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Abstract Force prediction on fixed and moored bodies in
steep, asymmetric and breaking waves remains a problem
of great practical importance. For floating bodies snatch
loads on mooring lines are of particular significance. In this
paper we present an approximate approach where waves are
modelled using incompressible smoothed particle hydrody-
namics (SPH) which is well suited for breaking as well as
non-breaking waves. For bodies of small size relative to
wave length, the total force is assumed to be due to the
Froude–Krylov force due to the undisturbed pressure field
with additional added mass effects—in effect the Morison
assumption. For a fixed vertical column in regular waves on
a small slope, breaking wave force magnification is consis-
tent with experiment and for focussed waves peak forces due
to initial interaction are in good agreement with experiment;
wave asymmetry is the dominant influence on overall force
rather than local roller/jet breaker impact. For a taut moored
hemispherical buoy in steep focussed waves the loads and
motion without snatching are almost independent of added
mass coefficient between zero and unity. Without breaking
when snatching occurs the motion and loads measured exper-
imentally are well predicted with zero added mass. This close
agreement breaks down with wave breaking and the initial
snatch load is overestimated by around 30 %. This approach

Research data supporting this publication is available from the ’Fixed
and moored bodies using SPH with the Froude Krylov approximation’
repository on figshare at https://dx.doi.org/10.6084/m9.figshare.
3370033.v2. This data is only available in a proprietary file format
.lpk, which can be opened with Tecplot software.

B S. J. Lind
steven.lind@manchester.ac.uk

1 Modelling and Simulation Centre, School of Mechanical,
Aerospace and Civil Engineering, The University of
Manchester, Manchester M13 9PL, UK

is a fast alternative to fully 3-D simulations which are com-
putationally demanding. Variation of, for example, mooring
line properties and buoy position may be efficiently analysed
using the same wave field and, as such, the approach has
potential to be a useful design tool with further validation.
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waves · Snatch loads

1 Introduction

Wave forces on bodies have long been of interest in offshore
and coastal engineering and are now of interest in marine
and wind energy deployment. For example, the prediction
of forces exerted on wind turbine columns is a vital design
criterion. Breaking waves are likely, and, despite being the
subject of sustained research for seven decades, there is still
debate over the loads and forces exerted. For example, Miller
et al. (1974) and Morison et al. (1953) reported that the
post-breaking bore impact exerts the greatest force. However,
Wienke and Oumeraci (2005) state loading is maximum at
start of breaking where overturning begins and the incipi-
ent breaking jet remains horizontal. The issue is complicated
by discussions around global and local forces, as the local
force distribution on the cylinder is highly dependent on the
wave profile and type of breaking wave impact: rise-times are
short, pressure and force measurements are scattered, and air
entrapment can play an important role at the impact location
(Chan et al. 1995). While experimental studies are crucial
in understanding loads due to wave breaking, engineering
practice requires accurate modelling capabilities. The Mori-
son force equation (Morison et al. 1950) is well-known and
effective for small bodies if the wave is not breaking (Wiegel
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1982), and for input kinematics suitable non-linear potential
flow solutions are available (Rienecker and Fenton 1981). An
additional slam force can be added in the event of breaking,
with a number of empirical parameters included such as the
slam coefficient and curling factor [which depends on the ori-
entation of the plunging jet (Goda et al. 1966; Watanabe and
Horikawa 1974)]. Empirical approaches such as this are cost-
effective but require calibration and offer little insight into the
underlying physics. Numerical simulation is the only alterna-
tive means to predict forces in flows that are highly deforming
(and very non-linear), while simultaneously enabling insight
into the underlying physics. However, for meaningful results
one needs to calculate three-dimensional loads, and the spa-
tial scale of the wave field often means the computational
times are very long and the resources required consider-
able. Furthermore, modelling challenges exist in the accurate
representation of the free surface and of breaking in the
first instance. Classical numerical studies based on potential
flow, like the boundary integral studies of Longuet-Higgins
and Cokelet (1976) and Grilli et al. (2001), go some way
towards modelling wave breaking but can only simulate a
short time after overturning, before free-surface curvatures
become prohibitively large or surfaces connect and the com-
putation breaks down.

A full solution of the Navier–Stokes equations combined
with the volume-of-fluid (VOF) method using CFD pack-
ages such as OpenFOAM (Christensen et al. 2005; Bredmose
and Jacobsen 2010, 2011; Chen et al. 2014) or Ansys CFX
(Hildebrandt and Schlurmann 2012) is a popular approach
that can simulate wave breaking on cylinders and other bod-
ies to good effect. However, VOF methods can have an
overly diffusive interface, and the numerical implementa-
tion often requires a second air phase, which is not needed
in the majority of the computational domain, if at all. In
3-D, this additional computational expense may be espe-
cially prohibitive. As an alternative, the numerical method
smoothed particle hydrodynamics (SPH) has gained pop-
ularity in recent years. It is a Lagrangian particle method
and, therefore, can model free-surface flows automatically
while retaining a well-defined interface. It is a natural fit for
wave breaking and wave impact studies and consequently has
been applied to this area (Dalrymple and Rogers 2006; Shao
2006; Monaghan 1994; Lind et al. 2015), with improvement
in water jet representation over conventional CFD demon-
strated (Westphalen et al. 2014). However, in its original
form SPH is weakly compressible, and consequently suffers
from high-frequency spurious pressure oscillations due to the
stiff equation of state (Lee et al. 2008). On the other hand,
incompressible SPH (ISPH) has demonstrated accurate and
effectively noise-free pressures for a range of internal and
free-surface flows (both inviscid and highly viscous) (Lind
et al. 2012): it is an ideal method to study loads due to wave
breaking. However, compared to equivalent problems using

finite volume methods, SPH is more computationally expen-
sive due to the greater number of floating point operations per
node point or “particle”. Three-dimensional computations
are particularly demanding and require optimised paralleli-
sation on GPU (Crespo et al. 2015) or CPU (Guo et al. 2013)
if simulation times are to remain practical.

In this paper, we present an alternative numerical approach
within SPH using Froude–Krylov forcing to determine
3-D loads on bodies due to 2-D plane incident waves—
both breaking and non-breaking. The effectiveness of this
approach is demonstrated through comparisons with recent
experimental work on breaking and non-breaking regular
(Luck and Benoit 2004) and focused waves (Zang et al. 2010;
Chen et al. 2014) on a vertical cylindrical column. The impor-
tant case of an elastically moored floating body (buoy) is also
considered, and comparisons are made with recent exper-
imental measurements of focused wave interaction with a
single-body bed-connected wave energy converter (WEC)
(Hann et al. 2015). As with cylindrical columns, extremely
large forces may be exerted on the device, and damage is a
significant risk. Large and highly transient snatch loads in
the elastic mooring line are a particular challenge, as would
be experienced on the WEC in extreme sea-states. Moor-
ing lines have recently been modelled and validated using
SPH in still water and applied to moored vessel response in
non-breaking waves (Aller 2015). Generally, floating bodies
are challenging as the extreme response in the dynami-
cally responding device may not coincide with the extreme
properties of the wave [i.e. at the point of largest surface
elevation (Taylor et al. 1997)]. Understandably, a means of
accurately predicting the response and forces exerted on
the device in extreme sea-states is necessary for inform-
ing future design and deployment to avoid failure in the
mooring.

The Froude–Krylov-ISPH approach has a relatively low
computational cost (requiring a two-dimensional simulation)
and could be of interest in a number of practical engineering
areas. Furthermore, multiple cylinder/buoy configurations
can be considered rapidly in post-processing from a sin-
gle incident wave simulation, as the flow is undisturbed
with added mass effects accounted for through theoretical
or empirically determined coefficients. The paper is struc-
tured as follows: Sect. 2 details the numerical method and
the problem set-up, including details of wave generation
and the Froude–Krylov implementation. Section 3 presents
the results, including validations against linear wave theory,
comparisons with the regular wave experiments of Luck and
Benoit (2004), and comparisons with experimental data for
focussed wave loads on cylinders (Zang et al. 2010; Chen
et al. 2014). A selection of results on focused wave interac-
tion (breaking and non-breaking) with a moored buoy (Hann
et al. 2015) is presented in Sect. 4. Conclusions are made in
Sect. 5.
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2 Numerical method

2.1 The problem setup and governing equations

Consider a two-dimensional numerical wave basin of length
L and maximum water depth, D, as depicted in Fig. 1. A
piston wave paddle is positioned at the left-hand side of the
domain, centred at x = 0, and is used to generate the required
waves (regular or focused). A cylinder or buoy of diameter dc

is centred at a distance xc from the origin. In the case of the
buoy, xc is its initial horizontal location before displacement
due to wave action. A schematic of the buoy model can be
seen in Fig. 2. The buoy is comprised of a hemispherical base
of radius Rb with a cylindrical lid of height Hb, and is tautly
moored to the bed with a mooring line of length lm and an
anchoring that includes a load cell and joint (in experiment).
The initial submerged depth of the buoy (draft) is denoted Db .
Two different mooring configurations are considered here
with all physical parameter values provided in Sect. 4. For
the cylinder cases, to enable breaking in the regular wave
studies, as in the experiments of Luck and Benoit (2004),
a 2.5 % gradient ramp is inserted such that the initial local
water depth at the cylinder is then Dloc.

The governing equations of a low-viscosity Newtonian
fluid are to be solved: namely, the conservation of momen-
tum,

du

dt
= −

1

ρ
∇ p + ν∇2u + g, (1)

and the conservation of mass,

∇ · u = 0 (2)

The symbols u, p, ρ, ν, and g denote the fluid veloc-
ity, pressure, density, constant kinematic viscosity, and the
acceleration due to gravity, respectively. The density and vis-
cosity are assigned the physical constant values of ρ = 1000
kg m−3 and ν = 1 × 10−6 m2 s−1. The acceleration due to
gravity, g, is set to be −9.81 m/s2 vertically. On fixed solid
boundaries the following boundary conditions are applied:

Fig. 1 Set-up of the numerical model used (not to scale). The ramp is
only deployed in regular wave-cylinder studies

Fig. 2 Set-up of the buoy model used (not to scale). The mooring
configuration varies, with dimensions and physical properties of the
mooring provided in Sect. 4

u · n = 0 and
∂p

∂n
= ρg · n, (3)

with atmospheric Dirichlet pressure boundary conditions
(p = 0) imposed at the free surface. The mirror particle
method (Morris et al. 1997) is used to impose boundary con-
ditions on all solid boundaries except the ramp, which, when
in use, is represented as a body of stationary dummy particles.
Note that forces on the cylinder are calculated based on the
undisturbed flow field [the Froude–Krylov force (Newman
1977)]: in effect the cylinder or buoy surface is “invisible”
and does not require boundary conditions.

2.2 Incompressible smoothed particle hydrodynamics

2.2.1 Particle interpolation and gradient calculation

In SPH, a variable A at a point r is approximated by a con-
volution product of the variable A with a smoothing kernel
function ωh(|r − r′|), with a smoothing length h, and is writ-
ten as

A(r) ≈

∫

�

A(r′)ωh(| r − r′ |) dr′, (4)

where � is the supporting domain. When discretised over
surrounding Lagrangian fluid particles the interpolation can
be written as

A(ri ) ≈
∑

j

V j A(r j )ωh(ri j ), (5)

where V j is the particle volume, ri j is the distance between
particle i and j . In this work, gradients are approximated
using the zeroth-order consistent expression,
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∇ A(ri ) ≈ −
∑

j

(A(ri ) − A(r j ))V j∇ωh(ri j ). (6)

As in Xu et al. (2009) and Lind et al. (2012), all first deriv-
ative gradient (and divergence) approximations are used in
combination with kernel gradient normalisation (Oger et al.
2007; Bonet and Lok 1998) to provide additional first-order
consistency. Hereafter ∇ωh(ri j ) = ∇ωh(| ri − r j |) will be
simply written as ∇ωi j to denote an uncorrected kernel gra-
dient, or ∇Wi j , if a corrected gradient is used. In this paper a
quintic spline kernel, continuous to the fifth derivative (Mor-
ris et al. 1997), is used for all cases, with a smoothing length
of h = 1.3dx (as widely used in the literature) given an initial
particle spacing, dx .

2.2.2 Enforcing incompressibility

The incompressible governing Eqs. (1) and (2) are solved in
exactly the same way as in Xu et al. (2009) and Lind et al.
(2012). The volume, V j , and density, ρ j , of each SPH parti-
cle are taken to be constant. The projection method (Chorin
1968) is applied to integrate the incompressible governing
Eq. (1) and enforces a divergence-free velocity field at each
time step. The scheme used is overall first order in time and
was first used within SPH by Cummins and Rudman (1999).
First, particle positions, rn

i , are advected with velocity un
i to

positions r∗
i ,

r∗
i = rn

i + △tun
i . (7)

An intermediate velocity u∗
i is then calculated at the

position, r∗
i , based on the momentum equation without the

pressure gradient term,

u∗
i = un

i +
(

ν∇2un
i + gn

i

)

△t. (8)

The pressure at time n + 1 can then be obtained from the
pressure Poisson equation (PPE), written as

1

ρ
∇2 pn+1

i =
1

△t
∇ · u∗

i . (9)

An application of the Laplacian operator provided by
Schwaiger (2008) and the SPH gradient approximation (6)
results in the following discretised form of Eq. (9),

tr(Ŵ−1
i )

ρ

⎛

⎝

∑

j

V j

pn+1
i j ri j · ∇ωi j

r2
i j

− ∇ pn+1
i ·

∑

j

V j∇ωi j

⎞

⎠

= −
1

�t

∑

j

V j u
∗
i j · ∇Wi j , (10)

where pn+1
i j = pn+1

i − pn+1
j and the (α,β)th element of

matrix Ŵi is
∑

j ri j ·∇ωi j�xα
i j�x

β

i j/r2
i j . Equation (10) forms

a linear system for the pressure, pn+1
i , that can be solved

using an iterative solver (the stabilised bi-conjugate gradient
method is used in this paper). The Dirichlet pressure bound-
ary condition (p = 0) at the free surface is imposed within
Eq. (10) on those particles satisfying the free-surface identity
criterion of Lee et al. (2008); if the divergence of a particle’s
position vector is less than 1.6 then that particle resides on
the free surface.

Following the solution of Eq. (10), the desired divergence-
free velocity at time n + 1, un+1

i , then results from the
projection of u∗

i :

un+1
i = u∗

i −
△t

ρ
∇ pn+1

i . (11)

Finally, the particle positions are advanced in time,

rn+1
i = rn

i + △t

(

un+1
i + un

i

2

)

. (12)

The above ISPH formulation uses the velocity divergence
as the source term in the PPE. This formulation is known to
be accurate over almost regular particle distributions, but can
produce volume conservation errors and instability in parti-
cle methods in the long-term (Gui et al. 2014; Khayyer and
Gotoh 2011). Khayyer and Gotoh (2011) have developed
error mitigation terms for the source term which maintain
both accuracy and stability, and improve volume conserva-
tion. These terms have since been applied to problems such
as high-density multi-phase flows (Khayyer and Gotoh 2013)
and violent sloshing (Gotoh et al. 2014), and to good effect. In
this work, the velocity divergence source term provides accu-
racy in the flow field, with stability maintained through the
use of Fickian particle shifting (Lind et al. 2012). Shifting is
applied every time step and maintains an almost regular parti-
cle distribution in the fluid bulk, helping to preserve accuracy
and conserve volume. When applied to ISPH, Fickian shift-
ing has been shown to provide stable and accurate solutions
for a wide range of Reynolds numbers without an apparent
upper limit. The approach differs from other stabilising par-
ticle redistribution procedures (e.g. Xu et al. 2009) primarily
in its applicability to free-surface as well as internal flows.

At free-surfaces, any shifting normal to the free surface
is set to zero to prevent artificial diffusion of particles (and
mass loss) through the free surface. This restriction means
that, during the simulation, any new free-surface particles
(which may migrate to the free surface in the presence of ker-
nel truncation errors) become similarly restricted in normal
movement. As all surface particles are prescribed a constant
pressure, there is no hydrodynamic mechanism to regulate
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Fig. 3 Comparison between numerical (ISPH) and analytical (linear)
results for the free-surface elevation of a JONSWAP wave group. Here
A = 0.05 m, dx = 0.01 m

particle distributions around the free surface. Indeed, the only
particle regularisation available is tangential shifting along
the free surface. The effect of this restriction in the normal
direction is a slight clustering of particles at the free surface
resting above a gap of width less than 2dx . The effect is evi-
dent if one looks very closely at the free surface of Fig. 6,
for example. It is important to emphasise that this phenom-
enon has negligible impact on the accuracy of the flow (as
all particles approximating the free surface are assigned an
analytical pressure Dirichlet boundary condition), and any
small gap formed converges to zero as usual with particle
refinement. For further details on the ISPH method employed
herein, readers are referred to Lind et al. (2012) and Xu et al.
(2009). For further detail regarding comparisons between dif-
ferent SPH projection methods and iterative solvers, readers
are referred to Xu (2010).

2.3 Wave spectra and generation

As mentioned, two wave types are considered in this work:
regular waves which may break on a slope, and irregular
focused waves which may break depending on the superpo-
sition of a finite number of wave components at a focal point.
A piston-type wavemaker is used to generate all waves, with
its motion prescribed using linear wave theory. The linear
analysis used for irregular focused waves is presented here,
acknowledging that regular waves can be recovered by choos-
ing a single wave component. The surface elevation, η, of an
irregular wave is defined by the sum of harmonics

η =
∑

n

an cos(kn x − ωn t + φn), (13)

where an is the amplitude of the nth wave component and
kn , ωn , and φn are its associated wave number, frequency
(angular) and phase, respectively. The “New Wave” group
is employed (Tromans et al. 1991) where component ampli-
tudes are calculated from a chosen wave spectrum according
to the weighting,

an =
AN Sn�ωn
∑

n Sn�ω
, (14)

where Sn is the power spectrum, �ω is the frequency step,
and AN is the maximum amplitude of the linearly superim-
posed wave components at a focal point, x f . For the cylinder
focused wave case a JONSWAP spectrum is used, with

S ∝
1

ω5
exp(−

5

4
(ωp/ω)4)γ r , (15)

where

r = exp(−(ω − ωp)
2/2σ 2ω2

p)), (16)

with γ = 3.3, and σ = 0.07 if ω ≤ ωp while σ = 0.09
otherwise. Here ωp is the frequency at the spectral peak. In
contrast, the moored buoy study uses the Pierson-Moskowitz
spectrum defined as above but for γ = 1. Each spectrum was
given a truncated frequency range ωmin < ω < ωmax, with
the values for ωmax and ωmin provided in the relevant results
sections (guided by experiment). In order to focus the wave
group at x = x f (with the wavemaker initially at x = 0),
the group celerity cg is calculated, based on the peak spectral
frequency, and a focal time is specified, usually 2x f /cg . The
phase angles, φn , are then set to provide η = AN at the
focal point. At the paddle wavemaker, the SPH mirror particle
boundary conditions require the piston wavemaker velocity.
The nth component of piston stroke amplitude, sn , is given
by

sn

an

=
sin h(2kn D) + 2kn D

2(cos h(2kn D) − 1)
, (17)

where D is still water depth (Dean and Dalrymple 1991).
The piston velocity at x = 0 thus given by

u P =
∑

n

snωn cos(−ωn t + φn). (18)

For small-amplitude waves the above linear theory applied
to the paddle is sufficient to generate the desired wave
forms at a specified focal point. For larger amplitude waves
(AN /D � 0.1), non-linear wave interactions result in a
focused wave around a shifted focal point that is markedly
different in amplitude to linear predictions. Accordingly, for
moderate to large amplitude focused waves, the amplitude
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is adjusted at the wavemaker through a process of trial and
error (based on values provided by linear theory) until the
wave elevations at a new focal point are in suitable agree-
ment with experimental measurements for times at least up
to wave focusing. The new focal point does not need to be
matched to experiment as this is usually at the body which
can be inserted at the new focal position (or any other loca-
tion) for force calculation during post-processing. As in Lind
et al. (2012), at the end of the wave tank a numerical damping
zone is included to dissipate waves, with velocities reduced
to zero according to the formula,

u = u0 (1 − exp(−2(L − x))) . (19)

Studies have shown the above exponential damping over
a length of 3 m (approximately the largest wavelength con-
sidered) is effective at dissipating energy and with negligible
wave reflection effects at focusing.

2.4 Froude–Krylov forcing

In the experimental studies of interest, the Keulegan-
Carpenter numbers, K C , are moderate to small with K C =

O(1). Reynolds numbers are also large [Re = O(105)],
meaning that inertial forces dominate the wave interaction
(Sarpkaya and Isaacson 1981) as is often reported in exper-
iments (e.g. Chen et al. 2014). Furthermore, the diameters
of the cylinder and buoy are relatively small compared to
wavelength (typically dc/λ ≈ 0.2 or less). Therefore, forces
may be calculated using the Froude–Krylov approximation,
with an appropriate added mass multiplier determined the-
oretically from potential flow (Newman 1977), or estimated
empirically using experimental data. The Froude–Krylov
(FK) force is given by the integration of the undisturbed pres-
sure over the three-dimensional body surface, C :

FF K = −

∫

C

pn d S. (20)

For the fixed cylinder case, classical potential flow analysis
for a locally spatially uniform accelerating flow shows the
additional force due to the flow disturbance around a cylinder
is identical to that of the undisturbed flow field—equivalent
to introducing an added mass equal to the fluid mass asso-
ciated with the Froude–Krylov force (i.e. the added mass
coefficient, Ca = 1). Consequently, the total resultant hori-
zontal force, Fx , for the cylinder cases can be taken as double
its FK counterpart, viz.,

Fx = −(1 + Ca)

∫

C

pnx d S = −2

∫

C

pnx d S. (21)

While estimation of the added mass based on potential
flow is reasonable in non-breaking waves [and experimen-

tally verifiable; see, for example, Keulegan and Carpenter
(1958)], the use of a theoretical value of Ca in the presence
of breaking waves may be queried. However, it will be shown
that the Froude–Krylov approximation with theoretically
determined coefficients is quite accurate, even for an incident
breaking wave. For example, the predicted peak horizontal
loads due to the first breaking wave impact are within approx-
imately 20 % (or less) of experimental measurements for all
focused wave cases. After all, the flow around the cylinder
during the first breaking wave can remain very nearly irrota-
tional (everywhere) up to the point of plunging jet break-up
or crest spilling. After breaking, Nadaoka et al. (1989) used
theory and experiment to determine the decomposed velocity
field under a single post-breaking roller over intermedi-
ate depths, where it was shown that vorticity is primarily
confined to the highly turbulent and aerated surf, with the sub-
surface flow remaining mostly irrotational. Numerical results
are presented in Sect. 3 that support this observation. It is rea-
sonable to postulate that the highly aerated and frothy surf
imparts less momentum (and exerts less force) during cylin-
der interaction, compared to the (higher density) sub-surface
irrotational flow. In other words, Froude–Krylov forcing with
theoretical coefficients can still provide a reasonable approx-
imation for total horizontal loads in early stage post-breaking
waves.

It is expected that the FK approximation will worsen for
waves in the later stages of breaking, and for any further
breaking wave interactions after the first, as the sub-surface
irrotational flow around the cylinder is increasingly disrupted
and coherent 3-D structures (such as oblique descending
eddies) can form in many cases (Farahani and Dalrymple
2014). The numerical results herein align with this expecta-
tion, and fully 3-D modelling will be necessary to accurately
capture forces beyond the first couple of wave interactions—
but this is not the objective of this study. Indeed, a relatively
quick and efficient numerical method that is able to predict
even the first breaking wave load with reasonable accuracy
is a useful capability in offshore engineering.

The above discussion also holds true for the buoy, but the
buoy motion generates an additional added mass term with
the unmoored translational force on the buoy approximated
by,

F = FF K + CaρV (u̇ − v̇), (22)

where v̇ is the translational acceleration of the buoy at the
centre of mass, while u̇ can be considered a volumetric aver-
age of the fluid acceleration over the wetted buoy volume, V .
Here Ca is an added mass matrix with diagonal components
for heave and surge motions. For the buoy considered in this
study, a WAMIT potential flow analysis (Lee 1995) yields
added mass coefficients of 0.47 and 0.63 in heave and surge,
respectively. Note that these values are determined for the
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buoy oscillating in a regular wave train at the peak frequency
of the focused wave group used in experiment. However, it
will be demonstrated that buoy response and mooring loads
are largely insensitive to the choice of the added mass coef-
ficient (in both heave, surge and pitch) as the effective force
due to the relative motion of the buoy and surrounding fluid
is small compared to the remaining hydrodynamic forces.
Equivalently and quite conveniently, Ca can be set to zero in
the buoy case, giving good agreement with experiment.

The cylinder may be considered fixed, requiring a simple
integration over a fixed three-dimensional cylindrical surface
every time step. The buoy responds dynamically with the
flow and has equations of motion that depend crucially on
the mooring system in addition to hydrodynamic forces and
gravity. The equations of motion for the buoy are thus (Ma
and Yan 2009)

M v̇ = FF K + Fs + mg, (23)

and

I �̇ + � × I� = N. (24)

Here, Fs is the force due to tension in the mooring line, m is
the body mass (m = 43.2 kg), N is the moment arising due
to hydrodynamics and the mooring line, and �̇ is the angular
acceleration. The matrices M and I are the mass and moment
of inertia matrices, respectively, and in general will include
added mass and off-diagonal terms. As mentioned, an insen-
sitivity to the added mass shall be presented in due course,
while the planar nature of the flow and the symmetries in the
buoy geometry enable off-diagonal terms in the inertia and
mass matrices to be neglected. Indeed, I effectively reduces
to a single scalar (the pitch component), which, for the buoy
in question, is calculated to be I = 1.61 kgm2. The force Fs

is that due to mooring tension and is governed by a damped
elastic spring,

Fs = −keqxm − cẋm . (25)

Here keq is the equivalent spring constant determined from
the system of lines defining the mooring, and c = 2ζ

√

mkeq,
where ζ is the damping ratio. Here xm and ẋm are the mooring
extension and rate of extension, respectively. The values of
the constants keq and ζ will be discussed further in the results
section for different mooring configurations, but it is worth
noting that keq is determined only from experimentally pro-
vided values. The moment N is that about the centre of mass
due to hydrodynamical forces on the body and the mooring
tension at the mooring connection point at the buoy’s base,
rb. Specifically,

N =

∫

C

pr × n d S + rb × Fs, (26)

Table 1 Average relative error in pressure at front stagnation point at
base of cylinder for various particle spacings

dx (m) Av. relative error

0.005 0.019

0.01 0.028

0.02 0.059

The presented error value is the mean of the relative errors calculated
at times up to 10 s

where r is a point on the buoy’s surface relative to the centre of
mass. The above equations are integrated in time during post-
processing using the already calculated flow data available
at each time step. The velocity at any point on the buoy’s
surface, vr (and subsequently the buoy position/orientation),
can determined using

vr = v + � × r. (27)

3 Results: Part 1. Wave forces on a fixed cylinder

3.1 Validation against linear theory

To validate the numerical method, Fig. 3 compares the free-
surface elevation as predicted by ISPH, with the results from
linear wave theory. The spectrum of the wave group is JON-
SWAP in shape with a peak frequency of f p = 0.61 Hz over
the range (0.5 − 3) f p, and the peak amplitude at the focal
point is AN = 0.05 m. The agreement in the peak amplitude
and the location of the focal point is excellent. Note that the
surface elevation is determined by taking the y position of
the free-surface particle closest to the focal point at each time
step. Indeed, results show any discrepancy in the elevation
remains small and within one particle spacing dx = 0.01 m.
Table 1 displays the corresponding relative error in pressure
calculated at the front stagnation point at the base of a cylin-
der for several particle spacings. The error presented is an
average of relative error values calculated at times up to 10 s.
Convergence is demonstrated with an order of convergence
of approximately 1.0.

3.2 Regular wave loading

The first wave type to be considered and compared with
experiment is that of a plane regular wave incident on a
cylinder placed on a slope. The slope has a gradient of
2.5 % and the cylinder (of diameter 0.2 m) is positioned at
xc = 10 m. Two water depths at the cylinder are considered,
Dloc = 0.4 m and Dloc = 0.8 m. Results are compared with
the experimental measurements of Luck and Benoit (2004),
and readers are referred to their paper for more information
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Fig. 4 Comparison with Luck and Benoit (2004) experimental results
(circles) for loading on cylinder due to regular waves on a slope. The
water depth at the cylinder is 0.4 m. Black squares are ISPH, and the
thick black line denotes predictions from SAWW. The vertical dashed

line is the limiting wave height due to breaking at the cylinder according
to Goda (1970)

on the experimental set-up. The first test case considers a
regular wave of period T = 1.6 s with Dloc = 0.4 m inter-
acting with the cylinder for a range of (local) wave heights.
Figure 4 presents the horizontal forces on the cylinder due
to experiments of Luck and Benoit (2004) (circles), ISPH
(black squares), and semi-analytical results (thick black line)
from non-linear stream function theory for periodic water
waves (Rienecker and Fenton 1981) used in combination
with the Morison equation—as calculated in Stansby et al.
(2013) using the SAWW software (Buss and Stansby 1982).
The presented results from Luck and Benoit (2004) include
several additional wave periods (up to T = 2.4 s), but are
suitably scattered so as to suggest no significant dependence
of force on T . The ISPH results are the average of the first
three wave impacts, to minimise the effect of spurious waves
at paddle start up. For all wave heights, the ISPH results lie
centrally within the experimental measurements recorded by
Luck and Benoit (2004), and begin to deviate significantly
from SAWW predictions for wave heights above 0.15 m.
Indeed, for heights above approximately 0.15 m, the waves
demonstrate significant asymmetry in their profile and may
break at some point on the slope.

Figure 5 shows a typical incident wave crest on the cylin-
der with wave height H = 0.13 m (including pressure and
horizontal velocity contours). The wave profile remains near-
symmetric and the wave unbroken. Figure 6 shows the wave
profile (including pressure and horizontal velocity contours)
for wave height H = 0.23 m, where the wave is now asym-
metric and near the point of overturning when striking the

Fig. 5 Regular wave on a slope with pressure and velocity contours
at cylinder for H = 0.13 m at time t = 7.8 s. Water depth at cylinder
0.4 m. a Pressure, p. b Horizontal velocity, u

cylinder. Indeed, the wave breaks fully just after the cylinder
location. For a larger wave height (H = 0.3 m, Fig. 7), the
wave has now broken before the cylinder in the form of a
plunging breaker with spray. In fact, the wave height is so
large for this case that an earlier smaller crest (formed dur-
ing paddle start-up) formed a spilling breaker at a position
slightly closer to the wave paddle. This explains the appar-
ent fragmentation around the free-surface and the associated
disturbance in the velocity contours for x ≤ 9.5 m—it is
a physical prediction of the surf layer formed from the first
breaking event, as opposed to some non-physical numerical
artefact.

The breaking events at H = 0.23 m and H = 0.3 m (Figs.
6 and 7, respectively) align quite closely with the empirical
predictions of maximum wave height on a slope provided
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Fig. 6 Regular wave on a slope during overturning with pressure and
velocity contours at cylinder for H = 0.23 m, t = 9.2 s. Water depth
at cylinder 0.4 m. a Pressure, p. b Horizontal velocity, u

by Goda (1970) (the vertical dashed line, Fig. 4). Note that
the well-known Miche criterion for horizontal flat beds pro-
vides a maximum wave height within 3 % of Goda (1970).
Both asymmetric/breaking wave cases (Figs. 6, 7) predict
larger forces than SAWW, which provides a non-linear but
symmetric profile for an equivalent wave height. The results
are interesting for two reasons: Froude–Krylov forcing is
sufficient to obtain good agreement with experiment, even
in (early) breaking wave conditions. Secondly, results (both
experimental and numerical) allude to amplification in the
force due to asymmetry in the incident wave profile. In the
following section, the force amplification due to breaking
will be explored in more detail using results from a greater
body of experimental data on focused waves. As seen in Fig.
8, by increasing the water depth at the cylinder (Dloc = 0.8

Fig. 7 Regular wave on a slope post-breaking with pressure and veloc-
ity contours at cylinder for H = 0.3 m, t = 7.5 s. Water depth at cylinder
0.4 m. a Pressure, p. b Horizontal velocity, u

m) a reasonable agreement between all three force measure-
ments (experimental, ISPH, SAWW) is now observed. Over
approximately the same wave height range, the waves no
longer break; all data now lie to the left of the Goda break-
ing criterion (Goda 1970) (vertical dashed line). The waves
remain approximately symmetric about the wave crest and,
accordingly, no significant amplification is observed in the
applied load.

3.3 Focused wave loading

The second type of wave–cylinder interaction considered
is that due to focused wave groups as in the experimental
study detailed in Zang et al. (2010) and Chen et al. (2014)
(undertaken at the DHI, Denmark). Surface elevations and
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Fig. 8 As Fig. 4, but for local depth Dloc = 0.8 m. The vertical dashed

line is the limiting wave height due to breaking at the cylinder according
to Goda (1970)

Table 2 Focused wave group cases considered in this study as in exper-
iments of Zang et al. (2010) with the same case number notation

Case Peak frequency (Hz) Wave height (m)

F11 0.82 0.07

F3 0.61 0.12

F16 0.61 0.23

F14 0.82 0.14

F13 1.22 0.1

F15 0.82 0.22

The wave height is that measured at the theoretical focal point at the
cylinder front. The frequency is that of the peak in the JONSWAP spec-
trum

horizontal forces are available at the cylinder for six different
wave groups of various frequencies and wave heights. Table
2 summarises the wave groups studied and the parameters
used for each case. For consistency with obtained experi-
mental results, we adopt an identical naming convention for
each focused wave case (Fnumber ). There is no slope in this
case (see Fig. 1), as breaking waves may be formed by the
focusing of the wave group into an unstable wave form at
the front of the cylinder. The numerical wave tank is taken
to be of length L = 12 m and still water depth D = 0.505 m
(as in the experiment). The cylinder (of diameter 0.25 m) is
centred at xc = 7.52 m.

3.3.1 Case F11: H = 0.07 m

First, consider a low-amplitude case (F11), where breaking
does not occur (see Fig. 9). Figure 10 compares the ISPH
and experimental predictions for the elevation at the front
of the cylinder. The agreement is good (within one particle

Fig. 9 Wave profile and pressure contours near the focal point for the
F11 case (at time t = 13.26 s)

Fig. 10 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F11. The dashed lines denote experimental measurements, the
black line is ISPH

spacing) up to the point of the peak (focused) wave crest–
cylinder interaction. After this point the agreement begins
to worsen, but is still reasonable. Similarly, the small dis-
crepancy visible in the mean water level remains within one
particle spacing accuracy. The horizontal force exerted on
the cylinder (Fig. 11) demonstrates a similar behaviour to
the elevation—the agreement with experiment is very good
up to and including the peak wave crest interaction, with
agreement decreasing slightly thereafter. The increased dis-
crepancy after the peak wave interaction (in both force and
elevation) is understandable. There will be interaction effects
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Fig. 11 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F11.
The dashed lines denote experimental measurements, the black line is
ISPH

(especially around the free surface) that are omitted entirely
from the Froude–Krylov approximation, and not modelled
through the inclusion of a theoretical added mass. The lin-
ear wave paddle and damping zone may also be a source of
discrepancy at longer times. Importantly, however, predic-
tions up to and including the peak wave interaction, where
the largest and most relevant loads are exerted, are very good.

3.3.2 Case F3: H = 0.12 m

The case F3 is another low to intermediate amplitude case
with good agreement in both the focused wave elevations
(Fig. 12) and the horizontal forces (Fig. 13). As can be seen
from Fig. 14, the wave is of low amplitude and non-breaking.
Note that a small phase difference compared with experiment
is apparent in Fig. 12 (free-surface elevation) after t ≈ 10 s
that is not observed in Fig. 13 (force). The reason for this
is likely due to the method for plotting the elevation, where,
as mentioned already, the y coordinate of the free-surface
particle closest to a fixed x location (i.e. the cylinder front)
determines the elevation at that fixed point. This procedure
is sensitive to single particle positions and has a plotting
error on the order of the particle spacing which can mani-
fest as error in elevation and phase (for example, a crest may
be measured to be at the cylinder front before actually arriv-
ing). This effect can then be compounded by actual numerical
error in the position of the free surface. The force, on the other
hand, is a far less sensitive measure as integration of pres-
sure over the whole cylinder surface (and a comparatively

Fig. 12 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F3. The dashed lines denote experimental measurements, the black

line is ISPH

Fig. 13 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F3. The
dashed lines denote experimental measurements, the black line is ISPH

large number of particles) dominates any local error due to
particle position. Nevertheless, the results for both cases F11
and F3 are sufficiently accurate so as to suggest a validated
numerical method. It also seems a sufficient spatial resolu-
tion (dx = 0.01 m) is being used to predict accurate loads
up to the peak wave crest interaction. A convergence study is
undertaken below, see Fig. 30, further supporting this value
for dx . Importantly, the use of a moderate resolution means a
key feature of this numerical approach (relatively rapid 3-D
load calculations) is maintained.
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Fig. 14 Wave profile and pressure contours near the focal point for the
F3 case (t = 9.88 s)

Fig. 15 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F16. The dashed lines denote experimental measurements, the
black line is ISPH

3.3.3 Case F16: H = 0.23 m

The next case (F16) considers a larger wave amplitude with
H = 0.23 m. As the amplitude is quite large, linear theory
is fairly inaccurate in its predictions and the peak ampli-
tude required at input is adjusted accordingly to reproduce
the observed elevation at the cylinder as close as possible.
Figure 15 shows the elevation at the cylinder front, using
a calibrated input at the wavemaker. Expectedly elevations
are in good agreement up to and including the peak wave
interaction, and importantly the horizontal forces are also

Fig. 16 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F16.
The dashed lines denote experimental measurements, the black line is
ISPH

Fig. 17 Wave profile and pressure contours near the focal point for the
F16 case (t = 9.62 s)

accurately predicted up to this point (Fig. 16). There are some
high-frequency low-amplitude oscillations in the force after
the peak in the experimental data, no doubt resulting from
non-linear interaction effects not considered here. This is a
large amplitude wave, but non-breaking, as can be seen in
Fig. 17.

3.3.4 Case F14: H = 0.14 m

The case F14 is of intermediate wave height, but with a
peak frequency larger than the case F16. This is a breaking
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Fig. 18 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F14. The dashed lines denote experimental measurements, the
black line is ISPH

Fig. 19 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F14.
The dashed lines denote experimental measurements, the black line is
ISPH

wave case with a plunging breaker forming approximately
0.5 m before the front of the cylinder resulting in a post-
breaking roller hitting the cylinder front. Figures 20 and 21
show the breaking process at select times with pressure and
horizontal velocity contours, respectively. The free-surface
elevation (Fig. 18) and force calculations (Fig. 19) are in
good agreement with experiment, with local maxima and

Fig. 20 Wave profile and pressure contours at select times near the
focal point at the cylinder (case F14). a t = 11.70 s, b t = 11.83 s, c t =
11.96 s
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Fig. 21 As Fig. 20, but with horizontal velocity contours. a t = 11.70 s,
b t = 11.83 s, c t = 11.96 s

minima captured before and after the roller–cylinder inter-
action. While the local wave height is similar to the case F3
(non-breaking), the recorded maximum force (both experi-
mental and numerical) is approximately twice as large in this
breaking wave case.

To support the justification in Sect. 2.4 on the use of a the-
oretical (potential flow) added mass coefficient for breaking
wave-cylinder interaction, Fig. 22 plots contours in the vor-
ticity magnitude over the same time intervals as Fig. 20. In
line with the experimental observations of Nadaoka et al.
(1989), as the wave breaks and the roller passes through
the cylinder, the vorticity remains confined to a region less
than one wave height from the free surface. As mentioned
in Sect. 2.4, shortly after breaking this surf is highly aer-
ated (in reality) and of relatively low pressure (as predicted
here), and is likely to impart less momentum to the cylinder
compared with the remaining sub-surface irrotational flow.
In other words, it is reasonable to apply the Froude–Krylov
force with theoretical coefficients to approximate global hor-
izontal loads. Indeed, from wave theory it is known that
the largest variation in non-hydrostatic pressure occurs at
the bed, so while the added mass may deviate from the-
ory in the surf, the FK force (Eq. 21) remains dominated
by larger sub-surface pressure variation where use of a the-
oretical coefficient holds better. Note that the imposition of
slip conditions on the bed precludes generation of vorticity
here, with the only other mechanism for generation being the
tangential stress boundary layer at the free surface (the flow
simulated is slightly viscous). While having a physical ori-
gin, the vorticity magnitude near the free surface, especially
before breaking (Fig. 22a), is likely to be overestimated:
practical particle resolutions are insufficient to resolve vor-
ticity generation within the tangential stress boundary layer,
and free-surface kernel truncation also decreases the accu-
racy of gradient approximations in this region. Nevertheless,
away from the free surface and in the presence of full ker-
nel support (and increased accuracy), irrotationality is clearly
well-maintained. From a loading point of view, the important
characteristics of the jet are its shape, velocity, and pressure
and comparison with experiment indicates that this is at least
qualitatively reasonable while actually contributing little to
overall force.

3.3.5 Case F13: H = 0.1 m

Case F13 considers a steep wave of intermediate wave height
(H = 0.1 m) and high frequency ( f = 1.22 Hz). As can be
seen in Fig. 23, steep sharp wave crests form, with some
evidence of spilling at the crest. Reasonable agreement in
the free-surface elevation is shown in Fig. 24 and subse-
quent force comparisons (Fig. 25) are in good agreement with
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Fig. 22 As Fig. 20, but for vorticity magnitude. a t = 11.70 s, b t =
11.83 s, c t = 11.96 s

experiment for the first few crest interactions after the initial
start-up waves. Given the ability of the SPH-FK approxima-
tion to provide reasonably accurate forces with roller impact

Fig. 23 Wave profile and pressure contours near the focal point for the
F13 case (t = 20.93 s)

Fig. 24 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F13. The dashed lines denote experimental measurements, the
black line is ISPH

(Fig. 19), the reasonable predictions provided in the case of
spilling breakers is quite expected.

3.3.6 Case F15: H = 0.22 m

The final focused wave case considered is that which results
in a plunging breaker with jet impact direct on the cylinder
(F15). Figure 26 shows the formation of the breaking wave
(with pressure contours) at selected times during impact with
the cylinder. The wavemaker input is calibrated and subse-
quently provides good agreement in the wave elevation at
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Fig. 25 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F13.
The dashed lines denote experimental measurements, the black line is
ISPH

the cylinder front (Fig. 27), especially before and up to the
plunging jet impact at t ≈ 11.8 s. Quite remarkably, force
measurements up to and including the plunging jet impact are
also well predicted by the FK modelling (Fig. 28). At later
times agreement worsens, but this is to be expected as full
cylinder interaction would be required for accurate modelling
after such an impact. This is a case of considerable interest
and hitherto has been argued to be the case potentially most
damaging due to the high-speed impact of the plunging jet.
For example, Zhou et al. (1991) consider plunging breaker
impacts on cylinders and noted local impulsive impact pres-
sures, although highly scattered, as high as 93 kPa or 9 m
of water. Despite the relatively high velocities of the plung-
ing jet [O(2m/s)] (see Fig. 29), it seems that in this case
a consideration of the undisturbed flow field alone is suffi-
cient to get reasonable agreement in the total loading on the
cylinder—including at jet impact at t ≈ 11.8 s. Similarly to
the discussion for case F14, the pressure in the jet will be
near atmospheric and so will contribute little to the FK force
relative to the sub-surface irrotational flow. Given the good
agreement with experiment, any momentum imparted to the
cylinder from the plunging jet must then be small compared
to overall wave loading. Impulsive pressures exerted by the
plunging jet may be significant locally, but these are very
short-lived with rise times less than 1 ms (Zhou et al. 1991;
Lind et al. 2015). Given the high degree of variability, local-
ity, and short-lived nature of the impulsive impact pressures
(which are also dependent on local air effects), it could be
argued that their influence on structural integrity (in a global

Fig. 26 Wave profile and pressure contours at select times near the
focal point at the cylinder. a t = 11.70 s, b t = 11.83 s, c t = 11.96 s
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Fig. 27 Comparison between experimental and numerical results for
the free-surface elevation at the front of the cylinder for focused wave
case F15. The dashed lines denote experimental measurements, the
black line is ISPH

Fig. 28 Comparison between experimental and numerical results for
the total horizontal force on the cylinder for focused wave case F15.
The dashed lines denote experimental measurements, the black line is
ISPH

sense) may be small compared to the more slowly varying
(and persistent) total wave loads exerted. This is clearly an
important topic that deserves greater attention and will be a
subject for more detailed investigation.

The ability of the FK approximation to provide adequate
force calculation, even for plunging breakers, is supported by
Fig. 30 which shows force predictions for several spatial res-

Fig. 29 As above (Fig. 26), but with contours displaying horizontal
velocity. a t = 11.70 s, b t = 11.83 s, c t = 11.96 s
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Fig. 30 ISPH force comparison with experimental focused wave data
(case F15) for different particle resolutions

olutions, dx . All provide good agreement with experiment
at the point of plunging breaker impact (even the coarsely
refined spacing, dx = 0.02 m) and there is little difference
in results for refinement beyond dx = 0.01 m, indicating
that this resolution is sufficient even in this supposedly chal-
lenging test case.

It has been discussed in Sect. 3.2 and observed in recent
experimental work (Stansby et al. 2013), that breaking wave
impact exerts significant additional loading on the cylinder
compared to an equivalent non-breaking case. This raises an
interesting point regarding the stages of breaking where the
maximum loading occurs. Early experimental works have
recorded maximum forces due to the post-breaking roller
(Miller et al. 1974). In contrast, recent experimental (Wienke
and Oumeraci 2005) and numerical work (Hildebrandt and
Schlurmann 2012) reports the maximum force on the cylin-
der at the point of overturning—where the plunging jet [or
breaker tongue as in Wienke and Oumeraci (2005)] has a
horizontal velocity and the front of the wave crest is ver-
tical. This also aligns with the well-known empirical wave
breaking study of Goda et al. (1966), which itself is based
upon the classical works of Von Karman (1929) and Wagner
(1932). A key benefit of the Froude–Krylov approximation is
that the force on the cylinder can be calculated rapidly given
a predetermined flow field. The flow is undisturbed by the
cylinder so multiple cylinder locations and orientations can
be considered rapidly from a single simulation.

Accordingly, for the case F15, the cylinder position is
moved incrementally about the original experimental posi-
tion xc = 7.52 m, to vary the form of the breaking wave at

Fig. 31 Maximum predicted loads on the cylinder for various cylinder
locations based on ISPH and SAWW. ISPH results are those from the
breaking event of Fig. 26

impact. For each cylinder location, the local wave height at
the cylinder is determined and input into the SAWW program
to determine the loading at that wave height for the equivalent
fully non-linear but symmetric (non-breaking) wave profile.
Figure 31 plots the maximum horizontal force determined
from ISPH and SAWW against various cylinder positions.
There is clearly an amplification region (6.5 � x � 7.5 m),
as highlighted approximately by the arrow, that produces an
increased load for ISPH resulting purely from asymmetry in
the impacting wave crest. From a symmetric to asymmetric
(breaking) profile at fixed wave height, forces are amplified
by as much as 1.3 approximately. This amplification factor
is in quantitative agreement with the experimental assess-
ment of Stansby et al. (2013), which reports amplification
factors for various dimensionless depths, k D. This detail is
presented in Fig. 32; the ISPH prediction is included and
lies very close to the trendline through the experimental data
(Stansby et al., 2013). From Fig. 31 the globally maximum
force occurs at a cylinder location xc = 7.22 m, which corre-
sponds to an impact as displayed in Fig. 33, where the wave
is at the point of overturning and the wave front is vertical.
This supports the empirical work of Goda et al. (1966), the
numerical study of Hildebrandt and Schlurmann (2012), and
the experimental findings of Wienke and Oumeraci (2005),
where maximum forces were observed with impact at the
point of overturning when newly formed jets remain hori-
zontal. It is understandable that such a wave interaction may
exert the largest load, as within a small time dt , such a profile
imparts the largest possible horizontal momentum by dis-
placing the largest possible mass of fluid, elements of which
travel at velocities above the wave celerity (see the horizon-
tal velocity contours of Fig. 33). This helps to explain the
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Fig. 32 Experimentally determined amplification factor values with
k D from Stansby et al. (2013). The black line is a linear trendline (least
squares regression) and the numerical ISPH prediction is highlighted

Fig. 33 The wave profile that exerts the largest load on the cylinder
during the breaking process as determined through ISPH predictions.
Contours denote the horizontal velocity values

increase observed over the equivalent symmetric non-linear
impact provided by SAWW.

4 Results: Part 2. Wave forces on a Taut Moored

body

Given the good approximations provided by the method
for horizontal forces on a fixed vertical cylinder, the more
challenging case of a moored floating body is considered.
Results are compared with the experimental results of Hann

Table 3 Lengths and draft of the two mooring configurations studied

Mooring Config. ls (m) lr (m) xm0 (m) Db (m)

1 0.63 1.38 0.27 0.31

2 0.15 1.96 0.11 0.35

Here ls is the unextended spring length, lr is the length of near
inextensible Dyneema rope, and xm0 is the initial spring extension
under hydrostatic forces. Initially then, the total mooring line length
is lm = ls + lr + xm0

et al. (2015) for a single-body moored wave energy con-
verter (with some additional unpublished data provided by
Hann directly). A schematic of the moored buoy setup is pro-
vided in Fig 2. Two mooring configurations are considered,
both consisting of an elastic spring (unextended length, ls ;
spring constant, k = 64 N/m) connected in series with a
near inextensible rope (Dyneema rope) (unextended length,
lr ; spring constant k = 35 × 103 N/m). The lengths and ini-
tial spring extensions for each configuration are presented in
Table 3, alongside the buoy draft. In mooring configuration 1,
the spring is long enough to allow a smooth extension of the
mooring during wave interaction. In mooring configuration
2, the spring is shortened and limited to a maximum length of
0.406 m by a parallel arrangement of four Dyneema ropes of
equivalent spring constant keq = 28 × 103 N/m. In limiting
the extension, the second configuration encourages “snatch”
loads: large, short-lived mooring tensions reflective of the
loads experienced in extreme wave conditions. The second
(or snatch) mooring configuration is studied in both breaking
and non-breaking waves.

With regard to the wave and basin properties, a constant
still water depth of D = 2.8 m is used in a basin of length
L = 30 m. A piston wavemaker generates a focused wave
group based on the Pierson-Moskowitz spectrum over a range
0.1–2Hz, with a peak frequency of f p = 0.356 Hz and a
peak amplitude of approximately AN = 0.27 m. These wave
properties are used to generate the non-breaking wave group,
with the breaking waves generated by multiplying the peak
frequency by a factor 1.6 (as in experiment). The SPH dis-
cretisation uses a particle spacing of dx = 0.05 m. The buoy
geometry is defined as in Fig. 2, with Rb = Hb = 0.25 m

and dc = 0.5. The buoy has a mass of 43.2 kg with a moment
of inertia given by 1.61 kgm2.

4.1 Mooring configuration 1: non-snatch loads

This mooring configuration has a longer elastic spring
to enable smooth extension of the mooring line during
wave interaction. This configuration just considers the non-
breaking wave case and Fig. 34 displays comparisons of
experimental and numerical results for the heave motion of
the buoy at the focal point (determined to be at x f = 20 m,
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Fig. 34 Comparison of experimental and numerical predictions of the
heave motion of the buoy during non-breaking focused wave interaction.
Experimental results are denoted by the dashed line

Fig. 35 Comparison of experimental and numerical predictions of the
mooring load on the buoy during non-breaking focused wave interac-
tion. Experimental results are denoted by the dashed line

approximately). Evidently, there is close agreement in the
early stages of the interaction, including with the main crest.
The agreement then deteriorates as the wave group passes
through the focal point. This good agreement with the ini-
tial incident crests of the wave group is then reflected in the
mooring load which displays near-identical behaviour qual-
itatively (see Fig. 35).

The low sensitivity to added mass is now demonstrated,
with the mooring load recalculated using the complete force
equation [Eq. (22) with Ca 	= 0] for the same incident wave

Fig. 36 Demonstration of insensitivity in the non-snatch mooring load
to a selection of buoy added mass values

group for a selection of translational and rotational added
mass value combinations (including the translational values
determined by WAMIT). As can be seen in Fig. 36, there is
little variation in the mooring load for a moderate (but realis-
tic) range of added mass values. This supports the hypothesis
that the effective force due to relative motion of the buoy to
the surrounding fluid is suitably small compared to other
hydrodynamic forces so as to enable added mass effects to
be neglected, at least as a convenient first approximation.

4.2 Mooring configuration 2: snatch loads

This second buoy case considers a mooring configuration
with spring/rope lengths combined as detailed in Table 3.
The key difference here is that the easily extensible spring is
limited in its extension (to a total length of 0.406 m), allow-
ing snatch loads to be exerted as the mooring reaches its
maximum extension while interacting with the same focused
wave group as mooring configuration 1. This case now has
two regimes of mooring response: the first is that governed
by the elastic spring (with experimental spring constant
k = 64 N/m) before the extension limit is reached; the second
is the snatch regime when the elastic spring is at maximum
extension, with any further extension necessarily appearing
in the rope system comprising the rest of the mooring. The
rope system that limits further spring extension consists of
four Dyneema ropes in parallel, also connected to the main
mooring rope in series. The experimentally determined value
of the spring constant for a single rope is 35 N/mm, with
the equivalent spring constant for the aforementioned sys-
tem given by keq = 28 N/mm. To obtain good experimental
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Fig. 37 Comparison of experimental and numerical predictions of the
heave motion of the buoy during non-breaking focused wave interaction
for a snatch enabled mooring configuration. Experimental results are
denoted by the dashed line and displacement is normalised by the body
diameter

agreement in the snatch regime, it was found necessary to
include a spring damping term for the Dyneema rope inter-
action only (see Eq. 25). The damping ratio has not been
defined by experiment but has been determined numerically
to be approximately ζ = 0.175, indicating that, in reality,
the rope component of mooring system deviates somewhat
from a perfect theoretical spring. Note, the aforementioned
value of ζ indicates a small amount of under-damping.

Figure 37 presents a comparison of numerical and experi-
mental results for the heave motion of the buoy for the snatch
load non-breaking wave case. Once again, the agreement
is remarkably good over the first few wave crests, with the
numerical method even approximating the small fluctuation
in the heave at the main crest interaction (at t ≈ 14.6 s). The
corresponding mooring load is shown in Figure 38. Using
experimentally determined spring constants and a damping
ratio of ζ = 0.175 in the snatch regime, a good agreement
is obtained with regard to position, magnitude, and duration
of both snatch peaks. Note that, as in experiment, the loads
are now normalised using the initial at rest mooring tension
(9.4 N). A better agreement in magnitude is obtained for
the first snatch load over the second. Indeed, it is the sec-
ond snatch load that shows greater sensitivity to the damping
ratio, as seen in Fig. 39. Without a damped response in the
snatch mooring, the second load is predicted to be larger than
the first.

While the non-breaking case demonstrates a good agree-
ment with experiment for the snatch loads, the predictions
worsen in the case of breaking waves. During plunging wave
breaking, a series of snatch loads are observed, the number

Fig. 38 Comparison of experimental and numerical predictions of the
mooring load on the buoy during non-breaking focused wave interaction
for a snatch enabled mooring configuration. Experimental results are
denoted by the dashed line

Fig. 39 Comparison of predicted snatch loads for different damping
ratios, presented alongside experiment

and magnitude of which being dependent on the position of
the device relative to the plunging breaker. With breaking
sufficiently close to the buoy location, the first snatch load is
due to interaction with the breaker, and this load decreases in
magnitude to zero as the buoy moves upstream and distance
from the plunging breaker increases. Figure 40 shows com-
parisons of the magnitude of the plunging breaker snatch
load for a selection of buoy (initial) positions around the
point of breaking (defined as the point of largest wave ele-
vation and determined from the numerical simulations to be
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Fig. 40 Comparison of experimental and numerical measurements for
the magnitude of the first snatch mooring load due to a plunging breaker.
The load is plotted against the initial position of the centroid of the buoy
relative to the point of breaking at x ≈ 13.5

at x = 13.5 m, approximately). As distance from the point
of breaking increases, the load decreases at mostly the same
rate as experiment, but the magnitudes are over-predicted by
around 30 % in most cases. Any further snatch loads exerted
in post-breaking are not very well predicted in either location
or magnitude.

Indeed, the flow field is likely to be sufficiently com-
plex in late post-breaking that good agreement should not
be expected from a numerical method that is close to incom-
pressible, inviscid, and based on an undisturbed flow field. In
reality, the flow will be significantly aerated and altered by
buoy motion, with significant energy loss following breaking.
Indeed, all results in this study affirm that the best predictions
are observed only for the first few wave crest interactions,
but, crucially, this includes the main crest where the most
extreme loads occur. Further improvement may be possible
with careful selection of added mass coefficients, including
negative added mass values [observed in oscillating bodies
at free surfaces (Mciver and Evans 1984)], which may also
be useful in modelling aeration.

5 Conclusions

This paper presents an alternative and efficient numerical
approach for the calculation of three-dimensional loads on
fixed and floating bodies due to breaking and non-breaking
waves. Fully non-linear wave profiles and dynamics are
determined accurately using a state-of-the-art incompress-
ible SPH method. Forces on the bodies are then determined
from the undisturbed flow field using the Froude–Krylov
force with added mass determined from empirical or the-

oretical coefficients. For the cylinder case, two wave types
are studied (regular and focused) and detailed comparisons
are made with experimental data (Luck and Benoit 2004;
Zang et al. 2010).

The Froude–Krylov approximation with theoretical added
mass is quite accurate and is able to predict initial loads
on cylinders due to waves in various stages of breaking.
Results corroborate recently reported experimental (Wienke
and Oumeraci 2005) and numerical (Hildebrandt and Schlur-
mann 2012) results that attribute the maximum load during
breaking to when the wave is at the point of overturning, the
plunging jet is still horizontal, and the wave front vertical.
The results do indicate that wave asymmetry is most signifi-
cant in amplifying force over that for steep symmetric waves
rather than impact due to breaking jets.

Predictions for the buoy response and mooring load are in
good agreement with experiment (Hann et al. 2015) for the
non-breaking cases; both the snatch and non-snatch loads are
well predicted using experimentally provided mooring line
spring constants. With wave breaking, mooring load predic-
tions are less accurate, but the snatch loads due to the first
plunging breaker demonstrate the same dependence on rela-
tive buoy position as experiment, with a quantitatively similar
rate of decrease with distance. Overall, the method has a num-
ber of benefits: the simulations are two-dimensional and of
resolution only required for wave simulation, so computa-
tions are comparatively fast. Furthermore, forces on a body
in multiple configurations can be undertaken rapidly as force
calculations are done in post-processing on the undisturbed
flow. With further validation, this approach may prove to be
a useful computational tool for coastal/offshore engineering
practice.
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