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Abstract Fixed NH4
+ (NH4

+
f) and fixation and defixation

of NH4
+ in soils have been the subject of a number of

investigations with conflicting results. The results vary
because of differences in methodology, soil type, mineral-
ogical composition, and agro-climatic conditions. Most
investigators have determined NH4

+
f using strong oxidizing

agents (KOBr or KOH) to remove organic N and the
remaining NH4

+
f does not necessarily reflect the fraction

that is truly available to plants. The content of native NH4
+
f

in different soils is related to parent material, texture, clay
content, clay mineral composition, potassium status of the
soil and K saturation of the interlayers of 2:1 clay minerals,
and moisture conditions. Evaluation of the literature shows
that the NH4

+
f-N content amounts to 10–90 mg kg−1 in

coarse-textured soils (e.g., diluvial sand, red sandstone,
granite), 60–270 mg kg−1 in medium-textured soils (loess,
marsh, alluvial sediment, basalt) and 90–460 mg kg−1 in
fine-textured soils (limestone, clay stone). Variable results
on plant availability of NH4

+
f are mainly due to the fact that

some investigators distinguished between native and re-
cently fixed NH4

+ while others did not. Recently fixed
NH4

+ is available to plants to a greater degree than the

native NH4
+
f, and soil microflora play an important role in the

defixation process. The temporal changes in the content of
recently fixed NH4

+ suggest that it is actively involved in N
dynamics during a crop growth season. The amounts of
NH4

+ defixed during a growing season varied greatly within
the groups of silty (20–200 kg NH4

+-N ha−1 30 cm−1) as
well as clayey (40–188 kg NH4

+-N ha−1 30 cm−1) soils. The
pool of recently fixed NH4

+ may therefore be considered in
fertilizer management programs for increasing N use
efficiency and reducing N losses from soils.

Keywords Fixed NH4
+ (NH4

+
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+
f
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Introduction

Some soils are able to bind ammonium (NH4
+) and

potassium (K+) in such a manner that these cannot be
easily replaced by other cations. McBeth (1917) was the
first who observed that NH4

+ added to soils could not be
completely recovered by alkaline distillation or by extrac-
tion with 10% hydrochloric acid. McBeth (1917) defined
the unrecovered portion of the added NH4

+ as “fixed NH4
+”

(henceafter refered as NH4
+
f). The fixation of NH4

+ is
defined as “the adsorption or absorption of ammonium ions
by the mineral or organic fraction of the soil in a manner
that they are relatively unexchangeable by the usual
methods of cation exchange” (Osborne 1976a; SSSA
1984). Osborne (1976a) suggested “intercalary NH4

+” and
Mengel and Scherer (1981) “non-exchangeable NH4

+” to
distinguish between the NH4

+ recovered from clay minerals
by digestion of the soil with 5 N HF:1 N HCl and NH4

+

which is bound organically or as NH4-phosphate (Frye and
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Hutcheson 1981). While earlier investigations concluded
that only a very small amount of NH4

+
f is available to

microorganisms and plants (Allison et al. 1951, 1953b;
Axley and Legg 1960; Lutz 1966), studies in the last three
decades suggest that NH4

+
f may be released and used by

crops (Kudeyarov 1981; Nommik 1981; Mengel and
Scherer 1981; 1986; Nommik and Vahtras 1982; Preston
1982; Scherer 1984, 1987, 1993; Lu et al. 2010).

Ammonium fixation and release can play a crucial role
for the efficiency of fertilizer N (Scherer and Mengel 1986;
Dou and Steffens 1995; Steffens and Sparks 1999; Juang et
al. 2001) as it impacts the indigenous soil N supply towards
crop N uptake. Nitrogen contributions from soil including
defixation of NH4

+
f in a given year/season can greatly alter

recovery efficiency of applied N because there occurs a large
fertilizer N substitution of soil N. With current concerns
about the environment and the need to produce more food
with less fertilizer N input there is an increased focus for
quantifying soil borne N supply. The need to boost
agricultural production worldwide is stimulating N fertilizer
consumption. In Asia and the Americas, ammonium-based N
fertilizers are increasingly used (Prud’homme 2005) and
their recovery efficiency by the plants, inter alia, could be
influenced by fixation and release of NH4

+. In soils with
high NH4

+ fixation capacity a part of the NH4
+ supplied

through NH4
+-forming or NH4

+-containing fertilizers may
be bound in clay mineral interlayers. Increasing NH4

+

fixation can be a way in building up an available N pool in
soils to optimize crop recovery and minimize N losses into
the environment (Liu et al. 2008) as the NH4

+ ions after
penetration into the clay mineral interlayers are excluded
from nitrification (Guo et al. 1983) and are thus protected
against leaching. The NH4

+
f pool can thus function as a

kind of buffer that could influence N losses from soils and
mineral N availability to crops.

Some reviews on the fixation and availability of fixed
NH4

+ have been published in the past (Rodrigues 1954;
Nommik 1957; Bremner 1959; Nommik and Vahtras 1982;
Scherer 1993). These reviews mainly focused on the
chemistry and factors influencing NH4

+ fixation in soils
and gave relatively less attention to the seasonal dynamics
and plant availability of NH4

+
f. While the chemistry of

NH4
+ fixation is fairly well understood (Baethgen and

Alley 1987; Nommik and Vahtras 1982), there are
conflicting reports on the availability of NH4

+
f. This is

assumed to be due to differences in methodology, soil type,
mineralogical composition, and agro-climatic conditions. It
is, therefore, important that the existing information may be
integrated with underlying variants for better understanding
the role of NH4

+ fixation and release on N dynamics in the
soil–plant system.

The present paper gives an overview of the current
knowledge on NH4

+
f and ammonium fixation and defix-

ation, particularly on pool sizes in different soils with
particular emphasis on new aspects on availability of
recently fixed NH4

+ to crops and microflora and seasonal
changes of NH4

+
f pools under plant cover. The information

is important not only for fertilizer management but also on
the background of increasing importance of NH4

+-based
fertilization, namely urea, and an intensive debate on NH4

+-
based fertilization (cultan fertilization) in plant nutrition
(Sommer and Scherer 2009). The paper includes literature
of the last few decades, and the soils were grouped
according to parent material and texture.

Methods for the determination of NH4
+
f

Several methods have been proposed for determining
NH4

+
f in soil. Most of the methods involve pretreatment

of the samples to remove organic matter and exchangeable
NH4

+ and dissolution/extraction of the residual sample for
release of NH4

+
f. Barshad (1951) suggested distilling

NH4
+-treated soil with NaOH and KOH to remove

exchangeable NH4
+. This method resulted in an incomplete

recovery in some cases probably because of blocking effect
of K+ or interference by soil organic matter. In the method
by Mogilevkina (1964), soil organic matter is removed by
dry combustion at 400°C during time periods between 24
and 72 h, depending on the organic matter content, prior
removal of the fixed NH4

+ using sulfuric acid (Kjeldahl
procedure). Most of the other methods use HF for the
extraction of NH4

+
f (Rodrigues 1954; Dhariwal and

Stevenson 1958; Bremner 1959). The method proposed
by Silva and Bremner (1966) is the most commonly used
and involves treating the soil with alkaline KOBr solution
(to remove organic compounds), washing the residue with
0.5 M KCl and shaking with 5 N HF:1 N HCl for 24 h. The
24 h time for HF–HCl treatment could be reduced to
30 min by performing the treatment at 100°C. The NH4

+

released is determined by steam distillation of the soil–acid
mixture after adding KOH. The pretreatment used in this
method to remove organic compounds is considered
superior to those used in previous methods for estimating
fixed ammonium because it effects an almost entire
removal of organic soil N without the risk of fixation of
NH4

+ by soil minerals. Zhang and Scherer (1998)
suggested replacing the boiling of the mixture of soil and
KOBr on a hot plate with keeping the soil–KOBr mixture
for 10 min either in a water bath at 95°C or heating in a
microwave oven (1,150 W) at 50% of full power for
10 min. Marzadori et al. (1994) boiled the soil–KOBr
mixture in a microwave digestion system for 5 min at 90%
and 2 min at 80% of the maximum oven energy (600 W).
Antisari et al. (1987) used H2O2 along with pyrophosphate
and NaCl (H2O2-NaCl) for the destruction of organic matter
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and the reproducibility of their method was better than that
of the Silva and Bremner (1966) method. The method of
Paramasivam and Breitenbeck (2000) excludes the alkaline
pretreatment that removes labile organic compounds. Cox
et al. (1996) suggested the use of sodium tetraphenylboron
(NaBPh4) that facilitates the release of NH4

+
f as NH4BPh4.

However, compared with the method of Silva and Bremner
(1966), only 71% of NH4

+
f were extracted. Although the

method may extract only a part of the NH4
+
f, it may be a

better estimate of potentially plant-available NH4
+ (Cox et

al. 1996).
Comparison of some of the methods showed that these give

widely different values for a given amount of NH4
+
f. For

example, the method of Mogilevkina (1964) could recover
only a quarter while the rest was lost during ignition of the
soil sample to remove organic matter (Bremner et al. 1967).
Similarly, Moyano and Gallardo (1988) also obtained
significantly lower values with the method of Mogilevkina
(1964) as compared to that of Silva and Bremner (1966). The
method of Silva and Bremner (1966) gave higher values than
the Dhariwal and Stevenson (1958), Bremner (1959), and
Mogilevkina (1964) methods and lower values than the
Rodrigues (1954) and Schachtschabel (1960) methods (Silva
and Bremner 1966; Osborne 1976a).

Dixit and Mir (1987) compared the methods proposed by
Rodrigues (1954), the modified Rodrigues method
(Bremner et al. 1967) and those by Dhariwal and Stevenson
(1958), Bremner (1959), and Silva and Bremner (1966) on
ten soils varying in clay content from 12% to 31%. The
highest values were obtained in the method of Rodrigues
and the lowest by the method of Bremner. Similar results
were reported by Opuwaribo and Odu (1974). Antisari and
Sequi (1988) compared results after the application of three
methods (Silva and Bremner’s method, HF–HCl treatment in
a microwave system, and CHN analyzer). The microwave
system and CHN analyzer produced similar results and the
values were generally 1.5 to 2.7 times higher than those
obtained with Silva and Bremner’s treatment indicating
incomplete recovery by the latter method.

Mechanism of NH4
+ fixation

Ammonium fixation is greatest in 2:1 type clay minerals
such as illite, vermiculite, and montmorillonite. Clay
minerals possess negative charges balanced by cations, for
example, NH4

+ or K+. The physics of NH4
+ is closely

related to that of K+ because both ions have similar ionic
radii and low hydration energy. The complete concept with
all its further aspects has been nicely put down in detail by
Nommik (1965). For both NH4

+ and K+, the same
mechanism is responsible for fixation and both fit exactly
into the ditrigonal holes in the basal oxygen plane of 2:1

clay minerals. The penetration of both cations into the clay
mineral interlayers causes the clay layers to collapse to
1 nm, and NH4

+ and K+ ions are trapped between silicate
sheets and largely withdrawn from exchange reactions
(Nommik 1965). Therefore, both cations held in the
interlayers of collapsed 2:1 clay minerals are said to be
“fixed” and the term “fixed NH4

+” was formerly used. The
electrostatic energy between NH4

+ (or K+) and the negative
charges in the crystal sheets is greater than the hydration
energy of ammonium. The NH4

+ ion readily sheds its
hydration water shell and enters the lattice void, where
fixation occurs (Kittrick 1966).

Contents of NH4
+
f in soils and influencing factors

Contents of NH4
+
f

Contents of NH4
+
f-N in the plough layer of arable soils

cover a wide range (Table 1). Parent material has a major
influence on the NH4

+
f-N pool in soils developed from

different parent materials, which increases in the order sand
(diluvial sand and red sandstone) < basalt ≈ granite < loess
≈ ground moraine < alluvial sediment < limestone < marsh
sediment. The high discrepancy in the NH4

+
f-N content of

soils that developed from clay stone (Mohammed 1979 vs.
Zhang et al. 2007) may be mainly due to different clay
mineralogy (note that the clay contents given by Zhang et
al. (2007) only represent the fraction <1 μm). In summary,
the NH4

+
f-N content amounts to 10–90 mg kg−1 in coarse-

textured soils (e.g. diluvial sand, red sandstone, granite),
60–270 mg kg−1 in medium-textured soils (loess, marsh,
alluvial sediment, basalt), and 90–460 mg kg−1 in fine-
textured soils (limestone, clay stone).

At the regional scale, the contents of NH4
+
f-N also vary

considerably. For example, the content of NH4
+
f-N of

different soils in Austria ranged between 45 and
190 mg kg−1 (Schiller and Wallicord 1964), of Spanish
soils between 180 and 490 mg kg−1 (Moyano and Gallardo
1988), of soils in Turkey between 60 and 230 mg kg−1

(Elmaci et al. 2002), of soils in Queensland (Australia)
between 6 and 107 mg kg−1 (Osborne 1976b), of soils of
the former USSR between 40 and 490 mg kg−1 (Skonde et
al. 1974), of soils in China between 35 and 573 mg kg−1

(Qi-Xiao et al. 1995), of soils in Nigeria between 8 and
98 mg kg−1 (Opuwaribo and Odu 1974), and of soils in
southern Ontario (Canada) between 57 and 367 mg kg−1

non-exchangeable NH4-N (Doram and Evans 1983). The
content in soils in Kentucky (USA) was as high as
365 mg kg−1 (Sparks et al. 1979). Investigations on top
soils from Antarctic also showed that NH4

+
f-N occurs in

amounts (0 to 322 mg kg−1) similar to elsewhere in the
world (Greenfield 1991).
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The percentage of total N present as NH4
+
f-N in main

soil groups of Israel ranged between 1.8% and 78.6%, with
most of the values falling between 2% and 25%. Highest
values were obtained for the deepest horizons (Feigin and
Yaalon 1974), where it ranged from 14% to 78% in British
Caribbean soils (Rodrigues 1954), 3% to 44% in southern
Ontario soils (Doram and Evans 1983), 16% to 59% in
Vertisols and 13% to 31% in Cambisols in India (Sahrawat
1995), 21% in Italian Fluvisols (Benedetti et al. 1996), and
up to 85% in subsoils in the USA (Smith et al. 1994).

In a soil profile, the NH4
+
f-N content as percent of the

total N (inorganic plus organic) generally increases with
soil depth (Black and Waring 1972; Doram and Evans
1983; Smith et al. 1994; Sahrawat 1995; Zhang et al. 2003)
due to decreasing soil organic matter content. Fixation of
NH4

+ in soil organic matter is negligible (Kowalenko and
Cameron 1976). Contents of NH4

+
f-N in 24 soils from

Queensland (Australia) averaged 4% of total N in surface
soil and 6.4% for subsoils (Black and Waring 1972). The
magnitude of increase with depth was much higher in soils
from southwestern Saskatchewan where it ranged from 7% of
the total N in the surface soil to 58% in 120 cm depth (Hinman
1964). In Spanish soils, it ranged from 21% to 33% in the
surface layers and 30% to 83% in subsoils with illite as the
dominant clay mineral (Moyano and Gallardo 1988).

Yaalon and Feigin (1970) found that illite contains
approximately 600 mg N kg−1 illite, whereas montmoril-
lonite contains small and kaolinite clays only negligible
amounts. In mixed soil clays, the NH4

+
f-N level is

determined by the quantity of illite (Feigin and Yaalon
1974) and illite plus vermiculite (Sparks et al. 1979; Doram
and Evans 1983), respectively. In contrast to the above
results, Bajwa (1985) in a comparative study on fixation of
NH4

+ and K+ in wetland rice soils found that in five soil
clays, montmorillonitic clay fixed the maximum of the
added NH4

+ (98%) followed by vermiculite (88%) and least
(34%) in clay containing hydrous mica, chlorite, and
halloysite. On the other hand, montmorillonite, contrary to
the other clay minerals, had no capacity for fixing K+. The
overall capacity for fixation of monovalent cations (K+ plus
NH4

+) may therefore be greater for vermiculite compared to
montmorillonite.

Influencing factors

The content of NH4
+
f and the capacity of soils to fix NH4

+

is related to parent material (Table 1), texture (Baethgen
and Alley 1987), clay content (Opuwaribo and Odu 1974;
Sowden et al. 1978; Moyano and Gallardo 1988; Juang
1990), clay mineral composition (Feigin and Yaalon 1974;
Sparks et al. 1979; Doram and Evans 1983; Niederbudde
1983), the K concentration in soil solution, the degree of K
saturation of the exchange complex of the soil colloids andP
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K saturation of the interlayers of 2:1 clay minerals (Hinman
1966; Doram and Evans 1983), and soil moisture con-
ditions (Black and Waring 1972). Allison et al. (1953a)
showed that vermiculite and illite have the greatest capacity
to fix NH4

+, while montmorillonite fixed less NH4
+
f and

held it less tenaciously. Said (1973) reported that soils from
Sudan with montmorillonite as the dominant clay mineral
contained only small amounts of NH4

+
f-N ranging between

30 and 60 kg N kg−1 soil. As compared to montmorillonite,
beidelite is a high fixing smectite, due to the isomorphic
substitution in the tetrahedral layer (Feigenbaum et al.
1994). Kaolinites, belonging to the 1:1 type of clay
minerals, are not able to bind NH4

+ ions in their interlayers
because hydrogen bonds which join the interlayers allow
only very little dilatation of the narrow interlayer space
(Mela Mela 1962).

In addition to clay minerals, the silt fraction has also
been reported to bind NH4

+-N in a non-exchangeable form.
For example, in loess soils of central Europe, about only
65% of the NH4

+
f-N is interlayer ammonium (Niederbudde

and Friedrich 1984), while the rest is found in the silt
fraction. The content of NH4

+
f-N in the clay and silt ranged

from 255 to 430 mg N kg−1 and from 72 to 166 mg N kg−1,
respectively (Jensen et al. 1989). In a Canadian soil with
37% clay, Kowalenko and Ross (1980) found similar
amounts of NH4

+-N for the clay and the silt fraction. In
different primary minerals, the content of NH4

+
f-N has been

reported to vary between nil in quartz to 266 mg kg−1 in
biotite (Wlotzka 1961).

Some studies have demonstrated that the NH4
+ fixation

capacity strongly depended on the degree of K saturation of
the interlayers of the 2:1 clay minerals. If the K content of a
soil is high, it can be expected that the interlayer space will
also be saturated with potassium (Scherer 1982) and to a
smaller extend with NH4

+ ions (Petersburgsky and Smirnov
1966). As a result of competition for fixation sites, the
presence of NH4

+ or K+ may alter both fixation and release
of these cations. In several studies, addition of K+ prior to
NH4

+ depressed NH4
+ fixation (Stanford and Pierre 1947;

Nommik and Vahtras 1982), and addition of NH4
+ prior to

or at the same time as K+ reduced K+ fixation (Aquaye and
MacLean 1966; Bartlett and Simpson 1967). Contrarily,
Drury et al. (1989) found that K+ pre-addition did not block
subsequent NH4

+ fixation and the presence of K+ induced
greater NH4

+ fixation (Chen et al. 1989). This is in
agreement with the study by Bajwa (1985) in that the
sequence in which NH4

+ and K+ were applied did not
appear to affect the relative amounts that were fixed.

Application of NH4
+-containing fertilizers may result in

fixation of the added NH4
+. However, the amount fixed is

not directly proportional to the amount of fertilizer N added
(Liang and MacKenzie 1994). Fixation is usually fast and
occurs within the first few hours after fertilizer application.

The fixation rate is controlled mainly by ion diffusion and
declines with time until the equilibrium point is approached
(Nommik 1965). In experiments under laboratory condi-
tions, Kowalenko and Cameron (1976) found that 50% of
added NH4

+ was fixed within a short period of time, while
in a field experiment, Kowalenko (1978) found that 59% of
152 kg N ha−1 added as (NH4)2SO4 was fixed within a few
minutes after addition. In some soils of eastern Canada,
more than 40% of the added NH4

+ was fixed in less than
2 h and further fixation was negligible (Sowden et al.
1978). According to Chantigny et al. (2004), the highest
fixation of NH4

+ by clay minerals occurred within the first
day and was greater in the clay soil (34% of applied 15NH4-N)
than in the sandy soil (11%). In studies with 15N-labeled
NH4

+ 18% to 23% of the applied 15NH4
+ was fixed after a

15-day incubation in soils with high contents of vermiculite
(Drury et al. 1989).

The amount of added NH4
+ fixed depends on the NH4

+-
fixing capacity of the soil. The estimation of the NH4

+

fixation capacity of a soil involves treatment of the soil with
excessive amounts of concentrated NH4

+ solution in order
to achieve complete saturation of the fixing minerals with
NH4

+ (Nommik and Vahtras 1982) before estimation of the
fixed NH4

+ by one of the methods described above. In a
Gleysol with high NH4

+-fixing capacity, Fischer et al.
(1981) found that 47% of added 15N were fixed, whereas in
a Histosol with very low NH4

+ fixation capacity, only 7%
of the added NH4

+ entered the interlayers of the clay
minerals. Rider et al. (2005) focusing on the occurrence of
NH4

+ fixation on a decomposed granitic substrate showed
that the fixation capacities of these sandy saprolites are
significant. At field loading rates equivalent to less than
300 kg NH4

+-N ha−1 36% to 42% of the added N became
unavailable to plants due to interlayer collapse and fixation.
Ammonium fixation did not vary significantly in relation to
substrate weathering class in these samples.

According to Allison et al. (1953a), soil moisture can
reduce NH4

+ fixation as clay minerals are expanded under
wet conditions. However, in dry soils, the interlayer space
is reduced and NH4

+ fixation also increases. According to
Osborne (1976b), NH4

+ fixation was reduced by 25% in a
clay soil moistened to 60% of the maximum water holding
capacity as compared with the dry soil. Also, Gouveia and
Eudoxie (2007) found a lower NH4

+ fixation in wet soils.
However, investigations in flooded rice soils yielded
contradictory results. Some authors (Keerthisinghe et al.
1984; Chen et al. 1987a) observed that NH4

+ fixation in
paddy soils was significantly increased as a consequence of
flooding, while others (Williams et al. 1968; Chen et al.
1987b) stated that NH4

+ fixation was less pronounced
under flooded compared to non-flooded conditions.
Schneiders and Scherer (1996) observed an increasing
concentration of NH4

+
f-N after flooding, which was closely
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related to the declining redox potential (Eh). Therefore, Eh

may have an important effect on the fate of NH4
+ in paddy

soils (Zhang and Scherer 1999). At a low Eh, the octahedral
Fe3+ in the clay minerals is assumed to be reduced,
resulting in a higher negative charge of the unit cell and
therefore a higher Coulombic attraction between the
interlayer cations and the silicate layers (Stucki et al.
1984). This increasing NH4

+ fixation can be an option for
building an available N pool in paddy soils to minimize N
losses into the environment (Liu et al. 2008). A further
prerequisite for the pronounced NH4

+ fixation in flooded
soils is the microbial reduction of Fe3+, followed by the
dissolution of Fe oxides coated on the surface of clay
minerals at a low Eh, promoting the diffusion of NH4

+ ions
into the interlayers of the clay minerals (Scherer and Zhang
1999). Because of the reversible oxidation and reduction of
Fe oxides in paddy soils, this mechanism may be of special
importance for fixation of NH4

+ (Zhang and Scherer 2000;
Scherer and Zhang 2002). Figure 1 shows the relationship
between the contents of NH4

+
f-N and clay-bound Fe2+ in

paddy soils and clay minerals.

Availability of fixed NH4
+ to plants and microflora

Fixation and release of NH4
+
f-N is dependent upon

chemical equilibria between the amounts of NH4
+
f, ex-

changeable NH4
+ and NH4

+ in soil solution (Nommik and
Vahtras 1982),

NH4
þ
sð Þ $ NH4

þ
eð Þ $ NH4

þ
fð Þ

where NH4
+
s denotes ammonium in the soil solution and

NH4
+
e and NH4

+
f are exchangeable and fixed ions,

respectively. However, results from several studies indicate
that there is no equilibrium between exchangeable and
fixed NH4

+. Because NH4
+ and K+ compete for the same

binding sites, Nommik (1957) suggested that the sum of
NH4

+ and K+ rather than NH4
+ alone should be introduced

into the equilibrium equation. Steffens and Sparks (1997)
described the kinetics of NH4

+
f-N release from soil using

the Elovich model. This model is empirical, and the process
is assumed to be diffusion controlled. With decreasing
NH4

+ concentration in soil solution, NH4
+ ions diffuse from

clay mineral interlayers. Therefore, factors such as fertilizer
N application, plant cover, soil organic matter, microflora,
clay content, and clay mineral composition that affect
concentration of NH4

+ in soil solution may promote either
release or fixation of NH4

+. Because of methodological
limitations (such as proper separation of recently fixed
NH4

+ from native NH4
+
f) and the involvement of several

factors and processes influencing soil N dynamics, it is still
difficult to describe the dynamics of fixed NH4

+ especially
under field conditions.

Plant availability

Investigations focusing on the availability of NH4
+
f-N for

crops have been reported with conflicting results. While
early investigations of Legg and Allison (1959) and Black
and Waring (1972) found that this N fraction plays a minor
role for the N nutrition of plants, Norman and Gilmour
(1987) estimated that the amounts of fertilizer-derived
NH4

+
f-N available to ryegrass ranged from 35% to 72%.

As percentage of total NH4
+
f-N, the release of this fraction

ranged from 4% to 25% in different soils (Osborne 1976b;
Smith et al. 1994; Steffens and Sparks 1997). According to
Smith et al. (1994), only 8% of NH4

+
f-N were released on

average from the surface layers of a number of US soils. In
a Luvisol derived from loess, up to 250 kg NH4

+
f-N ha−1

were released during a growing season of annual crops (oats
and winter wheat; Van Praag et al. 1980). According to
Baethgen and Alley (1987), NH4

+
f-N contributed signifi-

cantly to N taken up by wheat grown in the greenhouse.
Various plant species influence the NH4

+
f pool through

different mechanisms. Plants can take up soluble or
exchangeable NH4

+ in the vicinity of NH4
+-fixing clays

and thus promote diffusion of ions out of the interlayers.
Plant roots can also affect the NH4

+
f pool indirectly by

releasing exudates that promote the activity of the soil
microflora and microbial N uptake (Marschner 1995). The
magnitude of NH4

+-N release strongly depends on the
length of crop growth period and plant density (Saha and
Mukhopadhyay 1986).

Most of the differences in NH4
+-N release can probably

be attributed to both the variable pool sizes of “native fixed
NH4

+” and “recently fixed NH4
+” and the lack of methods

Fig. 1 Relationship between NH4
+
f-N and Fe2+ in soils and clay

minerals (source: Scherer and Zhang 2002)
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available to separate these fractions adequately. The
recently fixed NH4

+ is mainly derived from mineral N
fertilizers (Chen et al. 1989; Smith et al. 1994), but it may
also originate from mineralization of soil organic matter
(Nieder et al. 1995b). Dou and Steffens (1995) found that
90% to 95% of recently fixed 15NH4

+ was released during a
14-week period in the soil planted with perennial ryegrass
(Lolium perenne L.) under greenhouse conditions. Under
field conditions, 66% of the recently fixed NH4

+-N was
released in the first 86 days after fixation and the remaining
was strongly fixed over the next 426 days (Kowalenko
1978). Apparently, recently fixed NH4

+ resulting from
fertilizer application is more available to plants than native
NH4

+
f, which is more tightly held (Black and Waring 1972;

Kudeyarov 1981; Mengel and Scherer 1981; Keerthisinghe
et al. 1984). Probably native NH4

+
f-N is trapped in the

center of the interlayers to a higher degree, while recently
fixed NH4

+ ions are largely retained in the peripheral zone
of the interlayers (Nommik and Vahtras 1982). Differences
in clay mineralogy and K saturation of the minerals also
influence the release of NH4

+
f-N. Mengel et al. (1990)

found that only soils containing vermiculite and low
contents of exchangeable K+ released significantly higher
amounts of NH4

+
f as compared to soils with no vermiculite

and high percentage of K+ saturation of the clay minerals.
In a pot experiment of Scherer (1985) with ryegrass, where
NH4

+ was added before and after the application of K+,
respectively or simultaneously, the content of NH4

+
f was

the highest, when NH4
+ was applied before K and lowest

when K was applied first (Table 2).
Scherer (1987) further reported that in field plots heavily

dressed with K+, no release of NH4
+
f-N was found, whereas

in plots with low K+ application, considerable amounts of
NH4

+ were released. In analogy to these findings, adsorp-
tion/desorption experiments (isotherm studies in soils
containing vermiculite and illite) in a binary (Ca2+/NH4

+)
and a ternary (Ca2+/K+/NH4

+) cation system (Lumbanraja
and Evangelou 1994) revealed that NH4

+ desorption
decreased in the presence of solution K+ (ternary) relative
to that in the absence of K+ (binary). Fixation of K+ in the
presence of solution NH4

+ was suppressed as compared to

that in the absence of NH4
+. Contrarily, NH4

+ fixation was
enhanced in the presence of solution K+ relative to that in
the absence of K+. Thus, contrary to common belief, the
two ions do not behave as true analogs with respect to
fixation reactions.

The mechanisms regulating the release and subsequent
plant uptake are still not completely understood. According
to Mengel et al. (1990) and Scherer and Ahrens (1994;
1996), plant roots deplete the NH4

+ concentration of the
soil solution in the rhizosphere and, therefore, promote the
release of NH4

+
f (Fig. 2).

Further, the relative amounts of NH4
+ and K+ in soil

solution govern the rate of release of NH4
+ from interlayer

positions (Welch and Scott 1960). Under field conditions,
continuous uptake of NH4

+ and K+ ions by roots may
reduce concentrations of both ions and therefore, diminish
the blocking effect of K+ on the release of NH4

+.

Availability to microflora

Early work concerning the influence of the soil microflora
on the mobilization of NH4

+
f suggested only a minor role

for the microflora (Allison et al. 1953b). While only
between 13% and 28% of the NH4

+
f was oxidized, up to

almost 80% of the exchangeable NH4
+ was nitrified (Bower

1950). However, according to later studies heterotrophic
microorganisms can rapidly assimilate NH4

+ from the non-
exchangeable pool (Nommik and Vahtras 1982; Drury and
Beauchamp 1991) and therefore favor the release of NH4

+

ions from the clay minerals (Jensen et al. 1989). In
incubation experiments involving 15N-labeled NH4

+
f, the

addition of an easily available C substrate favored the mobi-
lization of this N fraction by heterotrophic microorganisms

Fig. 2 Depletion profile of NH4
+
f-N in the rhizosphere of oilseed rape

in a soil with high amount of expandable clay minerals (57% clay and
17% of smectites and vermiculite in the clay fraction; source: Scherer
and Ahrens 1996)

Table 2 Influence of the application time of K+ on the content of
NH4

+
f-N and exchangeable K+ (source: Scherer 1985)

Treatment Mean ± SD (mg kg−1 soil)

NH4
+
f-N Exchangeable K+

K+ before NH4
+ 231±3.7 142±4.6

K+ and NH4
+ simultaneously 246±4.7 204±2.4

K+ following NH4
+ 252±4.0 214±4.5

LSD 5% 5 8
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(Breitenbeck and Paramasivam 1995), so that between 64%
and 96% of non-exchangeable 15NH4

+ was released.
Different plant species produce root exudates with different
quantity and quality which can differently affect activity
and composition of the soil microflora (Nannipieri et al.
1999). Moreover, the release of NH4

+
f can be promoted by

nitrification which causes changes in NH4
+ equilibria (Green

et al. 1994). Fumigation to inhibit soil biological activity as
well as the application of a nitrification inhibitor (nitrapyrin)
hampered the release of NH4

+
f (Aulakh and Rennie 1984).

According to Tang et al. (2008), the stimulated assimilation
of ammonium after glucose addition creates a steep con-
centration gradient between the NH4

+ concentration of the
soil solution and the NH4

+
f and thus promoting the release of

NH4
+ from the clay mineral interlayers. The results also

show that K added simultaneously with the carbon source
impeded the release of NH4

+ ions, which may be due to the
blocking effect of K+ ions.

Results from field experiments during the cereal growing
season (Nieder et al. 1995a, b, 1996) suggest that the
dynamic microflora, due to its influence on the equilibria
between the amounts of different N fractions, may exert a
great influence on the dynamics of NH4

+
f. The minima of

mineral N contents (due to plant and microbial N uptake)
and correspondingly, of NH4

+
f contents, occurred during

phases of increasing microbial biomass under a C-supplying
plant cover, proving that the heterotrophic microflora, as a
consequence of the increased microbial N uptake, favor the
release of NH4

+
f (Fig. 3).

Seasonal dynamics of NH4
+
f

The pattern of seasonal changes in the contents of NH4
+
f in

arable soils is well-known (Kowalenko and Cameron 1976;
Sowden 1976; Kowalenko and Ross 1980; Li et al. 1990a, b;
Drury and Beauchamp 1991; Green et al. 1994). Mengel and
Scherer (1981), investigating the dynamics of this N fraction
in a Fluvisol during the growing season, found that the
content of NH4

+
f declined in the top 60 cm from February to

May (Fig. 4).
In the deeper soil layer (60–90 cm depth), depletion

was observed from May to July, which was in accordance
with the root growth of spring oats. At the end of the
growing season, the clay mineral interlayers were refilled
and almost the same content was attained as in spring. Li et
al. (1990a, b) have shown a significant decrease of NH4

+
f in

upper soil layers in March and in deeper soil layers during
April. In field experiments on loess soils, Nieder et al.
(1996) observed a significant correlation between the time
course of NH4

+
f and mineral N in soil solution. The

refixation of NH4
+ in autumn may be mainly due to

increased mineralization after the harvest of annual crops.
Table 3 reflects this pattern (ranges of NH4

+ fixation in
spring, NH4

+ release in summer and NH4
+ refixation in

autumn) with results (according to pool size or 15N method,
respectively) drawn from different studies, grouped accord-
ing to upland (silty and clayey) and paddy soils.

In most of studies presented in Table 3, the NH4
+-N

fixation in spring, occurring probably as a consequence of
(mineral) fertilizer application at the beginning of the
growth period, was not determined. The amounts of
NH4

+-N released in summer vary greatly within the groups
of silty (20–200 kg NH4

+-N ha−1 30 cm−1) as well as clayey
(40–188 kg NH4

+-N ha−1 30 cm−1) soils. Studies in which

Fig. 4 Release of NH4
+
f-N in a Fluvisol during the growing season of

spring oats (source: Mengel and Scherer 1981)

Fig. 3 Dynamics of NH4
+
f-N, microbial biomass N, and mineral N

(NH4
+-N plus NO3

−-N) in a Luvisol Ap horizon under winter wheat
(source: compiled from Nieder et al. 1995a)
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subsoils (>30 cm) were included indicate even higher amounts
of NH4

+
f-N release. For example, estimates were up to

250 kg NH4
+
f-N release to a soil depth of 70 cm in Belgium

(Van Praag et al. 1980) and up to 350 kg NH4
+
f-N release to a

soil depth of 75 cm in Germany (Mengel and Scherer 1981).
Although the total amounts of NH4

+
f (“native” plus

“recently fixed”) are probably much higher in the clayey
soils (clay contents >30%) compared to the silty soils (10–
20% clay), the amounts of NH4

+
f which are available in a

growth period of annual crops seem to be in a similar order
of magnitude (Table 3). This indicates a wider ratio of
“native” to “recently fixed” NH4

+ in the clayey soils. The
low values of NH4

+
f release presented in Table 3 can partly

be attributed to the fact that the experimental plot was kept
fallow (study by Mba-Chibogu et al. 1975) or that the
experimental soil had a history of only moderate N
fertilization (not more than 60 kg N ha−1 year−1 for 25 years
prior to the initiation of the study) with a low yield level
(study by Soon 1998). In contrast, soils with a high level of
long-term N fertilizer application and a high yield level
show a high temporal variation in the interlayer NH4

+

concentration, especially on control plots with limited
contents of mineral N (see plot with nil N application in
the study by Nieder et al. 1996). Most field observations
show that the amounts of NH4

+-N refixed in autumn are
commonly smaller compared to the amounts of NH4

+-N
which are fixed in spring minus the amounts of NH4

+
f

released in summer. It is thus obvious that for replenish-
ment of the plant-available NH4

+
f pool to levels that occur

at the beginning of the growth periods, the preceding winter
periods would additionally be required.

Fixation is usually faster than release of NH4
+ (Drury

and Beauchamp 1991). Kowalenko and Cameron (1976)
observed that more than one half of the added NH4

+-N was
fixed within 1.7 days, whereas the average daily release of
NH4

+
f was 1.7 and 0.65 kg N ha−1 between 19 June to 1

August 1974 and between 1 August to 13 September 1974,
respectively (Kowalenko 1978). From the foregoing, it
appears that while the native NH4

+
f has no significance in

the soil N dynamics (Mengel and Scherer 1981; Smith et al.
1994), the temporal changes in the content of recently fixed
NH4

+ show that this fraction is actively involved in the N
dynamics during the crop growth period. Added NH4

+ is
quickly fixed by the clay minerals and later released slowly
during the crop growth season due to increased crop
demand with concomitant decrease in NH4

+ concentration
in soil solution. Supply of C-containing root exudates by
the plant enhances the activity of heterotrophic micro-
organisms which may promote the release of fixed NH4

+.
The phenomenon of temporary fixation and release of

added fertilizer NH4
+ may contribute to retarding nitrifica-

tion and thus to reducing N losses from the soil–plant
system via NO3

− leaching and denitrification (N2, N2O). In

the winter-humid temperate climate, it is generally observed
that contents of NH4

+
f reach their maximum during the

winter period, when nitrate leaching occurs frequently. The
extent of nitrate leaching may then partly depend on the
NH4

+ fixation capacity of the soil. For example, the losses
of added fertilizer N (15NH4

+) were more than double in a
Histosol with extremely low NH4

+-fixing capacity as
compared to that from a clay containing Gleysol with high
fixing capacity (Fischer et al. 1981). Similarly, NH4

+-N
fixation by clay minerals may also contribute to reducing
NH3 volatilization losses (Dou and Steffens 1995). It may,
therefore, be argued that clay fixation of NH4

+ can provide
a temporary sink for fertilizer N that subsequently acts as a
source of N for plant uptake. Information on soil NH4

+-N
fixation capacity and its plant availability is necessary for
developing efficient N fertilizer management programs.

Although the knowledge on the magnitude and the
dynamics of NH4

+
f has increased during the last few

decades, there are still conflicting reports about the
importance of NH4

+
f for plants and microflora. This may

be due to the fact that up to now, it is not possible to
distinguish properly between native fixed (non-available)
and recently fixed (plant-available) NH4

+. As a consequence,
the pool of plant-available NH4

+
f has hardly been integrated

into models to describe the N dynamics of soils. Further
research on methodological aspects is, therefore, required for
both proper separation of recently fixed NH4

+ from native
fixed NH4

+ and modeling the kinetics of plant-available
NH4

+
f. This would be a basis for integrating the pool of

recently fixed NH4
+ in fertilizer management programs.
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