

[F/2π]∈Γ̃∗
[F/2π]=ρ mod Γ

q
1

8π2

∫
F∧Fx[F/2π] =

1

ηχ(M4)(q)

∑

[F/2π]∈Γ̃∗
[F/2π]=ρ mod Γ

q−
1
2
Q−1([F/2π],[F/2π])x[F/2π] =

1

ηχ(M4)(q)

∑

γ∈Γ
q−

1
2
Q−1(Qγ+ρ,Qγ+ρ)xQγ+ρ =

1

ηχ(M4)(q)

∑

γ∈Γ
q−

1
2
Q(γ+Q−1ρ,γ+Q−1ρ)xQγ+ρ. (3.38)

15Such lift exists because the manifold is Spinc.
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The overall factor
1

ηχ(M4)(q)
= q−

χ(M4)
24

∞∑

m=0

χ(Hilb[m](M4)) q
m (3.39)

is the contribution of point-like instantons. Let us remind that the moduli space of m point-

like instantons is given by the Hilbert scheme Hilb[m](M4) which can be understood as a

regularization of the configuration space of m points on M4.

Since the quadratic form −Q is positive definite one can always assume that the lattices

Γ and Γ∗ are embedded in the Euclidean space Rb2 so that

Γ∗ = {niωi|ni ∈ Z} ⊂ Rb2 .

and

Γ = {niλi|ni ∈ Z} ⊂ Γ∗ ⊂ Rb2

The basis vectors of these lattices are chosen so that (λi, λj) = −Qij and (ωi, λj) = δij where

(·, ·) is the standard Euclidean scalar product. The shift due to the Freed-Witten anomaly

can be represented then by the vector ∆ = 1
2

∑
i ‖λi‖2ωi. In this setup (3.38) reads simply

as:

Z
U(1)
VW [M4]ρ(q, x) =

1

ηχ(M4)(q)

∑

γ∈Γ⊂Rb2

q
1
2
‖γ+ρ+∆‖2xγ+ρ+∆

≡ θ
(ρ+∆)
Γ (x; q)

ηχ(M4)(q)
, ρ ∈ Γ∗/Γ. (3.40)

where θ
(ρ+∆)
Γ stands for the theta-function of the lattice Γ with the shift ρ+∆. The regularized

Euler characteristic χ(M4) coincides with dimension of the lattice b2.

Number of vacua

As in [81, 82], the quantum mechanics T1d[M4] on Rt obtained by reduction of an M5-brane

on S1×M4 is specified by a flat connection Aρ on the boundary and the flux at infinity which,

up to constant depending on the topology of M4 ⊂M7, is given by

Φ∞ = ND0 −
1

8π2

∫

M4

F ∧ F (3.41)

Here, ND0 is a non-negative integer denoting the number of point-like instantons. The origin

of the last term is the Wess-Zumino part of the D4-brane action:

IWZ = −
∫

R×M4

C∗ ∧ ch(F ) ∧
√
Â(TM4)

Â(NM4)
. (3.42)

Once we picked Φ∞ and fixed the value of [F/2π] modulo Γ which specify the theory

T1d[M4]ρ,Φ∞ , its supersymmetric vacua are obtained by finding ND0 ≥ 0 and [F/2π] which
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solve (3.41). Note, the effective theory is massive when ND0 = 0. If ND0 > 0 there are moduli

of point-like abelian on M4. The number of vacua is given by the corresponding coefficient of

(3.15):

#{vacua of T1d[M4]ρ,Φ∞} = ZVW[M4]ρ(q, 0)|
coefficient of q

Φ∞− c
24

(3.43)

Let us considerM4 = Ap−1 as an example. The lattice Γ is even in this case and therefore

Γ̃∗ = Γ∗. As was mentioned earlier, Γ and Γ∗ can be interpreted as the root and weight lattices

of su(p). These lattices can be naturally embedded into Rp−1, which in turn can be considered

as the subspace of Rp orthogonal to the vector (1, . . . , 1). The root lattice can be generated

by simple roots satisfying ‖λi‖2 = 2 and (λi, λi+1) = −1. The weight lattice can be generated

by ωr, r = 1, . . . , p− 1, the highest weights of the fundamental representations which can be

realized as ΛrCp. Let us also define ω0 ≡ 0. In the coset Γ∗/Γ ∼= Zp one has ωr ∼ rω1. For a

given boundary condition r = 0, . . . , p− 1 the flux at infinity has the following form:

Φ∞ = ND0 +
1

2

∥∥∥∥∥

p−1∑

i=1

niλi + ωr

∥∥∥∥∥

2

, ni ∈ Z . (3.44)

The massive vacua of the theory T1d[Ap−1]ρ,Φ∞ correspond to the weights w =
∑p−1

i=1 niλi+ωr
that minimize (3.44) when ND0 = 0. The set of such weights is precisely the set of weights of

the fundamental representation of su(p) with the highest weight ωr. Therefore one has:

#{vacua of T1d[Ap−1]r} = dimΛrCp =
p!

r!(p− r)! . (3.45)

Up to a permutation, these weights have the following coordinates:

w ∼
Sp

(1− r

p
, . . . , 1− r

p︸ ︷︷ ︸
r

,−r
p
, . . . ,−r

p︸ ︷︷ ︸
p−r

). (3.46)

The minimal value of the flux at infinity equals then

Φ∞ =
(p− r)r

2p
. (3.47)

Gluing in the abelian case

Consider two 4-manifolds (not necessarily connected)M±
4 , both satisfying (3.16), with bound-

aries ∂M±
4 =M±

3 . Let us denote Γ± ≡ H2(M
±
4 ) and T± ≡ H2(M±

3 ) ∼= H1(M
±
3 ) so that

0 −→ Γ± →֒ Γ∗
±

π±−→ T± −→ 0. (3.48)

Suppose that M+
4 can be obtained from M−

4 by gluing to the latter a certain (co)bordism B

with boundary ∂B = −M−
3 ⊔M+

3 .
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Also, let us suppose that b2(B) = 0 and the torsion groups in the long exact sequence

(2.15) for the pair (B, ∂B) are T2 = 0 and T1 ≡ T . This means that the only non-trivial

cohomology of B and ∂B is contained in the following finite groups:

H2(B, ∂B) ∼= H2(B) = T (3.49)

H1(B) ∼= H3(B, ∂B) = T (3.50)

H1(∂B) ∼= H2(∂B) = T− ⊕ T+ (3.51)

The sequence (2.15) then reduces to the following short exact sequence of finite abelian groups:

0 −−−−→ T
υ=υ−⊕υ+−−−−−−→ T− ⊕ T+

ψ−−−−→ T −−−−→ 0 (3.52)

Let us denote the family of all such “basic” cobordisms by B. From the Mayer-Vietoris

sequence for the pair of manifolds M−
4 and B glued along M−

3 one can deduce the following

commutative diagram

0 −−−−→ Γ∗
+ −−−−→ Γ∗

− ⊕ T −−−−→ T− −−−−→ 0
yπ+

y(π−−υ−)⊕υ+
yid

0 −−−−→ T+ −−−−→ T− ⊕ T+ −−−−→ T− −−−−→ 0

(3.53)

where both horizontal lines form short exact sequences. From the snake lemma it follows that

Γ+ = ker π+ can be realized as a sublattice of Γ∗
−:

Γ+ = ker(π− − υ−)⊕ υ+ = π−1
−
[
im υ−|ker υ+

]
=

{
α ∈ Γ∗

− | ∃ρ ∈ T s.t. α mod Γ− = υ−(ρ), υ+(ρ) = 0
}
. (3.54)

Let us now briefly review the notion of gluing of lattices described in detail in e.g. [85].

Consider some integer lattice Γ embedded into a Euclidean space and a finite family of glue

vectors gi ∈ Γ∗. Then one can define the glued lattice

Γ′ = {γ +
∑

i

nigi | γ ∈ Γ, ni ∈ Z} ⊂ Γ∗. (3.55)

The finite abelian group J ≡ Γ′/Γ is called the glue group. It is a subgroup of Γ∗/Γ generated

by the equivalence classes [gi]. As was considered in detail in [86, 87], the gluing operation

produces identities on the corresponding theta-functions defined as in (3.40):

θ
(ρ)
Γ′ =

∑

λ∈J
θ
(ρ+λ)
Γ (3.56)

One can see that in our case Γ′ = Γ+ is the gluing of Γ = Γ− with the glue group

im υ−|ker υ+ ⊂ Γ∗
−/Γ− (3.57)

Since b2(B) = 0 the only solutions of (3.34) are given by flat connections. The flat

connections on B correspond to the elements of T = H2(B), while the flat connections on
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∂B = −M−
3 ⊔M+

3 are in bijection with the elements of T− ⊕ T+. In the case of an ordinary

U(1) gauge theory without Freed-Witten anomaly, the short exact sequence (3.52) determines

which flat connections on the boundary can be extended to flat connections in the bulk B.

Namely, a flat connection on the boundary given by (µ, ν) ∈ H2(∂B) = T− ⊕ T+ originates

from a flat connection in B if it is in the image of the map υ or, equivalently, in the kernel of

ψ. The Vafa-Witten partition function of a cobordism B ∈ B in this case is simply given by

Z
U(1)
VW [B]µ,ν = δψ(µ,ν) (3.58)

where

δλ =

{
1, λ = 0

0, otherwise
(3.59)

In the case when the U(1) connection is replaced by the U(1) part of the Spinc(4)

connection one has to take into account the appropriate shift ψ0:

Z
U(1)
VW [B]µ,ν = δψ(µ,ν)−ψ0

. (3.60)

In the abelian case the “gluing kernel” defined in section 3.2 is trivial: Kαβ[M3] = δαβ

(therefore there is no difference between partition functions with upper and lower indices).

Then we should have the following relation between the Vafa-Witten partition function on

M+
4 , M−

4 and B, cf. (2.80):

Z
U(1)
VW [M+

4 ]ν =
∑

µ∈T−
Z
U(1)
VW [B]µ,ν Z

U(1)
VW [M−

4 ]µ . (3.61)

Since the abelian Vafa-Witten partition function on an arbitrary four-manifold of the form

(2.1) is given by the theta function of the corresponding lattice (2.5), the equation (3.61)

can be viewed as the identity (3.56) that relates theta functions of the lattice Γ− to the

theta-function of glued lattice Γ+.

Composing cobordisms

Now let us consider two four-manifoldsM
(1)
4 , M

(2)
4 , both satisfying (3.16), such that ∂M

(1)
4 =

Ma
3 ⊔M b

3 and ∂M
(2)
4 =M b

3 ⊔M c
3 . The 3-manifold M b

3 is supposed to be connected and have

an opposite orientation in M
(1)
4 and M

(2)
4 . The manifolds Ma

3 and M c
3 can be empty. Then

the new manifold M+
4 = M

(1)
4 ∪ M (2)

4 obtained by gluing M
(1)
4 and M

(2)
4 along M b

3 also

has the properties (3.16). If we interpret M
(1)
4 as a cobordism between 3-manifolds M b

3 and

Ma
3 , and M

(2)
4 as a cobordism between M c

3 and M b
3 then the resulting manifold M+

4 is the

composition of these two cobordisms. It is easy to see that this composition is a particular

case of gluing described in the previous section. Namely, the manifold M+
4 can be obtained

by gluing M−
4 =M

(1)
4 ⊔M (2)

4 with a basic cobordism, illustrated in Figure 17,

B ∼= Ma
3 × I ⊔M b

3 × I ⊔M c
3 × I ∈ B (3.62)
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where I is the interval. Let us denote T i = H2(M i
3), where i = a, b, c. Then, in the notations

of the previous section, we have:

T = T a ⊕ T b ⊕ T c

T− = T a ⊕ T b ⊕ T b ⊕ T c (3.63)

T+ = T a ⊕ T c

υ− : λ⊕ µ⊕ ν 7−→ λ⊕ µ⊕ (−µ)⊕ ν, (3.64a)

υ+ : λ⊕ µ⊕ ν 7−→ λ⊕ ν. (3.64b)

As usual, let us denote Γi ≡ H2(M
(i)
4 ) and Γ∗

i ≡ H2(M
(i)
4 ). Then, the lattice Γ+ is obtained

by gluing of Γ1 ⊕ Γ2 with the glue group

T b
diag→֒ Γ∗

1/Γ1 ⊕ Γ∗
2/Γ2

∼= (T a ⊕ T b)⊕ (T b ⊕ T c). (3.65)

That is

Γ+ =
{
(α+ µ, β − µ) | α ∈ Γ1, β ∈ Γ2, µ ∈ T b

}
. (3.66)

The Vafa-Witten partition functions of the manifolds M
(1)
4 and M

(2)
4 are given by:

Figure 17: Composition of cobordisms M
(1)
4 ◦ M (2)

4 = M+
4 can be constructed by gluing M−

4 =

M
(1)
4 ⊔M (2)

4 with a basic cobordism B ∼=Ma
3 × I ⊔M b

3 × I ⊔M c
3 × I ∈ B.

Z
U(1)
VW [M

(1)
4 ]λµ(q, x) =

∑

α∈Γ1

q
1
2
‖α+λ+µ‖2xα+λ+µ , (λ, µ) ∈ T a ⊕ T b , (3.67a)
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Z
U(1)
VW [M

(2)
4 ]µν (q, y) =

∑

β∈Γ2

q
1
2
‖β−µ+µ0+ν‖2yβ+µ+ν , (µ, ν) ∈ T b ⊕ T c , (3.67b)

where the boundary condition µ on the boundary component M b
3 of M

(1)
4 is identified with

the boundary condition −µ+ µ0 on M b
3 ⊂ ∂M

(2)
4 . The identity (3.61) in this case reads as:

∑

µ

Z
U(1)
VW [M

(1)
4 ]λµ(q, x) Z

U(1)
VW [M

(2)
4 ]µν (q, y) =

=
∑

α∈Γ1, β∈Γ2, µ

q
1
2
‖α+λ+µ+δ1‖2+ 1

2
‖β−µ+µ0+ν+∆2‖2xα+λ+µ+∆1yβ−µ+µ0+ν+∆2 =

=
∑

γ∈Γ+

q
1
2
‖γ+(λ+∆1)⊕(ν+∆2+µ0)‖2(x, y)γ+(λ+∆1)⊕(ν+∆2+µ0) =

= Z
U(1)
VW [M+

4 ]λν(q, (x, y)) , (λ, ν) ∈ T a ⊕ T c . (3.68)

so that the new shift due to the Freed-Witten anomaly is given by ∆ = ∆1 ⊕ (∆2 + µ0).

Examples

Let us denote the 4-manifold associated to the Lie algebra g of the ADE type as M4(g) and

the 4-manifold with the plumbing graph Υ by M4(Υ), as in section 2.1. For example,

Ap−1 =M4(su(p)) =M4(−2•− · · · −−2•︸ ︷︷ ︸
p−1

), (3.69)

O(−p)
↓

CP1

= M4(
−p• ), (3.70)

CP
2
# . . .#CP

2

︸ ︷︷ ︸
p

\{pt} = M4(−1• . . .−1•︸ ︷︷ ︸
p

). (3.71)

As was previously mentioned, the lattice Γ for the 4-manifold M4(g) coincides with the root

lattice of g, while Γ∗ is given by the corresponding weight lattice. The lattice Γ is always

even and, therefore, M4(g) is Spin and ∆ = 0. Since level-1 characters are given by theta

functions on the root lattice [88], the formula (3.26) with N = 1,

Z
U(1)
VW [M4(g)]λ = χĝ1

λ , (3.72)

also follows from (3.40). The abelian Vafa-Witten partition function of the Ap manifold was

studied in detail in [89].

Let us point out that there is also the following relation between Vafa-Witten partition

functions and affine characters:

Z
U(1)
VW [M4(

−p• )]λ(q, x) =
1

η(τ)

∑

n∈Z
q

1
2p

(pn+λ)2xpn+λ ≡ χ
û(1)p
λ , λ ∈ Zp (3.73)
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when p is even. This relation is a natural generalization of (3.72) since the one-dimensional

lattice H2(M4(
−p• )) can be interpreted as a weight lattice of û(1)p. Let us note that it is also

consistent with the fact that A1 =M4(−2• ) since

χ
ŝu(2)1
λ = χ

û(1)2
λ . (3.74)

For general p one can write

Z
U(1)
VW [M4(

−p• )]λ(q, x) =
1

η(τ)

∑

n∈Z
q

1
2p

(pn+λ+∆)2
xpn+λ+∆ ≡ χ̃

û(1)p
λ , λ ∈ Zp (3.75)

where ∆ = 0 if p is even and ∆ = 1
2 if p is odd. Let us call χ̃û(1)p the “twisted” û(1)p character.

In Table 3 we present various examples of the gluing procedure described earlier. The

corresponding gluings of lattices for many of these (and other) examples can be found in

[86,87]. Let us note that in example 3 one can choose the gluing cobordism to be a cylinder

with a hole B = S3/Zp × I r pt, i.e. one can just glue two components of M−
4 along

their boundaries (and then cut out a hole) in order to obtain M+
4 . In examples 8, 9 the

cobordism B is homologically equivalent to a cylinder with a hole, but not topologically,

since the boundaries of E8−n and An are only homologically equivalent. Consider example 2

in some detail. In general it is not posible to glue M4(
−k• ) with M4(

−k• ), because although the

boundaries are the same, they do not have opposite orientations. However, when k = p2 + 1

for some integer p there exists an orientation reversing diffeomorphism ϕ of L(k, 1) such that

ϕ∗ : H2(L(k, 1)) −→ H2(L(k, 1)) ∼= Zk

ρ 7−→ pρ
(3.76)

It is an automorphism of Zk because p and k = p2 + 1 are coprime. One can also glue Ap2

with Ap2 using the same prescription (cf. example 11). The gluings of lattices in examples 2

and 3 are illustrated in Figures 18 and 19.

Let us consider in some detail the gluing in example 3 when p is even. This example is

rather interesting because both of the original 4-manifolds Ap−1 and M4(
−p• ) are Spin, but

the resulting 4-manifold M4(−1• . . .−1• ) is not Spin (since the corresponding lattice Zp is not

even). What is going on here? The explanation is very instructive and reveals new aspects

of the Freed-Witten anomaly in the presence of boundaries.

Each of the original “pieces”, Ap−1 andM4(
−p• ), admits a unique Spin structure. However,

the restrictions of these Spin structures to the boundary 3-manifoldM3, along which one must

glue these pieces in order to produce M4(−1• . . .−1• ), are different. To be a little more precise,

as in (2.80) consider the gluing map between the boundaries:

ϕ : ∂Ap−1 → ∂M4(
−p• ) (3.77)

If we introduce Spin structures on Ap−1 andM4(
−p• ), the map ϕ does not lift to a map between

the restrictions of the Spin structures on the boundaries. This is why it is not possible to

construct a Spin structure on M4(−1• . . .−1• ) from the Spin structures on Ap−1 and M4(
−p• ).
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Original 4-manifold M−
4 End result M+

4 Homological data of B ∈ B (b2(B) = 0)

T− = H2(∂M−
4 ) T+ = H2(∂M+

4 ) T = H2(B) υ : T → T− ⊕ T+, ψ : T− ⊕ T+ → T

1
M4(

−p2• ) M4(
−1• )

Zp
υ(ρ) = pρ

T− = Zp2 T+ = 0 ψ(µ) = (µ mod p)

2
M4(

−p2−1• ) ⊔M4(
−p2−1• ) M4(−1• −1• )

Zp2+1
υ(ρ) = ρ⊕ pρ

T− = Zp2+1 T+ = 0 ψ(µ ⊕ ν) = (pµ− ν)

3
Ap−1 ⊔M4(

−p• ) M4(
−1• . . .−1•︸ ︷︷ ︸

p

)
Zp

υ(ρ) = ρ⊕ ρ

T− = Zp ⊕ Zp T+ = 0 ψ(µ ⊕ ν) = (µ − ν)

4
Ap−1 ⊔M4(

−p(p+1)
• ) Ap

Zp ⊕ Zp+1
υ(ρ ⊕ λ) = ρ⊕ ρ⊕ λ⊕ λ

T− = Zp ⊕ Zp ⊕ Zp+1 T+ = Zp+1 ψ(µ ⊕ ν ⊕ ρ⊕ λ) = (µ− ν)⊕ (ρ − λ)

5

M4(
−a1•− · · · −−an• ) ⊔M4(

−pnpn+1• ) M4(
−a1•− · · · −

−an+1• )
Zpn ⊕ Zpn+1

υ(ρ ⊕ λ) = ρ⊕ ρ⊕ λ⊕ λ

where pn+1 = anpn − pn−1 T+ = Zpn+1
ψ(µ ⊕ ν ⊕ ρ⊕ λ) = (µ− ν)⊕ (ρ − λ)

T− = Zpn ⊕ Zpn ⊕ Zpn+1

6

A3 ⊔M4(
−4• ) D4

Z4 ⊕ Z2
υ(µ ⊕ ν)

T− = Z4 ⊕ Z4 T+ = Z2 ⊕ Z2 = µ⊕ (µ + 2ν) ⊕ (µ mod 2) ⊕ ν

ψ(µ ⊕ ν ⊕ ρ⊕ λ) =

(ν − µ− 2λ) ⊕ ((µ mod 2)− ρ)

7
D8 E8

Z2
υ(ρ) = ρ⊕ 0

T− = Z2 ⊕ Z2 T+ = 0 ψ(µ ⊕ ν) = ν

8
E7 ⊔A1 E8

Z2
υ(ρ) = ρ⊕ ρ

T− = Z2 ⊕ Z2 T+ = 0 ψ(µ ⊕ ν) = (µ − ν)

9
E6 ⊔A2 E8

Z3
υ(ρ) = ρ⊕ ρ

T− = Z3 ⊕ Z3 T+ = 0 ψ(µ ⊕ ν) = (µ − ν)

10
A8 E8

Z3
υ(ρ) = 3ρ

T− = Z9 T+ = 0 ψ(µ) = (µ mod 3)

11
A4 ⊔ A4 E8

Z5
υ(ρ) = ρ⊕ 2ρ

T− = Z5 ⊕ Z5 T+ = 0 ψ(µ ⊕ ν) = (2µ − ν)

Table 3: Examples of gluing M−

4
B
 M+

4 .

Nevertheless, it is possible to lift ϕ to a map between the restrictions of Spinc structures on

Ap−1 andM4(
−p• ). Since Spin(4) holonomies on the boundaries do not match, the holonomies

of the U(1) part of Spinc(4) should be identified with −1 factor which corresponds to the

shift by p
2 in the Zp space of flat connections on the boundaries. One can check that indeed

∑

λ∈Zp

Z
U(1)
VW [M4(

−p• )]λ+p/2(q, x⊥) Z
U(1)
VW [M4(

−p• )]λ(q, x‖) =

=
∑

λ∈Zp

χ
û(1)p
λ+p/2(q, x

⊥)χŝu(p)1
λ (q, x‖) = χ̃û(p)1(q, x) ≡

p∏

i=1

χ̃û(1)1(q, xi) =

= Z
U(1)
VW [M4(

−1• · · ·−1•︸ ︷︷ ︸
p

)] (3.78)

where the splitting of parameters x = (x⊥, x‖) is such that x⊥ = (
∏
i xi)

1/p. A version of this

relation without shifts due to Freed-Witten anomaly was considered in [74,89].

In general, a gluing of the form

M4(g
(1)) ⊔ . . . ⊔M4(g

(n)) ⊔M4(
−p1• ) ⊔ . . . ⊔M4(

−pm• )
B
 M4(g) (3.79)
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Figure 18: Gluing of A1 and M4(−6• ) gives A2.

Figure 19: Gluing of M4(−5• ) and M4(−5• ) gives M4(−1• −1• ).

where all pi are even, g(j) and g are of ADE type, corresponds to the embedding of the

associated algebras:

g
(1)
1 ⊕ . . . ⊕ g

(n)
1 ⊕ u(1)p1 ⊕ . . .⊕ u(1)pm ⊂ g (3.80)

where the subscripts denote the indices of the embeddings.

Let us recall that the index ℓ of the embedding kℓ ⊂ g is defined as the ratio between the

normalized Killing form of g restricted to the subspace k and the normalized Killing form of

k. In other words, the root lattice of k is rescaled by the factor of
√
ℓ when embedded into

the root lattice of g. For the corresponding affine Lie algebras, representations of ĝ at level k

decompose into representations of k̂ at level ℓk:

χĝk
λ =

∑

µ

bµλ χ
k̂ℓk
µ . (3.81)

The coefficients bµλ are called branching functions of the embedding kℓ ⊂ g.

If B ∈ B, that is b2(B) = 0, the total rank on both sides of (3.80) is the same:

n∑

i=1

rank g(i) +m = rank g. (3.82)
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Then, taking into account (3.72) and (3.75), the identity (3.61) can be interpreted as a

decomposition of the characters:

χĝ1
λ =

∑

µ,ρ

Z
U(1)
VW [B]µ1...µnρ1...ρmλ χ

ĝ
(1)
1
µ1 · · ·χ

ĝ
(n)
1
µn χ

û(1)p1
ρ1 · · ·χû(1)pm

ρm (3.83)

so that the Vafa-Witten partition function of B plays the role of branching functions for the

embedding (3.80) at level 1. As was shown earlier, the abelian Vafa-Witten partition function

of B ∈ B does not depend on τ . This corresponds to the fact that the embedding (3.80) is

always conformal at level 1.

Now let us define B̃ as B glued withM4(
−p1• )⊔. . .⊔M4(

−pm• ) along the common boundary

components. This 4-manifold B̃ is no longer in B and has b2(B̃) = m. It can be considered

as a cobordism for the following gluing:

M4(g
(1)) ⊔ . . . ⊔M4(g

(n))
B̃
 M4(g) . (3.84)

The identity (3.83) can be rewritten as

χĝ1
λ =

∑

µ

Z
U(1)
VW

[
B̃
]µ1...µn
λ

χ
ĝ
(1)
1
µ1 · · ·χ

ĝ
(n)
1
µn (3.85)

and, therefore, Z
U(1)
VW [B̃] plays the role of the level-1 branching functions for the embedding

g
(1)
1 ⊕ . . . ⊕ g

(n)
1 ⊂ g (3.86)

where all Lie algebras are of ADE type.

3.5 Non-abelian generalizations

As was already mentioned in section 3.3, the non-abelian generalization of (3.72) is given by

Z
U(N)
VW [M4(g)]ρ = χĝN

ρ (3.87)

Hence, the Vafa-Witten partition function of a cobordism B̃ in (3.84) should coincide with

the branching functions for the embedding (3.86) at level N :

Z
U(N)
VW

[
B̃
]µ1...µn
λ

= branching function bµ1...µnλ

Since the lattice H2(M4(
−p• )) is one-dimensional it is natural to expect that the corre-

sponding Vafa-Witten partition function can be expressed in terms of û(1) characters. As a

non-abelian generalization of (3.75) one can propose that

Z
U(N)
VW [M4(

−p• )]λ(q, x) =
∑

µ

Cµλ (q) χ̃
û(1)pN
µ (q, x) (3.88)
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with some coefficients Cµλ independent of x. This is consistent with the fact thatM4(−2• ) = A1

because the characters of ŝu(2) can be decomposed in terms of the û(1) characters, where

u(1) is embedded as a Cartan subalgebra of su(2) with index 2:

Z
U(N)
VW [M4(−2• )]λ(q, x) = Z

U(N)
VW [A1]λ(q, x) = χ

ŝu(2)N
λ (q, x) =

∑

µ

Cµλ (q)χ
û(1)2N
µ (q, x) (3.89)

Hence, in this case Cµλ are the branching functions for the embedding u(1)2 ⊂ su(2). The

formula (3.88) is also in agreement with the results of [90].

From (3.88) and (3.87) it follows that Z
U(N)
VW [B] for the cobordism B in (3.79) is given,

up to coefficients C, by level-N characters of the coset for the embedding (3.80):

G

G(1) × . . .×G(n) × U(1) × . . .× U(1)︸ ︷︷ ︸
m

. (3.90)

Note, such coset spaces are Kähler manifolds because of the property (3.82). This suggests

that the corresponding 2d theories T [B] may have a realization in terms of (0, 2) gauged

WZW theories studied in [91,92].

Now let us discuss various consequences and consistency checks of the proposed relation

between cobordisms and branching functions. In [13] it was argued that under the blow up

of M4 (that is taking the connected sum with CP
2
) the SU(N) partition function on M4 is

multiplied by the character of ŝu(N)1:

Z
SU(N)
VW [M4#CP

2
] = Z

SU(N)
VW [M4]χ

ŝu(N)1 . (3.91)

Based on our experience with abelian theory discussed in the previous section, it is then

natural to propose the following generalization to the case of U(N) gauge group and non-

compact 4-manifolds:

Z
U(N)
VW

[
M4♮

(
CP

2 \ {pt}
)]

(τ, x) = Z
U(N)
VW [M4](τ, x

‖) χ̃û(N)1(τ, x⊥) (3.92)

where ♮ denotes the boundary connected sum, x = (x‖, x⊥), x‖ ∈ exp(H2(M4) ⊗ C), and

x⊥ ∈ exp(H2(CP
2 \ {pt}) ⊗ C) ∼= C∗. The “twisted” û(N)1 character χ̃û(N)1 is defined as

in (3.78). The parameter x ∈ C∗ plays the role of the coordinate along the diagonal u(1) of

u(N), and the coordinates in the other directions of the Cartan subalgebra are set to zero. If

the manifold M4 is constructed by the plumbing graph Υ, the relation (3.92) looks like

Z
U(N)
VW [M4(Υ ⊔ −1• )] = Z

U(N)
VW [M4(Υ)] χ̃û(N)1 . (3.93)

In particular:

Z
U(N)
VW [M4(−1• · · ·−1•︸ ︷︷ ︸

p

)] =

p∏

i=1

χ̃û(N)1(q, xi). (3.94)

– 60 –



Let us note that the “twisted” û(N)1 character is given by the product of N standard

theta-functions with odd characteristics:

χ̃û(N)1(q, z) =

N∏

j=1

1

η(q)

∑

nj∈Z
q

(nj+1/2)2

2 znj+1/2 ≡
N∏

j=1

θ2(q, zj)

η(q)
. (3.95)

Therefore, (3.94) can be rewritten as

Z
U(N)
VW [M4(−1• · · ·−1•︸ ︷︷ ︸

p

)](q, x) =

p∏

i=1

N∏

j=1

θ2(q, xi)

η(q)
= χ̃û(Np)1(q, x) (3.96)

where the components xi play the role of the coordinates in the diagonal directions of p copies

of the u(N) subalgebra in u(Np). In [74] it was shown that the embedding (which is conformal

at level 1)

su(N)p ⊕ u(1)pN ⊕ su(p)N ⊂ u(Np) , (3.97)

leads to the following relation between the “untwisted” characters:

p∏

i=1

N∏

j=1

θ3(q, xiyj)

η(q)
≡ χû(Np)1(q, {x, y}) =

=
∑

[λ]

N∑

a=1

p∑

b=1

χ
ŝu(N)p
σaN (λ)

(q, y‖)χ
û(1)Np

|λ|+ap+bN (x
⊥y⊥)χŝu(p)N

σbp(λ
t)
(q, x‖) (3.98)

where x⊥ = (
∏
i xi)

N , y⊥ = (
∏
j xj)

p, σN and σp denote the generators of outer automor-

phisms groups ZN and Zp of ŝu(N) and ŝu(p), respectively, λ denotes an integrable represen-

tation of ŝu(p)N associated to a Young diagram, and λt denotes an integrable representation

of ŝu(N)p associate to the transposed Young diagram. The first sum on the right-hand side

of this expression is performed over the orbits [λ] of λ with respect to the action of the outer

automorphism group. Finally, |λ| stands for the number of boxes in the Young diagram

associated to λ. See [74] for the details.

When p = 1 and y = 0, it follows from (3.98) that

Z
U(N)
VW [M4(−1• )] = χû(N)1(q, x) =

∑

λ

χ
ŝu(N)1
λ (q, 0)χ

û(1)N
λ (q, x) (3.99)

and, therefore, the coefficients C in (3.88) in the case p = 1 are given by the characters of

ŝu(N)1.

Now let us consider the example 3 from Table 3:

Ap−1 ⊔M4(
−p• )

B
 M4(−1• · · ·−1•︸ ︷︷ ︸

p

). (3.100)
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As was mentioned earlier, B is topologically a cylinder with a hole: B ∼= L(p, 1) × I \ {pt}.
One can expect the following identify for the corresponding non-abelian Vafa-Witten partition

functions:

Z
U(N)
VW [M4(−1• · · ·−1•︸ ︷︷ ︸

p

)](q, x) =

=
∑

λ,µ

Z
U(N)
VW [M4(

−p• )]λ(q, x⊥) Z
U(N)
VW [B]λ,µ(q) Z

U(N)
VW [Ap−1]µ(q, x

‖) . (3.101)

Taking into account

Z
U(N)
VW [Ap−1]µ(q, x

‖) = χŝu(p)N
µ (q, x‖) (3.102)

combined with (3.94) and (3.88), one can interpret (3.101) as the “twisted” version of the

identity (3.98) in the case where y is set to zero.

3.6 Linear plumbings and quiver structure

From example 5 in Table 3 it follows that one can build the plumbing a1•− · · · −an• step by step,

attaching one node at a time. Moreover, as we explained in section 2.2, the boundary 3-

manifold is the Lens space, M3(
a1•− · · · −an• ) = L(pn, qn), where pn/qn is given by the continued

fraction (2.31) associated to the string of integers (a1, . . . , an). Therefore, the gluing discussed

in sections 2.5 and 3.4

M4(
a1•− · · · −an• )  M4(

a1•− · · · −an• an+1• ) (3.103)

can be achieved with a certain cobordism B
pn+1,qn+1
pn,qn from the family (3.16), which is uniquely

determined by the properties

∂Bpn+1,qn+1
pn,qn = −L(pn, qn) ⊔ L(pn+1, qn+1) (3.104)

b2(B
pn+1,qn+1
pn,qn ) = 1

The cobordism B
pn+1,qn+1
pn,qn can be obtained by joining the cobordism B in example 5 of Table

3 with M4(
−pnpn+1• ). Let us note that the Lens spaces L(p, q) are homologically equivalent

for different values of q and have H1(L(p, q)) = Zp. A manifestation of this fact is that the

abelian Vafa-Witten partition function of the cobordism Bp′,q′
p,q depends only on p and p′, and

is given by

Z
U(1)
VW [Bp′,q′

p,q ]j
′

j =
∑

n∈Z
q

pp′
2

(
n− j

p
+ j′

p′
)2

xpp
′n−p′j+pj′ , j ∈ Zp, j

′ ∈ Zp′ (3.105)

when p and p′ are even.

This gluing procedure can be formally encoded in a quiver diagram where every vertex is

labeled by pair of integers. This quiver can be interpreted as a quiver description of the cor-

responding 2d theory T [M4]. A four manifold with L(p, q) boundary has a “flavor symmetry
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vertex” p, q . When the cobordism Bp′,q′
p,q is glued to it to produce the L(p′, q′) boundary, we

“gauge” the p, q vertex with the p, q vertex of the “bifundamental” p, q p′, q′ .

Let us illustrate this gluing procedure with an example. Consider the plumbing a1• a2• .
We start with the node a1• . The corresponding manifold M4(

a1• ) can be considered as a

cobordism from the empty space to L(a1, 1). Therefore, the quiver associated to it looks like

a1, 1 (3.106)

The boundary of the space after adding the plumbing node a2• is another Lens space L(a1a2 − 1, a2).

This space is obtained by gluing M4(
a1• ) with B

a1,1
a1a2−1,a2

. After “gauging” the node a1, 1 we

get the quiver ✛
✚

✘
✙a1, 1 a1a2 − 1, a2 (3.107)

Clearly, the associated quiver in general depends on the plumbing sequence. We expect

each quiver to give a 2d N = (0, 2) theory and theories associated to the same plumbing to be

dual to each other. For the purposes of computing ZVW, the “flavor symmetry node” stands

for a boundary condition label. “Gauging” this node means summing over all such labels.

Let us consider in more detail how this works in the case when all ai = −2. The 4-

manifold constructed by the plumbing with n nodes is then An, and adding one extra node

(cf. example 4 in Table 3) can be realized by the cobordism Bn+2,n+1
n+1,n . As was explained in

section 3.3, the relevant ingredients have the form:

Z
U(N)
VW [An+1]ρ(q, x) =

∑

λ

Z
U(N)
VW [Bn+2,n+1

n+1,n ]λρ(q, x
⊥)ZU(N)

VW [An]λ(q, x
‖) , (3.108)

Z
U(N)
VW [An]λ = χ

ŝu(n+1)N
λ , (3.109)

Z
U(N)
VW [Bn+2,n+1

n+1,n ]λρ = χ
ŝu(n+2)N /ŝu(n+1)N
λ,ρ . (3.110)

This suggests that T [Bn+2,n+1
n+1,n ] may have a realization in terms of ŝu(n+ 2)N/ŝu(n + 1)N

coset WZW. Direct realization in terms of (0, 2) WZW models considered in [91,92] is difficult

because the coset space does not have a complex structure. However, as we will show below,

it is easy to interpret the Vafa-Witten partition function on Bn+2,n+1
n+1,n if we make a certain

transformation changing discrete labels associated with boundary conditions to continuous

variables. This transformation can be interpreted as a change of basis in TQFT Hilbert spaces

associated to boundaries. Namely, let us define the Vafa-Witten partition function on An in

the continuous basis as

Z
U(N)
VW [An−1](q, x|z) :=

∑

ρ

χ
û(N)n
ρ̃ (q, z)Z

U(N)
VW [An−1]ρ(q, x) (3.111)
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where we used that, due to the level-rank duality, there is a one-to-one correspondence ρ↔ ρ̃

between integrable representations of ŝu(n)N and û(N)n realized by transposing the corre-

sponding Young diagrams. Namely,

χ
û(N)n
ρ̃ (q, z) =

N∑

a=1

χ
û(1)Nn

|ρ|+an (q, z
⊥)χŝu(N)n

σaN (ρt) (q, z
‖) (3.112)

in the notations of the formula (3.98).

The fugacities z in (3.111) can be interpreted as fugacities for flavor symmetry of T [M4]

associated to the boundaryM3 = ∂M4. This symmetry is the gauge symmetry of T [M3]. Glu-

ing two 4-manifolds with along the common boundary M3 corresponds to integrating over z,

that is gauging the common flavor symmetry associated to z. Naively, the fugacities x have

different nature since they are assiciated to 2-cycles, not 3-dimensional boundaries. How-

ever, one can expect a relation between them since one can always produce a 3-dimensional

boundary by excising a tabular neighborhood of a 2-cycle.

It is convenient to introduce the q-theta function defined as:

θ(w; q) :=
∞∏

r=0

(1− qrw)(1 − qr+1/w) = (w; q)∞(q/w; q)∞ (3.113)

where

(w; q)s :=
s−1∏

r=0

(1− wqr) (3.114)

is the q-Pochhammer symbol. From (3.98) it follows then that in the continuous basis the

Vafa-Witten partition function takes a remarkably simple form:

Z
U(N)
VW [An−1](q, x|z) = q−

nN
24

n∏

i=1

N∏

j=1

θ(−q 1
2xizj ; q) (3.115)

where the fugacities x are represented by xi ∈ C∗, i = 1 . . . n satisfying
∏n
i=1 xi = 1.

Now, in the continuous basis, the right hand side of (3.115) can be interpreted as the

flavored elliptic genus (1.9) of nN Fermi multiplets, possibly with a superpotential (to account

for the q shift in the argument). In [74] the transition from the û(Nn)1 character in the right

hand side of (3.115) to the ŝu(n)N character in the right hand side of (3.109) was interpreted

as gauging degerees of freedom of D4-branes obtained by a compactification of M5-branes.

As we show explicitly in appendix B for N = 2 and conjecture for general N , the char-

acters satisfy the following orthogonality condition:
∮

dz

2πiz
IU(N)
V (q, z)χ

û(N)n
λ (q, z)χ

û(N)n
λ′ (q, z) = Cλ(q)δλ,λ′ (3.116)

where

IU(N)
V (q, z) = (q; q)2N∞

∏

i 6=j
θ(zi/zj ; q) (3.117)
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is precisely the index (1.9) of a 2d N = (0, 2) vector multiplet for the gauge group G = U(N).

Let us note that the transormation between the continuous basis and the discrete basis is

similar to the transformation considered in [18] where ordinary, non-affine characters were

used.

If the Vafa-Witten partition function for the cobordism in the continuous basis is defined

as

Z
U(N)
VW [Bn+2,n+1

n+1,n ](q, y|z′, z) =

=
∑

λ,ρ

χ
û(N)n+2

λ (q, z′) · ZU(N)
VW [Bn+2,n+1

n+1,n ]λρ(q, y) · χû(N)n+1
ρ (q, z) · C−1

ρ (q) (3.118)

the relation (3.108) in the continuous basis should translate into the following property:

Z
U(N)
VW [An+1](q, {yn+1, x1/y, . . . , xn+1/y}|z′) =

=

∮ N∏

j=1

dzj
2πizj

IU(N)
V (q, z) Z

U(N)
VW [Bn+2,n+1

n+1,n ](q, y|z′, z) ZU(N)
VW [An](q, {x1, . . . , xn+1}|z)

(3.119)

or, explicitly,

N∏

j=1

(
θ(−q 1

2 yn+1z′j ; q)
n+1∏

i=1

θ(−q 1
2xiz

′
j/y; q)

)
=

=

∮ N∏

j=1

dzj
2πizj

(q; q)2N∞

n+1∏

i=1

θ(−q 1
2xizj ; q)

∏

i 6=j
θ(zi/zj ; q) Z

U(N)
VW [Bn+2,n+1

n+1,n ](q, y|z′, z). (3.120)

The contour prescription is important and we take it to mean as evaluating the residue of

the leading pole. If this is the case, then the following ansatz for Z
U(N)
VW [Bn+2,n+1

n+1,n ] solves the

equation (3.120):

Z
U(N)
VW [Bn+2,n+1

n+1,n ](q, y|z′, z) =

N∏

j=1

θ(−q 1
2 yn+1z′j; q)

N∏

i,j=1

1

θ(z′i/(zjy); q)
. (3.121)

The poles of the integral come from the denominator. They are at zi = z′σ(i)/y for some

permutation σ. After summing over all poles we end up with the desired result. From the form

of the partition function we see that the cobordism corresponds to the theory of bifundamental

chiral multiplets along with a fundamental Fermi multiplet. The Fermi multiplet itself can

be associated to the 2-cycle in the cobordism which increases the second Betti number b2 by

1.

Following the same reasoning one can deduce the partition function of the cobordism

B transforming An1−1 ⊔ . . . ⊔ Ans−1  An1+...+ns−1. Consider s = 2 for simplicity. Then,
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Z
U(N)
VW [B] must satisfy

Z
U(N)
VW [Ak+l−1](q, {ylx1, . . . , xlxk, y−kw1, . . . , y

−kwl}|z′) =

=

∮ N∏

j=1

dzj
2πizj

dz̃j
2πiz̃j

IU(N)
V (q, z) IU(N)

V (q, z̃) Z
U(N)
VW [B](q, y|z′, z, z̃) ×

× Z
U(N)
VW [Ak−1](q, {x1, . . . , xk}|z) ZU(N)

VW [Al−1](q, {w1, . . . , wl}|z) (3.122)

N∏

j=1

k∏

i=1

θ(−q 1
2 ylxiz

′
j ; q)

l∏

i=1

θ(−q 1
2x−kwiz

′
j ; q) =

=

∮ N∏

j=1

dzj
2πizj

(q; q)2N∞
∏

i 6=j
θ(zi/zj ; q)

N∏

j=1

k∏

i=1

θ(−q 1
2xizj ; q)×

×
∮

dz̃j
2πiz̃j

(q; q)2N∞
∏

i 6=j
θ(z̃i/z̃j ; q)

N∏

j=1

l∏

i=1

θ(−q 1
2wiz̃j ; q)×

× ZU(N)
VW [B](q, y|z′, z, z̃) (3.123)

In this case, the following ansatz solves the equation:

Z
U(N)
VW [B](q, y|z′, z, z̃) =

∏

i,j

1

θ(ylz′i/zj ; q)

∏

i,j

1

θ(y−kz′i/z̃j ; q)
. (3.124)

As we can see, this is the index of two sets of bifundamental chiral multiplets, cf. [15]. For

a general cobordism An1−1 ⊔ . . . ⊔ Ans−1  An1+...+ns−1, the corresponding 2d N = (0, 2)

theory is that of s sets of bifundamental chiral multiplets.

3.7 Handle slides

Another source of identities on the partition functions is handle slide moves described in

section 2. Consider the following simple example. First, let us note that since L(p, p − 1) ∼=
L(p, 1) the cobordism B for

M4(
−p• )

B
 M4(

−p• −1• ) (3.125)

is the same (although we glue along the different component of ∂B) as for

Ap−2
B
 Ap−1 (3.126)

Therefore,

Z
U(N)
VW [B]λρ = χ

ŝu(p)N/ŝu(p−1)N
λ,ρ . (3.127)

as we argued in section 3.3. On the other hand, sliding a 2-handle gives the following relation,

cf. (2.2):

M4(
−p• −1• ) ∼= M4(

−(p−1)• −1• ) . (3.128)
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Taking into account (3.93) one can expect that

∑

ρ

χ
ŝu(p)N/ŝu(p−1)N
λ,ρ Z

U(N)
VW [M4(

−p• )]ρ = χ̃û(N)1 Z
U(N)
VW [M4(

−(p−1)• )]λ . (3.129)

One can consider more complicated handle slides, for example:

−p• −1• −→ −p• −(p−1) −(p−1)• −→ −4p+3• −2(p−1) −(p−1)• (3.130)

which gives the equation

∑

ρ

Z
U(N)
VW [Bp−1,1

4p−3,1]
λ
ρ Z

U(N)
VW [M4(

−4p+3• )]ρ = χ̃û(N)1 Z
U(N)
VW [M4(

−(p−1)• )]λ .

4. Bottom-up approach: from 2d (0, 2) theories to 4-manifolds

As explained in section 2, a 4-manifold M4 with boundary M3 = ∂M4 defines a half-BPS

(B-type) boundary condition in a 3d N = 2 theory T [M3], such that the boundary degrees of

freedom are described by a 2d N = (0, 2) theory T [M4]. Similarly, a cobordism between M−
3

andM+
3 corresponds to a wall between 3d N = 2 theories T [M−

3 ] and T [M+
3 ] or, equivalently

(via the “folding trick”), to a B-type boundary condition in the theory T [M+
3 ]×T [−M−

3 ], etc.

Therefore, one natural way to approach the correspondence between 4-manifolds and 2d

(0, 2) theories T [M4] is by studying half-BPS boundary conditions in 3d N = 2 theories. For

this, one needs to develop sufficient technology for constructing such boundary conditions,

which will be the goal of the present section.

4.1 Chiral multiplets and 3d lift of the Warner problem

The basic building blocks of 3d N = 2 theories, at least those needed for building theories

T [M3], are matter multiplets (chiral superfields) and gauge multiplets (vector superfields)

with various interaction terms: superpotential terms, Fayet-Illiopoulos terms, Chern-Simons

couplings, etc.

Therefore, we start by describing B-type boundary conditions in a theory of n chiral mul-

tiplets that parametrize a Kähler target manifold X. Examples of such boundary conditions

were recently studied in [93] and will be a useful starting point for our analysis here. After

reformulating these boundary conditions in a more geometric language, we generalize this

analysis in a number of directions by including gauge fields and various interaction terms.

In order to describe boundary conditions that preserve N = (0, 2) supersymmetry on the

boundary it is convenient to decompose 3d N = 2 multiplets into multiplets of 2d N = (0, 2)

supersymmetry algebra, see e.g. [94]. Thus, each 3d N = 2 chiral multiplet decomposes

into a bosonic 2d (0, 2) chiral multiplet Φ and a fermionic chiral multiplet Ψ, as illustrated

in Table 4. Then, there are two obvious choices of boundary conditions that either impose

Neumann conditions on Φ and Dirichlet conditions on Ψ, or vice versa. In the first case, the

surviving (0, 2) multiplet parametrizes a certain holomorphic submanifold Y ⊂ X, whereas
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N = (2, 2) supersymmetry N = (0, 2) supersymmetry

vector superfield Fermi + adjoint chiral

(twisted chiral superfield) (Λ,Σ)

chiral superfield chiral + Fermi

(Φ,Ψ)

superpotential (0, 2) superpotential

W(Φ) J = ∂W
∂Φ

charge qΦ E = i
√
2 qΦΣΦ

Table 4: Decomposition of N = (2, 2) superfields and couplings into (0, 2) superfields and couplings.

the second choice leads to left-moving fermions that furnish a holomorphic bundle E over

Y . Put differently, a choice of a Kähler submanifold Y ⊂ X determines a B-type boundary

condition in a 3d N = 2 sigma-model on X, such that 2d boundary theory is a (0, 2) sigma-

model with the target space Y and a holomorphic bundle E = TX/Y , the normal bundle to Y

in X:
Φi : Neumann

Ψi : Dirichlet

}
⇒ Y ⊂ X (4.1)

Φi : Dirichlet

Ψi : Neumann

}
⇒ E = TX/Y (4.2)

Now let us include superpotential interactions.

3d matrix factorizations

In general, there are three types of holomorphic couplings in 2d (0, 2) theories that play the

role of a superpotential. The first type already appears in the conditions that define bosonic

and fermionic chiral multiplets:

D+Φi = 0 , D+Ψj =
√
2Ej(Φ) (4.3)

Here, Ej(Φ) are holomorphic functions of chiral superfields Φi. The second type of holomor-

phic couplings J i(Φ) can be introduced by the following terms in the action

SJ =

∫
d2xdθ+ΨiJ

i(Φ) + c.c. (4.4)

where, as in the familiar superpotential terms, the integral is over half of the superspace. In

a purely two-dimensional (0, 2) theory, supersymmetry requires

∑

i

EiJ
i = 0 (4.5)
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However, if a 2d (0, 2) theory is realized on the boundary of a 3d N = 2 theory that has a

superpotential W(Φ), then the orthogonality condition E · J = 0 is modified to

E(Φ) · J(Φ) = W(Φ) (4.6)

This modification comes from a three-dimensional analog of the “Warner problem” [95], and

reduces to it upon compactification on a circle. It also leads to a nice class of boundary

conditions that are labeled by factorizations (or, “matrix factorizations”) of the superpotential

W(Φ) and preserve N = (0, 2) supersymmetry. For example, a 3d N = 2 theory with a single

chiral superfield and a superpotential W = φk has k + 1 basic boundary conditions, with

(0, 2) superpotential terms

J(φ) = φm , E(φ) = φk−m , m = 0, . . . , k (4.7)

To introduce the last type of holomorphic “superpotential” couplings in (0, 2) theories,

we note that in 2d theories with (2, 2) supersymmetry there are two types of F-terms: the

superpotential W and the twisted superpotential W̃. In a dimensional reduction from 3d,

the latter comes from Chern-Simons couplings. The distinction between these two types

of F-terms is absent in theories with only (0, 2) supersymmetry. In particular, they both

correspond to couplings of the form (4.4) with J = ∂W
∂Φ or J̃ = ∂W̃

∂Σ , except in the latter case

one really deals with the field-dependent Fayet-Illiopoulos (FI) terms:

SFI =

∫
d2xdθ+ ΛiJ̃

i(Σ,Φ) + c.c. (4.8)

where the Fermi multiplet Λi is the gauge field strength of the i-th vector superfield. The

possibility of such holomorphic couplings is very natural from the (mirror) symmetry between

the superpotential and twisted superpotential in (2, 2) models. However, the importance of

such terms and, in particular, the fact that they can depend on charged chiral fields was

emphasized only recently [96]. The novelty of these models is that classically they are not

gauge invariant, but nevertheless can be saved by quantum effects. This brings us to our next

topic.

4.2 Anomaly Inflow

Now we wish to explain that not only the coupling of a 2d N = (0, 2) theory T [M4] to a 3d

N = 2 theory T [M3] on a half-space is convenient, but in many cases it is also necessary.

In other words, by itself a 2d theory T [M4] associated to a 4-manifold with boundary may

be anomalous. Such theories, however, do appear as building blocks in our story since the

anomaly can be canceled by inflow from the 3d space-time where T [M3] lives [97].

In this mechanism, the one-loop gauge anomaly generated by fermions in the 2d (0, 2)

theory T [M4] is typically balanced against the boundary term picked up by anomalous gauge

variation of the classical Chern-Simons action in 3d N = 2 theory T [M3]. Essentially the same

anomaly cancellation mechanism — with Chern-Simons action in extra dimensions replaced
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by a WZW model — was used in a wide variety of hybrid (0, 2) models [91,92,98–100], where

the chiral fermion anomaly and the classical anomaly of the gauged WZW model were set to

cancel each other out. In particular, our combined 2d-3d system of theories T [M4] and T [M3]

provides a natural home to the “fibered WZW models” of [99], where the holomorphic WZW

component is now interpreted as Chern-Simons theory in extra dimension.

The simplest example — already considered in this context in [15] — is an abelian 3d

N = 2 Chern-Simons theory at level k. In the presence of a boundary, it has k units of

anomaly inflow which must be canceled by coupling to an “anomalous heterotic theory”

∂µJ
µ =

AR −AL
2π

αǫµνFµν (4.9)

whose left-moving and right-moving anomaly coefficients are out of balance by k units:

AR −AL = k (4.10)

Boundary conditions for N = 2 Chern-Simons theories

In general, there can be several contributions to the anomaly coefficients AL,R and, cor-

respondingly, different ways of meeting the anomaly cancellation condition like (4.10). In

the case of a single U(1) gauge symmetry, there is, of course, a familiar contribiution from

fermions transforming in chiral representations of the gauge group,

AR =
∑

r:chiral

q̃2r (4.11a)

AL =
∑

ℓ:Fermi

q2ℓ (4.11b)

where q̃r and qℓ are the charges of (0, 2) chiral and Fermi multiplets, respectively.

Besides the chiral anomaly generated by charged Weyl fermions, there can be an addi-

tional contribution to (4.10) from field-dependent Fayet-Illiopoulos couplings (4.8), such as

“charged log interactions”:

J̃ =
i

8π

∑

r

Nr log (Φr) (4.12)

which spoils gauge invariance at the classical level. As explained in [96] such terms contribute

to the anomaly

∆AR = −
∑

r:chiral

q̃rNr (4.13)

and arise from integrating out massive pairs of (0, 2) multiplets with unequal charges. Note

the sign difference in (4.11a) compared to (4.13).

This can be easily generalized to a 2d-3d coupled system with gauge symmetry U(1)n.

Namely, let us suppose that 3d N = 2 theory in this combined system contains Chern-Simons

interactions with a matrix of “level” coefficients kij , much like our quiver Chern-Simons

theory (2.25) associated to a plumbing graph Υ. And suppose that on a boundary of the 3d
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space-time it is coupled to some interacting system of (0, 2) chiral and Fermi multipets that,

respectively, carry charges q̃ir and q
i
ℓ under U(1)n symmetry, i = 1, . . . , n. In addition, for the

sake of generality we assume that the Lagrangian of the 2d (0, 2) boundary theory contains

field-dependent FI terms (4.8) with

J̃ i =
i

8π

∑

r

N i
r log (Φr) (4.14)

Then, the total anomaly cancellation condition for the coupled 2d-3d system — that combines

all types of contributions (4.10), (4.11), and (4.13) — has the following form:
∑

r:chiral

q̃ir q̃
j
r −

∑

ℓ:Fermi

qiℓq
j
ℓ −

∑

r:chiral

q̃(ir N
j)
r = kij (4.15)

which must be satisfied for all values of i, j = 1, . . . , n. Note, that each of the contributions on

the left-hand side can be viewed as a “matrix factorization” of the matrix of Chern-Simons

coefficients. In particular, the term
∑
q̃
(i
r N

j)
r is simply the (symmetrized) product of the

matrix of chiral multiplet charges and the matrix of the boundary superpotential coefficients,

which altogether can be viewed as a “twisted superpotential version” of the condition (4.6),

with (2.27) and (4.14).

Suppose for simplicity that we have a theory of free chiral and Fermi multiplets. The

elliptic genus of this theory is simply

I(q, x) =
∏
ℓ:Fermi θ(

∏
i x

qiℓ
i ; q)∏

r:chiral θ(
∏
i x

q̃ir
i ; q)

(4.16)

In [101] it was argued that the right hand side can be interpreted as the “half-index” of CS

theory, that is the partition function on S1 ×q D which has boundary S1 ×q S1 ∼= T 2 with

modulus τ . Following [15] one can argue that this theory is equivalent to the quiver CS

theory with coefficients kij living in the half-space on the left of 2d worldvolume. That is,

the original 2d-3d system is equivalent to CS theory in the whole space. The relation

kij =
∑

r:chiral

q̃irq̃
j
r −

∑

ℓ:Fermi

qiℓq
j
ℓ (4.17)

can be deduced by considering the limit q → 1 using that θ(x; q) ∼ exp{−(log x)2/(2 log q)}
Now, one can apply this to 3d N = 2 theories T [M3;G] that come from fivebranes on 3-

manifolds. Luckily, many of these theories — even the ones coming from multiple fivebranes,

i.e. associated with non-abelian G— admit a purely abelian UV description, for which (4.15)

should suffice. Hence, using the tools explained here one can match 4-manifolds to specific

boundary conditions that preserve N = (0, 2) supersymmetry in two dimensions.

4.3 From boundary conditions to 4-manifolds

Let us start with boundary conditions that can be described by free fermions. Clearly, these

will give us the simplest examples of 2d (0, 2) theories T [M4], some of which have been already

anticipated from the discussion in the previous sections.
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In particular, we expect to find free fermion description of theories T [M4(Υ)] for certain

plumbing graphs Υ. In the bottom-up approach of the present section, we construct such

theories as boundary conditions in 3d N = 2 theories T [M3] associated with M3 = ∂M4.

Thus, aiming to produce a boundary condition for the N = 2 quiver Chern-Simons theory

(2.25), let us associate a symmetry group U(1)i to every vertex i ∈ Υ of the plumbing graph.

Similarly, to every edge between vertices “i” and “j” we associate a Fermi multiplet carrying

charges (+1,−1) under U(1)i × U(1)j . Then, its contribution to the gauge anomaly (4.15)

is given by the matrix of anomaly coefficients that is non-trivial only in a 2 × 2 block (that

corresponds to rows and columns with labels “i” and “j”):

−AL =

(
−1 1

1 −1

)
(4.18)

To ensure cancellation of the total anomaly, a combination of such contributions must be

set to equal the matrix of Chern-Simons coefficients kij , which for the quiver Chern-Simons

theory (2.25) is given by the symmetric bilinear form (2.8). Therefore, by comparing (4.18)

with (2.8), we immediately see that assigning U(1) factors to vertices of the plumbing graph Υ

and “bifundamental” charged Fermi multiplets to edges already accounts for all off-diagonal

terms (with i 6= j) in the intersection form Q.

Also, note that contributions of charged Fermi multiplets to the diagonal elements of the

anomaly matrix are always negative, no matter what combination of contributions (4.18) or

more general charge assignments in (4.15) we take. This conclusion, of course, relies crucially

on the signs in (4.15) and has an important consequence: only negative definite intersection

forms Q can be realized by free Fermi multiplets.

For example, in the case of the An plumbing graph shown in Figure 1, we have M3 =

L(n + 1, n), and the N = 2 quiver Chern-Simons theory T [L(n + 1, n);U(1)] has matrix of

Chern-Simons coefficients of the form (2.6) with ai = −2, i = 1, . . . , n. By combining (4.18)

with two extra Fermi multiplets of charges ±1 under the first and the last U(1) factors, we

can realize the An intersection form as the anomaly matrix in the following 2d N = (0, 2)

theory:

T [M4(An);U(1)] = Fermi multiplets Ψℓ=0,...,n (4.19)

with charges

q(Ψℓ) =





+1 under U(1)1, if ℓ = 0

(−1,+1) under U(1)ℓ × U(1)ℓ+1, if 1 ≤ ℓ < n

−1 under U(1)n, if ℓ = n

(4.20)

Note, the total number of Fermi multiplets in this theory is n + 1, which is precisely the

number of Taub-NUT centers in the ALE space of type An.

Let us briefly pause to discuss the structure of the charge matrix (qiℓ)
i=1,...,n
ℓ=0,...,n in (4.20).

First, it is easy to see that each of the U(1)n gauge symmetries is “vector-like” in a sense
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that the charges add up to zero for every U(1) factor. Also note that redefining the charges

qnℓ 7→ q1ℓ + 2q2ℓ + 3q3ℓ + . . . + nqnℓ for all Fermi multiplets as in (2.90) gives a new matrix of

charges that, via (4.15), leads to a new matrix of Chern-Simons coefficients:

Q = An−1 ⊕ 〈−n(n+ 1)〉 (4.21)

which splits into a matrix of Chern-Simons coefficients for a similar U(1)n−1 theory and an

extra N = 2 Chern-Simons term at level −n(n+1). In this basis we recognize the statement

— explained in section 2.5 through a variant of the “Norman trick” [77,78] — that a sphere

plumbing with Υ = An can be built from the An−1 sphere plumbing by a cobordism (attaching

a 2-handle) with the intersection form QB = 〈−n(n+ 1)〉, cf. (2.91).
This observation has a nice physical interpretation in the coupled 2d-3d system described

in section 2.5 and illustrated in Figures 14 and 15. Namely, the system of Fermi multiplets

(4.19)–(4.20) without Ψn is simply the 2d N = (0, 2) theory T [M4(An−1);U(1)] that can can-

cel anomaly and define a consistent boundary condition in the 3d N = 2 Chern-Simons theory

T [M3(An−1);U(1)] associated to the plumbing graph Υ = An−1 by the general rule (2.25). In

the new basis, the extra U(1)i=n symmetry (which is not gauged in T [M3(An−1);U(1)]) is, in

fact, an axial symmetry under which all Ψℓ=0,...,n−1 have charge +1. Gauging this symmetry

and adding an extra Fermi multiplet that in the new basis has charge −n under U(1)i=n
gives precisely the 2d-3d system of 3d N = 2 quiver Chern-Simons theory T [M3(An);U(1)]

coupled to the 2d N = (0, 2) theory T [M4(An);U(1)] on the boundary. This way of building

T [M4(An);U(1)] corresponds to a fusion of the fully transmisive domain wall that carries Ψn

with a boundary theory T [M4(An−1);U(1)], as illustrated in Figures 14 and 15.

And, last but not least, in the matrix of charges (qiℓ)
i=1,...,n
ℓ=0,...,n given in (4.20) one can rec-

ognize simple roots αi=1,...,n of the An root system. This suggests immediate generalizations.

For instance, for a 4-manifold (2.93) whose plumbing graph Υ = D4 contains a trivalent

vertex, we propose the “trinion theory” T [⊥] to be a theory of four Fermi multiplets with the

following charge assignments under the U(1)4 flavor symmetry group:

−2•

−2• •
−2

−2•
: (qiℓ)trinion =




1 −1 0 0

0 1 −1 0

0 0 1 −1
0 0 1 1


 (4.22)

The rows of this matrix are simple roots of the D4 root system associated to the plumbing

graph Υ, while the columns are the charge vectors of the Fermi multiplets Ψℓ=1,...,4. Sub-

stituting this into (4.15), we conclude that this 2d trinion theory can precisely cancel the

anomaly of the 3d N = 2 Chern-Simons theory with gauge group U(1)4 and the matrix of

Chern-Simons coefficients:

(Qij) =




−2 1 0 0

1 −2 1 1

0 1 −2 0

0 1 0 −2


 (4.23)
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which equals minus the Cartan matrix of the D4 root system. This is in complete agreement

with our general proposal (2.25) that T [M4(Υ)] defines a consistent, non-anomalous boundary

condition for the 3d N = 2 theory T [M3(Υ)], which in the present case is simply the quiver

Chern-Simons theory defined by the symmetric bilinear form (2.8).

In section 2.3 we saw that An linear plumbing can be naturally glued to a twisted D2

bundle over S2 with Euler number −(n+1) since they share the same boundary (with opposite

orientation, as required for gluing). In particular, the latter 4-manifold is represented by the

Kirby diagram (2.3) with p = n+ 1 and has boundary M3 = L(n+ 1, 1).

The corresponding 3d N = 2 theory T [L(n+1, 1);U(1)] was derived in (2.33): it is a U(1)

Chern-Simons theory at level −(n+1). This theory can be related to the U(1)n quiver Chern-

Simons theory T [L(n + 1, n);U(1)], cf. (2.39), by a sequence of dualities (3d Kirby moves)

described in section 2.3. In particular, this chain of dualities shows that T [L(n+ 1, n);U(1)]

and T [L(n+ 1, 1);U(1)] are related by a parity transformation (2.53):

T [L(n+ 1, n)] ≃ P ◦ T [L(n+ 1, 1)] (4.24)

which, of course, is expected to hold for any G, not just G = U(1).

Given the explicit description of the 3d N = 2 theory T [L(n+1, 1);U(1)], one can study

B-type boundary conditions and try to match those with 4-manifolds bounded by L(n+1, 1).

The anomaly cancellation condition (4.15) suggests several possible candidates for the (0, 2)

boundary theory T [M4]:

a) n+1 Fermi multiplets of charge ±1 (or, more generally, a collection of Fermi multiplets

whose charges squared add up to n+ 1);

b) a single (0, 2) chiral multiplet Φ of charge q̃Φ = +1 and charged log interaction (4.14)

with NΦ = n+ 2.

Non-abelian generalizations and cobordisms

It is straightforward to extend this discussion to boundary theories and theories T [M4;G]

trapped on walls for non-abelian G. Even if G is non-abelian, theories T [M4;G] and T [M3;G]

often admit (multiple) UV definitions that only involve abelian gauge fields. In some cases,

however, it is convenient to build T [M4;G] and T [M3;G] using non-abelian gauge symmetries.

For instance, the Lens space theory (2.40) proposed in section 2.2 is a good example.

In order to accommodate such examples, we need to discuss 2d (0, 2) theories with non-

abelian gauge symmetries, which by itself is a very interesting subject that does not appear

to be explored in the literature on (0, 2) heterotic models. Specifically, consider a general 2d

theory with (0, 2) chiral multiplets Φr that transform in representations R̃r of the gauge group

G and Fermi multiplets Ψℓ in representations Rℓ. The corresponding fermions couple to the

non-abelian gauge field via the usual covariant derivatives, e.g. for left-moving fermions in

Fermi multiplets we have

(Dz)ij = δij∂z +
∑

a

Aaz(T
a
Rℓ
)ij
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and similarly for chiral multiplets. Here, T aR are matrices of size dim(R)× dim(R) that obey

the same commutation relations as the generators T a of the Lie algebra Lie (G). (The latter

correspond to the fundamental representation.) Then, the anomaly cancellation condition in

such a theory has the form, cf. (4.15),

∑

r:chiral

Tr [T a
R̃r
T b
R̃r

]−
∑

ℓ:Fermi

Tr [T aRℓ
T bRℓ

] = (k+ − k−) · Tr [T aT b] (4.25)

where, in order to diversify our applications, we now assumed that the inflow from three

dimensions has two contributions, from Chern-Simons couplings at levels k+ and k−, respec-
tively. This more general form of the anomaly inflow is realized in a 2d (0, 2) theory trapped

on a domain wall between 3d N = 2 theories T [M+
3 ] and T [M−

3 ].

The anomaly cancellation condition (4.25) can be written more succinctly by using the

index C(R) of a representation R defined via Tr
(
T aRT

b
R

)
= C(R)δab. For example, for the

fundamental and adjoint representations of G = SU(N) we have C(fund) = 1
2 and C(Adj) =

N , respectively. In general,

C(R) = hR
dim(R)

dim(Adj)
(4.26)

where hR is the quadratic Casimir of the representation R.

Now we can apply (4.25), say, to the Lens space theory (2.40). We conclude that a

domain wall that carries a Fermi multiplet Ψ in the fundamental representation of G = U(N)

changes the level of the N = 2 Chern-Simons theory by one unit,

k+ − k− = −1 (4.27)

This is consistent with our proposal, based on matching the Vafa-Witten partition func-

tion with the superconformal index, that the cobordism B that relates Ap and Ap+1 sphere

plumbings corresponds to a domain wall which carries 2d (0, 2) theory

T [B;U(N)] = Fermi multiplet Ψ in the fundamental representation (4.28)

The fusion of such domain walls is clearly non-singular and gives

T [M4(Ap);U(N)] = p+ 1 Fermi multiplets Ψℓ=0,...,p in N -dimn’l representation

In fact, the wall in this example is fully transmissive. Notice, as in (4.19), the total number

of Fermi multiplets in this theory is greater (by one) than the number of 2-handles in M4 and

equals the number of Taub-NUT centers in the ALE space of type Ap.

5. Future directions

There are many avenues along which one can continue studying 2d N = (0, 2) theories T [M4]

labeled by 4-manifolds. The most obvious and/or iteresting items on the list include:
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• Examples: While focusing on the general structure, we presented a number of con-

crete (abeliean and non-abelian) examples of: a) theories labeled by 4-manifolds and

3-manifolds, b) dualities that correspond to Kirby moves, c) relations between cosets

and Vafa-Witten partition functions, and d) B-type walls and boundary conditions in

3d N = 2 theories. Needless to say, it would certainly be interesting to extend our list

of examples in each case.

In particular, it would be interesting to study 2d N = (0, 2) theories T [M4] associated

with 4-manifolds that are not definite or not simply-connected. Such examples clearly

exist (e.g. for M4 = T 2 × Σg or M4 = K3, possibly with “frozen singularities” [102,

103]), but still remain rather isolated and beg for a more systematic understanding,

similar to theories labeled by a large class of negative definite simply-connected 4-

manifolds (2.1) considered in this paper. Thus, in section 2 we briefly discussed a natural

generalization to plumbings of twisted D2 bundles over genus-g Riemann surfaces. It

would be interesting to see what happens to the corresponding theories T [M4] when

Riemann surfaces have boundaries / punctures and to make contact with [18].

• 4-manifolds with corners: Closely related to the last remark is the study of 4-

manifolds with corners. Although such situations were encountered at the intermediate

stages in section 2.2, we quickly tried to get rid of 3-manifolds with boundaries per-

forming Dehn fillings. It would be interesting to study whether Vafa-Witten theory

admits the structure of extended TQFT and, if it does, pursue the connection with

gluing discussed in section 2.2.

• Smooth structures: As was already pointed out in the introduction, it would be

interesting to understand what the existence of a smooth structure on M4 means for

the corresponding 2d N = (0, 2) theory T [M4]. We plan to tackle this problem by

studying surface operators in the fivebrane theory.

• Large N limit: It would be interesting to study the large N behavior of the Vafa-

Witten partition function on plumbing 4-manifolds and make contact with holographic

duals.

• Non-abelian (0, 2) models: It appears that not much is known about non-abelian 2d

(0, 2) gauge dynamics. While in general abelian (gauge) symmetries suffice for buidling

theories T [M4] and T [M3], in sections 2.2 and 4.3 we saw some examples where using

non-abelian symmetries is convenient.

• Defect junctions: One important property of defect lines and walls is that they can

form complicated networks and foam-like structures. Following the hints from sections

2.2–2.4 it would be interesting to understand if these play any role in the correspondence

between 4-manifolds and 2d (0, 2) theories.
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• Triangulations: Since a basic d-dimensional simplex has d + 1 vertices, the Pachner

moves in d dimensions involve adding one more vertex and then subdiving the resulting

(d+2)-gon into basic simplices. In particular, for d = 4 such subdivisions always give a

total of 6 simplices, resulting in 3− 3 and 2− 4 Pachner moves for 4-manifolds [104]. It

would be interesting to find a special function (analogous to the quantum dilogarithm

for 2 − 3 Pachner moves in case of 3-manifolds) that enjoys such identities. Pursuing

this approach, however, one should keep in mind that not every 4-manifold can be

triangulated. Examples of non-triangulable 4-manifolds include some natural cases

(such as Freedman’s E8 manifold mentioned in the Introduction) on which the fivebrane

theory is expected to be well defined and interesting.
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A. M5-branes on calibrated submanifolds and topological twists

We study the twisted compactification of 6d (2, 0) theory on a four-manifold M4. In each of

the cases listed in Table 5, such compactification produces a superconformal theory T [M4] in

the two non-compact dimensions. Via the computation of the T 2 partition function explained

in the main text, the cases a), b), and c) correspond to previously studied topological twists

of N = 4 super-Yang-Mills which, in turn, are summarized in Table 6.

Specifically, in the first case a) the N = 4 SYM is thought of as an N = 2 gauge theory

with an extra adjoint multiplet and the Donaldson-Witten twist [106]. Its path integral

localizes on solutions to the non-abelian monopole equations. The untwisted rotation group

of the DW theory is then twisted by the remaining SU(2) symmetry to obtain the case b).

This twist (a.k.a. GL twist) was first considered by Marcus [107] and related to the geometric

Langlands program in [40]. The last case c) is of most interest to us as it corresponds to (0, 2)

SCFT in 2d. On a 4-manifold M4, this twist is the standard Vafa-Witten twist [13].
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R-symmetry SO(5) ⊃ Embedding of M4 SUSY Solution Metric on M4

a) SO(4) ⊃ SU(2) × SU(2) Cayley in Spin(7) (0, 1) AdS3 ×M4 Conf. half-flat

b) SO(4) Lagrangian in CY4 (1, 1) AdS3 ×M4 Const. curvature

c) SO(2)× SO(3) Coassociative in G2 (0, 2) AdS3 ×M4 Conf. half-flat

d) SO(2) × SO(2) Kähler in CY4 (0, 2) AdS3 ×M4 Kähler-Einstein

e) SO(4) ⊃ U(2) ⊃ U(1) Kähler in CY3 (0, 4) AdS3 × S2 × CY3 Kähler-Einstein

f) SO(4) ⊃ U(2) Complex Lagrangian in (1, 2) AdS3 ×M4 Kähler-Einstein w/

d = 8 hyper-Kähler Const. hol. sec. curv.

g) SO(4) ⊃ SO(2) × SO(2) (M2 ⊂ CY2)× (M ′
2 ⊂ CY2) (2, 2) AdS3 ×M2 ×M ′

2 Const. curvature

Table 5: Supersymmetric M5 brane compactifications on a negatively curved 4-manifold M4. In the

first column we box the subgroup of SO(5) R-symmetry of the M5 brane theory that is used to twist

away the holonomy (or its subgroup) on M4. Except in the case e), all the AdS3 solutions are already

found in 7d supergravity and can be lifted to 11d by fibering S4 over M4, see e.g. [22–24]. In the case

e), the solution is found only in 11d supergravity. For manifolds M4 with general holonomy (but still

some restrictions on the metric), only the compactifications a), b), and c) are allowed. In this paper,

we focus on the case c) as it produces (0, 2) superconformal theory in two dimensions. In this case,

M4 is conformally half-flat; see e.g. [105] for moduli of conformally half-flat structures.

R symmetry SO(6) ⊃ Name Equations

a) SO(2)× SU(2) × SU(2) Donaldson-Witten F+
αβ + [M (α,Mβ)] = 0

Dαα̇M
α = 0

b) SO(2)× SU(2) × SU(2) Marcus / GL F+
µν − i[Vµ, Vν ]+ = 0

(D[µVν])
− = 0 = DµV µ

c) SO(3)× SO(3) Vafa-Witten DµC +
√
2DνB+

νµ = 0

F+
µν − i

2
[B+

µτ , B
+τ
ν ]− i√

2
[B+

µν , C] = 0

Table 6: Topological twists of N = 4 super-Yang-Mills.

B. Orthogonality of affine characters

The Weyl-Kac formula for affine characters of ŝu(2)k is

χ
ŝu(2)k
λ (q, a) =

Θ
(k+2)
λ+1 (a; q)−Θ

(k+2)
−λ−1(a; q)

Θ
(2)
1 (a; q)−Θ

(2)
−1(a; q)

(B.1)

where

Θ
(k)
λ (a; q) := e−2πikt

∑

n∈Z+λ/2k
qkn

2
akn = e−2πiktq

λ2

4k

∑

n

qkn
2+λnakn+λ (B.2)
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Using the Weyl-Kac denominator formula the character can be rewritten as

χ
ŝu(2)k
λ (q, a) =

e−2πi(k+2)tq
(λ+1)2

4(k+2)
∑

n q
(k+2)n2

a(k+2)n(q(λ+1)na(λ+1) − q−(λ+1)na−(λ+1))

a−1(q; q)θ(a2; q)
.

(B.3)

Consider the integral

∮
da

2πia
(q; q)2∞θ(a

2; q)θ(a−2; q)χ
ŝu(2)k
λ (q, a)χ

ŝu(2)k
λ′ (q, a)

= e−2πi(k+2)tq
(λ+1)2

4(k+2)
+ (λ′+1)2

4(k+2) ×

×
∑

n,m

[
q(k+2)(n2+m2)+(λ+1)n+(λ′+1)m

∮
da

2πia
a(k+2)(n+m)+(λ+1)+(λ′+1)

− q(k+2)(n2+m2)+(λ+1)n−(λ′+1)m

∮
da

2πia
a(k+2)(n−m)+(λ+1)−(λ′+1)

− q(k+2)(n2+m2)−(λ+1)n+(λ′+1)m

∮
da

2πia
a(k+2)(−n+m)−(λ+1)+(λ′+1)

+ q(k+2)(n2+m2)−(λ+1)n−(λ′+1)m

∮
da

2πia
a(k+2)(−n−m)−(λ+1)−(λ′+1) ∝ δλ,λ′ (B.4)

This shows that ŝu(2)k characters are orthogonal with respect to the measure

(q; q)2∞θ(a
2; q)θ(a−2; q) (B.5)

but this measure is exactly the index of SU(2) (0, 2) vector multiplet. The orthogonality

of û(1)k characters can be verified in a similar way. We conjecture that ŝu(N)k (û(N)k)

characters are orthogonal with respect to SU(N) (U(N)) vector multiplet measure as well.
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