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SUMMARY

We consider selecting both fixed and random effects in a general class of mixed effects models
using maximum penalized likelihood (MPL) estimation along with the smoothly clipped absolute
deviation (SCAD) and adaptive LASSO (ALASSO) penalty functions. The maximum penalized
likelihood estimates are shown to posses consistency and sparsity properties and asymptotic
normality. A model selection criterion, called the ICg statistic, is proposed for selecting the
penalty parameters (Ibrahim, Zhu and Tang, 2008). The variable selection procedure based on ICy
is shown to consistently select important fixed and random effects. The methodology is very
general and can be applied to numerous situations involving random effects, including generalized
linear mixed models. Simulation studies and a real data set from an Yale infant growth study are
used to illustrate the proposed methodology.
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1. Introduction

In the analysis of mixed effects models, a primary objective is to assess significant fixed
effects and/or random effects of the outcome variable. For instance, when simultaneously
selecting both random and fixed effects, that is, when selecting mixed effects, it is common
to use a selection procedure (e.g., forward or backward elimination), coupled with a
selection criterion, such as AIC and/or BIC based on the observed data log-likelihood, to
compare a set of candidate models (Keselman et al., 1998; Gurka, 2006; Liang, Wu, and
Zou, 2008; Ibrahim, Zhu, and Tang, 2008; Claeskens and Consentino, 2008). Zhu and Zhang
(2006) proposed a testing procedure based on a class of test statistics for a general mixed
effects model to test the homogeneity hypothesis that all of the variance components are
zero. Such methods, however, suffer from a serious deficiency in that it is infeasible to
simultaneously select significant random and fixed (mixed) effects from a large number of
possible models (Fan and Li, 2001; Fan and Li, 2002). To overcome such a deficiency,
variable selection procedures based on penalized likelihood methods, such as the Smoothly
Clipped Absolute Deviation (SCAD) (Fan and Li, 2001) and the Adaptive Lasso (ALASSO)
(Zou, 2006), may be developed to select mixed effects.
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Compared to the large body of literature on variable selection procedures, we make several
novel contributions in this paper. This is one of the few papers on developing selection
methods for selecting mixed effects in a large class of mixed effects models. Most variable
selection procedures are developed for various parametric models and semiparametric
models with/without random effects and/or unobserved data (Fan and Li, 2002, 2004; Cai et
al., 2005; Qu and Li, 2006; Zhang and Lu, 2007; Ni, Zhang, and Zhang, 2009; Johnson, Lin,
and Zeng, 2008; Garcia, Ibrahim, and Zhu 2010a, 2010b), but all these procedures have only
been used for the selection of significant fixed effects. The only exception is the recent work
by Krishna (2009) and Bondell, Krishna, and Ghosh (2010), in which only the linear mixed
model is considered. We use a novel reparametrization to reformulate the selection of mixed
effects into the problem of grouped variable selection in models with heavy ‘missing’ data,
where the missing data is represented by the random effects. This reparametrization makes it
possible to use penalized likelihood methods to select both fixed and random effects.
Compared to most variable selection methods for linear models, we must address additional
challenges due to the presence of missing observations for each subject. A computational
challenge here is to directly maximize the observed data log-likelihood function along with
the SCAD or ALASSO penalties to select both fixed and random effects and to calculate
their estimates. The observed data log-likelihood for complicated mixed effects models is
often not available in closed form, and is computationally intractable because it may involve
high dimensional integrals which are difficult to approximate. When selecting random
effects, this maximization is further complicated because one must eliminate the
corresponding row and column of an insignificant random effect and constrain the
remaining matrix to be positive definite. Another challenge is to select appropriate penalty
parameters in order to produce estimates having proper asymptotic properties (Fan and Li,
2001), whereas existing selection criteria (Kowalchuck et al., 2004; Gurka, 2006; Liang,
Wu, and Zou, 2008; Claeskens and Consentino, 2008) are computationally difficult for
general mixed effect models.

The goal of this paper is to develop a simultaneous fixed and random effects selection
procedure based on the SCAD and ALASSO penalties for application to longitudinal
models, correlated models, and/or mixed effects models. We reformulate the problem of
selecting mixed effects and develop a method based on the ICy criterion to select the
penalty parameters. We also specify the penalty parameters in the SCAD and ALASSO
penalty functions as a hyperparameter, and then we use the Expectation Maximization (EM)
algorithm to simultaneously optimize the penalized likelihood function and estimate the
penalty parameters. Under some regularity conditions, we establish the asymptotic
properties of the maximum penalized likelihood estimator and the consistency of the ICy-
based penalty selection procedure.

To motivate the proposed methodolgy, we consider a dataset from a Yale infant growth
study (Wasserman and Leventhal, 1993; Stier et al., 1993). The objective of this study is to
investigate the relationship between maternal cocaine dependency and child maltreatment
(physical abuse, sexual abuse, or neglect). This study had a total of 298 children from the
cocaine exposed and unexposed groups. The outcome variable is infant weight (in pounds),
which is obtained over several time points. Seven covariates were considered: day of visit,
age of mother, gestational age of infant, race, previous pregnancies, gender of infant, and
cocaine exposure. Each child had different number and pattern of visits during the study. We
consider the mixed effects model by using the seven covariates as fixed effects and the first
three covariates as random effects. Our objective in this analysis is to select the most
important predictors of infant weight as well as select significant random effects. The
selection of random effects is crucial in this application, as it is not at all clear whether a
random intercept model will suffice or whether the longitudinal model should also contain
random slope effects. Moreover, there is large number of covariates to select from in the
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fixed effects component of the model. The selection can be done by our penalized likelihood
method, which includes a penalty function (SCAD or ALASSO) with a random effect and
an ICy penalty estimate. More details regarding the analyses of these data set is given in
Section 5.

The rest of the paper is organized as follows. Section 2 introduces the general development
for maximizing the penalized likelihood function and selecting the penalty parameters.
Section 3 examines the asymptotic properties of the maximum penalized likelihood (MPL)
estimator and the IC penalty selection procedure. Section 4 presents a simulation study to
examine the finite sample performance of the maximum penalized likelihood estimate. An
real data analysis of the Yale infant growth study is given in Section 5. Section 6 concludes
the paper with some discussion.

2. Mixed effects selection for mixed effects models

2.1 Model Formulation

Suppose we observe n independent observations (yi, X1),..., (¥n, X;,), Where y; is an n; x 1
vector of responses or repeated measures and X; is an n; x p matrix of fixed covariates for i
= 1,..., n. We assume independence among the different (y;, X;)’s and

Elyilb;, Xi:0]=g(X;+Z,I'b;), (1)

where b; is a g x 1 vector of unobserved random effects, @ denotes all the unknown
parameters, I' is a g x g lower triangular matrix, g(-) is an known link function, p = (By,...,
BP)T is a p x 1 vector of regression coefficients, and Z; is an n; X g matrix composed of the
columns of X;. In practice, it is common to assume that the conditional distribution of y;
given (b;, X;), denoted by f(y;|b;, X;; 0), belongs to the exponential family, such as the
binomial, normal, and Poisson (Little and Schluchter (1985), and Ibrahim and Lipsitz
(1996)). For notational simplicity, the random effects b; ~ N,(0, I;) are assumed to follow a
multivariate normal distribution with zero mean and a g x g covariance matrix L.
Equivalently, I'b; ~ N,(0, D = I'TT) and T is the Cholesky composition of the g x ¢ matrix
D. We allow the possibility of D being positive semi-definite so that certain components of
I'b; may not be random but 0 with probability 1.

2.2 EM Algorithm for Maximizing the Penalized Likelihood

Selecting mixed effects involves identifying the nonzero components of B, determining the
nonrandom elements of I'b;, and simultaneously estimating all nonzero parameters. We
propose to maximize the penalized likelihood function given by

P q
PLO)=LO) — 1) ¢1,(B)D = 1) ba,.. vl
i=1 k=1

J (2)

where 5(9}=Zf=] ti(0), in which £,(8) = log | f(y;, b;|X;: 0) db is the observed-data log-
likelihood for the ith individual, A, is the penalty parameter of B;, and the penalty function
¢,..() is a nonnegative, nondecreasing, and differentiable function on (0, ) (Fan and Li,
20101; Zou, 2006). In addition, the k x 1 vector y; consists of all nonzero elements of the k-th

. . 1/2 .

row of the lower triangular ¢ x ¢ matrix I', ||yk||:(ykryk) ", and XAy is the group penalty
parameter corresponding to the whole k-th row of I'. The structure in (2) ensures that certain
estimates of B are zero (Fan and Li, 2001), which are insignificant predictors of the outcome
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variable, and the other covariates are significant predictors. The penalization of yy is
performed in a group manner in order to preserve the positive definite constraint on D such
that the estimates of the parametric vector vy, either are all not zero or all equal to zero (Yuan
and Li, 2006). If all the elements of y; are zero, then the k-th row of I is zero and the k-th
element of I'b; is not random.

Similar to Chen and Dunson (2003), we reparametrize the linear predictor as

XB+Z:Tb=(X:(b! ®Z))J,) ( p ):U;o:
4 )

where J, is the g* x (g + 1)/2 matrix which transforms y to vec(l), i.e. vec(I') = J,v. By
reparametrizing the linear predictor this way, the selection of mixed effects is equivalent to
the problem of grouped variable selection in regression models with missing covariates,
while the random effects in the design matrix U; can be interpreted as the “missing
covariates”. Using this reparametrization, we can apply the variable selection methods
proposed in Garcia, Ibrahim, and Zhu (2010a; 2010b) to select important mixed effects.

Because the observed-data log-likelihood function usually involves intractable integration,
we develop a Monte Carlo EM algorithm to compute the maximum penalized likelihood
estimator of 0, denoted by 0y, for each A = (Ay,.. -Apq)- Denote the complete and observed
data for subject i by d. ; = (y;, X;, b;) and d,, ; = (y;, X;), respectively, and the entire complete
and observed data by d, and d,, respectively. At the s-th iteration, given ), the E step is to
evaluate the penalized Q-function, given by

(4)

P 9
=01(016”) = n) 6,(B) = 1) b, (val)+02(6"),
j=1 k=1

Jj=

(5)

where 0 = (87, £7)7, in which & represents all other parameters other than §, d;.= (b
X;), and

Q1(09)= | [llog £(ylb:.Xi:5,£)} f(byld;0:6) db;,
i=1 (6)

02(6")=) " [(log f(b)}f(bild; ,:6'")) db.
i=1 ]

Since the integrals in (6) and (7) are often intractable, we approximate these integrals by
taking a Markov chain Monte Carlo (MCMC) sample of size L from the density f(b;|d; ,;

0)) (See Ibrahim, Chen, and Lipsitz, 1999). Let b*" be the i-th simulated value at the s-th
iteration of the algorithm. The integrals in (6) can be approximated as,
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0 (9|9“’J~—ZZIGD (v, X :6).
=1 i=1 (8)

The M step involves maximizing

P q
Q1.4616)=01016') = 1) "4,(B)) = 1Y ", (el
=1 k=1 (9)

with respect to (8, £). Maximizing Q1 (9, £|0)) with respect to & is straightforward and can
be done using a standard optimization algorithm, such as the Newton-Raphson algorithm
(Little and Schluchter, 1985; Ibrahim, 1990; Ibrahim and Lipsitz, 1996). Maximizing Q1 ),
with respect to  is difficult because Q7 ), is a nondifferentiable and nonconcave function of
o respectively (Zou and Li, 2008).

In order to maximize Q1 3, following Fan and Li (2001), a second order Taylor’s series
approximation of Q1 centered at the value 8@ is used. Using this approximation, Q 1A
resembles a penalized weighted least squares regression, so algorithms for minimizing
penalized least squares can be used (Fan and Li, 2001; Hunter and Li, 2005). We use a
modification of the local linear approximation algorithm (LLA) (Zou and Li, 2008) to

incorporate grouped penalization. For y;, we use an approximation centered at yi_s) as
follows:

Ga,. (v Dl
S, Iyl = Z {# !

1=1

(10)

where vy, is the #-th element of the vector y; and we assume II)’;\ >0, 1f II)’i”II =0, then we let

yf,:“ '=0. Using this approximation, Q1 ) resembles a penalized regression with an L

penalty, so the methods for performing the lasso can be used to maximize Q3 (Tibshirani,
1996; Fu, 1998).

(s+1) l\] () (s+1) (s+1)1g05)
=argmax 0 6"y and & =argmax 10, g
Let § £ Qa4 Q1.4(0.67716) . Due to the Taylor’s

series approximation of Q; and the LLA of ¢y, 0(”1) = (86D, g6+1)) may not necessarily
be the maximizer of Q; (0]6¢)). By 1mplement1ng the Expectation Conditional-
Maximization (ECM) algorithm (Meng and Rubin, 1993), however, we can find a 0¢+1)
such that 0; (05+D]0®)) > 0, (8®)]|0)) instead of directly maximizing Q;(0]8*)). This
process is iterated until convergence and the value at convergence, denoted by 8,
maximizes the penalized observed data log likelihood function.

2.3 Penalty Parameter Selection Procedure

To ensure that 8 has good properties, the penalty parameter A has to be appropriately
selected. Two commonly used criteria for selection of the penalty parameter include the
Generalized Cross Validation (GCV) and BIC criteria (Wang et al., 2007). These criteria
cannot be easily computed in the presence of random effects, because they are functions of
observed data quantities whose expressions may require intractable integrals. Moreover, it
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has been shown in Wang et al. (2007) that even in the simple linear model, the GCV
criterion can lead to significant overfit.

We propose two methods to select the penalty parameter: an ICg criterion and a random
effects penalty selection method. The ICQ criterion (Ibrahim, Zhu, and Tang, 2008) selects
the optimal A by minimizing

IC, (D)= — 2Q(B,160)+ca(6),

where &;:argﬂqax te) is the unpenalized maximum likelihood estimate and c,,(0) is a

function of the data and the fitted model. For instance, if c,, equals twice the total number of
parameters, then we obtain an AIC-type criterion; alternatively, we obtain a BIC-type
criterion when ¢,(0) = dim(0) x log n. Moreover, in the absence of random effects, ICy(A)
reduces to the usual AIC or BIC criteria. As in the EM algorithm, we can draw a set of
samples from f(b;|d; ,; 8¢) for i = 1,..., n in order to estimate Q(8,]0¢) for any A.

The random effects penalty estimator is calculated under the assumption that 8 is distributed
as a random effect vector in a hierarchical model. The quantity A can be regarded as a
hyperparameter vector in the distribution of &, denoted by f{(8|A, n). Then, A can be estimated
by maximizing the marginal likelihood with respect to (€, A), which is given by

(11)
where f{8|, n) is defined by

P 9
F@lm=] Jexpt-ngs, BN [expt-naa,..AiDiACn),
k=1

J=1

and C(A, n) is the normalizing constant of f{(8|A, n). The resulting estimate of A, denoted by
AgE, from the maximization of (11), is the random effects penalty estimator. Treating & as
missing data, the Monte Carlo EM algorithm can be used to maximize (11) with respect to

@& M.

We consider the SCAD and ALASSO penalty functions for determining A. The ALASSO
penalty is defined by

¢.1,(B;)=2;1B,] for j=1,---, p, b, (yelD=Apsllyell for k=1,--- . q.

Typical values of }; are A; = km|[§j|_1 and Ap=Am Vil ", where Bj and y;, are the

unpenalized maximum likelihood (ML) estimates. The multiplier Vk normalizes the penalty
parameter vy in order to accommodate the varying sizes of y;. When A; = Ay and

Apsk=An2 \/E, the ALASSO reduces to the LASSO penalty.

The SCAD penalty (Fan and Li, 2001) is a nonconcave function defined by ¢, (0) = 0 and

{(f(l = L81 )+

for [8>0.4,(1B)=11(8] < leﬁ 18] >4), where ¢, denotes the positive part of ¢ and
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a =3.7. Because the integral of the negative exponential of the ALASSO and SCAD

penalties is not finite, i.e. [ _WNBXP{'"H(_.P‘)J(||xlk||)}d}’k:°0, the expression exp{—néy (I} is
defined in a bounded space to ensure that f{8|A, n) is a proper density. Since a closed form
expression of Az is unavailable for both the ALASSO and SCAD penalties, we use the
Newton Raphson algorithm along with the ECM algorithm to estimate Agg.

3. Theoretical Results

THEOREM 1

In this section, we establish the asymptotic theory of the MPL estimator and the consistency
T
of the penalty selection procedure based on IC. Suppose }3=(ﬁi _]-ﬁ[Tg,) , where B(1y and B

3 % «T\T
are, respectively, p; x 1 and (p — p1) x 1 subvectors. Let ﬁ*=(ﬁ. ]T,-ﬁlgT,) denote the true

value of B. Without loss of generality, we assume that 5(5)=0 and all of the components of

T T
B, are not equal to zero. Similarly let Y:(YTs A ) :(}’?}}- 7’3;)) where

T T ™ T (T \T
Y U:(}’] 2eees Vg ) s ytj):(yq]+{] Jreves )’q) and Y1) and Y(2) are q1(q1 + D/2x 1 and {q —

e [ oT =T\
q1(q1 + 1)/2} x 1 subvectors respectively. Let Y?=(}’{]T]- }’(; ) denote the true value of y.

Without loss of generality, we assume that ¥(»,=0 and some of the components of each Y} are
not equal to zero for k= 1,..., q;.

Let 7= {j11,---»J1d;5J21 -+ J24p} be a candidate model containing the jy;-th, ..., ji4-th
columns of X and the jp;-th, ..., jog,-th columns of Z. Thus, r = {1,..., p; 1,....q} and ¥
={1,..., p1; L,..., q1} denote the full and true covariate models, respectively. If #misses at
least one important covariate, that is %2 .%r, then is referred to as an underfitted model;
however, if YD Y7 and ¥# ¥, then is an overfitted model. The unpenalized and
penalized ML estimators of 8 = (B, y7, )7, denoted by g and 8;, respectively, are defined
as

9

lf)
6.,= argmax {(#) and #=argmax < £(¢) — anﬁ,aJ.(lB_,-l) - HZQ",!JH;(“’}’HD},

0:8;20, je.s # j=1 k=1

, and particularly GSF = 0. We obtain the following theorems whose assumptions and
proofs can be found in the web-based supplementary document.

Under assumptions (C1)—(C7) in the supplementary document, we have
a. ﬁx —0*= Op(n_l/z) as n — 00, where 0% is the true value of 0;
b. Sparsity: PBay. =0, yon=0) — 1;

C. —T T T
Asymptotic normality: Nil(Bly, s Ay €)= Bil vl 1) Vis asymptotically
normal with mean and covariance matrix defined in the supplement.

Theorem 1 states that by appropriately choosing the penalty A, there exists a root-n estimator
of 0, 0y, and that this estimator must possess the sparsity property, i.e. ﬁ(z)x =0, ?(Z)X =0in

- T
probability. Moreover, (Er] },,,TiT] w»€1) is asymptotically normal.
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We investigate whether the ICo(A) criterion can consistently select the correct model. For
each . € RP*, (B, 7)) naturally defines a candidate model S, = {j : B # 0; k : Iy 4l # 0}.
Generally, % can be either underfitted, overfitted, or true. Therefore, RP* can be partitioned
into three mutually exclusive regions

RI'=(AeR’":.71 D 7, R\ =1 e R"*" . =7,), and R, ={1 e R"" .S D S, 51 £ S, ).
Furthermore, if we can choose a reference penalty parameter sequence {1, € R”*}.",, which
satisfies the conditions of Theorem 1, then ., = %7 in probability.

To select A we first calculate

dIC,(12,41)=IC,,(12) — IC,,(A1)= — 20(61,160)+cn(61,)+20(01, 100) — cn(61,)

for any two A1 and &,. We assume 3, D %y, and choose the model /3 resulting from
using the penalty value 4 if dICo(hy, A1) 2 0, otherwise we choose the model .7'2,.

Define %041 AE}ZE{Q(‘%_“ 16"} - E{Q(H}_t: lgi”, and d.(Ap, Ap) = cn(fA);Q) - cn(ékl), where

6", is defined in the supplementary document.

Under assumptions (C1)—(C7) in the supplementary document, we have the following
results.

A Ifforall &, D S, MM Inf6,(4.0)/n>0 gng § (3., 0) = 0,(n), then dICo(h, 0) > 0 in

probability.

1P ENQE,, 160}~ E(Q(, 00)}=0,(n'?) and Q64 [00)~ E(Q(6, 160))=0,(n'") o
t=1,2, then dICy(dy, M) > 0 in probability as 112§ (hy, M) converges to  in
probability.

c. IfQ(0y, [80) — OBy, [80) = O,(1), then dICy(hy, k) > 0 in probability as 8.(hy, M)
converges to @ in probability.
Theorem 2 has some important implications. Theorem 2(a) shows that IC(2) chooses all

significant covariates with probability 1. Because .#, ¢ R/ U R}, the optimal model selected
by minimizing ICp(h) will not select a & with % D Y1 because dICp(%, 0) > 0in
probability. Therefore, the ICp(2) criterion selects all significant covariates with probability
tending to 1. Generally, the most commonly used c¢,,(0), such as 2dim(0), dim(0) log(r), and
Klog log(n) (K > 0), satisfy the condition 6.(k, 0) = 0,(n). The condition

5 o
1”“,,""“’ 04(1,00>0 engures that IC(h) chooses a model with large E{Q(6",|6")}. This
condition is analogous to condition 2 in (Wang et al., 2007), which elucidates the effect of

underfitted models. The term n~' E{Q(#°16")} — n']E{Q(H} |6")} can be written as
n” @) — 0O+ E(H(G'167)) - nT  ELH(6.16)), (12)

where

n
H(61162)= " [1og! f(bild, ;:61)}f (binldy;:65) dbi.
i=1 (13)
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By Jensen’s inequality, the third and fourth terms of (12) are greater than zero and the first
and second terms must be greater than zero for large n. Thus, lim inf), nilﬁQ()‘, 0)=0in
probability.

If %, and A, have the same average 71" E{Q(#, 16")}, that is, lim inf, n™ '8 p(hy, A1) = 0, then
Theorem 2 (b) and (c) indicate that ICy(h) picks out the smaller model % 2 When Sc(Ma, M)
increases to 00 at a certain rate (e.g., log(n)). For example, for the BIC-type criterion, 6.(A,
A) = {dim(ﬁtgﬂkz) - dim(ﬁyx 1)} log(n) > log(n) since we assume %3, D .%y,. The AIC-type
criterion, for which ¢, (0) = 2 x dim(0), however, does not satisfy this condition. Thus,
similar to the AIC criterion with no random effects, ICp(A) with c,(0) = 2 x dim(0) tends to
overfit.

4. Simulation Study

We use simulations to examine the finite sample performance of the maximum penalized
likelihood estimates using our proposed penalty estimators and compare them to the
unpenalized ML estimate. Our objectives for these simulations are to 1) compare the random
effects and IC¢ penalty estimators and 2) to compare the SCAD, LASSO, and ALASSO
penalty functions.

To do this, we simulated a data set consisting of n independent observations according to the
model y; = X;B+Z;I'bj+c¢;, i = 1,..., n, where b; and ¢g; are independent and standard
multivariate normal random vectors, and p = (3, 2, 1.5, 0, 0, 0, O, O)T. Moreover, [TT =D is
a 3 x 3 matrix, such that the (r, s) element of D is p|r—s|. The matrix X; is a 12 x 8 matrix of
independent rows, where each row of X; has mean zero and covariance matrix X,, whose (r,
s) element is p|’_“'|. The matrix Z; was set equal to X;.

We considered six different settings: (n =50, 6=3), (n=50,6=1), (n=100,c=3), (n=
100, 0 = 1), (n =200, 6 = 3), and (n = 200, o = 1) with a value of p = .5 for all settings. For
each setting, one design matrix was simulated and 100 data sets (y;, X;) fori = 1,..., n were
generated.

For each simulated data set, the maximum penalized likelihood (MPL) estimate using the
SCAD, LASSO and ALASSO penalties was computed using the random effects and ICy
penalty estimates. These estimates are denoted as SCAD-RE, SCAD—ICQ, LASSO-RE,
LASSO—ICQ, ALASSO-RE, and ALASSO—ICQ, respectively. For the ICQ estimate, the BIC-
type criterion, c,(0) = dim(0) log n, was used. For the Monte Carlo EM algorithm, 2000
Monte Carlo iterations were used within each iteration of EM. For the SCAD and LASSO

penalties, we set kj =Mo1, forj=1,... 8, and 4g ;=10 vk, for k=1,...,3 while for the

ALASSO penalty, &; = Ag1|B{~!, forj = 1,... 8, and Ag., =1, Vk|7i|~ for k=1,....3 where
Bj, and v, are the unpenalized ML estimates of Bj and vy respectively, and the penalty (Ayy,
Mo2) was estimated using the ICy and random effects penalty selection methods.

For each estimate, the penalized estimate of p and D were computed, denoted as f; and D,
respectively, and the mean square error ME(B;) = (B, — P)7=.(Bs. — B)T and the quadratic
loss error ME(D,) = trace[(D; — D)2]!/2 were computed. The ratio of the model error of the
MPL estimate to that of the unpenalized ML estimate, ME(f,)/ME(B,) and ME(D,)/
ME(Dy), were computed for each data set and the median of the ratios over the 100
simulated data sets, denoted as MRME, was calculated. The MRME of the true model is
also reported. In addition, we report two types of errors regarding the fixed and random
effects. ZERO; is the mean number of type I errors (an effect is truly not significant or
random but the corresponding MPL estimate indicates it is significant or random) and
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ZERO, is the mean number of type Il errors (an effect is truly significant or random but the
corresponding MPL estimate indicates it is not significant or random).

For the MPL estimates, MRME values greater than one indicate that the estimate performs
worse than the ML estimate, values near one indicate it performs as good as the ML
estimate, while values near the ‘true’ MRME value indicate optimal performance. The
values ZERO| and ZERO, can be interpreted as estimates of the probability of overfit and
underfit, respectively, and the value 1 — ZERO; — ZERO; is an estimate of the probability
of selecting the true model. Ideally, one would like to have MPL estimates with small
ZERO; and ZERO, values and small MRME values. Overall, the MRME values of all of
the MPL estimates were less than or equal to one, which indicates that regardless of the
sample size or noise level, the MPL estimates perform better than the ML estimate. Across
all samples sizes and noise levels, the MRME values of the MPL estimates using the random
effects penalty estimates was higher than the MPL estimates using the IC( penalty
estimates. For the ICQ MPL estimates, as the noise level decreases from 6 =3 to 6 = 1, the
MRME values increase. For a fixed noise level, the MRME values at sample sizes of n = 50
and n = 200 are comparable but there is a slight decrease in the MRME values at sample
sizes of n = 100. This indicates that the MPL estimates perform better, relative to the MLE,
at low noise levels and near sample sizes of n = 100. The MPL estimates using the random
effects penalty estimate tended to overfit significantly. On average, the MPL estimate using
the ALASSO penalty function had smaller estimation error and overfit than the LASSO
estimate. For estimating fixed effects, the SCAD—ICQ estimate has, on average, smaller
estimation error and overfit than the other estimates. For estimating the random effects, the
ALASSO-ICg has smaller error and overfit.

5. Yale Infant Growth Study

We applied the proposed methodology to the Yale infant growth study of Wasserman and
Leventhal (1993) and Stier et al. (1993). The Yale infant growth data were collected to study
whether cocaine exposure during pregnancy leads to the maltreatment of infants after birth,
such as physical and sexual abuse. A total of 298 children were recruited from two subject
groups (cocaine exposure group and unexposed group). Throughout the study different
children had different numbers and patterns of visits during the study period. The
multivariate response was weight of the infant at each visit. Let y;; denote the weight (in
pounds) at the j-th visit of infant i, for i = 1,..., 298, j = 1,..., n; and let y; = (y;,..., Yin;)- The
covariates used were: x;;| = day of visit, x;» = age (in years) of mother, x;;3 = gestational age
(in weeks) of infant, x;j4 = race (2 levels: African American and other, coded as 1 and 0), x;5
= previous pregnancies (2 levels: no and yes, coded as 1 and 0), x;j6 = gender of infant (2
levels: male and female, coded as 1 and 0), Xij7 = cocaine exposure (2 levels: yes and no,
coded as 1 and 0). The design matrix X;; is a n; x 8 matrix with the j-th row equal to (1, x;j,
Xij2» Xij3» Xijds Xij5s Xij6» Xij7)> Zi 18 @ n; X 3 matrix composed of the first 3 continuous
covariates of Xj, i.e., the j-th row of Z; is (x,jl, Xij2, x,~j3), and therefore g = 3 here. All
covariates were centered in the analysis for numerical stability. Further, we assume that [y;|
X;; B, D] is normally distributed with mean E(y;) = X;p + Z;I'b;, where I'T” = D and ij X
B. D] and [y;{X;; B, D] are independent for j # ;.

The objective of this analysis was to determine the significant predictors of infant weight
and the significant random effects. Because the ALASSO penalty outperformed the LASSO
penalty in the simulations, only the SCAD and ALASSO penalty functions were used along
with the IC( and random effects penalty estimates. Note that the intercept term was not

penalized. For the SCAD, A; = &g for j=2,..., 8 and 5,,=1¢» Vi, fork=1,..., 3, while for
the ALASSO penalty, &; = A |B| ! forj=2, ..., 8 and g, =App VIl fork=1,..., 3,
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where Bj and v, are the unpenalized ML estimates of Bj and vy, respectively, and (Ag1, Ap2)
was estimated using the ICy and random effects penalty selection methods.

The results of the analysis are presented in Table 2. The MPL estimates using the SCAD
penalty identify visit, gestational age of infant, gender of infant and cocaine exposure as
significant predictors of infant weight, and visit as significant random effect. These
estimates coincide with the results of the maximum likelihood analysis which identify the
same fixed and random effects as significant (significant effects by MLE analysis are
indicated by a * in Table 2). The results of using the SCAD with two different sets of
penalty estimates are similar. Although the estimates using SCAD with the IC( penalty
estimates do not shrink the random-effect variances for age and gestational age to 0, these
variance estimates are relatively smaller than that of the visit random effect, which still
identifies the correct random-effect. The MPL estimate using the ALASSO penalty shrunk
two more coefficients of the fixed effects to zero: gender and cocaine. Although these two
effects are identified as significant in the MLE, we see that their corresponding MLE
estimates are smaller relative to the other significant fixed effects. The estimates using the
ALASSO penalty with the IC( penalty estimates are close to that of the RE penalty
estimates. The MPL estimates using the ALASSO penalty identify visit and gestational age
of infant as significant fixed effects, and visit as a significant random effect.

6. Discussion

We have proposed a general method which performs simultaneous fixed and random effects
selection as well as estimation. Under certain regularity conditions and appropriate
assumptions on the penalty parameters, the maximum penalized likelihood estimate
possesses oracle properties. We have used two methods for estimating the penalty
parameters, the random effects and ICy penalty selection methods, and showed that under
an appropriate choice of ¢,(0), the IC( penalty estimate chooses all the significant fixed and
random effects with probability 1. Since penalized likelihood methods have been shown to
perform poorly in finite samples, simulations were performed to examine the finite sample
properties of the maximum penalized likelihood estimators and the performance of the
Monte Carlo EM algorithm. In the simulations, the SCAD and ALASSO penalty functions
using the ICg penalty estimate performed best and had significantly less estimation error
than the maximum likelihood estimate. Unlike previous implementations of the random
effects penalty estimate (Garcia, Ibrahim, and Zhu, 2010a, 2010b), the simulations and real
data analysis results show that for mixed effects regression models, the random effects
penalty estimate has significant overfit. For estimating fixed effects, the SCAD-IC estimate
had, on average, smaller estimation error and overfit, while for estimating random effects,
the ALASSO-ICg had smaller error and overfit.

Many aspects of this work warrant further research and investigation. Recent developments
have shown that there may be more than one plausible scheme for formulating the grouped
penalty in the penalized likelihood (Zhao et al., 2009; Breheny and Huang, 2009). To select
significant random effects using a cholesky parametrization of the covariance matrix of the
random effects requires that each row of the cholesky matrix to be penalized as a group.
Other parameters, however, can be grouped and penalized in various ways. For instance, it is
possible to group parameters corresponding to the fixed effects if one is interested in
determining whether a particular group of fixed effects is significant or not. It is also
possible to use different penalty functions for each group of parameters.

The objective of this paper was to perform simultaneous selection of fixed and random
effects. To the best of our knowledge, this is the first paper to propose this type of
methodology. In the existing literature, (Gurka, 2006; Chen and Dunson, 2003; Daniels and
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Kass, 1999, 2001), the predominant approach to mixed effects selection has been to fix
either the mean model or the covariance structure of the random effects and then either test
variance components or perform variable selection on the mean model (Keselman et al.,
1998). This approach, since it fixes certain parts of the model, makes assumptions regarding
the model structure which may not inappropriate. A possible reason that simultaneous mixed
effects selection may not have been pursued before is perhaps due to the numerical
complexity inherent in the model fitting algorithms. With penalized likelihood methods,
however, simultaneous mixed effects selection is straightforward to implement and no
assumptions are necessary regarding any part of the model.

As it stands, calculating the ICy penalty estimator is slightly demanding. An alternative to
IC penalty parameter estimation is to select the penalty parameter which optimizes other
criteria developed in mixed effects models such as those in Claeskens and Consentino
(2008) and Liang, Wu, and Zou (2008). We will formally study these issues in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Simulation results of linear mixed effects models comparing SCAD, LASSO, and ALASSO penalty functions
with random effect and ICy penalty estimates

B Estimate (D Estimate)

Model Method MRME ZERO, ZERO,
n=50,6=3 SCAD-RE 0.576 (0.980) 0.1 (0.94)  0.00 (0.00)
SCAD-IC, 0.552(0.259)  0.01 (0.09)  0.00 (0.01)
LASSO-RE  0.983 (0.988) 0.99(1.00) 0.0 (0.00)
LASSO-IC,  0.605(0.241)  0.04(0.10)  0.00 (0.01)
ALASSO-RE  0.949 (0.983)  0.80 (1.00)  0.00 (0.00)
ALASSO-IC, 0597 (0.263)  0.01 (0.13)  0.00 (0.01)
True 0.559 (0.228)  0.00 (0.00)  0.00 (0.00)
n=50,6=1 SCAD-RE 0.906 (0.803)  0.58 (1.00)  0.00 (0.00)
SCAD-IC, 0.869 (0.461)  0.03 (0.13)  0.00 (0.00)
LASSO-RE  0.997 (0.996) 0.9 (1.00)  0.00 (0.00)
LASSO-IC,  0.884(0.438) 0.04(0.08) 0.00 (0.00)
ALASSO-RE  0.983 (0.989)  0.81(1.00)  0.00 (0.00)
ALASSO-IC, 0.858 (0.441) 0.03(0.10) 0.00 (0.00)
True 0.846 (0.439)  0.00 (0.00)  0.00 (0.00)
n=100,6=3 SCAD-RE 0.571 (0.970)  0.13 (0.93)  0.00 (0.00)
SCAD-IC, 0.565(0.219)  0.01 (0.04)  0.00 (0.00)
LASSO-RE  0.993 (0.994) 0.9 (1.00)  0.00 (0.00)
LASSO-IC,  0.584(0.232) 0.01(0.04) 0.00 (0.00)
ALASSO-RE  0.949 (0.987) 0.81(1.00) 0.00 (0.00)
ALASSO-IC, 0.574(0.205) 0.01(0.04) 0.00 (0.00)
True 0.513(0.196)  0.00 (0.00)  0.00 (0.00)
n=100,6=1 SCAD-RE 0.895 (0.803)  0.57 (1.00)  0.00 (0.00)
SCAD-IC, 0.820 (0.452)  0.01 (0.07)  0.00 (0.00)
LASSO-RE  0.999 (0.997) 0.9 (1.00) 0.0 (0.00)
LASSO-IC,  0.835(0.478) 0.03(0.08) 0.00 (0.00)
ALASSO-RE  0.982 (0.989) 0.82(1.00)  0.00 (0.00)
ALASSO-IC,  0.839 (0.415)  0.02 (0.06)  0.00 (0.00)
True 0.832(0.392)  0.00 (0.00) 0.00 (0.00)
n=200,6=3 SCAD-RE 0.553(0.987) 0.13 (0.94)  0.00 (0.00)
SCAD-IC, 0.554 (0.245)  0.01 (0.07)  0.00 (0.00)
LASSO-RE  0.995(0.996) 0.9 (1.00)  0.00 (0.00)
LASSO-IC,  0.617(0.244) 0.05(0.09) 0.00 (0.00)
ALASSO-RE  0.934 (0.992) 0.78 (1.00)  0.00 (0.00)
ALASSO-IC,  0.603 (0.237)  0.02(0.11)  0.00 (0.00)
True 0.546 (0.218)  0.00 (0.00)  0.00 (0.00)
n=200,6=1 SCAD-RE 0.902 (0.833)  0.55(1.00)  0.00 (0.00)
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B Estimate (D Estimate)
Model Method MRME ZERO; ZERO,
SCAD-IC, 0.853 (0.487)  0.01 (0.12)  0.00 (0.00)
LASSO-RE 0.998 (0.998)  0.99 (1.00)  0.00 (0.00)
LASSO-IC, 0.873 (0.554)  0.07 (0.20)  0.00 (0.00)
ALASSO-RE  0.982(0.991) 0.79 (1.00)  0.00 (0.00)
ALASSO-ICy,  0.871 (0.468)  0.02 (0.11)  0.00 (0.00)
True 0.839 (0.408)  0.00 (0.00)  0.00 (0.00)
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