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Abstract Scene perception requires the orchestration of

image- and task-related processes with oculomotor con-

straints. The present study was designed to investigate how

these factors influence how long the eyes remain fixated on a

given location. Linear mixed models (LMMs) were used to

test whether local image statistics (including luminance, lumi-

nance contrast, edge density, visual clutter, and the number of

homogeneous segments), calculated for 1° circular regions

around fixation locations, modulate fixation durations, and

how these effects depend on task-related control. Fixation

durations and locations were recorded from 72 participants,

each viewing 135 scenes under three different viewing in-

structions (memorization, preference judgment, and search).

Along with the image-related predictors, the LMMs simulta-

neously considered a number of oculomotor and spatiotempo-

ral covariates, including the amplitudes of the previous and

next saccades, and viewing time. As a key finding, the local

image features around the current fixation predicted this fixa-

tion’s duration. For instance, greater luminance was associated

with shorter fixation durations. Such immediacy effects were

found for all three viewing tasks. Moreover, in the memoriza-

tion and preference tasks, some evidence for successor effects

emerged, such that some image characteristics of the upcom-

ing location influenced how long the eyes stayed at the current

location. In contrast, in the search task, scene processing was

not distributed across fixation durations within the visual

span. The LMM-based framework of analysis, applied to the

control of fixation durations in scenes, suggests important

constraints for models of scene perception and search, and

for visual attention in general.
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Introduction

Human vision during natural scene perception is an active

process whereby observers selectively seek out information

in the visual environment relevant to perceptual, cognitive, or

behavioral goals (Findlay & Gilchrist, 2003). High-quality

visual information is acquired only from the foveal region of

the visual field (central ~2°). Therefore, we move our eyes

about three times each second via rapid eye movements

(saccades) to reorient the fovea around the scene. Between

saccades, gaze position is relatively stable, and during these

periods of fixation, visual information is acquired (for reviews,

see Henderson, 2003; Rayner, 2009). During natural scene

perception, the visuo-oculomotor system is required to make

spatial decisions regarding the target location for the next

saccade (i.e., the Bwhere^ decision), as well as temporal deci-

sions regarding the time at which to terminate the current fixa-

tion (i.e., the Bwhen^ decision). The present article is concerned

with the factors that influence the Bwhen^ decisions about

fixation durations. Specifically, I introduce a linear mixed

modeling (LMM) approach, which simultaneously considers

various low-level, mid-level, and higher-level local image

features, along with a number of oculomotor and spatiotempo-

ral covariates that may affect fixation durations in real-world

scene perception and search. As a second issue, I investigate

how these influences depend on task-related control.

A majority of the research on eye movements during scene

perception and search has focused on the Bwhere^ decision.

* Antje Nuthmann

Antje.Nuthmann@ed.ac.uk

1 Psychology Department, School of Philosophy, Psychology and

Language Sciences, University of Edinburgh, 7 George Square,

Edinburgh EH8 9JZ, UK

DOI 10.3758/s13423-016-1124-4

Published online: 1 August 2016

Psychon Bull Rev (2017) 24:370–392

http://orcid.org/0000-0003-3338-3434
http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-016-1124-4&domain=pdf


The dominant theoretical and computational framework in the

literature has been image salience, in which low-level image

properties play a crucial role in guiding attention and the eyes

(Borji & Itti, 2013; Tatler, Hayhoe, Land, & Ballard, 2011, for

reviews). These models incorporate the concept of a bottom-

up salience map (in differing implementations), with or with-

out top-down control (e.g., Itti & Koch, 2000; Navalpakkam

& Itti, 2005; Torralba, Oliva, Castelhano, & Henderson, 2006;

Zelinsky, 2008). The scope of these models is to predict fixa-

tion locations (where), but not fixation durations (when). With

regard to the Bwhen^ decision, the CRISP model is the first

theoretical approach and computational model that was devel-

oped to account for variations in fixation durations during

scene viewing (Nuthmann, Smith, Engbert, & Henderson,

2010). A key assumption of the CRISP model is that

moment-to-moment difficulties in visual and cognitive pro-

cessing can immediately inhibit (i.e., delay) saccade initiation,

leading to longer fixation durations.

Empirical studies on the Bwhere^ decision have addressed

the question of which image characteristics predict where peo-

ple fixate when viewing natural images (e.g., Baddeley &

Tatler, 2006; Mannan, Ruddock, & Wooding, 1996;

Reinagel & Zador, 1999; Tatler, Baddeley, & Gilchrist,

2005). Nuthmann and Einhäuser (2015) combined a scene-

patch analysis with generalized linear mixed models

(GLMMs). Using this method, the authors estimated the

unique contributions of various image features to fixation se-

lection: luminance and luminance contrast (low-level fea-

tures), edge density (a mid-level feature), and visual clutter

and image segmentation, to approximate local object density

in the scene (higher-level features). The GLMM results re-

vealed that edge density, clutter, and the number of homoge-

neous segments in a patch can independently predict whether

or not image patches are fixated. Importantly, neither lumi-

nance nor contrast had an independent effect above and be-

yond what could be accounted for by the other image features

(Nuthmann & Einhäuser, 2015).

BWhen^ decision about fixation duration

More recently, interest has been growing in the oculomotor

decision of when to move the eyes during scene viewing (e.g.,

Glaholt & Reingold, 2012; Henderson & Pierce, 2008;

Nuthmann et al., 2010; Pannasch, Schulz, & Velichkovsky,

2011). The underlying idea is that fixation durations in

visual-cognitive tasks vary with processing difficulty

(Rayner, 1998). In line with this general assumption, fixation

durations during scene viewing have been shown to globally

adjust to overall processing difficulty. Importantly for the

present study, image-wide degradations of low-level features

have been shown to prolong fixations. In one set of studies,

image features were manipulated throughout the entire view-

ing period of the scene, and fixation durations were prolonged

when the overall luminance of the scene was reduced (see

below) or when color was removed (Ho-Phuoc, Guyader,

Landragin, & Guerin-Dugue, 2012; Nuthmann & Malcolm,

2016). Fixation durations also increased when high-spatial-

frequency information was removed through low-pass filter-

ing (Mannan, Ruddock, & Wooding, 1995), or when higher-

order scene statistics, including objects, were removed

(Kaspar & König, 2011; Walshe & Nuthmann, 2015).

In addition, studies using gaze-contingent display-change

paradigms have tested the direct-control hypothesis, which

states that the processing of the scene stimulus currently in

view produces an immediate fixation-by-fixation adjustment

of the timing of the saccade that terminates the fixation

(Rayner & Reingold, 2015, for a review focusing on

reading). The scene-onset delay (SOD) paradigm

(Henderson & Pierce, 2008; Henderson & Smith, 2009;

Luke, Nuthmann, & Henderson, 2013; Shioiri, 1993) offers

the most straightforward approach for demonstrating that the

information extracted during a fixation impacts the timing of

the saccade terminating that fixation. At the beginning of a

critical fixation, a visual mask is presented, which delays the

onset of the scene. The duration of the delay is varied. The

scene is then presented normally until the observer looks at

another scene region. The underlying rationale is that stimulus

processing can only begin after the visual features of the stim-

ulus have become available. Indeed, SOD studies have con-

sistently revealed populations of fixations that increased in

duration as the delay increased, suggesting that the durations

were controlled directly and in real time by the current scene

image. Simulations with the CRISP model substantiated that

for these fixations, the initiation of a new saccade program is

delayed due to the stimulus’s unavailability at the beginning of

a fixation, resulting in an increase in fixation durations

(Nuthmann & Henderson, 2012; Nuthmann et al., 2010).

Further evidence in support of direct control has been provid-

ed by the fixation-contingent scene quality paradigm, in which

the quality of the scene is manipulated during the entire dura-

tion of selected critical fixations (Glaholt, Rayner, &

Reingold, 2013; Henderson, Nuthmann, & Luke, 2013;

Henderson, Olejarczyk, Luke, & Schmidt, 2014; Walshe &

Nuthmann, 2014a). In these studies, image-wide feature mod-

ifications have been used as a means to degrade or enhance the

scene stimulus. The durations of the critical fixations were

immediately affected by reductions in luminance (see below)

or by filtering high or low spatial frequencies (Glaholt et al.,

2013; Henderson et al., 2014). Collectively, these findings

lend support to the notion that fixation durations are, at least

partially, under the direct moment-to-moment control of the

current visual stimulus.

All these experiments have in common that the entire scene

was manipulated, to vary global scene processing difficulty.

The present work extends this line of research by investigating

local effects of image features on fixation durations under
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different task instructions. Specifically, the present study com-

bines a corpus analysis approach with an experimental manip-

ulation. The aim of the study was to collect a large corpus of

eye movements from a large number of participants (N = 72)

viewing a large number of scenes (N = 135). In addition, the

observers’ viewing task (scene memorization, preference

judgment, or scene search) was manipulated as part of the

study design. This was done to investigate how the control

of fixation durations depends on cognitive top-down influ-

ences in addition to a putative role of bottom-up image

features.

With regard to local image features, the corpus analyses

considered the sets of low-level, mid-level, and higher-level

visual image features used in a related study on fixation selec-

tion in scenes (Nuthmann & Einhäuser, 2015). For a particular

image and/or fixation location, different features tend to be

correlated (Baddeley &Tatler, 2006). Although feature depen-

dencies can be a consequence of the hierarchical definition of

features, they oftentimes arise from the structural properties of

natural scenes (Nuthmann & Einhäuser, 2015). To deal with

feature dependencies, I used an LMM-based statistical control

approach to assess each feature’s unique contribution to fixa-

tion duration. The main focus was on testing whether local

image statistics exert immediacy effects on fixation durations

in scene viewing. For example, does the luminance in a lim-

ited spatial region around the current fixation modulate this

fixation’s duration? In addition, the analyses focused on

whether scene processing is distributed across fixation dura-

tions within the visual span, an idea first proposed in research

on eye movements in reading (e.g., Engbert, Nuthmann,

Richter, & Kliegl, 2005; Kliegl, Nuthmann, & Engbert,

2006; Schad, Nuthmann, & Engbert, 2010). This approach

implied testing whether the duration of the current fixation

also reflected the processing demands of the previous and next

fixation locations. Along with the image-related predictors,

the LMMs simultaneously considered a number of ocu-

lomotor and spatiotemporal covariates. Separate models

were built for the three different viewing tasks. In the

remainder of this introduction, I will introduce the

variables that are part of the analysis framework in more

detail. Where relevant, the results from reading studies

will be presented along with findings from scene-viewing

studies.

Viewing task

Task effects have provided compelling demonstrations of the

cognitive top-down influences on eye movements in scene

viewing (Yarbus, 1967). On the basis of a subset of the present

data (36 participants, two tasks), we previously reported lon-

ger fixation durations in a memorization task that probed

scene memory, as compared with an object-in-scene search

task (Nuthmann et al., 2010). This global effect of viewing

task on fixation durations was modeled with the CRISP model

(Nuthmann et al., 2010), with task-specific influences being

realized by different parameter settings. Castelhano et al.

(2009) compared a memorization task probing memory for

objects in scenes with a search task in which participants were

asked to locate a specified object in the scene. There were no

differences in individual fixation durations between the two

experimenter-directed task manipulations. However, longer

gaze durations were observed on objects in the scenes during

memorization than during search. In a study by Mills et al.

(2011), participants completed one of four tasks (memory,

pleasantness, search, or free view) under general viewing in-

structions that were participant-directed (i.e., the task instruc-

tions established general goals of viewing and left the partic-

ipants free to translate them). The task set biased the timing of

fixations, such that fixation durations were generally longer

for free view and memory than for search and pleasantness

judgment.

Image features

For every image location that observers sampled with their

eye fixations, five local image-based indexes of processing

difficulty were obtained. First, three common measures of

local image statistics that characterize different properties of

image luminance were examined: luminance, luminance con-

trast, and edge density. In addition, the effects of the process-

ing load induced by the two more complex, higher-level im-

age-based measures were evaluated. Specifically, the feature

congestion measure of visual clutter (Rosenholtz, Li, &

Nakano, 2007) was included as a surrogate measure for ob-

jects, and synergistic image segmentation (Christoudias,

Georgescu, & Meer, 2002) as an approximation of local

object density in the scene. A few studies have consid-

ered the association between fixation duration and indi-

vidual measures, using experimental or correlational

methods.

Luminance It has been shown that reducing the luminance of

the entire scene leads to longer fixation durations (Henderson

et al., 2013; Loftus, 1985; Loftus, Kaufman, Nishimoto, &

Ruthruff, 1992; Walshe & Nuthmann, 2014a). For example,

in the Henderson et al. study, participants freely viewed scenes

at three levels of luminance (100 %, 80 %, and 60 %) in

preparation for a later memory test. In a first experiment, each

scene was presented at one of the luminance levels for the

entire trial, and fixation durations linearly increased as

luminance decreased. Thus, fixation durations were globally

slowed when scene processing became more difficult. In two

additional experiments, scenes were reduced in luminance

during saccades ending in critical fixations. The duration of

these critical fixations was immediately affected by the

reduction in scene luminance, with increasing durations for
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decreasing luminance. Walshe and Nuthmann (2014a) repli-

cated and extended these results, and then modeled the key

findings with a variant of the CRISP model (Walshe &

Nuthmann, 2014b).

Luminance contrast Einhäuser and König (2003) had five

participants view outdoor scenes without any visible

manmade objects; no task-specific instructions were given.

The duration of fixations was correlated with neither contrast

nor experimental contrast modifications.

Clutter Clutter is an image-based feature of visual complex-

ity, which has been studied mostly in the context of a search

task. Rosenholtz et al. (2007) operationalized clutter using

three image-based measures: feature congestion, sub-band en-

tropy, and edge density (see below for details). With regard to

fixation durations, it may be expected that a more cluttered

scene would lead to longer average fixation durations.

Henderson et al. (2009) tested this hypothesis by reanalyzing

data from a difficult scene search task. Fixation durations were

influenced by global scene clutter within the first second of

search (significant correlations with all three measures of

scene clutter), but not by the local clutter surrounding the

current fixation location (square regions 1° or 3.3° in size), a

counterintuitive finding.

Distributed-processing assumption: Lag and successor

effects

Evidence that observers are able to process parafoveal infor-

mation during scene viewing has been provided by visual-

span studies. The visual span (also referred to as the percep-

tual span) is defined as the area of the visual field from which

useful information can be acquired during a given eye fixation

(see Rayner, 2009, 2014, for reviews). The size of the visual

span can be measured using the gaze-contingent moving-win-

dow paradigm (McConkie & Rayner, 1975). The general log-

ic is to reduce the size of the window to find the smallest

window that still supports normal scene-viewing behaviors.

The size of the visual span in scene viewing is large,

encompassing up to half of the total scene (scene search:

Nuthmann, 2013; scene memorization: Saida & Ikeda,

1979). For object-in-scene search,1 the visual span

corresponded to 8° in each direction from fixation

(Nuthmann, 2013). When the radius of the high-resolution

moving window was smaller than 5°–6° (fixation-duration-

based visual span size), the fixation durations systematically

increased. Conversely, we can infer from these findings that

visual information within both foveal (~1° eccentricity) and

parafoveal (~5° eccentricity) vision can influence fixation du-

rations. This opens up the possibility that scene processing

may be distributed across fixation durations within the visual

span (distributed-processing assumption). Thus, the starting

point for my investigation was that scene-level features can

be processed across the visual field. I then tested the

distributed-processing assumption in two steps. First, I tested

whether there are immediacy effects of local image statistics

on fixation durations in scene viewing. For example, does the

luminance or clutter around fixation modulate fixation dura-

tions? Second, I tested whether the duration of the current

fixation also reflects the processing demands of the previous

fixation location (lag effect, spillover effect) or the next (suc-

cessor effect, parafoveal-on-foveal effect).2 Therefore, the

analyses considered triplets of fixations—that is, sequences

of three successive fixations (Fig. 1). The current fixation is

referred to as fixation n, the preceding fixation as n – 1, and

the next fixation as n + 1. The only dependent variable was the

duration of fixation n. To test the local influence of visual

image features, circular image patches with a radius of 1°,

approximating foveal vision, were centered on each fixation

point.

Lag effects refer to the influence of local image-based in-

dexes of fixation n – 1 or the position of fixation n – 1 on the

duration of fixation n. Corpus analyses of reading data have

identified lag effects that are (a) due to incomplete processing

of the previous word n – 1 and (b) due to the limits of visual

acuity (Kliegl et al., 2006). The present analyses tested wheth-

er lag effects originating from these two sources also exist in

scene viewing. First, if the processing of the scene region

sampled with fixation n – 1 is not completed before the eyes

move on to the next scene region, effects of image statistics at

fixation n – 1might spill over to the duration of the subsequent

fixation n. Second, the distance between the locations of fix-

ations n and n – 1—that is, the amplitude of the incoming

saccade—might also influence the subsequent fixation dura-

tion. In reading, the finding that fixation durations increase

with the amplitude of the incoming saccade is well-

established (e.g., Kliegl et al., 2006; Schad et al., 2010; Vitu,

McConkie, Kerr, & O’Regan, 2001). Likewise, in scene view-

ing wemay observe long fixations after long saccades because

the previous fixation n – 1 yielded less preview of the scene

region sampled with the current fixation n than is true for

fixations after short saccades. In free viewing, when there is

1 A subset of scenes and targets and the eyetracking setup in this study

were identical to the materials and equipment used in the present study.

2 With regard to terminology, a subtle distinction has been suggested in

the context of reading research: Distributed-processing effects found in

corpus studies using the statistical control approach should be called lag

effects and successor effects, whereas the terms spillover and parafoveal-

on-foveal (PoF) effects should be reserved for evidence obtained with the

experimental approach (Angele et al., 2015; Kliegl et al., 2006). The term

PoF effects, controversially discussed in the literature on reading, implies

that they are caused by parafoveal processing. Successor effect, in turn, is

a less interpretative term.
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no explicit task, the amplitude of the incoming (or last) sac-

cade (Sacn–1 in Fig. 1) has not predicted the duration of the

following fixation (Tatler & Vincent, 2008).3 To foreshadow

the results, I found systematic effects of saccade amplitude on

subsequent fixation durations across viewing tasks in the pres-

ent data.

Successor effects refer to the possibility that processing of

scene regions in parafoveal vision can influence foveal fixation

durations during scene viewing. Parafoveal information is used

to provide information as to where the eyes should move next

(Nuthmann, 2013; Pajak &Nuthmann, 2013). Specifically, this

information is used for selecting the next saccade target and

determining the amplitude of the next saccade. However, it is

currently unclear whether and to what extent such parafoveal

processing modulates the duration of fixation n. Do successor

effects generalize from reading (Kliegl et al., 2006; Schotter,

Angele, & Rayner, 2012, for a review) to scene viewing? If so,

is the parafoveal processing of upcoming fixation locations

restricted to low-level properties related to image luminance,

or does it also extend to higher-level image features that ap-

proximate the presence of objects in a scene? Finally, do suc-

cessor effects depend on task-related control?

Oculomotor and spatiotemporal parameters

Along with the image-related predictors, the LMMs simulta-

neously assessed a number of oculomotor and spatiotemporal

covariates, including the amplitude of the next saccade, the

change in saccade direction, and viewing time.

Amplitude of the next saccade The LMMs included the am-

plitude of the outgoing (or next) saccade. Tatler and Vincent

(2008) found no systematic relationship between the current fix-

ation duration and the amplitude of the outgoing saccade

(Saccade n in Fig. 1) during free viewing of natural scenes.

Reading studies have reported mixed results. In a number of

studies, fixation durations were found to increase with the length

of the outgoing saccade (e.g., Kliegl et al., 2006; Kuperman,

Dambacher, Nuthmann, & Kliegl, 2010; Schad et al., 2010).

However, corpus analyses byAngele et al. (2015, 2016) reported

significant negative effects, with shorter single fixations and gaze

durations when the next saccade was large.

Change in saccade direction The change in saccade direction

can be described as the angular difference between the last sac-

cade n – 1 and the next saccade n (Δ in Fig. 1). An angleΔ = 0°

is indicative of a saccade n that continues the trajectory of sac-

cade n – 1, whereas Δ = 180° denotes a complete reversal of

direction. A number of studies have observed an approximately

linear increase in fixation duration and/or saccade latency as a

function of the angular difference between the last and next

saccades (Klein & MacInnes, 1999; MacInnes & Klein, 2003;

Smith & Henderson, 2009, 2011; Tatler & Vincent, 2008;

Wilming, Harst, Schmidt, & König, 2013). Fixation durations

are shortest when saccade n continues the trajectory of saccade n

– 1, whereas complete reversals in saccade direction are associ-

ated with the longest fixations. In the literature (see Klein &

Hilchey, 2011, for a review), the effect has been associated with

the temporal component of either (or both) of two biases: a bias

away from previous fixations (i.e., oculomotor inhibition of

return, O-IOR) or a bias for the eyes to continue moving in the

same direction (i.e., saccadic momentum).

Viewing time The finding is well-established that fixation dura-

tions change over time. Several studies have reported that fixation

durations increased during initial viewing periods and stabilized

during later viewing (e.g., Antes, 1974; Mills et al., 2011;

Pannasch, Helmert, Roth, Herbold, & Walter, 2008; Unema,

Pannasch, Joos, & Velichkovsky, 2005; but see De Graef,

Christiaens, & D’Ydewalle, 1990). The study by Mills et al.

(2011) investigated how task set influences the rate of change in

fixation durations over the course of viewing. As was described

above, fixation durationswere generally greater for free view and

memory than for search and pleasantness rating. The effect was

present primarily during early viewing only (i.e., at 1 and 2 s),

with the only difference during later viewing (i.e., at 5 s) being

between the free-view and the search conditions (Mills et al.,

2011). In contrast, in the study by Castelhano et al. (2009), no

effect of task (memorization vs. search) was observed across the

viewing period or during early viewing (the first five fixations).

Fix
n

Fix
n−1

Fix
n+1

Δ

S
a
c n

−
1

Saccade n

amplitude of last saccade n−1: 3.2°

amplitude of next saccade n: 4.5°

1°

Fig. 1 Schematic depiction of the analyzed fixation triplets. The

dependent variable in all analyses is the duration of the middle fixation

n (Fixn). This current fixation n is preceded by saccade n – 1 (Sacn–1),

which moved the eyes from the previous fixation n – 1 to the current

fixation location n. The next saccade nmoves the eyes from fixation n to

the next fixation location, n + 1.Δ denotes the angular difference between

the previous saccade n – 1 and the next saccade n. The circles around

the fixation locations depict the patches that were used to test the

influences of visual image features

3 This study does not report inferential statistics.
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Distance from scene center Many studies have reported that

observers fixate more often toward the center of the image

than at the edges (e.g., Mannan et al., 1996; Tatler et al.,

2005). This image-independent viewing bias (Tatler, 2007)

is referred to as the central bias of fixation. In previous work,

this bias has been quantified as a linear decrease in fixation

probability as the distance from scene center increases

(Nuthmann & Einhäuser, 2015). When the influence of image

features was controlled for, the central bias was still a strong

predictor of where observers fixated in a scene. To explore

whether the central bias generalizes to fixation durations, the

current fixation’s spatial distance from image center was con-

sidered as an additional input variable for analysis.

The present study

The present research aims at advancing our knowledge about

the factors that control fixation durations during scene viewing.

This study is the first to present a statistical modeling frame-

work to simultaneously test the influences of a large set of

variables on fixation durations during scene perception, with

a specific focus on how local image-based indexes of process-

ing difficulty influence the fixation durations at the current,

previous, and next fixation locations. An LMM approach is

introduced, which allows the researcher to assess each predic-

tor’s unique contribution to explaining variance in fixation du-

rations for a given viewing task, and its relative importance.

Specifically, the goal of the LMMs was to test simultaneously

the influences of 20 variables. These are the luminance, lumi-

nance contrast, proportion of edges, visual clutter, and number

of segmented units around the current, previous, and next fix-

ation locations; the amplitudes of the incoming and outgoing

saccades (in degrees of visual angle); the angular difference

between the two saccades (in degrees); the current fixation’s

Euclidian distance from image center (in degrees of visual an-

gle); and the viewing time (in milliseconds).

Method

Participants, apparatus, and materials

Analyses were based on a large corpus of eye movements

during scene viewing.4 Seventy-two participants (mean age

= 22.6 years; 38 females, 34 males) each viewed 135 unique

full-color photographs of real-world scenes from a variety of

categories (indoor and outdoor). The 92 indoor scenes came

from different subcategories, ranging from common rooms in

one’s house (e.g., living room, kitchen) to images from shops,

garages, and so forth. Scene images were presented on a 21-in.

CRTmonitor with a screen resolution of 800 × 600 pixels. The

scenes subtended 25.78° horizontally × 19.34° vertically at a

viewing distance of 90 cm. A chinrest with a head support was

used to minimize head movement. During scene presentation,

eye movements were recorded using an SR Research EyeLink

1000/2 K system (average accuracy: 0.25° to 0.5°, precision:

0.01° root-mean squared). The experiment was implemented

with the SR Research Experiment Builder software.

Procedure

Participants viewed each of the 135 scenes once: 45 scenes in

each of the three viewing tasks (memorization, preference

judgment, and search). All scenes were presented for 8 s. In

the scene memorization task, observers had to encode the

scene to prepare for an old–new recognition test administered

at the end of the experiment. In the aesthetic preference judg-

ment task, participants rated how much they liked each scene.

The visual search task had participants look for a prespecified

object in the scene (e.g., the basket in Fig. 2a).

At the beginning of each trial, a fixation point was present-

ed at the center of the screen and acted as a fixation check. In

the search task, prior to the fixation check, a text label describ-

ing the target (e.g., basket) was presented for 800 ms. For

details on selection of the search targets and their properties,

see Nuthmann and Henderson (2010). To keep the viewing

time constant across tasks, the scene remained on the screen

until the 8 s were over. However, the present fixation duration

analyses only considered fixations made until the buttonpress

terminating the search.

Both the search block and the aesthetic preference block

were preceded by three practice trials. After participants had

completed the three viewing tasks, the memory test was ad-

ministered (see Nuthmann & Henderson, 2010, for details).

Design

A dual Latin-square design was used in the study (Table 3).

Participants were allocated to nine groups of eight participants

(random factor Subject Group) to control for (a) which set of

images they viewed in each task and (b) the order in which

they performed the three viewing tasks. To control for item

effects, the 135 scene images were assigned to three lists of 45

scenes each. The scene lists (random factor Scene List) were

rotated over participants, such that a given participant was

exposed to a scene list for only one of the three viewing-task

conditions. The three orders in which the task blocks were

completed were search–memorization–preference,

4 The data from this eye-movement corpus have previously been used to

study attentional selectionwithin objects (Nuthmann&Henderson, 2010;

Pajak & Nuthmann, 2013) and specific viewing biases during scene per-

ception (Luke et al., 2014; Nuthmann & Matthias, 2014). In contrast, the

present analyses assess the influence of local image-based indexes along

with oculomotor and spatio-temporal variables on fixation durations,

questions that have not been previously addressed.

Psychon Bull Rev (2017) 24:370–392 375



preference–search–memorization, and memorization–prefer-

ence–search. The design ensured that every order of tasks

and combination of scenes with tasks was represented at least

once across the nine participant groups (Table 3). Out of the

72 participants, 24 saw the same scene images in a given

viewing task, and eight participants saw the same images in

a given task and task order.

Data analysis

Data from the right eye were analyzed. Saccades were defined

with a 50°/s velocity threshold using a nine-sample saccade

detection model. The raw data were converted into a fixation

sequence matrix using SR Research Data Viewer. Those data

were processed further and analyzed using MATLAB 2009b

(TheMathWorks, Natick,MA) and the R system for statistical

computing (version 3.2.0; R Development Core Team, 2015)

under the GNU General Public License (Version 2,

June 1991). All image processing was performed in

MATLAB.

Gaze data analysis

A major goal of the present work was to test the influences of

local image-based indexes of processing difficulty on the fix-

ation durations at the current, previous, and next fixation lo-

cations. Therefore, the main analyses considered triplets of

fixations (Fig. 1). Fixations were excluded if they were the

first or last fixation in a trial. The triplet analyses therefore

required a minimum of five fixations in a trial. To test the

influences of visual image features, circular image patches

were centered on each fixation point. Each circle had a radius

of 1°, to approximate foveal vision while accommodating the

inaccuracy of the eyetracker. A given fixation could potential-

ly contribute to several triplets. For example, a sequence of

five successive valid fixations would generate three triplets,

with the middle fixation (#3) contributing to the first triplet as

fixation n + 1, to the second triplet as fixation n, and to the

third triplet as fixation n – 1. Fixation triplets that co-occurred

with blinks were removed. For the investigation of fixation

durations, it is common to exclude very short (e.g., <50 or

80 ms) and very long fixations, on the basis of the assumption

that they are not determined by online cognitive processes

(Inhoff & Radach, 1998). Triplets in which one or more fixa-

tions were shorter than 50 ms or longer than 1,000 ms were

therefore disregarded. For the investigation of saccade prop-

erties, it is common to remove saccades with amplitudes less

than 1°, to exclude corrective saccades and microsaccades

(e.g., Smith & Henderson, 2009). In the present context, the

inclusion of small saccades would potentially smear out the

effects of distributed processing. Furthermore, the length of

the next saccade from fixation n to n + 1 determined the

overlap between the circular patches centered on fixations n

and n + 1, and the same was true for the previous saccade and

the patches centered on fixations n – 1 and n. When using

circular patches with a 1° radius, a 1° saccade would lead to

a 39 % overlap between neighboring patches. Overlap be-

tween patches would also aggravate the correlation between

them. Only fixation triplets in which the circular patches

around fixations n – 1, n, and n + 1 did not overlap were

included in the analyses. Triplets in which the incoming or

outgoing saccades (or both) were shorter than or equal to 2°

were therefore removed. After exclusions, 76,685 fixation

triplets (memorization: 28,442; preference judgment: 33,275;

search: 14,968) remained for the analyses. Fewer data points

were available for the scene search task because the analyses

only considered fixations made until the buttonpress terminat-

ing the search (mean search time 3.77 s). The median saccade

amplitudes were 5.1° (search), 5.2° (memorization), and 5.3°

(preference).

Fig. 2 Example image and feature maps. (a) The original image. (b)

Zooming in to the table on the lower right, with a fixation on the paper

coffee cup. (c) Luminance map. (d) Edge density map, after filtering the

image with a Sobel operator. (e) Feature congestion visual clutter map. (f)

Synergistic segmentation of the scene image, resulting in 2,277

homogeneous tiles
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The triplet analyses required filtering the data set in various

ways, such that the analyses were based on subsets of data.

Therefore, the triplet analyses were complemented by control

analyses that exclusively tested immediacy effects of local

image features around the current fixation—that is, no lag

and successor effects. As before, the LMMs included the full

set of oculomotor and spatiotemporal variables. As compared

with the triplet analyses, the number of observations that en-

tered the control LMMs was much increased (memorization:

67,472; preference judgment: 69,854; search: 33,170), there-

by increasing statistical power. Moreover, the control analyses

allowed for testing whether the results would generalize when

fixations with short incoming or outgoing saccades were

included.

Computation of image features

For each scene image, five different feature maps were calcu-

lated. On the basis of the various image feature maps, local

image statistics were calculated by identifying patches

subtending a circular area with a radius of 1° (31 pixels)

around fixation locations. Patches were computed for each

participant and scene on a fixation-by-fixation basis. Thus,

the local image patches were analyzed for all three fixations

in a triplet (Fig. 1).

Luminance The luminance of each pixel was defined by

converting the sRGB values of the image (assuming the IEC

61966-2-1 specification) to CIE L*a*b* space and retaining

only the luminance (L*) information. For each image, lumi-

nance was then mapped linearly to the interval [0, 1]. As an

illustration, Fig. 2c depicts the luminance map for the example

scene in Fig. 2a. Local luminance was defined as the mean

value of the luminance within a patch. Greater luminance is

associated with a higher degree of subjectively perceived

brightness.

Luminance contrast On the basis of the luminance map

(Fig. 2c), each local image patch was labeled with its local

contrast value. The contrast for each patch was defined as a

version of the root-mean-square contrast (Moulden, Kingdom,

& Gatley, 1990): that is, the standard deviation of the lumi-

nance values of all pixels in the patch, divided by the mean

luminance of the image (Einhäuser & König, 2003; Reinagel

& Zador, 1999). In general, more uniform patches have less

contrast.

Edges Edges were defined as the boundaries between regions

of distinctly different mean luminances. The locations of the

edges in an image were determined by applying a Sobel op-

erator to the luminance map, which extracted an approxima-

tion to the luminance gradient at each point in the image

(Mannan et al., 1996; Mannan, Ruddock, & Wooding,

1997). Thresholds were applied using the adaptive procedure

implemented in the edge function in the Image Processing

Toolbox for MATLAB, resulting in a binary image with ones

where the function found edges in the image and zeros else-

where. The procedure thus produced a black-and-white im-

age, with white representing the edges (see Fig. 2d). Edge

density was then defined as the mean over all pixels in a patch

for this binary image; that is, the proportion of edges in the

patch. These proportions ranged from 0 to .374 (mean = .068,

standard deviation = .043). To Bstretch out^ proportions that

are close to 0, edge densities were submitted to a logit trans-

formation [logit(p) = 0.5 * ln(p/(1 – p))] (Cohen & Cohen,

1975), after regularizing 0 to the smallest nonzero value in the

data.

Clutter A feature congestion map of visual clutter was com-

puted for each scene, using the algorithms described by

Rosenholtz et al. (2007) and MATLAB code provided at

http://dspace.mit.edu/handle/1721.1/37593. For each such

feature map, the range of feature values was normalized

linearly to [0, 1]. Figure 2e depicts the feature congestion

map of visual clutter for the example scene shown in Fig. 2

a. The local feature values for clutter were defined as the mean

over this feature map’s values within each patch.

Synergistic image segmentation The goal of image segmen-

tation is to break up the image into meaningful or perceptually

similar regions. The present analyses used the synergistic seg-

mentation (Christoudias et al., 2002), which combines the

mean shift-based color image segmentation (Comaniciu &

Meer, 2002) with edge confidence and gradient maps (Meer

& Georgescu, 2001). The algorithms, implemented in C++,

are available via the Edge Detection and Image Segmentation

(EDISON) system (Christoudias et al., 2002), as is a MEX

wrapper for MATLAB (www.wisdom.weizmann.ac.

il/~bagon/matlab.html). Each image was subjected to the

synergistic image segmentation by using the default

parameters. On average, 2,947 segments per scene were

obtained (see Fig. 2f for an example). For each patch, the

number of homogeneous segments was determined.

LMMs and model-building strategy

LMMs (e.g., Baayen, Davidson, & Bates, 2008) were used to

determine the impacts of various image-based, oculomotor,

and spatiotemporal variables on the fixation durations in scene

viewing. The main focus was on the effects of local image

statistics. Therefore, and to reduce model complexity, models

were built separately for each of the three viewing tasks. This

approach allowed for inferences about the presence or absence

of a given effect in a given viewing task. Whereas one can

assess the strength of a given effect in a given task through the

size of the standardized regression coefficient (Schielzeth,
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2010; Schielzeth & Forstmeier, 2009, for discussion in the

context of LMMs), the effect of viewing task is not explicitly

modeled. Moreover, given that this was the first study of its

kind, the models reported here will include main effects with-

out interactions.

Mixed models are statistical models that incorporate both

fixed and random effects (Bates, 2010). Fixed effects in LMM

terminology correspond to regression coefficients in standard

linear regression models or to main effects in an analysis of

variance.5 Random effects allow for capturing variance attrib-

uted to the randomness of participant and item sampling. The

participants and items tested in research on scene perception

are crossed, in that the participants in a given study are tested

on a series of scene items, and the same items are tested on a

series of participants. Technically, random effects represent

the subjects’ or items’ deviations from the fixed-effect param-

eters (Bates, 2010).

The many advantages of LMMs are well-documented

(Cunnings, 2012; Judd, Westfall, & Kenny, 2012; Kliegl,

Wei, Dambacher, Yan, & Zhou, 2011; Locker, Hoffman, &

Bovaird, 2007). An important advantage is that LMMs allow

one to generalize to populations of both subjects and items on

the basis of a single analysis. Another advantage is that they

avoid information loss due to prior averaging over items or

subjects. In the present context, this means that fixation dura-

tions were modeled on the fixation level. Moreover, LMMs

can handle incomplete and unbalanced data, an inherent fea-

ture of many eyetracking studies.

It is important to distinguish between input variables and

predictors. Input variables are the variables that were mea-

sured, and predictors are the terms that were entered in the

model (Gelman & Hill, 2007; Schielzeth, 2010). Here, all

input variables were measured on a continuous scale. For the

LMM analyses, all input variables were centered by

subtracting the sample mean from all variable values, and

scaled by dividing the variables by their sample standard de-

viations. As a result, each input variable had a mean of 0 and a

standard deviation of 1. This standardization (z transforma-

tion) converts the original units to units of standard deviations.

In the case of approximately normally distributed input vari-

ables, about 95 % of the values are within ±2 units. The stan-

dardization of input variables results in the estimation of stan-

dardized slopes, which are comparable in magnitude within

models as well as between models (Schielzeth, 2010).

Fixation durations were log-transformed to achieve a near-

normal distribution of the dependent variables (see Kliegl,

Masson, & Richter, 2010) and to avoid issues with

heteroscedasticity.

When analyzing empirical data with LMMs, the selection

of an appropriate random-effects structure is of key

importance. In the LMMs reported here, the fixed-effect inter-

cept reflects the mean fixation duration (log-transformed) in a

given viewing task. The intercept has several random compo-

nents. The first one varies from subject to subject, to allow for

the fact that some observers have longer fixation durations on

average than others. Including such by-subject random inter-

cepts is also a way of accounting for individual differences.

The second random component for the intercept varies from

scene item to scene item. In the design of the study, the great

variation in the composition of natural scenes was accounted

for by counterbalancing scene lists across viewing-task con-

ditions. However, individual scene items may have effects

above and beyond their affiliations with certain item lists. In

the context of LMMs, this was accounted for by including by-

item random intercepts (and slopes; see below). For complete-

ness, the random-effects structure of the LMMs also included

random intercepts for the factors Scene List and Subject

Group (see the Method section), following the Latin-square

example in Baayen et al. (2008).

In principle, the variance–covariance matrix of the random

effects not only includes random intercepts but also random

slopes, as well as correlations between the intercepts and

slopes. Random slopes account for variance between subjects

and between items for the fixed effects (and interactions) in

the model. For example, the by-item random slope for edge

density at fixation n captures whether items vary in the extents

to which they show effects of foveal edge density on fixation

durations.

Models that include random intercepts but no slopes (i.e.,

random intercept models) can lead to false positives, such that

the null hypothesis regarding an experimental effect is wrong-

ly rejected (Schielzeth & Forstmeier, 2009). Simulation stud-

ies have shown that LMMs minimize the false positives when

they include the maximal random-effects structure justified by

the design (Barr, Levy, Scheepers, & Tily, 2013). The problem

with the maximal random-effects structure is that the number

of model parameters associated with the random factors grows

quadratically with the number of variance components (Bates,

Kliegl, Vasishth, & Baayen, 2015a). Specifically, for n vari-

ance components there will be a maximum of n(n + 1)/2 mod-

el parameters (not counting fixed effects).

As was outlined in the introduction, LMMs with the full

fixed-effects structure considered 20 input variables. Two

of the input variables entered the model with a quadratic

term in addition to the linear term (i.e., amplitude of the

previous saccade and viewing time). Along with the inter-

cept, the models therefore comprised 23 fixed effects. The

maximal random-effects structure would require estimat-

ing 554 parameters (by subject, a random intercept, 22

random slopes, and 253 correlation terms; by item, the

number was the same as by subject; two additional ran-

dom intercepts). Needless to say, this maximal random-

effects structure is too complex for the information

5 To be precise, whether LMMs test main effects or simple effects de-

pends on the coding scheme used for the categorical predictors.
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contained in the data, with the result that the LMM would

not converge.

One recommendation to reduce model complexity is to set

correlation parameters to zero (Barr et al., 2013; Bates,

Maechler, Bolker, & Walker, 2015b). Thus, in such a zero-

correlation parameter model (zcpLMM), the random slopes

and intercepts are assumed to be independent. Given the rel-

atively large number of fixed effects, the full random-effects

structure of the zcpLMM is still complex, requiring 48 vari-

ance components to be estimated (23 by subject, 23 by item,

plus two additional random intercepts). These models, one for

each viewing task, did converge after a large number of model

evaluations (26,165, 28,329, and 19,288 iterations for the

memorization, preference, and search tasks). Whether random

effects are warranted for a given fixed effect is an empirical

question (Judd et al., 2012). The estimates for the variance

components in the zcpLMMs (with a full random-effects

structure) revealed that the variances for a number of random

slopes were estimated as zero. The majority of them were by-

subject random slopes related to the local image features

around fixations n – 1 (memorization, two out of five; for

preference, four; and for search, three), n + 1 (for memoriza-

tion four, for preference one, and for search three), and fixa-

tion n (for memorization zero, for preference four, and for

search three).6 Therefore, the complexity of the zcpLMMs

was reduced by excluding all by-subject random slopes

pertaining to local image features. In addition, no evidence

was apparent that subjects or items varied with regard to the

quadratic term for the amplitude of the previous saccade.

Consequently, random slopes for the amplitude of the previ-

ous saccade were limited to the linear term. The resulting final

models comprised 31 variance components.

For model parameter estimation, restricted maximum like-

lihood (REML) estimation was used. For model comparisons,

the models were refit using the maximum likelihood criterion

(Bates, 2010). For the fixed effects, the coefficient estimates

(b), their standard errors (SE), and t values (t = b/SE) are

reported. There is no clear definition of Bdegrees of freedom^

for the error term in LMMs, and, therefore, precise p values

cannot be estimated (Baayen et al., 2008). The LMMs report-

ed in the present article were based on a large number of

observations, participants, and scenes, and included a compar-

atively small number of fixed and random effects. In such a

case, the t distribution is equivalent to the normal distribution

for all practical purposes, so that the contribution of the de-

grees of freedom to the test statistic is negligible (Baayen

et al., 2008, note 1). Therefore, a two-tailed criterion (|t| >

1.96) was used to determine significance; effects with |t| >

1.645 indicated marginal significance (cf. Schad et al., 2010).

The LMM analyses were computed in R, using the lmer

program of the lme4 package (version 1.1-8; Bates et al.,

2015b). Figures depicting predicted partial effects on fixation

duration were created using the ggplot2 package

(Wickham, 2009), with model predictions extracted using

the keepef function from the remef package (version

1.0.6.9; Hohenstein & Kliegl, 2014).

To determine the variance explained by a model, I report

two R2 statistics for LMMs: marginal and conditional R2

(Johnson, 2014; Nakagawa & Schielzeth, 2013). Marginal

R2 gauges the variance explained by fixed effects, and

conditional R2 is concerned with the variance explained by

both fixed and random effects. Nakagawa and Schielzeth

(2013) provided a definition of these measures for LMM

and GLMM (generalized LMM) that incorporate random in-

tercepts only. Here, I use Johnson’s (2014) extension for ran-

dom slopes models, available through the r.squaredGLMM

function in the MuMIn R package (version 1.14.0; Bartoń,

2015).

Results and discussion

The results are presented in five sections. The first three sec-

tions focus on presenting the results for the LMMs that includ-

ed the entire set of image-related as well as the oculomotor and

spatiotemporal predictors. These models are referred to as the

full LMMs; in technical terms, they correspond to the final

zcpLMMs derived above. The results for immediacy effects

of the local image statistics are presented first, followed by the

lag and successor effects (or lack thereof), and finally the

oculomotor and spatiotemporal immediacy effects. The fourth

section provides R2 statistics for the full model, as opposed to

the two partial models. The final section is devoted to control

analyses.

Immediacy effects of local image statistics

I first consider the immediate effects of the local image statis-

tics on fixation durations as a function of viewing task. To

explore the empirical data, for each image feature and viewing

task, the mean fixation duration was calculated as a function

of the respective feature. The panels in Fig. 3, one for each

feature, display the observed mean fixation durations over

suitably binned category means. For each feature, categories

were created using quantiles of the continuous variable,

resulting in approximately equal-sized data subsets.

Figure 3a shows that, for each viewing task, fixation

duration decreases with increasing luminance. Thus, brighter

fixation locations are associated with shorter fixation dura-

tions. The data in Fig. 3b are suggestive of a monotonically

6 This observation accords well with our previous GLMM analyses of

fixation probability, in which the variances for by-item random slopes for

image feature predictors were much larger than the corresponding subject

variances (Nuthmann & Einhäuser, 2015).
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increasing relationship between luminance contrast and fixa-

tion duration. Furthermore, as the number of edges in foveal

vision increases, the fixation duration increases (Fig. 3c).

Likewise, as the visual clutter around fixation increases, the

fixation duration increases as well (Fig. 3d). Finally, the more

meaningful Bchunks^ are in a patch, the higher the fixation

duration (Fig. 3e).

The effects of viewing task were qualitatively similar for

each image feature. On the one hand, very similar looking data

patterns emerged for the memorization and preference judg-

ment tasks. On the other hand, fixation durations were shorter

during visual search than in the two other tasks (Nuthmann

et al., 2010), and this does not appear to depend on the respec-

tive image feature values.

The averaged empirical data in Fig. 3 reflect the main

effect of a given image feature by ignoring all other pre-

dictors. To illustrate this point, one-predictor LMMs were

built. For example, the contrast-only LMM for a given

viewing task included contrast as the only fixed effect

(in addition to the intercept), as well as uncorrelated by-

subject and by-item random intercepts and slopes. In each

model, the regression coefficient for the fixed effect of

contrast was positive and significantly different from zero

(memorization: b = 0.016, SE = 0.003, t = 5.3; preference:

b = 0.019, SE = 0.003, t = 6.23; search: b = 0.024, SE =

0.005, t = 4.6). Figure 4 displays the corresponding pre-

dicted partial LMM effects, after removing between-

subject and between-item variance in the dependent vari-

able. The one-predictor LMMs for the other image fea-

tures all showed the same pattern of results: The fixed

effect of the respective feature was significant, and the

sign of the regression coefficient was in agreement with

the data depicted in Fig. 3 (i.e., negative for luminance,

positive for all other image features).

The question arises whether these relationships would

still hold once all predictors were included in the LMM.

As was noted earlier, visual features in natural images

tend to be correlated for a particular location (Nuthmann

& Einhäuser, 2015), and the purpose of LMMs is to factor

in the correlations between predictors. The results for the

full LMMs are presented in Table 1 (fixed effects) and

Table 4 (random effects). For a given viewing task, all

immediacy effects of local image statistics on fixation

durations were still significant with simultaneous statisti-

cal control of all other effects (Table 1). However, the

regression coefficient for luminance contrast changed

sign. In the contrast-only model it had a positive sign,

indicating that higher contrast was associated with longer

fixation durations. In the full model, however, it had a

negative sign, suggesting that higher contrast was associ-

ated with shorter fixation durations. Figure 4 provides a

visualization of this sign switch by depicting the partial

LMM predictions from the contrast-only models (solid

lines) as opposed to the full models (dashed lines). For

the search data, the effect of contrast was only marginally

significant in the full model. In summary, the LMM anal-

yses demonstrate that there are immediacy effects of local

image statistics on fixation durations in scene viewing.

Distributed processing: Lag and successor effects

Next, let us consider the image feature predictors that

speak to the distributed-processing assumption. Does the

duration of the current fixation also reflect the processing

demands of the previous fixation location (lag effects due

to incomplete processing) and the next fixation (successor

effects)?7 For the visual search task, there were no lag and

successor effects (Table 1), suggesting that processing in

this task was not distributed across fixation durations

within the visual span. For the memorization and prefer-

ence tasks, there was some evidence for successor effects

and very little evidence for lag effects—see Table 1 and

Fig. 5. First, reliable successor effects emerged for the

low-level image features. The data from the preference

task showed a negative successor effect for local lumi-

nance. Thus, the duration of the current fixation n was

short if the upcoming fixation location n + 1 was high

in luminance. Moreover, the data from both tasks showed

a positive successor effect for local luminance contrast,

such that the current fixation duration was long if the

contrast around the upcoming fixation location n + 1

was high. The regression coefficient for the successor

contrast effect had a sign opposite that for the immediacy

contrast effect in the full model (Table 1). Second, there

were reliable successor effects for the higher-level image

features, and there was an interesting task dissociation:

The data from the memorization task showed an inverted

successor effect for clutter, whereas the data from the

preference task showed an inverted successor effect for

the number of homogeneous segments. The effects were

inverted such that the regression coefficients for the suc-

cessor effects had signs opposite the regression coeffi-

cients for the corresponding immediacy effects. The im-

mediacy effects of clutter and synergistic segmentation

were positive, such that high feature values implied diffi-

cult processing, and consequently, long fixations. The cor-

responding successor effects were negative, such that high

feature values at fixation n + 1 were associated with

shorter fixation durations at fixation n. Third, there was

only one lag effect: During scene memorization, a mar-

ginally significant inverted effect of visual clutter at fixa-

tion n – 1 on the current fixation duration.

7 By their very nature, successor effects are subtle—that is, smaller than

immediacy effects. Therefore, both significant and marginally significant

effects are reported.
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The LMMs also evaluated whether there were lag ef-

fects associated with preview space, represented by the

amplitude of the last (or incoming) saccade. For a given

viewing task, saccades of larger amplitude were followed

by fixations of longer duration. This increase in fixation

durations appeared to be less than linear (Fig. 6a).

Therefore, the LMMs included both a linear and a qua-

dratic term for the size of the last saccade. Across viewing

tasks, the amplitude of the last saccade had a significant

positive linear effect and a significant negative quadratic

effect on fixation durations (Table 1). Given that the am-

plitude of the last saccade entered the LMMs as a cen-

tered variable, both estimates have clear interpretations

independent of each other (Schielzeth, 2010). The positive

estimate for the linear term expresses the linear effect of

longer saccade amplitudes being associated with longer
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Fig. 3 Five main effects of local image statistics on fixation durations for

scene memorization (dash-dotted lines), preference judgment (solid lines),

and scene search (dashed lines). The dependent variable is the duration of

the current fixation n. The input variables are (a) luminance, (b) luminance

contrast, (c) edge density, (d) clutter, and (e) synergistic segmentation,

calculated for 1° circular patches around the current fixation location n.

Error bars are within-subjects standard errors, using the method described

by Cousineau (2005). Data are from the right eye
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fixation durations. The negative estimate for the quadratic

term substantiates that very long saccade amplitudes elicit

lower response values on top of the linear relationship.

The amplitude of the last saccade had a particularly strong

effect in the search task (Fig. 6a, Table 1).

Oculomotor and spatiotemporal immediacy effects

The amplitude of the next (or outgoing) saccade showed a

significant negative effect on fixation durations, with shorter

fixation durations when the next saccade was large (Table 1,

Fig. 6b). This effect was stronger in the memorization and

preference tasks than in the search task.

The change in saccade direction was measured by coding

the angular difference between the last and next saccades

(ΔAngle). On the original continuous scale, the values of the

input variable ranged between 0° (no change in direction) and

180° (complete reversal). Across viewing tasks, fixation dura-

tions increased as the angular difference between the last and

next saccades increased (Fig. 6c, Table 1). This positive linear

Table 1 Linear mixed models fitting log fixation durations for the memorization, preference, and search tasks, fit by restricted maximum likelihood

(REML): Means, standard errors, and t values of fixed effects on fixation durations

Scene-Viewing Task

Memorization Preference Judgment Search

Fixed Effects b SE t b SE t b SE t

Intercept of mean fixation duration (log) 5.534 0.034 165.02 5.549 0.039 141.8 5.437 0.032 170.37

Local Image Feature Predictors

Luminance

Fixation n –0.014 0.004 –3.71 –0.015 0.004 –4.04 –0.023 0.006 –3.57

Fixation n – 1 0.004 0.004 1.09 –0.003 0.004 –0.72 –0.002 0.005 –0.46

Fixation n + 1 –0.006 0.004 –1.49 –0.008 0.004 –2.06 –0.004 0.005 –0.8

Luminance contrast

Fixation n –0.017 0.004 –4.81 –0.014 0.004 –3.9 –0.009 0.005 –1.89

Fixation n – 1 –0.001 0.003 –0.32 –0.004 0.003 –1.1 0.002 0.005 0.42

Fixation n + 1 0.007 0.003 2.09 0.006 0.003 1.97 0.003 0.005 0.68

Edge density

Fixation n 0.021 0.004 5.89 0.021 0.003 6.33 0.024 0.006 4

Fixation n – 1 0.004 0.003 1.20 0.003 0.003 1 0.003 0.006 0.46

Fixation n + 1 –0.005 0.004 –1.4 0.003 0.003 1.05 –9 × 10–5 0.006 –0.02

Clutter

Fixation n 0.021 0.005 4.40 0.02 0.005 6.06 0.031 0.007 4.4

Fixation n – 1 –0.009 0.005 –1.88 –0.001 0.004 –0.28 0.001 0.006 0.09

Fixation n + 1 –0.008 0.005 –1.74 –0.002 0.004 –0.37 –0.005 0.007 –0.75

Number of segments

Fixation n 0.023 0.004 5.79 0.022 0.004 5.77 0.020 0.005 3.77

Fixation n – 1 0.004 0.003 1.01 –0.002 0.003 –0.62 –0.004 0.005 –0.76

Fixation n + 1 –0.003 0.004 –0.74 –0.006 0.003 –1.76 –0.004 0.005 –0.82

Oculomotor and Spatiotemporal Predictors

Previous saccade 0.028 0.004 7.06 0.036 0.003 11.55 0.068 0.004 16.09

Previous saccade2 –0.011 0.002 –7.01 –0.012 0.001 –8.38 –0.015 0.002 –7.99

Next saccade –0.025 0.004 –6.85 –0.027 0.003 –7.67 –0.014 0.004 –3.94

ΔAngle 0.065 0.004 18.1 0.067 0.004 17.32 0.021 0.003 6.07

Viewing time 0.04 0.003 13.44 0.045 0.004 12.41 0.058 0.004 13

Viewing time2 –0.03 0.003 –10.25 –0.046 0.003 –14.46 –0.046 0.005 –9.21

Central distance 0.004 0.003 1.64 0.002 0.003 0.71 –0.002 0.004 –0.38

N of observations 28,442 33,275 14,968

REML criterion 21,942.6 24,593.9 11,208

b denotes the estimates of the regression coefficients, SE the standard errors. Nonsignificant coefficients are set in bold (|t| ≤ 1.645). Marginally

significant coefficients are set in italics (1.645 < |t| ≤ 1.96)
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relationship was very strong for the memorization and prefer-

ence tasks, and weaker (yet significant) for the search task.

For a given viewing task, fixation durations increased as

viewing progressed. The effect was particularly strong during

early viewing and leveled off during later viewing (Fig. 6d).

For a given fixation, the viewing time was calculated as the

time (in milliseconds) that had passed between the scene onset

and the end of the fixation (Nuthmann &Matthias, 2014). For

the statistical modeling, the viewing-time variable was cen-

tered and scaled, as were all input variables. The effect of

viewing time on fixation durations was modeled by including

both a linear and a quadratic term for viewing time in the

Fig. 6 Five main effects of oculomotor and spatiotemporal variables on

fixation durations for scene memorization (dash-dotted lines), preference

judgment (solid lines), and scene search (dashed lines). The input

variables are (a) the amplitude of the last saccade n – 1, (b) the

amplitude of the next saccade n, (c) the angular difference between the

two saccades (ΔAngle), (d) the viewing time, and (e) the current

fixation’s distance from image center. Error bars are within-subjects

standard errors, using the method described by Cousineau (2005)
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durations during scene viewing. Data from the scene memorization task
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are shown, such that facets with nonsignificant effects are empty
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LMMs (Mills et al., 2011). For each viewing task, there was a

significant positive linear effect and a significant negative

quadratic effect of viewing time on fixation duration (Table 1).

The final predictor captured the distance of the current fixa-

tion from scene center. For a given viewing task, the averaged

empirical data in Fig. 6e are suggestive of a slight increase in

fixation duration as fixations’ distance from image center in-

creases. However, in the full LMMs, the distance to center had

no significant effect on fixation durations (Table 1). In compar-

ison, in the distance-only LMMs the regression coefficient for

the fixed effect of central distance was positive and significant-

ly different from zero (memorization: b = 0.015, SE = 0.003, t =

5.13; preference: b = 0.017, SE = 0.003, t = 5.27; search: b =

0.009, SE = 0.004, t = 2.09). The results from the full LMMs

demonstrate that this effect was not reliable under simultaneous

statistical control of all the other predictors, some of which were

correlated with central distance (in particular, ΔAngle).

Goodness of fit

Howmuch of the variance in fixation durations is explained by

the various image feature and nonfeature predictors? For the

full models, Table 2 reports two R2 statistics for LMMs: mar-

ginal and conditional R2 (Johnson, 2014; Nakagawa &

Schielzeth, 2013). For each viewing task, the variance ex-

plained by the fixed effects (marginal R2) is above 5 %

(5.20 %–6.73 %). This is a good fit, given that the Braw^

fixation durations were modeled (Kliegl et al., 2006, for a

discussion). The variance explained by both the fixed and ran-

dom effects (conditional R2) is around 20 %. To assess the

relative importances of image feature versus nonfeature predic-

tors, the full model for each viewing task was compared to two

partial models. The first model was the five-feature distributed-

processing model, which included all predictors pertaining to

the local image features. The second model was the nonfeature

model, which included all oculomotor and spatiotemporal pre-

dictors. The results in Table 2 suggest that the marginal R2 was

larger for the nonfeature model (3.82 %–4.87 %) than for the

five-feature distributed-processing model (1.27 %–1.40 %).

To ascertain that the inclusion of local image features in the

full model was justified, likelihood ratio tests compared the

full model for each viewing task to the corresponding

nonfeature model. The full model consistently provided a sig-

nificantly better goodness of fit than the nonfeature model

(memorization: logLik ∆χ2(30) = 472.8, p < .001; preference:

logLik ∆χ2(30) = 559.46, p < .001; search: logLik ∆χ2(30) =

317.05, p < .001). The Bayesian information criterion (BIC;

decreases with goodness of fit) corrects the log-likelihood

statistic for the number of estimated parameters and the num-

ber of observations (Schwarz, 1978). For the data from each

viewing task, the full model had a smaller BIC than the

nonfeature model.

Control analyses

A central goal of the analyses above was to examine the influ-

ence of local image statistics on fixation durations at the current,

previous, and next fixation locations. Therefore, the analyses

reported so far were based on triplets of fixations. The main

analyses were complemented by control analyses that excluded

the lag and successor effects. Thus, rather than analyzing fixa-

tion triplets, the control analyses considered all individual fixa-

tions and their incoming and outgoing saccades. The control

analyses were run for two reasons. First, they afforded greater

statistical power. Second, they allowed for testing whether the

immediacy effects of feature and nonfeature variables general-

ized when fixations with short incoming or outgoing saccades

were included. Figure 7 provides a graphical summary of the

results. The figure displays the predicted partial immediacy ef-

fects of local image features (top row of panels) and the oculo-

motor and spatiotemporal effects (bottom row of panels) for the

three viewing tasks. The panels also present the coefficient es-

timates (b) and their SEs (in parentheses) for the fixed effects.

The results for the control analyses were very similar to those

from themain analyses presented in Table 1. The only exception

was the immediacy effect of luminance contrast in the search

task: Whereas this effect was marginally significant in the main

analysis, it was nonsignificant in the control analysis.

General discussion

Scene perception involves the interplay of image-related, task-

related, and oculomotor processing constraints. An important

Table 2 Marginal and conditional R2

Memorization Preference Search

RLMM(m)
2 RLMM(c)

2 RLMM(m)
2 RLMM(c)

2 RLMM(m)
2 RLMM(c)

2

Five-feature distributed-processing model 1.31 % 12.6 % 1.27 % 15.49 % 1.40 % 13.77 %

Nonfeature model 3.82 % 15.15 % 4.64 % 19.63 % 4.87 % 15.82 %

Full model 5.20 % 17.59 % 6.01 % 22.17 % 6.73 % 19.19 %
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research question in scene perception is to investigate how

these factors influence how long the eyes remain fixated in a

particular location. The contribution of the present work is to

present an LMM-based statistical modeling framework to si-

multaneously test the influence of a large set of image-related

as well as oculomotor and spatiotemporal variables on fixation

durations during real-world scene perception and search. A

specific aim was to test how local image-based indexes of

processing difficulty influence the fixation durations at the

current, previous, and next fixation locations. In addition,

the study investigated how the control of fixation durations

depends on cognitive top-down influences, operationalized as

probing the effects of three different viewing tasks.

Global and immediate adjustments of fixation durations

during scene viewing

Previous researchers have investigated both global and imme-

diate adjustments of fixation durations during scene percep-

tion. Examples of global control are the effects of viewing task

(Mills et al., 2011; Nuthmann et al., 2010) and the effects that

image-wide degradations of low-level features have on fixa-

tion durations (Henderson et al., 2013; Ho-Phuoc et al., 2012;

Loftus, 1985). Studies in which image-wide feature modifica-

tions were employed in a fixation-contingent manner have

shown that fixation durations can be immediately adjusted

on a fixation-by-fixation basis (Glaholt et al., 2013;

Henderson et al., 2013; Henderson et al., 2014; Walshe &

Nuthmann, 2014a). The present study offers an important ex-

tension, by investigating properties of local control of fixation

durations—that is, whether fixation duration varies as a func-

tion of the processing difficulty of the currently foveated scene

content. Corpus analyses involved a set of five low-level, mid-

level, and higher-level visual image features, yielding local

image-based indexes of processing difficulty.

Immediacy effects of local image statistics

The present data are the first to show immediacy effects of

local image statistics on fixation durations in various scene-

viewing tasks. For the two low-level image features, the LMM

immediacy effects were negative, such that low luminance

and contrast were associated with longer fixation durations.

For the mid-level and higher-level features, the immediacy

effects were positive. Specifically, fixation duration increased

as the number of edges in foveal vision increased, as the visual

clutter around fixation increased, and as more meaningful

Bchunks^ appeared in foveal vision.

Thus, all five image features showed significant immediate

effects on fixation durations. The one exception was the effect

of luminance in the search task, which was found to be either

marginally significant (main analysis) or nonsignificant (con-

trol analysis). The present results regarding the Bwhen^ deci-

sion differ from our previously reported results for the

M: b = −0.011 (0.003)
P: b = −0.016 (0.003)
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S: b = 0 n.s.
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Fig. 7 Control analyses of immediacy effects, excluding lag and

successor effects. Predicted partial immediacy effects of local image

features (top row of panels) and oculomotor and spatiotemporal effects

(bottom row of panels) on log fixation durations during scene viewing.

Each panel depicts the predictions from the three viewing-task control

models. The panels additionally present the coefficient estimates (b) and

their standard errors (in parentheses) for the fixed effects (linear predictor

terms only)
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Bwhere^ decision (Nuthmann & Einhäuser, 2015). Analyzing

data from the memorization task only, GLMMs were used to

investigate whether the five image features can independently

predict whether or not image patches are fixated. The results

suggested that neither luminance nor contrast has an indepen-

dent effect above and beyond what can be accounted for by

edge density and the two higher-level features approximating

local object density in the scene (Nuthmann & Einhäuser,

2015). The effects of luminance and contrast on fixation prob-

abilities disappeared when edge density (and clutter) were

included in the GLMM. The fixation duration data reported

here showed a different picture: When contrast was consid-

ered in isolation, the data showed a positive relationship, such

that high contrast was associated with longer fixation dura-

tions. In this situation, high contrast is a proxy for the presence

of edges. As soon as edges are explicitly accounted for in the

LMM, the effect of high contrast may be limited to scene

regions in which our visual system, on the basis of parafoveal

information, expects to encounter edges, but where none exist.

This leads to a reduction in processing time, which manifests

itself in a negative fixed-effect estimate for luminance con-

trast. Confirmation of this possibility will require experimen-

tal tests with modified stimuli in which contrast and edge

density are experimentally decorrelated.

The results for luminance contrast differ from those in pre-

vious research, which did not find any systematic relationship

between contrast and fixation duration (Einhäuser & König,

2003). Moreover, the immediacy effect of clutter on fixation

durations contrasts with a previously reported null effect in a

search task (Henderson et al., 2009). The different results may

be due to differences in the task requirements. The present

search task had observers look for a prespecified object in

the scene. In contrast, in the Henderson et al. study, observers

searched for small and barely visible letters embedded in pho-

tographs of real-world scenes, a task that does not require

detailed scene processing.

Spatially distributed processing

The present analyses also examined whether scene processing

is distributed across fixation durations within the visual span.

This was not the case for the visual search task (Table 1). For

the memorization and preference tasks, some evidence for suc-

cessor effects was revealed (Fig. 5). A successor effect can be

described as orthodox if it has the same direction as the corre-

sponding immediacy effect (cf. Hyönä & Bertram, 2004, for

results from reading). Such effects are consistent with the as-

sumption that parafoveal processing difficulty slows down fo-

veal processing. There was one orthodox effect in the present

data—a negative successor effect for local luminance in the

preference task. The duration of the current fixation nwas long

if the upcoming fixation location n + 1 was harder to process,

due to a reduction in luminance (Fig. 5). The remaining

successor effects can be described as paradoxically inverted,

in that the regression coefficients for the successor effects had

signs opposite those of the corresponding immediacy effects.

Notably, upcoming locations that were particularly informa-

tive—characterized by high clutter in scene memorization

and a large number of segments during preference judg-

ments—attracted early saccades to themselves, resulting in

shorter processing time for the current location. One way to

think about this effect is that the properties of the parafoveal

upcoming location may serve as Bmagnets^ to draw the eyes to

them. This interpretation is in agreement with the idea of

parafoveal Bmagnetic attraction,^ which was introduced by

Hyönä and Bertram (2004) to account for paradoxical inverted

parafoveal-on-foveal (PoF) effects in reading. The positive suc-

cessor effects for local luminance contrast in the memorization

and preference tasks are explained less well by the magnet

view, since it is unclear why the eyes should be drawn to

low-contrast regions in extrafoveal vision.

There was no evidence of lag effects due to incomplete

processing. The logic underlying these effects is that process-

ing difficulty at the previous location may spill over, inflating

the fixation duration of the current fixation. For example, high

foveal clutter at fixation n – 1 should be associated with longer

durations of fixation n. However, the opposite effect was ob-

served, such that high foveal clutter at fixation n – 1 was

associated with shorter durations of fixation n. This marginal-

ly significant inverted lag effect was only observed during

scene memorization.

However, across tasks a reliable lag effect was associated

with preview space, represented by the length of the incoming

saccade. Fixation durations were systematically prolonged as

saccade length increased (Table 1, Fig. 6a). If the distance

traversed by the eyes during the saccade is long, the previous

fixation n – 1 yields less preview of the scene region sampled

with the current fixation n, and this reduced parafoveal pro-

cessing inflates the duration of fixation n. This saccade dis-

tance effect provides evidence that parafoveal processing

takes place in scene viewing and that it can affect fixation

durations. Such a relationship between saccade amplitude

and the subsequent fixation duration was not observed in free

viewing (Tatler & Vincent, 2008), but it has been found in

many reading studies (Angele et al., 2015; Kliegl et al.,

2006; Schad et al., 2010; Vitu et al., 2001; Wotschack &

Kliegl, 2013).

Oculomotor and spatiotemporal immediacy effects

The amplitude of the outgoing saccade showed the in-

verse effect, such that fixation durations were shorter

when the next saccade was large (Table 1, Fig. 6b). This

contrasts with the null effect described by Tatler and

Vincent (2008). It is conceivable that this negative effect

may be related to the two modes of visual scene
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processing that appear to exist (Unema et al., 2005).

Ambient (or global) processing is characterized by shorter

fixation durations that are mostly followed by saccades of

larger amplitude. Focal (or local) processing is character-

ized by longer fixation durations that are mostly followed

by small-amplitude saccades. Analyses based on the two

viewing modes evaluate saccade amplitude as a function

of fixation duration, whereas the present analyses consid-

ered fixation duration as a function of saccade amplitude;

both analyses describe the relationship between the same

two variables, without implying causation.

The data confirm that a change in direction from one

saccade to the next comes at a cost. For a given viewing

task, the data showed a linear increase in fixation duration

as a function of the angular difference between the last

and next saccade. Such a relationship has been previously

reported for various scene-viewing tasks (for scene

memorization, Smith & Henderson, 2009; for scene

search, Smith & Henderson, 2011; for free viewing,

Tatler & Vincent, 2008; Wilming et al., 2013). In the

present study, in which task was manipulated in a

within-subjects design, the effect was very strong in the

memorization and preference tasks, and weaker in the

search task. As was noted in the introduction, the increase

in fixation durations for return saccades (ΔAngle = 180°)

may have been due to O-IOR, saccadic momentum, or a

combination of the two (Klein & Hilchey, 2011, for a

review). Dissociating the influences of O-IOR and saccad-

ic momentum requires different analyses, which were the

focus of an article by Luke et al. (2014). In brief, Luke

et al. compared two subsets of data—pairs of saccades in

which the next saccade landed either within or outside the

zone of O-IOR. Above and beyond saccadic momentum,

they found additional fixation duration costs for making

return saccades only when the next saccade landed within

the zone of O-IOR, suggesting that temporal O-IOR and

saccadic momentum are independent processes. With re-

gard to task effects, Luke et al.’s analyses suggested that

saccadic momentum is task-sensitive, and thus under cog-

nitive control, whereas O-IOR is not.

Given that the spatial decision of where to fixate next

is associated with a strong central bias (Mannan et al.,

1996; Nuthmann & Einhäuser, 2015; Tatler, 2007; Tatler

et al., 2005), the present analyses explored whether the

temporal decision about when to move the eyes was in-

fluenced by the fixation’s distance from image center.

This was not the case, since central distance had no inde-

pendent effect on fixation durations. Finally, the present

data replicate the well-known finding that fixation dura-

tions increase over the time course of scene inspection

and/or scene search, and that this increase is not purely

linear (Antes, 1974; Mills et al., 2011; Pannasch et al.,

2008; Unema et al., 2005).

Effects of viewing task

To directly assess the effect of viewing task for a given

(smaller) set of predictors, one would need to specify an

LMM that additionally included Bviewing task^ as a cat-

egorical predictor, as well as the interactions between

viewing task and the predictors of interest. The approach

taken here was to build separate LMMs for the three dif-

ferent viewing tasks. However, the predictors were placed

on a common scale by standardizing their units to units of

standard deviations. In this case, the sizes of the standard-

ized regression coefficients and their SEs give some indi-

cation about the strengths of effects across viewing-task

models.

The effects of viewing task can be summarized as follows.

Mean fixation duration was shorter during search than during

memorization and preference judgment. For each viewing

task, viewing time was a strong predictor of fixation duration.

Overall, similar results were obtained for the memorization

and preference tasks. In both tasks, changes in saccade direc-

tion had a particularly strong effect on fixation durations

(Table 1). There were subtle differences with regard to spatial-

ly distributed processing, as was discussed above (Fig. 5). The

effects of parafoveal processing manifested themselves differ-

ently in search and nonsearch tasks. Despite the large visual

span during object-in-scene search (Nuthmann, 2013), no suc-

cessor effects emerged during search. The lack of successor

effects means that the characteristics of the upcoming location

did not influence how long the eyes stayed at the current

location during search. However, parafoveal processing dur-

ing search affected fixation durations through a very strong

lag effect associated with preview space (this effect was weak-

er in the other two tasks). At the same time, saccadic momen-

tum was weaker in search than in the memorization and pref-

erence tasks (see Luke et al., 2014, for a discussion).

Implications for computational models

In the reading literature, PoF effects and successor effects are

of great theoretical importance (Drieghe, 2011; Murray,

Fischer, & Tatler, 2013; Schotter et al., 2012). In essence,

these effects are compatible with parallel-processing models

like SWIFT (Engbert et al., 2005; Schad & Engbert, 2012),

whereas higher-level (in particular, lexical) PoF effects are

incompatible with the serial-attention-shift architecture imple-

mented in the E-Z Reader model (Reichle, 2011; Reichle,

Pollatsek, Fisher, & Rayner, 1998).

So far, the issue of parallel versus serial processing has

received little empirical and theoretical attention in scene per-

ception (Nuthmann & Henderson, 2012). To investigate this

issue, the triplet analyses reported here tested for the effects of

immediate and spatially distributed (or parallel) processing in

scene viewing. In its current implementation, the CRISP
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model provides a theoretical account for the immediate effects

of global scene processing difficulty and the global effects of

viewing task on fixation durations (Nuthmann et al., 2010).

Building on this work, Laubrock et al. (2013) simulated data

from gaze-contingent foveal and peripheral spatial-frequency

manipulations. Their model simulations dissociated foveal

from peripheral influences on fixation durations, without

implementing the underlying oculomotor machinery. The

present data provide an empirical basis for computational

models of scene viewing to account for immediacy and suc-

cessor effects of local image features on fixation durations.

Importantly, the presence of successor effects depended on

the viewing task. In light of these results, a modeling approach

that combines global versus local control principles seems a

promising way forward (Trukenbrod & Engbert, 2014, in the

context of a reading-like scanning task).

Relative importances of predictors

The present results also speak to the relative importances of

feature and nonfeature variables. The standardized regression

coefficients were larger in size for most of the nonfeature pre-

dictors than for the feature predictors (Table 1). Moreover, the

marginal R2 was smaller for the five-feature distributed-pro-

cessing model than for the nonfeature model (Table 2). There

are two reasons why this result is less surprising than it may

seem. First, this general pattern has also been found in similar

analyses of sentence reading data. Nonlinguistic predictors like

the size of the incoming saccade, the fixation position within a

word, and the word position-in-text (a correlate of viewing

time) are particularly strong predictors of fixation times in read-

ing (Angele et al., 2015; Kliegl et al., 2006; Kuperman et al.,

2010; Schad et al., 2010). Second, the local indexes of process-

ing difficulty used in the present study were all image-based.

Clutter and synergistic segmentation were operationalized as

higher-level, but not high-level, features, since their computa-

tion does not include any contextual component (cf. Nuthmann

& Einhäuser, 2015). One way to operationalize high-level as-

pects would be through subjective ratings of Binformative^

(Antes, 1974; Mackworth & Morandi, 1967) or Binteresting/

behaviorally relevant^ (Onat, Acik, Schumann, & König,

2014) scene regions. Comparing such Binterestingness^ maps

to feature maps, Onat et al. found that interesting locations were

associated with longer fixation durations; moreover, interest-

ingness had a larger effect on fixation durations than did the

best single low-level feature.

Outlook

Through the analysis framework presented in this article, I

considered the main effects of 20 input variables on fixation

durations in real-world scene perception and search. Future

researchmay involve interactions, to test whether more specific

hypotheses derived from the distributed-processing as-

sumption generalize from reading (Kliegl et al., 2006;

Schad et al., 2010; Wotschack & Kliegl, 2013) to scene

viewing.

The approach taken here was to analyze local image fea-

tures within 1° patches that were centered on each fixation

point. The analyses included features that have been proposed

as proxies or surrogates of objects in the literature

(Christoudias et al., 2002; Rosenholtz et al., 2007). Provided

that objects have been annotated, future research may involve

object-based LMMs in which the analyses are restricted to

fixations that fall on objects in the scenes. One such applica-

tion would be to investigate immediacy effects of object fre-

quency and predictability (Wang, Hwang, & Pomplun, 2010,

for how to obtain these measures) on object-based measures of

fixation times, along with the effects of object size and the

oculomotor and spatiotemporal predictors considered here. A

limiting factor for extending this object-based approach to lag

and successor effects is that an exhaustive object-based

parcellation of scene images is usually neither available, nor

even feasible; an Bobject^ is a hierarchical construct (Feldman,

2003), and objects in real-world scenes oftentimes overlap and

occlude each other.

Conclusion

Recent studies on the Bwhen^ decision during scene percep-

tion have used image-wide manipulations of individual fea-

tures to demonstrate that fixation durations adjust to global

scene-processing difficulty. The main contribution of the pres-

ent work has been to simultaneously test the local effects of

various image features on fixation durations at the current,

previous, and next fixation locations. For three different view-

ing tasks, local image features around the current fixation

predicted this fixation’s duration. In addition, the amplitudes

of incoming and outgoing saccades, the angular difference

between the two saccades, and viewing time all had indepen-

dent effects on fixation durations. The present LMM-based

approach provides a powerful tool for understanding scene

exploration, because it captures the interplay of image-related,

oculomotor, and spatiotemporal variables in controlling fixa-

tion durations.
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Table 3 Dual Latin-square design used in the study

Subject Group Order Scene List

1 1 = Search–Mem–Pref Search: 1, Mem: 2, Pref: 3

2 1 = Search–Mem–Pref Search: 3, Mem: 1, Pref: 2

3 1 = Search–Mem–Pref Search: 2, Mem: 3, Pref: 1

4 2 = Pref–Search–Mem Search: 2, Mem: 3, Pref: 1

5 2 = Pref–Search–Mem Search: 1, Mem: 2, Pref: 3

6 2 = Pref–Search–Mem Search: 3, Mem: 1, Pref: 2

7 3 = Mem–Pref–Search Search: 3, Mem: 1, Pref: 2

8 3 = Mem–Pref–Search Search: 2, Mem: 3, Pref: 1

9 3 = Mem–Pref–Search Search: 1, Mem: 2, Pref: 3

Participants were allocated to nine groups, controlling in which order they

performed the three viewing tasks and which set of images they were

presented in each task. Mem = memorization, Pref = preference

Table 4 Linear mixed models fitting log fixation duration for the memorization, preference, and search tasks, fit by restricted maximum likelihood:

Random effects and their standard deviations

Scene Viewing Task

Group Random Effect Memorization Preference Search

Scene item Intercept 2.52 × 10–2 3.03 × 10–2 3.08 × 10–2

Feature, immediacy n luminance 7.86 × 10–3 1.29 × 10–2 3.54 × 10–2

n contrast 1.19 × 10–2 1.54 × 10–2 0

n edge density 1.20 × 10–2 1.00 × 10–2 2.52 × 10–2

n clutter 1.05 × 10–2 1.74 × 10–2 2.00 × 10–2

n number of segments 1.92 × 10–2 1.38 × 10–2 1.44 × 10–2

Feature, lag n – 1 luminance 1.36 × 10–2 1.31 × 10–2 1.87 × 10–3

n – 1 contrast 5.26 × 10–6 1.17 × 10–2 1.07 × 10–2

n – 1 edge density 0 8.21 × 10–3 2.04 × 10–2

n – 1 clutter 1.17 × 10–2 3.98 × 10–8 0

n – 1 number of segments 3.47 × 10–3 7.27 × 10–3 0

Feature, successor n + 1 luminance 1.41 × 10–2 1.73 × 10–2 9.93 × 10–3

n + 1 contrast 0 9.92 × 10–3 0

n + 1 edge density 1.49 × 10–2 1.15 × 10–2 1.85 × 10–2

n + 1 clutter 1.51 × 10–2 2.54 × 10–3 2.04 × 10–2

n + 1 number of segments 1.78 × 10–2 1.35 × 10–2 6.99 × 10–3

Nonfeature Previous saccade amplitude 2.60 × 10–2 1.19 × 10–2 1.12 × 10–2

Next saccade amplitude 2.12 × 10–2 1.70 × 10–2 1.82 × 10–2

ΔAngle 1.34 × 10–x 1.13 × 10–2 2.99 × 10–3

Viewing time 1.11 × 10–2 1.20 × 10–2 0

Viewing time2 6.87 × 10–3 1.34 × 10–2 2.71 × 10–2

Central distance 1.16 × 10–2 1.56 × 10–2 2.86 × 10–2

Scene list Intercept 5.02 × 10–2 6.20 × 10–2 5.11 × 10–2

Subject Intercept 9.42 × 10–2 1.12 × 10–1 8.61 × 10–2

Previous saccade amplitude 1.44 × 10–2 1.12 × 10–2 9.23 × 10–3

Next saccade amplitude 1.74 × 10–2 1.84 × 10–2 1.18 × 10–2

ΔAngle 2.15 × 10–2 2.58 × 10–2 1.33 × 10–2

Viewing time 1.17 × 10–2 2.22 × 10–2 1.56 × 10–2

Viewing time2 3.95 × 10–3 1.76 × 10–2 0

Central distance 7.53 × 10–3 1.41 × 10–2 8.79 × 10–3

Subject group Intercept 3.58 × 10–2 2.26 × 10–2 1.81 × 10–3

Residual 3.48 × 10–1 3.42 × 10–1 3.40 × 10–1

Note that correlations between the random effects were set to 0 to reduce the model complexity

Appendix
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