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FIVES: a Fundus Image Dataset for 
Artificial Intelligence based Vessel 
Segmentation
Kai Jin  1,5, Xingru Huang2,5, Jingxing Zhou1,5, Yunxiang Li3, Yan Yan1, Yibao Sun2, 
Qianni Zhang2, Yaqi Wang4,6 ✉ & Juan Ye1,6 ✉

Retinal vasculature provides an opportunity for direct observation of vessel morphology, which is 
linked to multiple clinical conditions. However, objective and quantitative interpretation of the retinal 
vasculature relies on precise vessel segmentation, which is time consuming and labor intensive. 
Artificial intelligence (AI) has demonstrated great promise in retinal vessel segmentation. The 
development and evaluation of AI-based models require large numbers of annotated retinal images. 
However, the public datasets that are usable for this task are scarce. In this paper, we collected a color 
fundus image vessel segmentation (FIVES) dataset. The FIVES dataset consists of 800 high-resolution 
multi-disease color fundus photographs with pixelwise manual annotation. The annotation process 
was standardized through crowdsourcing among medical experts. The quality of each image was also 
evaluated. To the best of our knowledge, this is the largest retinal vessel segmentation dataset for 
which we believe this work will be beneficial to the further development of retinal vessel segmentation.

Background & Summary
Retinal vasculature is a reliable reflection of vessel morphologic changes, which have been demonstrated to 
relate to numerous clinical conditions, including both ophthalmological and systemic diseases. Diabetic retin-
opathy (DR), age-related macular degeneration (AMD), and glaucoma are major blindness-causing diseases1. 
Multiple studies have investigated the relationship between retinal vasculature characteristics and these ocular 
diseases2–4. Some life-threatening systemic diseases can also be reflected in fundus images, such as cardiovas-
cular diseases5 and neurological disorders6. Several retinal vessel morphometrics are thought to be linked to 
disease risk and progression7–10. Retinal vessel segmentation, which means the extraction of visible vasculature 
from a fundus image (Fig. 1a), is the preliminary step to objectively assessing the fundus image vasculature and 
quantitatively interpreting the morphometrics.

Retinal vessel segmentation is a challenging task, considering that age, ophthalmic disease, and photograph 
conditions all have a considerable impact on segmentation. In children, there is a prominent sheen from the 
retinal nerve fibers near the vessels and macula, blocking the view of the connections between vessels (Fig. 1b). 
In elderly adults, hypoplasia of the retinal pigment epithelium leaves the choroidal vessels visible, similar to the 
retinal vasculature (Fig. 1c). Microaneurysms, hemorrhages, and exudates can be seen on fundus images of dia-
betic retinopathy patients (Fig. 1d). Eye movements and improper operations can result in loss of focus (Fig. 1e) 
and insufficient exposure (Fig. 1f).

In retinal image analysis, manual segmentation of retinal blood vessels is extremely time consuming and 
labour intensive, unlike other retinal image preprocessing tasks such as artery-vein classification, which is 
important but can be done manually while conducting medical studies. Automated and semiautomated vessel 
segmentation is thus an indispensable process for efficient quantitative interpretation of the retinal vasculature. 
Many studies have been conducted on retinal vessel segmentation, including conventional algorithms11 and 
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artificial intelligence (AI) based segmentation12. AI based methods have been intensively studied in recent years. 
The development and evaluation of AI-based methods requires datasets with large amounts of annotated images.

Several retinal vessel segmentation datasets, which are summarized in Table 1, have been established for public 
use: STARE13, DRIVE14, ARIA15, REVIEW16, CHASEDB117, HRF18, etc. Nearly all retinal vessel segmentation 
work has been carried out on these datasets, including state-of-the-art vessel segmentation algorithms, such as 
SCS-Net19, the NFN + model20 and the MS-DRIS-GP model21. There are also algorithms that can do a simultane-
ous segmentation and artery-vein classification developed on these datasets, such as the work of Hemelings et al.22.

However, there are some inherent drawbacks of these popular datasets:

•	 First, the images included in these datasets are small in quantity and imbalanced in disease distribution, and 
most of them are of low resolution. A small quantity may lead to overfitting when using deep learning. The 
distribution of disease is rather imbalanced, for which disease-specific analysis cannot be conducted. Some of 
the most commonly used datasets have resolutions of less than 1000 × 1000 pixels23.

•	 Second, the annotation process has not been standardized by healthcare professionals, so inappropriate anno-
tations may occur. For example, some pathological changes will form a strip-like structure and should not be 
labelled as retinal vessels, as is shown in Fig. 2.

•	 Third, image quality, which is an important factor affecting the segmentation performance, is not evaluated. 
Providing the evaluation of images will be useful for further in-depth research into the question of how the 
performance of methods is affected by image quality.

Taking all of these factors into consideration, it would be meaningful to establish a public retinal vessel seg-
mentation dataset with pixelwise annotation.

In this paper, we propose a fundus image vessel segmentation (FIVES) dataset consisting of 800 
high-resolution color fundus photographs with pixelwise manual annotation through standard crowdsourcing 
among medical staff. For each image, 3 labels were provided: disease, pixelwise vessel annotation and image 
quality scores. Our major contributions can be summarized as follows:

•	 Image: The dataset contains 800 high-resolution images of normal eyes and 3 different eye diseases, with 200 
images in each category.

•	 Annotation: Pixelwise annotation was performed by a group of trained medical staff and verified by experi-
enced ophthalmologists who had been annotating for hundreds of hours. The annotation group was made up 

Fig. 1 Illustration of fundus photographs and the challenges of retinal vessel segmentation: (a) A normal high-
quality fundus image, with the corresponding segmentation result shown in a detailed view. (b) A child’s fundus 
image showing the retinal nerve fibers blocking the view of the connections between vessels. (c) An elderly 
person’s fundus image showing a tessellated retina, which can be misrecognized as vessels. (d) A fundus image 
showing pathological changes related to diabetic retinopathy. (e) A fundus image with poor focus. (f) A fundus 
image with insufficient exposure.

Dataset Year Number Resolution Disease Annotators

STARE 2000 20 605 × 700 10 healthy, 10 diseases 2

DRIVE 2004 40 768 × 584 33 healthy, 7 DR 3

ARIA 2006 161 576 × 768 61 healthy, 59 DR, 23 AMD 2

REVIEW

HRIS

2008

4 3584 × 2438

16 DR 3
VDIS 8 1360 × 1024

CLRIS 2 2160 × 1440

KPIS 2 288 × 119, 170 × 92

CHASEDB1 2011 28 990 × 960 28 healthy 2

FIVES (proposed) 2021 800 2048 × 2048 200 healthy, 200 AMD, 200 DR, 200 glaucoma Group

Table 1. Summarization of publicly available retinal vessel segmentation datasets.
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of 3 ophthalmic practitioners as senior annotators and 24 medical staff who were knowledgeable regarding 
retinal anatomy as junior annotators.

•	 Evaluation: The quality of images was evaluated from three perspectives using an automatic algorithm and 
further corrected by retinal specialists.

We believe that the publication of the FIVES dataset will considerably facilitate computer-aided retinal vessel 
segmentation research and promote translation from technology to clinical use.

Methods
Data collection. Eight hundred color fundus photographs were collected from 2016 to 2021 in the 
Ophthalmology Centre at the Second Affiliated Hospital of Zhejiang University (SHAZU) (Fig. 3a). These 
images are from 573 patients, with ages ranging from 4 to 83 years. Written informed consent complying with the 
requirement of the Medical Ethics Committee of SHAZU was signed by every participant when it was decided 
that their photographs would be adopted by scientific research. The study followed the tenets of the Helsinki 
Declaration and was approved by the Medical Ethics Committee of SAHZU. The study has been registered on 
ClinicalTrials.gov with trial registration number NCT04718532.

Patients underwent comprehensive systemic and ocular examinations to establish a diagnosis. Before pho-
tographing, 2 to 3 drops of 1.0% tropicamide phenylephrine were used for pupil dilation of every examined eye. 
Pupils with diameters over 7 millimeters were considered fully dilated, and fundus photographs were taken. The 
images were captured by tabletop TRC-NW8 fundus cameras at a 50° field of view (Topcon Medical Systems, 
Tokyo, Japan) and centered at the macula. For a 50° field of view, both the macula and the optic disc could be 
seen in the image. The photographing process was conducted by experienced examiners. For each examined eye, 
only one photograph was included in the final dataset. For each patient, both eyes were examined. All the images 
were collected and manually selected to form the final dataset. The manual selection considered both disease 
diagnosis and image readability. Selection criteria considering disease diagnosis can be found below, and we 
have intentionally included about 5% images with poor readability assessed by experienced ophthalmic doctors 
to reflect real clinical situation. Pictures were saved in PNG format with a resolution of 2048 × 2048 pixels. No 
image compression was conducted during the image capturing, annotation and dataset uploading processes.

Disease diagnosis. In this study, only patients with a clearly ascertained diagnosis were included. The diag-
nostic procedure started with first-contact doctors and was further reviewed by experienced ophthalmologic 
specialists. The diagnosis criteria complied with most updated American Academy of Ophthalmology’s guidelines 
at the time when the picture was taken. Details are described below:

For DR, both type 1 and type 2 diabetes mellitus (DM) patients were considered. The diagnosis of DM was 
based on the criteria proposed by the American Diabetes Association24. Examinations necessary for the diagno-
sis of DM were conducted before image capture, including slit-lamp examination, ultrawide fundus photogra-
phy, optical coherence tomography and fundus florescence angiography, when necessary. Images with laser scars 
were also included to mimic real clinical practice.

Patients with age-related macular degeneration (AMD) underwent thorough ocular examinations, including 
slit-lamp examination, fundus photography, optical coherence tomography (OCT) and fundus fluorescein angi-
ography, if necessary. Pathological features in fundus images include drusen, exudate, geographic atrophy or hem-
orrhage. The diagnostic procedure was conducted according to the AAO’s Preferred Practice Pattern for AMD25.

For glaucoma, both open-angle glaucoma and angle-closure glaucoma were included in this study. Patients of 
this kind often present headache, decreased vision, elevated intraocular pressure (IOP) and optic nerve damage, 
which can be seen in fundus photographs. The diagnosis of glaucoma is based on clinical complaints, IOP, fun-
dus photography, visual field examination and optical coherence tomography. The detailed diagnostic criteria 
can be found in AAO’s Preferred Practice Pattern of glaucoma26,27.

The exclusion criteria included patients with an uncertain diagnosis, patients with multiple diseases, patients 
with excessive opacity in refractive media, patients with systemic diseases other than DM that can affect the 
retina, patients with familial ocular diseases, and patients with ocular trauma.

Vessel annotation. The annotation process started with the recruitment of annotators (Fig. 3b). The recruit-
ment message was posted online and shared via social media, requesting that medical workers who were willing to 

Fig. 2 Example of mislabeling from public dataset: (a) the primary fundus photograph from the DRIVE dataset 
with red arrow referring to strip-like pathological changes, (b) the ground truth provided in the dataset with red 
arrow referring to the improper labeling of strip-like pathological changes as retinal vessels.
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participate and well aware of the retina anatomy could join in this work. Finally, the annotation group consisted of 3 
ophthalmic practitioners with clinical ophthalmic experience and 24 medical staff meeting the recruitment criteria.

The training of annotators was an important part of the annotation process (Fig. 3b). A detailed annotation 
guideline was made by 3 ophthalmic practitioners of SAHZU. For each annotator, having learned the annotation 
guidelines, 5 test images, including 1 normal, 2 DR, 1glaucoma and 1 AMD, were assigned and retrieved after 
their initial annotation. The test images were evaluated by the ophthalmic practitioner one by one. If the anno-
tation result was not satisfiable, the image was sent back to the student for relabeling. If the results of relabeling 
were still unacceptable, the annotators could not enter the next stage of annotation work. If the test images were 
thought to be appropriately labeled, more images would be assigned. Annotators were paid differently according 
to their annotation performance, which was qualitatively evaluated by senior annotators and project managers 
based on three aspects: false positive pixels, false negative pixels and overall vasculature.

The annotation was achieved using specifically designed annotating software. Figure 3c shows the annotating 
interface. Annotators were asked to use the pencil tool to color the pixel white if they thought it was a vessel pixel 
based on the appearance. In some images, the vessels seemed broken due to various reasons. To ensure that the 
annotated pixels were from vessels and reduce false positive annotation, annotators were told that no modifi-
cation should be made just to maintain the continuity of the vasculature. The final vessel segmentation ground 

Fig. 3 Workflow of the establishment of the proposed dataset. (a) Eight hundred color fundus photographs 
were collected in the Ophthalmology Center at the Second Affiliated Hospital of Zhejiang University (SHAZU). 
These photographs comprised 200 images from patients diagnosed with diabetic retinopathy (DR), 200 from 
patients with glaucoma, 200 from patients with age-related macular degeneration (AMD), and 200 from normal 
controls. (b) The annotation team was made up of 3 senior annotators and 24 junior annotators who had 
completed guideline-based training and image annotation tests. (c) The interface of the specifically designed 
annotating software used in this study. (d) The annotation process consisted of initial annotation by junior 
annotators and further verification by senior annotators. Each image was randomly assigned to 2 annotators, 
and the common pixels annotated by both of them were included as the result of initial annotation.
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truth is a two-color image, with white pixels meaning vessel and black for non-vessel pixels. The resolution of the 
ground truth is 2048 × 2048 pixels, coordinated with the original fundus image.

In the official annotation stage (Fig. 3d), each annotator was assigned over 30 images. Each image was anno-
tated by 2 annotators. The pixels annotated by the 2 annotators in common were included as the final ground 
truth of the specific image to reduce the number of false positive pixels. Annotating one image would take 
approximately 3–5 hours. The overall annotation process began in December 2020 and ended in June 2021. 
After being annotated by junior annotators, the images were further reviewed by senior annotators to correct 
errors, such as misidentification of the choroidal vessels as retinal vessels. If there were clear mistakes, the senior 
annotators would directly correct them when reviewing. If the senior annotators disagreed with the annotation 
results but were not certain, they would discuss the matter amongst themselves and then make the final decision.

Image quality assessment. Considering that the color fundus image quality was substantially influenced 
by various factors and to make the dataset usable for different research purposes, each image of the FIVES dataset 
was evaluated on three image quality aspects: illumination and color distortion, blur, and low contrast distortion. 
The assessment procedure was realized by previously published automatic algorithms28. For each aspect, a score, 
either 0 or 1, was given to represent the quality (Fig. 4a). The image quality gradation grants researchers the 
opportunity to investigate the robustness of the proposed algorithm.

In AI-based image processing, there should be at least 2 subsets, which are the training set used for learning and 
the test set used for testing. There should be no intersection between the 2 sets. To fully test an algorithm’s capac-
ity, the characteristics should be distributed equally between these sets. Therefore, we recommend the data split 
strategy based on the aforementioned image quality score. This process was realized by manual selection (Fig. 4b).

Data Records
The FIVES dataset has been uploaded to Figshare in the form of a zipped file29. The unzipped file folder contains 
the original fundus photographs, annotation ground truth images and quality assessment scores. The unzipped 
file is organized into 2 folders and 1 Microsoft office Excel list, named “train”, “test” and “Quality Assessment.
xlsx”, respectively. The folders contain the images that are recommended for training and testing. The images in 
these 2 folders are stored, named and arranged in the same way. In the “train” folder, there are 2 subfolders named 
“Original” and “Ground Truth” that contain original fundus images and corresponding ground truth images, 
respectively. Images are named “n_A/D/G/N.png”, where “n” means the number of images and “A”, “D”, “G”, and 
“N” stand for “AMD”, “DR”, “Glaucoma” and “Normal”, respectively. In the “Ground Truth” folder, images are 
named according to the same rule, where a specific image in this folder is the ground truth of the image with 
the same name in the “Original”. “n” is 600 in the training set and 200 in the test set. It should be noted that the 
current data split strategy is recommended by our team and can be altered for different research purposes. In the 
file “Quality Assessment.xlsx”, there are 2 sheets titled “Train” and “Test”, with 5 columns in each sheet. The first 
column represents the disease diagnosis. The second column contains the number of specific images. The sub-
sequent columns represent the illumination and color distortion, blur, and low contrast scores. The image assess-
ment score is either 1 or 0, with 1 indicating good quality in this specific aspect and 0 indicating poor quality.

Technical Validation
Dataset characteristics. There are 800 fundus images and their corresponding ground truth images in the 
FIVES dataset. These pictures are from 573 subjects. The mean age of the subjects was 48 years, with a standard 
deviation of 19.87 years. There were 469 images from female subjects and 331 from males. All the subjects were 
Asian. The number and proportion of annotated vessel pixels are summarized in Table 2. The mean image quality 

Fig. 4 Image quality assessment and data split. (a) Illustration of image quality evaluation process. (b) Data split 
strategy.
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scores are summarized in Table 3. Most images were of high quality in terms of the 3 aspects. It is worth noting 
that images from glaucoma patients tend to have fewer annotated pixels and lower illumination and color dis-
tortion scores. We suspect this is because most glaucoma patients are older and may have more opacity in their 
refractive media, causing insufficient illumination, which would then influence the annotation ratio. The inclu-
sion of some low-quality images can help reflect clinical reality and test the algorithms’ robustness.

Intra- and inter-annotator consistency. There are some automatic retinal vessel segmentation algo-
rithms that can be used to segment vessels automatically. However, to the best of our knowledge, the best perfor-
mance of the proposed algorithms yielded a Dice coefficient of approximately 0.82, the Dice coefficient being a 
value that reflects the accuracy of segmentation19. For this specific task, the accuracy is not satisfiable enough to 
generate a reliable dataset, which is why we opted for manual annotation. In this work, every image was annotated 
by 2 junior annotators and refined by 1 senior annotator. Therefore, three kinds of consistencies should be inves-
tigated: intra-annotator consistency of the same annotator at different times, inter-annotator consistency of the 
same-level annotators and inter-annotator consistency of different-level annotators. Corresponding experiments 
were conducted to investigate these kinds of error.

For intra-annotator consistency of the same annotator at different times, 40 images of the whole dataset were 
selected and extracted to form an example set based on the disease diagnosis and image quality. The example set 
consisted of 10 images of each diagnosis category and 5–8 low-quality images of each image quality assessment 
aspect. Five annotators from the annotation group, 1 senior and 4 junior annotators, were asked to annotate 
the 40 images 2 times in one month, with at least a 1-week gap between each annotation. The Dice coefficient 
was calculated between the 1st and 2nd annotations. Mean Dice was computed for all 40 images and 4 anno-
tators. The mean Dice was 0.9679 (0.9602–0.9810), which means the annotators’ labeling was stable and the 
intra-annotator error was small.

For inter-annotator consistency of the same-level annotators, the error was evaluated using Dice between 
annotations generated by 2 annotators. The original annotation results without refinement were used to investi-
gate this error. The mean Dice was 0.9241 (0.8792–0.9823), which means that the annotation results were close 
between junior annotators.

For inter-annotator consistency of different-level annotators, the 1st annotations were used for the analysis in 
this question. The Dice coefficient was calculated between 1 senior annotator’s vessel mask and 4 junior annota-
tors’ annotations. Mean dice was computed. The mean Dice of the annotators was 0.9608 (0.9564–0.9676), which 
means that the disagreement among annotators of different levels was small.

Through the analysis of original annotations and the example set, we can conclude that annotations were sta-
ble and consistent between one annotator at different times and different annotators, which lays the groundwork 
for accurate annotation and repeatable retinal vessel segmentation.

Usage Notes
The whole dataset can be downloaded from the link mentioned above. It is worth noting that the data split strat-
egy was made considering the image quality and disease diagnosis. We recommend that users follow this strategy 
to make the dataset balanced. However, they can always split the strategy according to their study design. For 
researchers who use traditional algorithms rather than artificial intelligence, the data split is not applicable. Users 
should cite this paper in their research output and acknowledge the contribution of this dataset in their study.

Code availability
No novel code used in the construction of FIVES dataset.

Received: 16 December 2021; Accepted: 12 July 2022;
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AMD DR Glaucoma Normal Total

Amount (Mean) 313671 287402 270192 371171 299561

Proportion (Mean%) 7.48 6.85 6.44 8.85 7.14

Table 2. Amount and proportion of annotated pixels in FIVES dataset.

Illumination and 
colour distortion (n,%) Blur (n,%) Low contrast (n,%)

AMD 187 (83.5%) 178 (89.0%) 200 (100.0%)

DR 172 (86.0%) 154 (77.0%) 198 (99.0%)

Glaucoma 107 (53.5%) 140 (70.0%) 167 (83.5%)

Normal 178 (89.0%) 197 (98.5%) 200 (100.0%)

Overall 644 (78.0%) 669 (83.5%) 765 (95.5%)

Table 3. Summarization of image quality assessment scores.
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