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Abstract 

 
 Received analyses based on stochastic frontier modeling with panel data have relied primarily on results 
from traditional linear fixed and random effects models.  This paper examines extensions of these models that 
circumvent two important shortcomings of the existing fixed and random effects approaches.  The conventional 
panel data stochastic frontier estimators both assume that technical or cost inefficiency is time invariant.  In a 
lengthy panel, this is likely to be a particularly strong assumption.  Second, as conventionally formulated, the fixed 
and random effects estimators force any time invariant cross unit heterogeneity into the same term that is being used 
to capture the inefficiency.  Thus, measures of inefficiency in these models may be picking up heterogeneity in 
addition to or even instead of technical or cost inefficiency.  In this paper, a true fixed effects model is extended to 
the stochastic frontier model using results that specifically employ the nonlinear specification.  The random effects 
model is reformulated as a special case of the random parameters model that retains the fundamental structure of the 
stochastic frontier model.  The techniques are illustrated through two applications, a large panel from the U.S. 
banking industry and a cross country comparison of the efficiency of health care delivery. 
 
Keywords:  Panel data, fixed effects, random effects, random parameters computation, Monte Carlo, maximum 
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1.  Introduction 
 
 The literature on stochastic frontier estimation of technical and cost (in)efficiency is voluminous 

and growing rapidly.  [See Kumbhakar and Lovell (2000) for a recent survey.]  An increasing number of 

these studies are based on large, high quality panel data sets.  Most of these have used long standing 

extensions of the stochastic frontier model to fixed effects and random effects specifications.  [See 

Schmidt and Sickles (1984) and Pitt and Lee (1981), respectively, for the canonical references and 

Kumbhakar and Lovell (2000) for a detailed survey.]  These extensions, which have stood as the standard 

approaches are patterned on familiar counterparts for the linear regression model.  This paper presents 

modifications of these models that overcome two shared shortcomings.  Both models assume that the 

technical (or cost) inefficiency is time invariant.  This is likely to be a questionable assumption in a long 

panel.  Our application to the banking industry, which is changing rapidly, spans five years.  Second, the 

treatment of the ‘effect’ in these models as the inefficiency per se neglects the possibility of other 

unmeasured heterogeneity that is unrelated to inefficiency.  To the extent that any such heterogeneity is 

present, it will show up blended with, or at worst, as if it were the inefficiency that the analyst seeks to 

measure.  This consideration was motivated by a study of health care delivery [Greene (2002)] based on a 

world panel of aggregate data from 140 countries in which the cross unit latent heterogeneity would 

almost certainly be large or even dominant.  Both issues have surfaced before.  We will note below 

several proposals to incorporate time variation in the inefficiency component of the model.  Kumbhakar 

and Lovell (2000, p. 115), citing Heshmati and Kumbhakar (1994) and Kumbhakar and Heshmati (1995)  

note that a problem with some approaches discussed below is that time invariant aspects of inefficiency 

will be treated as if they were heterogeneity.  This is precisely the opposite of the point made above, and 

highlights utility of reconsidering the issue. 

 The paper proceeds as follows:  Section 2 will present the general formulations of the fixed and 

random effects models and lay out the proposed modifications.  The general forms of both of these 

treatments are taken from existing literatures, though our extensions to the stochastic frontier model are 
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new.  Section 3 presents an analysis of the fixed effects estimator.  There are two considerations here.  

The first is computational.  The fixed effects estimator is widely viewed as impractical in a large panel 

because of the large number of parameters.  In fact, using an established but apparently not widely known 

result, fixed effects in large panels are quite practical. We will demonstrate in a panel data set with 500 

banks as observations.  The second question is the incidental parameters problem. [See Neyman and Scott 

(1948) and Lancaster (2000).]  This is a syndrome of issues that is generally viewed as a persistent bias of 

the fixed effects estimator in short panels.  Existing results that form the basis of this view are all based 

on discrete choice models and, it turns out, are not useful for understanding the behavior of the fixed 

effects stochastic frontier model.  Section 4 presents results for a random effects estimator.  This is a 

straightforward extension of the hierarchical, or random parameters model.  Once again, this is a model 

that has seen use elsewhere, but has not been applied in the stochastic frontier literature.  The application 

to the banking industry is continued to illustrate.  Its relationship to the existing results is shown as well.  

Some conclusions and directions for further work are suggested in Section 5. 
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2.  Effects Models for Stochastic Frontiers 
 

The stochastic frontier model is written 
 

( , )        it it i it ity f v Su= + −x z    =   β′xit  +  µ′zi  +  vit  -  Suit, i = 1,...,N; t = 1,...,T,     (2.1) 

 
where the sign of the last term, S, depends on whether the frontier describes production (+1) or cost (-1).  

The assumption of fixed T is purely for convenience; in application, T may vary by group with no change 

in any results.  We do assume throughout that asymptotics are only with respect to N; T (or Ti) is viewed 

as fixed.  The function f(•) denotes the theoretical production or cost function.  The firm and time specific 

idiosyncratic term which locates the firms own stochastic frontier is vit, which can be either positive or 

negative.  The second component, uit represents technical or cost inefficiency, and must be positive.  The 

base case stochastic frontier model as originally proposed by Aigner, Lovell and Schmidt (1977) adds the 

distributional assumptions to create an empirical model. The “composed error” is the sum of a symmetric, 

normally distributed variable (the idiosyncrasy) and the absolute value of a normally distributed variable 

(the inefficiency): 

vit  ~  N[0, σv
2]              (2.2) 

 

uit  =  |Uit|   where Uit ~  N[0, σu
2].           (2.3) 

 
Other distributional assumptions, such as a normal-truncated normal [see Stevenson (1980)], normal-

exponential, or normal-gamma [see Greene (1990)] model are often considered.  Heterogeneity in the 

mean of Uit and/or heteroscedasticity either vit or uit or both have also been considered (though the 

extensions of these to formal panel data treatments  remains an area with potential for further research).  

Many of the results suggested here can be extended to these models, but since they bring no new issues, 

the details will be omitted. 

The model is usually specified in logs, so for small deviations, the inefficiency term, uit can be 

interpreted as the percentage deviation of observed performance, yit from the firm’s own frontier 

performance,  

yit* = β′xit  +  µ′zi  +  vit.             (2.4) 
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The time varying part, β′xit, contains the terms in the production or cost function which are functions of 

input quantities or outputs and input prices, and possibly functions of a time trend to account for technical 

change.  The time invariant component, µ′zi, represents heterogeneity not related to the production 

structure, but which captures any firm or unit specific effects.  Cultural differences or different forms of 

government in the health care application mentioned in the introduction might be examples.  This second 

term may or may not be correlated with the overall levels of the inputs.    

 Estimation of the technology parameters is usually of secondary interest.  Rather, interest 

centers on measures of firm efficiency or inefficiency.  The efficiency of firm i at time t is 

Exp(yit*)/Exp(yit) = Exp(-uit).  It is often more convenient or useful to analyze the inefficiency, 1-Exp(uit).  

Within the framework of the normal-half normal stochastic frontier model, Jondrow, Lovell, Materov, 

and Schmidt’s (1982) (JLMS) conditional estimator of uit  

ˆ
itu   =  E[uit | εit]  =  

2

( )

1 1 ( )

it
it

it

a
a

a

 φσλ
−+ λ −Φ 

           (2.5) 

where 
 

σ  =  [σv
2 + σu

2]1/2 

 

λ  =  σu / σv 
 

ait  =  Sεitλ/σ 
 

φ(ait)  =  the standard normal density evaluated at ait 
 

Φ(ait)  =  the standard normal CDF (integral from -∞ to ait) evaluated at ait 
 
S   =  +1 for a production model, -1 for a cost frontier. 

 
Counterparts for the normal-exponential and normal-gamma model appear in Aigner et al. (1977) and 

Greene (1990), respectively.  With the parameter estimates in hand, it is possible to estimate the 

composed error, 

εit  =  vit  ±  uit  =  yit  -  β′xit -  µ′zi             (2.6) 
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by “plugging in” the observed data for a given firm in year t and the estimated parameters, then u can be 

estimated using the sample data in (2.6). 

ˆ
it

 Save for the explicit recognition of the unit specific heterogeneity, µ′zi, the foregoing does not 

embody any of the formalities of the received panel data treatments.  Kumbhakar and Lovell (2000) and 

Kim and Schmidt (2000) present convenient summaries of these.  Kim and Schmidt suggest a 

semiparametric treatment of inefficiency in this model by recasting it as a fixed effects formulation, 

yit  = α  +  β′xit  -  Sui  +  vit 

     =  αi  +  β′xit  +  vit                 (2.7) 

where  αi = α  -  Sui.  Any latent heterogeneity is either absent or contained in the production function (or 

absorbed in αi, a point to which we shall return later).  Without a distributional assumption, but allowing 

for the possibility of correlation between αi and xit, the model can be analyzed as a fixed effects linear 

regression as suggested by Schmidt and Sickles (1984).  The slope parameters can be consistently 

estimated by the within groups (dummy variables) least squares estimator.  The unit specific constants are 

estimated by the mean within group deviation of yit from b′xit.   Observations are then compared not to an 

absolute yardstick of zero, but to each other.  Schmidt et al., proposed the relative inefficiency estimator 

 ui*  =  max(ai)  -  ai  for the production frontier 

or  ui*  =  ai  -  min(ai) for a cost frontier.           (2.8) 

Kim and Schmidt (2000) provide a discussion of this approach, primarily directed at interval estimation 

and methods of inference.  For the present, we focus on point estimation of the inefficiencies themselves.  

[For interval estimation, see Horrace and Schmidt (2000) and Kim and Schmidt (2000).] Cornwell, 

Schmidt and Sickles (1990) and Kumbhakar (1990) addressed the issue of time invariance noted above.  

Their proposal, was to replace  the constant αi in (2.7) with a quadratic, αi0 + αi1t + αi2t
2.   Lee and 

Schmidt (1993) proposed a similar modification, αit = αiθt.  Each of these allows an impact of technical 

change as well, though it will remain difficult to disentangle any time variation in efficiency from 

technical change.  We will return to these formulations in the discussion below. 
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 The fixed effects approach is distribution free, which is a desirable characteristic.  However, this 

robustness is obtained at the cost of losing the underlying identity of ui.  Efficiency estimation in this 

model is only with respect to the ‘best’ firm in the sample.  The random effects approach, in contrast, 

maintains the original distributional assumption 

yit   =   β′xit  +  vit  -  Sui,             (2.9) 
 
where vit and the time invariant ui satisfy the original stochastic specification of the model.  Maximum 

likelihood estimation of the model is described by Pitt and Lee (1981).  The corresponding expression for 

estimating uit is obtained by replacing ait with ai  =  ST iε λ/σ where σ2 = σv
2 + Tσu

2.   Once again, the 

time invariance issue has attracted attention.  Lee and Schmidt (1993) suggested that the inefficiency be 

parameterized using uit = δ(t)ui where δ(t) = Σtδtdt and dt is a dummy variable for period t. (One of the 

coefficients is normalized at 1.0.)  Other formulations with similar structures were suggested by 

Kumbhakar (1990), δ(t) = [1 + exp(δ1t + δ2t
2]-1 and by Battese and Coelli (1995), δ(t) = exp[-δ(t - T)]. 

 In the framework of the effects models above, the fixed and random effects approaches each have  

virtues and shortcomings.  The fixed effects estimator is distribution free, requiring only the statement of 

the conditional mean.  However, it achieves this level of generality at the cost of obscuring the individual 

identity of the estimated inefficiency. The ‘effects’ can only be estimated relative to the ‘best.’  Time 

invariant effects in the model are also treated ambiguously in this framework.  The random effects model 

has a tighter parameterization which allows direct individual specific estimates of the inefficiency term in 

the model.  However, the random effects model rests on a strong assumption that the effects are 

uncorrelated with the variables included in the model.  This is often an unreasonable assumption, and it 

more likely than usual to be so in the stochastic frontier model, particularly when any of the production 

variables relate to capital or its cost. 

 The preceding notwithstanding, both models specified share two common shortcomings.  First, 

each assumes that the inefficiency is time invariant.  If the time series is long, this is likely to be 

problematic.  The literature contains several attempts to relax this assumption. The models of Lee and 

 7 



Schmidt (1993) and Kumbhakar (1990) are examples.  Each of these relaxes the assumption of time 

invariant inefficiency, but retains a rigid structure.  In general, there is no reason to expect the firm 

specific deviations to be time invariant or, as in the models above, all to obey the same trajectory.  A 

second problem is equally likely to induce biases in the estimation of uit.  If there is any latent cross firm 

heterogeneity in the data that is not related to inefficiency, it is forced into the firm specific term ui or 

β(t)ui.  This is a potentially large distortion, as we find in the application below. 

 In the sections to follow, we will reformulate the stochastic frontier specifically to explore these 

aspects.  Section 3 will treat the stochastic frontier model in a ‘true’ (our term) fixed effects formulation, 

yit   = αi  +  β′xit  +  vit  -  Suit   

where αi is the group specific constant.  This form retains the distributional assumptions of the stochastic 

frontier model, allows for freely time varying inefficiency, and allows the heterogeneity term to be 

correlated with the included variables.  Within groups least squares estimation of this model still produces 

consistent estimates of β, but loses the important information in the model about uit.  We consider 

maximum likelihood estimation instead.  An alternative specification discussed in Section 4 is a ‘true’ 

random effects form, 

yit   = α  +  wi  +  β′xit  -  Suit  +  vit          (2.10) 

which is a stochastic frontier model with a random (across firms) constant term.  Once again, this retains 

the essential characteristics of the stochastic frontier model while relaxing the two problematic 

assumptions discussed earlier.  This model also has a predecessor in the received literature.  the model of 

Kumbhakar and Hjalmarsson (1993) is essentially that in (2.10), however, their interpretation and 

estimation method differ substantially from that suggested below. Each of our formulations reinterprets 

the time invariant term as firm specific heterogeneity, rather than as the inefficiency.  If, in fact, the 

inefficiency for any firm is time invariant, or nearly so, the models will accommodate that without 

assuming it. 
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3.  Fixed Effects Models 

 Superficially, the fixed effects model is a trivial extension of the basic stochastic frontier model. 

In principle, one can simply replace the overall constant term with a complete set of firm dummy 

variable, and estimate it by the now conventional means.  Given that many applications have been based 

on quite moderate sample sizes - for examples the three examined by Kim and Schmidt have N = 171, 10 

and 22 respectively - it is surprising that this approach has not been used much heretofore.1  Though 

perhaps near the capacity limit for most programs, even Kim and Schmidt’s largest sample is well within 

reach of most contemporary software.  However, three issues remain. First, this form of the model is not a 

simple reparameterization, it is a substantive reinterpretation of the model components and produces 

surprisingly different results.  Second, at some point, the proliferation of parameters in the fixed effects 

model will exceed the limits of any available software.  For example, our second application is based on a 

sample of 500 banks taken from a larger sample of 5,000.  Third, irrespective of the physical problem of 

computation, estimators of the stochastic frontier model with fixed effects may be persistently biased by 

dint of the incidental parameters problem when T is small, as it is in most applications (five in both of 

ours).  Existing evidence on how serious the biases are in fixed effects models comes only from studies of 

probit and logit binary choice models, and is thus not useful here.  In this section, we will reconsider the 

computation issue, then use the health care application to illustrate the impact on estimates of uit of using 

the linear regression approach instead of the true fixed effects estimator. Finally, a Monte Carlo study 

based on the banking data will be used to study the incidental parameters problem. 

 

                                                           
1 Cornwell, Schmidt and Sickles (1994) did suggest a ‘brute force’ approach to estimating their quadratic model, 
however, their proposal was based on least squares estimation, not maximum likelihood. 
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3.1.  Computation of the Fixed Effects Estimator 

The fixed effects stochastic frontier model is defined by the density,  
 

f(yit | xi1,xi2,...,xi,Ti) =  
2 it itSε − λε  φ Φ  σ σ σ  





                                                          

, εit = yit - αi - β′xit,           (3.1) 

where S = +1 for a production frontier and -1 for a cost frontier.  In a few cases such as the Poisson and 

binary logit models, it is possible to condition the possibly large number of constants out of the likelihood 

function, and base estimation of β and any ancillary parameters such as σ on a conditional likelihood.  

But, in most cases, including the stochastic frontier, this is not possible.  All parameters including the 

constant terms must be estimated simultaneously.  One approach that has been suggested involves 

iterating two steps between the main parameters, here [β,λ,σ], and the constant terms, α, since estimation 

of each conditioned on the other is a straightforward problem.2  Though it appears not to be widely 

known, as discussed below, in most cases, it is actually possible to estimate simultaneously the full 

parameter vector even in extremely large models for which there is no conditional likelihood which is free 

of the nuisance parameters.   

 Received treatments, with the exception of Polachek and Yoon (1996) discussed below, have 

estimated the fixed effects stochastic frontier model by treating it as a fixed effects linear regression 

model.  Under the assumptions made so far, β can be estimated consistently, if not fully efficiently, by the 

within groups least squares estimator, b.  From this departure point, the fixed effects are estimable by 

regression of the group specific vectors of deviations, ei, on either a simple constant term in the time 

invariant case or on a constant, time and its square for the quadratic form.  The firm specific inefficiency 

is then measured relative to the best firm in the sample by computing deviations of the fixed effects from 

the largest or smallest in the sample.  (This second step is discussed in Section 3.) 

Polachek and Yoon (1994, 1996) is the only received likelihood based application of the fixed 

effects stochastic frontier model in (3.1).  They estimated a labor supply model with for N = 834 

 
2 See Heckman and MaCurdy (1981), Polachek and Yoon (1994, 1996), Berry et al. (1995) and Train and Petrin 
(2002). 
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individuals and T = 17 periods.  They constructed the likelihood function from the exponential 

distribution rather than the half normal.3  The large N rendered direct estimation “impractical.”  Their 

alternative approach was a two step method patterned after Heckman and MaCurdy’s (1981) estimator of  

a fixed effects probit model.  A first step estimation by the within group (mean deviation) least squares 

regression produced a consistent estimator of β.  The fixed effects were then estimated by the within 

groups residuals.  The second step is to replace the true fixed effects in the log likelihood function with 

these estimates, , and maximize the resulting function with respect to the small number of remaining 

model parameters, β and the variance parameters.  This two step estimator does not actually maximize the 

full likelihood function because the Hessian is not block diagonal and because the estimates of the 

constant terms are obtained by least squares.4  How close this method is likely to be as an approximation 

remains to be examined.  Ultimately, their two step estimates differed only slightly from the least squares 

estimates.  The motivation for the second step rather than stopping with the least squares estimates was 

estimation of the other parameters of the frontier function; the authors stopped short of directly examining 

inefficiency in their sample. Their results focused on the structural parameters, particularly the variances 

of the underlying inefficiency distributions. 

ˆ
i

a

 Maximization of the full log likelihood function can, in fact, be done by ‘brute force,’ even in the 

presence of possibly thousands of nuisance parameters.  The strategy, which appears not to be well 

known, uses some results from matrix algebra suggested in Prentice and Gloeckler (1978) [who attribute 

it to Rao (1973)], Chamberlain (1980, p. 227), Sueyoshi (1993) and Greene (2002).  Let the K×1 

structural parameter vector be γ = [β′,λ,σ]′.  (There might be other or different ancillary parameters if the 

exponential distribution were used instead, if the truncated normal rather than the half normal model were 

used, or if the two level model of Polachek and Yoon were specified.)  Denote the gradient and Hessian 

of the log likelihood by 

                                                           
3 Their model also included some additional parameters for the mean of uit. 

 11 



gγ  =  
γ∂

∂ Llog
  =   

1 1

log ( , , , )iN T it it i

i t

f y
= =

∂
∂∑ ∑ x αγ
γ

         (3.2) 

 

gαi  =  
i

L

α∂
∂ log

  =  
1

log ( , , , )iT it it i

t
i

f y
=

∂
∂∑ x α
α
γ

          (3.3) 

 

gα  =  [gα1, ... , gαN]′ 
 

g  =  [gγ′, gα′]′ 
 

and 

H =             (3.4) 
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where 

Hγγ  =  

2

1 1

log ( , , , )

'

iN T it it i

i t

f y
= =

∂
∂ ∂∑ ∑ x αγ
γ γ

          (3.5) 

 

 hγi  =  

2

1

log ( , , , )iT it it i

t
i

f y
=

∂
∂ ∂

x α
α
γ

γ∑            (3.6) 

 

 hii  =  

2

21

log ( , , , )iT it it i

t
i

f y
=

∂
∂∑ x α
α

γ
.           (3.7) 

[These functions and derivatives are detailed in various sources, including Aigner, Lovell and Schmidt 

(1977).]   

Denote the results at the kth iteration with subscript ‘k.’  Newton’s method for computation of the 

parameters will use the iteration 

ˆ

ˆ
k

 
 
 

γ
α

 =    -   gk-1  =      +  .      (3.8) 

1

ˆ

ˆ
k−

 

 

γ
α

-1
1−kH

1

ˆ

ˆ
k−

 

 

γ
α 









α

γ
∆
∆

 
By partitioning the inverse and taking advantage of the sparse nature of the Hessian, this can be reduced 

to a computation that involves only K×1 vectors and K×K matrices; 

                                                                                                                                                                                           
4 The authors’ assertion that the second step estimator is consistent is also incorrect, because with fixed T, the 
estimated constant terms are not consistent.  See their page 175 and footnotes 10 and 11.  The consistency issue is 
revisited in Section 3.3. 
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∆γ  =  - Hγγ
 ( gγ - Hγα H gα)  =  - -1

αα

1

1 1

1

1N N i
i i ii i

ii ii
k

g

h h

−

α
= =

−

      ′− −     
       

∑ ∑H h h g hγγ γ γ γ γ  (3.9) 

   

 ∆αi  =  - ( , 1 , 1

, 1

1
i k i k

ii k

g
h

α − −
−

′+ hγ ∆ )γ .        (3.10) 

 
The estimator of the asymptotic covariance matrix for the slope parameters in the MLE is 

 Est.Asy.Var[ ]  =  -ˆ
MLEγ

1

1

1N

i ii
iih

−

γγ γ γ=

  
′−  

   
∑H h h = -Hγγ.5    (3.11) 

 
For the separate constant terms, 

 Est.Asy Cov ,i ja a  = 
( ) ji

ii ii jj

i j

h h h

 ′ − =
= −      

hh1
H

γγ γγ  .     (3.12) 

Finally, 

 Est.Asy.Cov[ ,ai]  =  Est.Asy.Var[ ]×ˆ
MLEγ ˆ

MLEγ i

iih

γ 

 

h
 

                                                          

.     (3.13) 

 
These can easily be computed with existing software and computations that are linear in N and K.  

Neither update vector requires storage or inversion of a (K+N)×(K+N) matrix; each is a function of sums 

of scalars and K×1 vectors of first derivatives and mixed second derivatives.  Storage requirements for α 

and ∆α are linear in N, not quadratic.  Even for panels of tens of thousands of units, this is well within the 

capacity of the current vintage of even modest desktop computers.6  We have employed this technique to 

compute the fixed effects estimator for our applications which involve N equal to 140 for the health care 

study and 500 for the banking industry data (and in other models, such as the tobit, with over 10,000 

individual effects).  Note that the preceding method could easily be extended to Cornwell, Schmidt and 

Sickles’ (1990) quadratic specification for αit = α0i + α1it + α2it
2 or to Lee and Schmidt’s (1993) product 

form, αit = αiθt.  In the first case, the algebraic result can be extended by replacing the scalar αi with a 3×1 

 
5 Polachek and Yoon (1996, footnote 9) argue that the asymptotic variance of their two step estimator that ignores 

the off diagonal parts of the Hessian will be only slightly affected because the off diagonal terms, our Hγi, are 
functions of only T observations while the diagonal block is a function of NT observations.  While that is true, it is 
clear in (3.11) that the offset to the matrix is the sum of these ‘small’ terms, so the effect is indeed likely to be large.  
It is difficult to discern the effect in their data as the OLS results reported include an additional variable.  
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vector, αi, the vector gαi with a 3×1 gradient gαi , the vector hγi with a K×3 matrix of cross derivatives, and 

the scalar hii with a 3×3 matrix.  The Lee and Schmidt formulation simply adds T parameters to γ. Even 

with these extensions, the computations are manageable. 

3.2.  Application 

The data set used in the first application is a panel observed for 191 member countries of the 

World Health Organization  Observations are also given for the 8 states of Australia and 32 of Mexico, 12 

provinces of Canada, 26 internal jurisdictions of Sweden and 8 internal regions of the United Kingdom 

for a total of 277 observational units.  Most countries are observed for 5 years, 1993 to 1997, though 

numerous countries and all of the aforementioned internal units are observed in only one year.  Several 

others are observed for more than one but less than the full five years, so overall, this is an unbalanced  

panel data set of 840 observations.  For purposes of our illustration, we have used only the groups with 

five complete observations, which leaves 140 countries, or 700 observations in total.  The data are more 

fully described in the World Health Report [WHO (2000)], Greene (2002) and in numerous publications 

that can be obtained from the WHO website, so our descriptions here will be very brief.  [See, also, 

Hollingsworth and Wildman (2002).]  The variables in the data set that we have used are one output, 

COMP            =    composite measure of success in five health goals, by year health, health distribution, 
responsiveness, responsiveness in distribution, fairness in financing.  The composite 
is an equally weighted composite of the five attainment variables.   

 
There are two inputs, 
 
HEXP =   Health expenditure per capita in 1997 ppp$. 

EDUC =   Average years of schooling. 

[Numerous other variables in the data set are not used.  See Greene (2002).]  The log of COMP is 

modeled as the output of an aggregate production process for producing health care.   

The aggregate frontier production function is then 

logCOMP = αi  +  β1logHEXPit  +  β2logEDUCit  +  vit  -  uit 

                                                                                                                                                                                           
6 Sueyoshi (1993) after deriving these results expressed some surprise that they had not been incorporated in any 
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 Table 1 lists the two sets of parameter estimates, least squares and maximum likelihood.  The 

estimates are quite different.  The difference between the two estimators becomes even more stark when 

the inefficiency estimates are computed with the two estimated models.  The Schmidt and Sickles 

estimates are computed using (2.8).  The same value is used in each period for each country.  The frontier 

estimates are computed using (2.5).  (The full listing, with ranks is given in the appendix.)  The simple 

correlation between the two sets of estimates is on the order of only 0.1.  The two kernel density 

estimators for the Sickles and Schmidt estimator and for the maximum likelihood estimators show 

completely different assessments, both in the pattern and in the magnitudes of the estimated values. 

 It is difficult to conclude that these are simply two estimates of the same quantities which differ 

because of sampling variation.  Consider, once again, the assumptions underlying the two approaches.  

For the Schmidt and Sickles estimator, the underlying model holds: 

yit    = α  +  β′xit  +  vit  -  ui            (3.14) 

and in addition, (a) vit and xit are uncorrelated (b) ui and [xit,vit] need not be uncorrelated, (c) no specific 

distribution is assumed for vit or ui, (d) ui is time invariant with constant mean and variance, The ‘true’ 

fixed effects model assumes that 

yit     = αi  +  β′xit  +  vit  -  uit            (3.15) 

and (a) [xit,ui,vit] are all mutually uncorrelated, (b) vit and uit have normal and half normal distributions, 

respectively, (c) uit is not necessarily time invariant.  The relationship between the two sets of 

assumptions is not a simple reparameterization.  It is a difference in interpretation of the time invariant 

component in the model, as noted in Section 2.  In the second formulation, αi contains cross unit 

heterogeneity.  The inefficiency is already contained in uit, which is allowed to vary through time.  It does 

not follow that (3.15) is the less restrictive of the two, however since (3.14) relaxes the distributional 

assumption and allows the idiosyncratic term, vit to be correlated with xit.  In general, it is not obvious 

which is likely to be the more appropriate approach or which restrictions should be less palatable.  But, 

                                                                                                                                                                                           
commercial software.  As of this writing, it appears that LIMDEP [Econometric Software, (2003)] is still the only 
package that has done so. 
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this particular data set should contain a greater than average amount of latent heterogeneity, which should 

weigh in favor of the true fixed effects model.  That is, for these data, it is arguable that the measured 

“inefficiency” is picking up latent cross country variation that is not necessarily related to inefficiency at 

all.  (Again, see the discussion in Kumbhakar and Lovell (2000, p. 115) and references cited, where this 

issue is raised. What is clear at this point is that latent time invariant effects do dramatically affect the 

results.  Whether they should represent latent effects of inefficiency or they are heterogeneity is an 

important, but unresolved question.  This and our next application suggest that the answer, as might be 

expected, varies from setting to setting. 
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Table 1.  Estimated Fixed Effects Models  

 Dummy Variable Model Fixed Effects Model 

 Estimate Standard Error Estimate Standard Error 

LogHEXP .007164 .001853 0.069199 0.0008678 

logHC3  .10188 .0093127 0.086231 0.00178655 

R
2
 .998786   σ  0.12246     λ  5.80463 

σ .00664   σu 0.12068     σv 0.02079 
 

 

 

 

 

 

 

 

 

 

                             Figure 1  Inefficiency Estimates from Maximum Likelihood 
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                     Figure 2  Inefficiency Estimates from Fixed Effects Regression 

Kernel density estimate for     FXDEFCT

FXDEFCT 

.57

1.13

1.70

2.26

2.83

.00

.12 .24 .36 .48 .60.00

D
e
n
s
i
t
y
 

 17 



3.3.  The Incidental Parameters Problem 

 If β, σ and λ were known, then, the maximum likelihood estimator for αi would be based on only 

the T observations for group i, so Asy.Var[ai] is O[1/T] and, since T is fixed, ai is inconsistent.  The 

estimators of β, λ and σ will be functions of ai so they are inconsistent as well.  There may also be a small 

sample bias. Andersen (1973) and Hsiao (1996) showed analytically that in a binary logit model with a 

single dummy variable regressor and a panel in which T = 2, the small sample bias in the MLE of β is 

+100%.  Abrevaya (1997) showed that Hsiao’s result extends to more general binomial logit models as 

long as T continues to equal two. No general analytic results exist for the ‘small T’ bias if T exceeds 2 or 

for any other model.  Generally accepted results are based on Heckman's (1981) Monte Carlo study of the 

probit model with T = 8 and N = 100 in which the bias of the slope estimator was toward zero (in contrast 

to Hsiao) and on the order of only 10%.  On this basis, it is often suggested that in samples at least this 

large, the small sample bias is probably not too severe.  In Greene (2002), we find that that Heckman’s 

result for the probit models is too optimistic and in the wrong direction.  Either way, however, the results 

for binary choice models are not useful here.  The stochastic frontier model has a continuous dependent 

variable and in any event, estimation of the model parameters is not the primary objective.  We are 

interested in the estimates of inefficiency, uit.  None of the received results are related to prediction of 

individual observations. 

To date, there has been no systematic analysis of the fixed effects estimator for the stochastic 

frontier model (nor for other models with continuous dependent variables).   The maximum likelihood 

estimators in models with continuous dependent variables appear to behave quite differently from binary 

(or other discrete) choice models.  [See Greene (2002).]  No results have yet been obtained for how any 

systematic biases (if they exist) in the parameter estimates are transmitted to estimates of the inefficiency 

scores.  We will consider this issue in the study below. 

 We will analyze the behavior of the estimator through the following Monte Carlo analysis:  Data 

for the study are taken from the Commercial Bank Holding Company Database maintained by the 
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Chicago Federal Reserve Bank.  Data are based on the Report of Condition and Income (Call Report) for 

all U.S. commercial banks that report to the Federal Reserve banks and the FDIC.  A random sample of 

500 banks from a total of over 5,000 was used.7  Observations consist of total costs, Cit, five outputs, Ymit, 

and the unit prices of five inputs, Xjit.  The unit prices are denoted Wjit.  The measured variables are as 

follows: 

Cit  = total cost of transformation of financial and physical resources into loans and  
    investments = the sum of the five cost items described below; 
Y1it = installment loans to individuals for personal and household expenses; 
Y2it = real estate loans; 
Y3it = business loans; 
Y4it = federal funds sold and securities purchased under agreements to resell; 
Y5it = other assets; 
W1it = price of labor, average wage per employee; 
W2it = price of capital = expenses on premises and fixed assets divided by the dollar value of  
    of premises and fixed assets; 
W3it = price of purchased funds = interest expense on money market deposits plus expense of  
    federal funds purchased and securities sold under agreements to repurchase plus interest 
    expense on demand notes issued the U.S. Treasure divided by the dollar value of 
    purchased funds; 
W4it = price of interest-bearing deposits in total transaction accounts = interest expense on  
    interest-bearing categories of total transaction accounts; 
W5it = price of interest-bearing deposits in total nontransaction accounts = interest expense on 
    total deposits minus interest expense on money market deposit accounts divided by the 
    dollar value of interest-bearing deposits in total nontransaction accounts; 
t = trend variable, t = 1,2,3,4,5 for years 1996, 1997, 1998, 1999, 2000. 
 
 We will fit a Cobb-Douglas cost function.  To impose linear homogeneity in the input prices, the 

variables employed are 

cit = log(Cit/W5it), 
 
wjit = log(Wjit/W5it), j = 1, 2, 3, 4,          (3.16) 
 
ymit = log(Ymit), m = 1,2,3,4,5. 
 

Actual data are employed, as described below, to obtain a realistic configuration of the right hand side of 

the estimated equation.  The first step in the analysis is to fit a Cobb-Douglas fixed effects stochastic 

frontier cost function 

                                                           
7 The data were gathered and assembled by Mike Tsionas, whose assistance is gratefully acknowledged.  A full 
description of the data and the methodology underlying their construction appears in Kumbhakar and Tsionas 
(2002). 
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cit  =  αi  +  Σ β  +  δt  +  vit  +  uit.       (3.17) 
4 5

1 1j j jit m m mitw= =+Σ γ y

 
The initial estimation results are shown in the next to rightmost column in Table 2 below.  In order to 

generate the replications for the Monte Carlo study, we now use the estimated right hand side of this 

equation as follows:  The estimated parameters ai, bj, cm and d that are given in the last column of Table 2 

are taken as the true values for the structural parameters in the model.  A set of ‘true’ values for uit is 

generated for each firm, and reused in every replication.  These ‘inefficiencies’ are maintained as part of 

the data for each firm for the replications.  The firm specific values are produced using uit* = |Uit*| where 

Uit* is a random draw from the normal distribution with mean zero and standard deviation su = 0.43931.8  

Figure 3 below shows a kernel density estimate (KDE) which describes the sample distribution of the 

‘true’ values of uit*.  Thus, for each firm, the fixed data consist of the raw data wjit, ymit and t, the firm 

specific constant term, ai, the inefficiencies, uit*, and the structural cost data, cit*, produced using 

cit*  =  ai  +  
4 5

1 1j j jit m m mitb w c y= =ΣΣ +

                                                          

 + dt + + uit*.        (3.18) 

 
By this device, the underlying data to which we will fit the Cobb-Douglas fixed effects model actually are 

generated by an underlying mechanism that exactly satisfies the assumptions of the fixed effects 

stochastic frontier model and, in addition, is based on a realistic configuration of the right hand side 

variables.9  Each replication, r, is produced by generating a set of disturbances, vit(r), t = 1,...,5, i = 

1,...,500.  The estimation was replicated R = 100 times to produce the sampling distributions reported 

below.   

 Results of this part of the study are summarized in Table 2.  The summary statistics for the model 

parameters are computed for the 100 values of the percentage error of the estimated parameter from the 

assumed true value.  That specific true value is given in the second to rightmost column of Table 2.  For 

the structural coefficients in the models, the biases in the slope estimators are actually quite modest in  

 
8 Doing the replications with a fresh set of values of uit* generated in each iteration produced virtually the same 
results.  Retaining the fixed set as done here facilitates the analysis of the results in terms of estimation of a set of 
invariant quantities. 
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    Figure 3  ‘True’ Inefficiencies Used in Monte Carlo Replications 

 
comparison to the probit, logit and ordered probit estimates examined elsewhere.  (In Greene (2002), we 

found typical biases in probit and logit models with T = 5 on the order of +40%.)  Moreover, in contrast, 

there is no systematic pattern in the signs of the biases.  It is noteworthy, as well, that the economies of 

scale parameter, 

 SCE = (1 / Σm γm) - 1, 

 is estimated with virtually no bias; the average error of only 0.48% is far smaller than the estimated 

sampling variation of the estimator itself (roughly ± 7%).  Overall, the deviations of the regression 

parameters are surprisingly small given the small T.   Moreover, in several cases, the bias appears be 

toward zero, not away from it, as in the more familiar cases.   

In view of the well established theoretical results, it may seem contradictory that in this setting, 

the fixed effects estimator should perform so well.  In Greene (2002), it was found that the tobit estimator 

produces the same effect.  The force of the incidental parameters problem in these models with  

                                                                                                                                                                                           
9 Monte Carlo studies are justifiably criticized for their specificity to the underlying data assumed.  It is hoped that 
by the construction used here which is based on a ‘live’ data set, we can, at least to some degree, overcome that 
objection. 
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Table 2.  Summary Statistics for Replications and Estimated Model
a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
   

 

 

 

 

 

 

 

 

Estimated 
Parameter 

Mean % 
Error 

Standard Dev. 
of % Error 

Minimum 
% Error 

Maximum 
% Error 

Estimated Model
b
 

‘True FE’     Linear Regression 

b1 = β1 
   -2.39     5.37   -22.53    10.20  0.41014      0.41283 

(0.0167)     (0.0192) 

b2 = β2 
   -2.58    36.24   -97.53    87.09  0.020608     0.03821 

(0.00581)    (0.00883) 

b3 = β3 
   12.43     9.47    -9.72    36.61  0.17445      0.18421 

(0.0105)     (0.01630) 

b4 = β4 
  -13.30    13.84   -46.22    19.16  0.097167     0.09072 

(0.00903)    (0.01305) 

c1 = γ1 
   -6.54     6.92   -19.64     9.98  0.099657     0.10520 

(0.00671)    (0.00810) 

c2 = γ2 
    2.71     1.58    -1.25     6.38  0.40480      0.37729 

(0.0151)     (0.00774) 

c3 = γ3 
   13.13     6.89    -5.60    30.42  0.13273      0.10197 

(0.00928)    (0.01056) 

c4 = γ4 
   -4.19     7.04   -20.01    12.22  0.053276     0.05353 

(0.00379)    (0.00435) 

c5 = γ5 
   -8.44     4.33   -17.73     7.18  0.23630      0.28390 

(0.00278)    (0.01074) 

d  = δ    11.43    12.30   -14.96    45.16 -0.028634    -0.02802 

(0.00278)    (0.00373) 

s = σ    -4.53     3.57   -13.00     5.78  0.47977      0.24307 

(0.0161) 

l = λ   -27.28     6.71   -41.70    -8.24  2.27805   

(0.102) 

Scale     0.48     6.96   -22.30    15.42  0.079035  

(0.0364)
 

σu      0.43931
d 

σv      0.19284
d 

a Table values are computed for the average percentage error of the estimates from the assumed true value. 
 b Estimated standard errors in parentheses 
  c Economies of scale estimated by 1/(γ1+γ2+γ3+γ4+γ5)-1.  The estimated standard error is computed by the 

   delta method. 
 d Standard error not computed 
 

continuous dependent variables actually shows up in the variance estimators, not in the slope estimators.  

The statistics for the estimator of σ in our model suggests little bias.  The estimator of λ appears to absorb 

the force of the inconsistency.  Since λ is a crucial parameter in the computation of the inefficiency 

estimates, this leads us to expect at least some biases in these as well.  In order to construct the description 

in Figure 4, we computed the sampling error in the computation of the inefficiency for each of the 2500 

observations in each replication, duit(r) = estimated uit(r)- true uit(r).  The value was not scaled, as these 

are already measured as percentages (changes in log cost).  The mean of these deviations is computed for 
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each of the 100 replications, then Figure 4 shows the sample distribution of the 100 means.  On average, 

the estimated model overestimates the ‘true’ values by only about 0.05.  Since the overall mean is about 

0.60, this is an overestimation error of about 9%.   

As an additional assessment, we considered whether the estimator in the cross section variant of 

this same model performs appreciably better than the fixed effects estimator.  To examine this possibility, 

we repeated the entire analysis, but this time with a correctly specified cross section model.  That is, the 

‘true’ data on cit were computed with the single overall constant estimated with a cross section variant of 

the model, and estimation was likewise based on the familiar normal-half normal model with no regard to 

the panel nature of the data set.  (Since the data are artificially generated, this model is correctly estimated 

in this fashion.)  The consistency of the parameter estimators is established by standard results for 

maximum likelihood estimators, so there is no need to examine them.10  The results for E[u|ε] are more 

complex, however.  Figure 5 is the counterpart to 4 for the fixed effects model. As expected, the cross 

section estimator shows little or no bias - it is correctly computed based on a consistent estimator in a 

large sample, so any bias would be due to the nonlinearity of the estimating function.   

                                                           
10 Analysis of the samples of results for the parameter estimates showed typical mean discrepancies on the order of 2 
to 10%, which is well within the range of expected sampling variation.  
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                Figure 4  Average Estimation Errors for Cost Inefficiencies from  
  Fixed Effects Stochastic Frontier Function. 
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             Figure 5  Average Estimation Errors for Cost Inefficiencies from  
              Cross Section Stochastic Frontier Model 
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 The final column of results in Table 2 gives the within groups, linear regression estimates for the 

Schmidt and Sickles estimator.  The coefficient estimates are similar, as might be expected.  Figures 6 and 

7 present kernel density estimates for the stochastic frontier and regression based estimates, respectively, 

using the actual data, not the simulation.  In contrast to the previous estimates, these bear some similarity.  

The means and standard deviations for the two sets of estimates are 0.298 (0.150) and 0.261 (0.119), 

respectively.  In this instance, the differences, such as they are, seem more likely to be due to the 

assumption of time invariance of the inefficiency estimates and less to cross bank heterogeneity.  The 

similarity of these broad descriptive statistics, however, masks a complete underlying disagreement 

between the two sets of estimates.  Figure 8 shows the lack of relationship between the estimates.  (The 

same regression based estimate is used for all five years for each bank.)  The simple correlation between 

the two sets of estimates (using the group means for the stochastic frontier results) is only 0.052.  We 

conclude, once again, that in spite of superficial appearances, the relationship between these two sets of 

estimates is truly unclear. 
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                 Figure 6   Stochastic Frontier Inefficiency Estimates 
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           Figure 7   Regression Based Inefficiency Estimates 
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                             Figure 8.  Fixed Effects Regression and Frontier Based Inefficiency Estimates  
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4.  Random Effects Models 

 The simplest form of the ‘random effects’ model in the recent literature parallels the linear 

regression model, 

 yit  = α  +  β′xit  +  vit  -  Sui            (4.1) 

where, at the outset, only the means 0 and µ and constant variances, σv
2 and σu

2 of vit and ui are specified, 

and it is assumed that both are uncorrelated with xit and with each other.  Under the assumptions made so 

far, [(α-µ),β] can be estimated OLS or by two step feasible GLS, then, at least in principle, ui* = ui - µ 

can be estimated by the within groups residuals.  Mimicking Schmidt and Sickles’s approach for the fixed 

effects model, we might then estimate the inefficiency with 

 .             (4.2) { }*ˆ ˆmaxi iu u= *ˆ
iu−

This is a semiparametric formulation that can proceed with no distributional assumptions.  Pitt and Lee’s 

(1981) parametric specification of the random effects model adds the normality and half normality 

assumptions for vit and ui.  [The counterpart for the normal-exponential model has been derived as well.  

See, for example, Greene (1997).]  In this case, the preferred estimator is maximum likelihood rather than 

least squares.  [See, as well, Kumbhakar and Lovell (2000) for some of the technical details.] The JLMS 

estimator of ui is obtained by a simple modification based on the group mean residual; ait is (2.5) is 

replaced with ai =  2 2/ , where   i T T vS Tε λ σ σ = σ + σu . 

 As in the fixed effects specifications, a number of treatments have suggested ways to relax the 

assumption of time invariant inefficiency in this model.   For example, Lee and Schmidt (1993) suggested 

uit = δ(t)ui.  The model is fit by feasible (two step) GLS or by instrumental variables.  In either case, the 

recommended estimator of uit is based on a comparison of each firm with the ‘best’ in the sample.  In each 

of the formulations, however, the stochastic component is time invariant.  The timewise evolution in these 

cases is an ad hoc structure that is assumed to be common across firms.  Each of these is less restrictive 

than the unadorned random effects model, but it is unclear how much latitude is actually achieved in this 

fashion. 
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 Consider, instead, a ‘true’ random effects specification (our term again), 

 yit  = α  +  β′xit  +  vit  -  Suit +  wi           (4.3) 

where wi is a time invariant, firm specific random term meant, as before, to capture cross firm 

heterogeneity.  The difference between this formulation and the fixed effects model is the additional 

assumption that wi and all other terms in the model are uncorrelated.  As stated, this model is largely the 

same as that of Kumbhakar and Hjalmarsson (1993), who suggested the random effects form 

 uit  =  wi  +  ψit              (4.4) 

They suggest that wi be interpreted as ‘producer heterogeneity due perhaps to omitted time invariant 

inputs’ and ψit represent technical inefficiency.  Thus, this model is a precursor to our proposal here.  

Their proposed estimator has two steps: within groups (LSDV) OLS or feasible (two step) GLS to 

estimate β followed by maximum likelihood estimation of the variances of vit and ψit.  Kumbhakar and 

Lovell observe “The virtue of this approach is that it avoids imposing distributional assumptions until the 

second step.  The problem with this approach is that any time-invariant component of technical 

inefficiency is captured by the fixed effects, rather than by the one sided error component, where it 

belongs.  This issue is discussed by Heshmati and Kumbhakar (1994) and Kumbhakar and Heshmati 

(1995).”  (Page 115.)  Of course, this is the core of the issue in this paper.  Whether those time invariant 

effects really belong in the inefficiency is debatable.  In our first application, it certainly seems not.  Once 

again, this is a methodological issue that deserves closer scrutiny. 

 As noted, Kumbhakar and Hjalmarsson (1993) used least squares to fit the model in (4.3)-(4.4).  

We now consider maximum likelihood estimation instead.  Before proceeding, we note at the outset that 

that the preceding observations include an aversion to specific distributional assumptions.  The method 

about to be described allows a variety of distributional assumptions - indeed, it is straightforward with the 

technique to choose from a cornucopia of distributions.  At the end of this section we will also consider a 

semiparametric approach that essentially replicates by maximum likelihood the suggestion of Kumbhakar 

and Hjalmarsson.  We have found in general, that the major influence on the results is rarely if ever the 
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distributional assumptions; variations at this level produce only marginal changes in the estimates.  The 

primary determinant of the outcomes is the underlying formulation of the model and its theoretical 

underpinnings.  As we have already seen (and will see below), these are crucial. 

 In order to construct an estimator for the model in (4.3)-(4.4), we recast it as a random parameters 

model; 

yit  = (α  +  wi)  +  β′xit  +  vit  -  Suit             (4.5) 

[See Tsionas (2002) for a Bayesian analysis of random parameters stochastic frontier models.]  As it 

stands, the model appears to have three part disturbance, which immediately raises questions of 

identification.  To construct the likelihood, function, we use the following approach: 

f(yit | wi)  =    
2 it itSε − λε  φ Φ  σ σ σ  





, εit = yit - (α  +  wi)  -  β′xit          (4.6) 

where the remaining parts are as defined earlier.  Conditioned on wi, the T observations for firm i are 

independent, so the joint density for the T observations is 

f(yi1, ..., yiT | wi)  =    
1

2T it it

t

S
=

ε − λε  φ Φ  σ σ σ  
∏ 




           (4.7) 

The unconditional joint density is obtained by integrating the heterogeneity out of the density, 

Li  =  f(yi1, ..., yiT )  =    
1

2
( )

i

T it it
itw

S
g w dw

=

ε − λε   φ Φ   σ σ σ   
∏∫ .i          (4.8) 

The log likelihood, Σi logLi, is then maximized with respect to α, β, σ, λ, and any additional parameters 

that appear in the distribution of wi that will now appear in the maximand.  The integral will in any 

conceivable case be intractable.  However, by writing it in the equivalent form, 

Li  =  f(yi1, ..., yiT )  =    
1

2
i

T it it
w t

S
E

=

 ε − λε   φ Φ    σ σ σ    
∏           (4.9) 

we propose to compute the log likelihood by simulation.  Averaging the function in (4.9) over sufficient 

draws from the distribution of wi will produce a sufficiently accurate estimate of the integral in 4.8 to 
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allow estimation of the parameters.  [See Gourieroux and Monfort (1996).]  The simulated log likelihood 

is 

 logLS (β,λ,σ,θ) =  
1 1 1

| |1 2
log

TN R it ir it ir

i r t

w S w

R= = =

 ε − λε  φ Φ   σ σ σ   
∑ ∑ ∏ 




                                                          

       (4.10) 

where we have used θ for the parameters in the distribution of wi and wir is the rth simulated draw for 

observation i. [See Greene (2001, 2003) for details.]11  In order to incorporate θ transparently in the 

likelihood function, we might write wi = θwi0 where the parameters of the distribution of wi0 are known.  

Thus, if wi is normally distributed, then θ is its standard deviation and wi0 ~ N[0.1] .  The function is 

smooth and smoothly and continuously differentiable in the parameters.  Conditions for the 

appropriateness of the technique (again, see Gourieroux and Monfort) are certainly met.  Since the actual 

integration need not be carried out, the computation can be based on any distribution for wi that can be 

simulated.12  [See Greene and Misra (2002) for some alternatives - this is precisely the model suggested 

there, though the authors in that paper confine attention to cross sectional analysis.]  The (simulated) 

derivatives and Hessian of the log likelihood are tedious but quite tractable and inference procedures 

follow conventional methods.  [See Greene (2001).] 

 Table 3 presents parameter estimates for the basic stochastic frontier model, Pitt and Lee’s 

random effects model, and the random constant term model above.  (The fourth set of estimates for the 

finite mixture model are discussed below.)  As before, the primary parameter estimates are similar.  But, 

again, these superficial similarities mask large differences in the estimated inefficiencies.  The random 

effects based estimates essentially replicate those obtained with the regression based fixed effects model.  

 
11 Note that for the basic, random constants form suggested here, if normality is assumed for wi, then the integral in 
(4.8) could also be approximated quite accurately by Gauss-Hermite Quadrature.  We have not chosen this method 
in order to avoid forcing the normal distribution on the problem (though we do assume normality) and because the 
extension of (4.8) to a full randomly distributed parameter vector is quite minor when handled by simulation, but 
impossible to manage by quadrature. 
12 Simulation of random variables is typically done by the inverse probability transform, beginning with a primitive 
draw from the standard continuous uniform [0,1] distribution.  In order to speed up the simulations, we have used 
Halton sequences of primitive draws, rather than pseudorandom numbers.  For integrating over a single dimension, 
using Halton sequences rather than pseudorandom draws speeds up the process by a factor of as much as 10.  That 
is, 100 Halton draws is as effective as 1,000 pseudorandom draws.  See Bhat (1999), Train (2002) and Greene 
(2003) for discussion. 
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Both models produce estimates that resemble those from the true fixed effects model discussed earlier.  

The latter estimates are similar to estimates obtained in other studies with these banking data, such as 

Kumbhakar and Tsionas (2002) and Berger and Mester (1997).  However, as can be seen in Figure 11, the 

correlation between these two sets of random effects is quite loose. 

Table 3.  Estimated Random Effects Models  (Standard errors in parentheses) 

Parameter Cross Section Pitt and Lee Random Constant Finite Mixture 

α  0.1784  

(0.0987) 

 0.5346  

(0.106) 

 0.1814  

(0.0595) 

 0.6048 (0.135) 

[0.00814] 

 0.2143 (0.108) 

[0.88138] 

 0.1133 (0.189) 

[0.11048] 

β1 
 0.4199  

(0.0144) 

 0.4229  

(0.0153) 

 0.4193  

(0.00888) 

 0.4174 

(0.0154) 

β2 
 0.02235  

(0.00634) 

 0.03317  

(0.00739) 

 0.02289  

(0.00387) 

 0.02338 

(0.00664) 

β3 
 0.1732  

(0.0117) 

 0.1809  

(0.0139) 

 0.1737  

(0.00694) 

 0.1731 

(0.0118) 

β4 
 0.09409  

(0.009834 

 0.08790  

(0.0119) 

 0.09443  

(0.00604) 

 0.09633 

(0.0105) 

γ1 
 0.1024  

(0.00665) 

 0.1027  

(0.00614) 

 0.1028  

(0.00377) 

 0.1041 

(0.00644) 

γ2 
 0.4034  

(0.00636) 

 0.3762  

(0.00558) 

 0.4033  

(0.00362) 

 0.4019 

(0.006270) 

γ3 
 0.1359  

(0.00789) 

 0.09949  

(0.00666) 

 0.1360  

(0.00450) 

 0.1346 

(0.00745) 

γ4 
 0.05127  

(0.00354) 

 0.05452  

(0.00325) 

 0.05086  

(0.00213) 

 0.05095 

(0.003590) 

γ5 
 0.2352  

(0.00911) 

 0.2881  

(0.00851) 

 0.2353  

(0.00499) 

 0.2362 

(000909) 

δ -0.0288  

(0.00346) 

-0.0286 

(0.00363) 

-0.0288  

(0.00197) 

-0.0286 

(0.00909) 

λ  2.1280  0.3962  2.1892  2.1410 

σ  0.3551  0.8166  0.3522  0.3484 

σu 
 0.3213  0.8110  0.3204  0.3160 

σv 
 0.1510  0.0952  0.1463  0.1475 

σw 
   0.0400  

(0.0030) 

 

 Figure 9 below shows a kernel density estimate for the inefficiency estimates from the Pitt 

and Lee random effects model.  As in the fixed effects cases, it seems unlikely that these two models are 

estimating the same quantity.   Figure 11 is the counterpart to Figure 8 for the random effects models.  

From the loose scatter, it appears that the assumption of time invariant inefficiency has substantially 

affected these results.  Also, the extremely small range of the Pitt and Lee estimates seems improbable 

compared to all the other estimates obtained so far and below. The mean of 0.233 is similar, but the 
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standard deviation is only 0.006, and the minimum and maximum are 0.220 and 0.265, respectively.  The 

variation is quite unlike all the other estimates obtained here. 
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  Figure 9.  Inefficiency Estimates from Pitt and Lee Model 
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          Figure 10.  Inefficiency Estimates from Random Constants Model
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Figure 11  Inefficiency Estimates from Random Effects Models 

 
 
 Kumbhakar and Lovell suggested that the distributional assumption with respect to wi in this 

model might not be attractive.  We have specified a normal distribution, though changing this to some 

other distribution presents a virtually identical estimation problem.  (It changes a single operation in the 

entire process, the transformation of the primitive Halton draw to something other than the standard 

normal variable.  However, one might prefer not to impose a particular distributional assumption on the 

model.  The ‘finite mixture’ [See McLachlan and Peel (2000)] or latent class model is a semiparametric 

alternative.  We suppose that wi is drawn from a distribution with discrete support, with J mass points.  

Alternatively, that the observation is drawn from one of J populations each with its own constant term in 

the model.  (The obvious question at this point is why the variation should be restricted to the constant 

term.  In fact, we would apply it to the entire model, but for the present, we use this modeling device to 

introduce heterogeneity into the model rather than to place the model, itself, into a latent class structure.)  

In the preceding, we have assumed αi is drawn from a continuous distribution with mean α and standard 

deviation σw.  We propose to approximate this with a discrete distribution with probabilities π1,...,πJ 
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which sum to one, and mass points α1,...,αJ.  The construction of the likelihood function would be as 

follows: 

f(yit | class = j) =   
,2 it j it jSε − λε  

φ Φ  σ σ σ  

, 



, εit,j = yit - (αj  +  wi)  -  β′xit      (4.11) 

f(yi1, ..., yiT |class = j)  =    
,

1

2T it j it j

t

S

=

ε − λε  
φ Φ  σ σ σ  

∏ , 



       (4.12) 

The unconditional joint density is obtained by averaging the heterogeneity out of the density, 

Li  =  f(yi1, ..., yiT )  =    
,

1 1

2
.

TJ it j it j

jj t

S

= =

 ε − λε   
π φ Φ    σ σ σ    

∑ ∏ ,

        (4.13) 

The log likelihood, Σi logLi, is then maximized with respect to β, σ, λ, [α1,...,αJ], and [π1,...,πJ].  The 

number of classes must be specified in advance or deduced from pretest results.  [See Greene (2001) and 

Mclachlan and Peel (2000).]  In order to impose the constraints that they sum to one and are all positive, 

we use a multinomial logit parameterization for the probabilities, 

 πj  =  

1

exp( )
, 0

exp( )
 

j

JJ

jj=

θ
θ =

θ∑
.  

Maximization of this likelihood function can be done with conventional gradient methods - it is smooth 

and continuous in all parameters.  A fairly common problem (albeit not encountered here) in finite 

mixture problems however is multiple optima.  Using different starting values and seeking the maximum 

maximorum is the usual strategy.  In addition, the EM algorithm is a particularly useful device in this 

setting.  [See Dempster, Laird and Rubin (1977) and McLachlan and Peel (2000).]  Applying the EM 

method here is simple and has an attractive intuition.  It consists of iteration between the two steps: 

 E Step:  Compute individual posterior class probabilities: τij  =  
,

,1

j i j

J

j i jj

L

L
=

π

π∑
 

 
 M Step:  Frontier Function:  Maximize the class specific log likelihood 

  function using observation and class specific weights τij. 

   Class probabilities:  Reestimate using 1ˆ log ,  

N

ijj i
j j

J N

=
ττ

θ = τ =
τ

∑
. 
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McLachlan and Peel provide extensive discussion of the algorithm. 

 The last column of Table 3 gives estimates of a three class finite mixture model in which only the 

constant term in the model varies across classes.  [Note it is a trivial extension of the theoretical 

development to specify a frontier model in which the entire model including the variance terms varies 

across the classes.  See Greene (2002).]  The class probabilities are shown in square brackets under the 

estimated constant terms.  The estimated parameters are very similar to those for the continuous variation 

model.  The inefficiency estimates computed from this model shown in Figure 12 are obtained by 

computing each observation’s estimate with each of the three parameter vectors, then computing the 

weighted average using the posterior probabilities, τij.  As seen in a comparison of Figures 10 and 12, the 

results are nearly the same.  The similarity runs deeper, as well, into the individual observations.  Figure 

13 is a plot of the estimates of uit obtained from the random constants model against those from the latent 

class model.  As it shows, the estimates are nearly identical, for almost every bank. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 12.  Inefficiency Estimates from Finite Mixture Model 

 
 

Kernel density estimate for     EFFLCM

EFFLCM 

.68

1.36

2.03

2.71

3.39

.00

.000 .250 .500 .750 1.000 1.250 1.500 1.750 2.000-.250

D
e
n
s
i
t
y
 

 35 
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         Figure 13.  Random Parameters and Latent Class Inefficiency Estimates 

 
 
 A final observation, the latent class and random parameters estimates are strikingly similar.  

Figures 14 and 15 show that the resemblance carries through to the fixed effects estimates as well.  It is 

clear that within the structure of (4.2), all three estimators give essentially the same answer.  (Correlations 

all exceed 0.90 and the correlation of the two random effects estimates is 0.987.  This would suggest that 

in fact, the heterogeneity in the data, to the extent that it is present at all, is not correlated with the 

included variables.  The usual approach to testing that proposition is Hausman’s specification test in the 

context of the linear regression model.  [See Greene (2003, pp. 301-302).]  For the banking data, the chi-

squared statistic, with 10 degrees of freedom is only 7.47 which is far from significant.  We would 

conclude from this that in general, a fixed and random effects approach would not give different answers; 

or that there is no latent heterogeneity that is correlated with the included variables.  The counterpart for 

the health care delivery data examined earlier is a Hausman statistic of 174.66 with two degrees of 
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freedom.  This is obviously highly significant, suggesting that there is latent heterogeneity, or that the 

random effects approach is inappropriate. 

Estimated Inefficiency, Random Constant and Fixed Effect

RPMEFF 

.50

1.00

1.50

2.00

.00

.40 .80 1.20 1.60 2.00.00

U
I
T
H
A
T
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 14.  Random Parameters vs. True Fixed Effects 
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Figure 15.  True Fixed Effects vs. Finite Mixture 
 

 37 



5.  Conclusions 
 
 There are numerous directions in which the models described above can be expanded.  Some of 

these are explored in Greene (2002).  The latent class and random parameters models are particularly 

versatile and have great potential to enhance the frontier model.  The fixed effects model may, at least in 

some cases, be the preferable model.  We have not examined in detail moving the fixed effects to the 

inefficiency distribution, itself, such as in the mean of the truncated normal distribution.  [See Habib and 

Ljungqvist (2002).]  There does not appear to be a technological obstacle to doing so. 

 These results do raise some questions about fixed and random effects analysis in the stochastic 

frontier setting.  In the first application, we found that the treatment, or at least the interpretation of 

heterogeneity in a data set brings a major change in the results of estimation. Clearly it is not obvious on 

inspection how one should interpret the time invariant effects in a data set.  We do find that how this issue 

is handled has a large influence on the findings that will result.  At least for the application considered 

here, the fixed effects regression based estimates of the inefficiencies were considerably distorted 

compared to the stochastic frontier.   

The second application suggests two implications.  First, it appears from this and from our other 

application to the tobit model, that the conventional wisdom about the incidental parameters based on two 

binary choice models is essentially irrelevant to these two models.  In both cases, we find evidence that 

suggests the accepted pessimism about the fixed effects estimator is greatly overstated.   

We find that the regression and likelihood based treatments of inefficiency bring striking 

differences in the results.  In this second application, those differences might be undetected if one 

focused, as is often the case, on summary, descriptive statistics.  The summaries in Table 4 do not reveal 

the substantial differences in the underlying estimates.  What remains for future research, is to discern 

what is the nature and source of these differences. 
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Table 4.  Descriptive Statistics for Estimated Inefficiencies 

 Mean Std. Dev. Skewness Kurtosis Minimum Maximum 

Cross Secion 0.252 0.163 2.240 11.776 0.0400 1.7098 

Fixed Effects Models 

Stochastic Frontier 0.298 0.150 2.204 12.076 0.0796 1.7642 

Regression 0.261 0.119 0.654 4.506 0.0000 0.8413 

Random Effects Models 

Stochastic Frontier 0.252 0.166 2.221 11.633 0.0376 1.7316 

Finite Mixture 0.243 0.159 2.203 11.392 0.0431 1.6988 

Pitt and Lee 0.233 0.006 0.799 5.008 0.2202 0.2642 

 

The literature contains several comparisons of fixed and random effects estimators to each other.  

Kumbhakar and Lovell (2000, pp. 106-107) describe Gong and Sickles’ (1989) comparison of the Pitt and 

Lee and the Schmidt and Sickles approaches, where it is found that they give similar answers.  Note the 

near perfect concordance between ai and the Pitt and Lee estimates in Figure 16 below.  Bauer, Berger 

and Humphrey (1993) likewise find consistent similarity between fixed and random effects estimators 

based on regression, but notable differences between these and estimates produced using Pitt and Lee’s 

approach.  Several others are cited as well; all find appealing internal consistency.  We have found the 

same consistency in our fixed and random effects estimates, as can be seen in the upper left graph in the 

figure below.  What differs here, however, is the absolute divergence between the results produced by the 

‘true’ fixed and random effects models and the time invariant approaches that these other authors have 

documented.  Figure 16 below underscores the point.  Once again, it suggests that the issue that merits 

much greater scrutiny is not whether use of a fixed effects or random effects is a determinant of the 

results, but the extent to which the specification platform on which the model is placed is driving the 

results.  The two off diagonal scatters below strongly suggest that the different estimation platforms 

considered here are producing very different results. 
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Appendix:  Estimates of Technical Inefficiency by Country. 
 
 The left side entry is the estimate from the linear regression fixed effects estimator, computed 
according to Schmidt and Sickles.  The right hand side entry is the estimate from the ‘true’ fixed effects 
stochastic frontier.  Since this varies by year, the country mean is reported below. 
 
Country          Fixed Effect ai       Rank   Country Mean      Rank  

           Effect   

France                        0           1      .04161           1 

Italy                .23701E-02           2      .04244          71 

Japan                .73686E-02           3      .04165          11 

Spain                    .00928           4      .04168          16 

Norway                   .01244           5      .04231          64 

Singapore                .01275           6      .04204          46 

Austria                  .01364           7      .04162           3 

Malta                    .01373           8      .04172          21 

Luxembourg               .02245           9      .04231          63 

Greece                   .02261          10      .04326          93 

Netherlands              .02269          11      .04167          15 

Iceland                  .02275          12      .04166          14 

United Kingdom           .02385          13      .04180          31 

Ireland                  .02707          14      .04217          55 

Portugal                 .02717          15      .04334          94 

Switzerland              .02731          16      .04179          29 

Oman                     .02755          17      .04216          53 

Belgium                  .02858          18      .04164          10 

Sweden                   .03010          19      .04176          24 

Germany                  .03533          20      .04163           6 

Cyprus                   .03795          21      .04247          73 

Canada                   .04065          22      .04221          58 

Australia                .04246          23      .04165          12 

Israel                   .04309          24      .04303          87 

Finland                  .04338          25      .04188          34 

Colombia                 .04697          26      .04982         130 

Denmark                  .04944          27      .04165          13 

Saudi Arabia             .05941          28      .04207          48 

Chile                    .05963          29      .04290          84 

United States of America .06048          30      .04162           4 

United Arab Emirates     .06228          31      .04170          18 

Morocco                  .06463          32      .04250          74 

New Zealand              .06541          33      .04178          26 

Slovenia                 .06726          34      .04189          35 

Costa Rica               .07331          35      .04209          49 
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Czech Republic           .08001          36      .04281          81 

Croatia                  .08170          37      .04283          82 

Barbados                 .08634          38      .04232          67 

Poland                   .08701          39      .04191          37 

Bahrain                  .08932          40      .04194          40 

Kuwait                   .09386          41      .04352          97 

Thailand                 .09405          42      .04243          70 

Qatar                    .09543          43      .04269          78 

Malaysia                 .09673          44      .04222          59 

Republic of Korea        .10498          45      .04212          51 

Dominican Republic       .10652          46      .04179          28 

Slovakia                 .10688          47      .05036         132 

Jamaica                  .10912          48      .04218          57 

Venezuela                .11091          49      .04305          89 

Philippines              .11434          50      .04163           5 

Kazakhstan               .11466          51      .04474         109 

Hungary                  .11544          52      .04231          65 

Tunisia                  .11570          53      .04164           9 

Paraguay                 .11684          54      .04228          62 

Mexico                   .11752          55      .04235          68 

Uruguay                  .12093          56      .04434         104 

Trinidad and Tobago      .12126          57      .04198          41 

Belarus                  .12576          58      .04449         106 

Lithuania                .12816          59      .04232          66 

Argentina                .13201          60      .04177          25 

Estonia                  .13217          61      .04245          72 

Ukraine                  .13316          62      .04301          86 

Egypt                    .13422          63      .04179          27 

Turkey                   .13452          64      .04215          52 

Senegal                  .13489          65      .04164           8 

Sri Lanka                .13792          66      .04172          20 

Nicaragua                .14103          67      .04199          42 

Jordan                   .15043          68      .04305          88 

Guatemala                .15110          69      .04613         118 

Mauritius                .15751          70      .04218          56 

Romania                  .16842          71      .04561         115 

Indonesia                .16927          72      .04204          47 

Bahamas                  .16965          73      .04172          19 

Lebanon                  .17029          74      .05846         137 

Panama                   .17094          75      .04192          38 

Fiji                     .17104          76      .04164           7 

Republic of Moldavia     .17311          77      .04316          91 

Bulgaria                 .17355          78      .04292          85 

Bangladesh               .17479          79      .04185          33 

Armenia                  .17556          80      .08215         140 

Latvia                   .17707          81      .04581         117 

Benin                    .17845          82      .04877         127 

Iran (Islamic Republic)  .18021          83      .04203          45 

Georgia                  .18278          84      .04781         126 

Ecuador                  .19123          85      .04209          50 

Tonga                    .19151          86      .04406         102 

Uzbekistan               .19519          87      .04223          60 

Cape Verde               .19766          88      .04918         128 

Syrian Arab Republic     .19854          89      .04183          32 

Samoa                    .20111          90      .06240         139 

El Salvador              .20207          91      .04286          83 

Iraq                     .20402          92      .04357          98 

Yemen                    .20603          93      .04345          96 

India                    .21368          94      .04170          17 

Comoros                  .21525          95      .04730         122 

Brazil                   .21756          96      .04174          22 

Guyana                   .21932          97      .04567         116 

Bolivia                  .22257          98      .04242          69 

Russian Federation       .22902          99      .04939         129 

Sudan                    .23152         100      .04190          36 

Peru                     .23506         101      .04180          30 

Pakistan                 .24329         102      .04279          80 

Honduras                 .24455         103      .04217          54 

Burkina Faso             .25332         104      .04483         110 

Kenya                    .25637         105      .04741         123 

Ghana                    .25656         106      .04530         114 
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Maldives                 .26217         107      .04194          39 

Uganda                   .26506         108      .05086         133 

Cote d'Ivoire            .26507         109      .04529         113 

Burundi                  .27088         110      .04258          77 

China                    .27179         111      .04483         111 

Haiti                    .27523         112      .04203          44 

Turkmenistan             .28647         113      .04690         120 

Zimbabwe                 .29524         114      .04645         119 

Gambia                   .29604         115      .05126         135 

Tajikistan               .29618         116      .04442         105 

United Rep. of Tanzania  .29801         117      .04366          99 

Nepal                    .30447         118      .04757         124 

Togo                     .31072         119      .04224          61 

Mali                     .31850         120      .04378         101 

Viet Nam                 .32610         121      .04161           2 

Cameroon                 .34944         122      .04466         108 

Equatorial Guinea        .35932         123      .05100         134 

Namibia                  .36005         124      .04174          23 

Mauritania               .36038         125      .04269          79 

Congo                    .36447         126      .04252          75 

Botswana                 .36761         127      .05656         136 

Niger                    .36888         128      .04339          95 

Rwanda                   .37539         129      .04375         100 

Mozambique               .37660         130      .04254          76 

South Africa             .38199         131      .04516         112 

Guinea-Bissau            .39172         132      .04723         121 

Swaziland                .39299         133      .04202          43 

Lesotho                  .39576         134      .04319          92 

Ethiopia                 .41882         135      .04759         125 

Zambia                   .41884         136      .05025         131 

Malawi                   .42861         137      .04428         103 

Myanmar                  .44171         138      .04315          90 

Nigeria                  .49670         139      .04451         107 

Central African Republic .51719         140      .06073         138 
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