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Abstract: In this paper, our aim is to obtain new fixed-disc results on metric spaces. To do this, we present a new
approach using the set of simulation functions and some known fixed-point techniques. We do not need to have some
strong conditions such as completeness or compactness of the metric space or continuity of the self-mapping in our
results. Taking only one geometric condition, we ensure the existence of a fixed disc of a new type contractive mapping.
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1. Introduction and preliminaries

Let (X, d) be a metric space and T a self-mapping on X . If T has more than one fixed point then the
investigation of the geometric properties of fixed points appears a natural and interesting problem. For example,
let X = R be the set of all real numbers with the usual metric d(x, y) = |x− y| for all x, y ∈ R . The self-
mapping T : R → R defined by Tx = x2−2 has two fixed points x1 = −1 and x2 = 2 . Fixed points of T form
the circle C 1

2
, 3
2
=

{

x ∈ R :
∣

∣x− 1
2

∣

∣ = 3
2

}

. In recent years, the fixed-circle problem and the fixed-disc problem

have been studied with this perspective on metric and some generalized metric spaces (see [1, 9, 10, 12–16, 18–
20, 23–29] for more details). As a consequence of some fixed-circle theorems, fixed-disc results have been also
appeared. For example, the self-mapping S on R defined by

Sx =

{

x ; x ∈ [0, 2]

x+
√
2 ; otherwise

fixes all points of the disc D1,1 = {x ∈ R : |x− 1| ≤ 1} . Clearly, S fixes all circles contained in the disc D1,1 .
Therefore, it is an attractive problem to study new fixed-disc results and their consequences on metric spaces.

In this paper, our aim is to present new fixed-disc results. To do this, we provide a new technique using
simulation functions defined in [8]. The function ζ : [0,∞)2 → R is said to be a simulation function, if it
satisfies the following conditions :

(ζ1) ζ(0, 0) = 0,

(ζ2) ζ(t, s) < s− t for all s, t > 0 ,
(ζ3) If {tn} , {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,
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then
lim sup
n→∞

ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z [8]. In [8], the notion of a Z -contraction was defined to
generalize the Banach contraction as follows:

Definition 1.1 [8] Let (X, d) be a metric space and T : X → X a mapping and ζ ∈ Z . Then T is called a
Z -contraction with respect to ζ if the following condition is satisfied for all x, y ∈ X :

ζ (d (Tx, Ty) , d (x, y)) ≥ 0. (1.1)

Every Z -contraction mapping is contractive and hence continuous (see [3, 8, 21] for basic properties and
some examples of a Z -contraction). In [8], Khojasteh et al. used the notion of a simulation function to unify
several existing fixed-point results in the literature.

We note that the notion of a simulation function has many interesting applications (see [3, 5, 7] and the
references therein). In a very recent paper, a new solution is given to an open problem raised by Rhoades about
the discontinuity problem at fixed point using the family of simulation functions (see [19] and [22]).

2. Main results
Let (X, d) be a metric space, Dx0,r = {x ∈ X : d(x, x0) ≤ r} (r ∈ R

+ ∪ {0}) a disc and T a self-mapping on
X . If Tx = x for all x ∈ Dx0,r then the disc Dx0,r is called the fixed disc of T [29].

From now on we assume that (X, d) is a metric space and T : X → X a self-mapping. To obtain new
fixed-disc results, we define several new contractive mappings. At first, we give the following definition.

Definition 2.1 Let ζ ∈ Z be any simulation function. T is said to be a Zc -contraction with respect to ζ if
there exists an x0 ∈ X such that the following condition holds for all x ∈ X :

d(Tx, x) > 0 ⇒ ζ (d(Tx, x), d(Tx, x0)) ≥ 0.

If T is a Zc -contraction with respect to ζ , then we have

d(Tx, x) < d(Tx, x0), (2.1)

for all x ∈ X with Tx ̸= x0 . Indeed, if Tx = x then the inequality (2.1) is satisfied trivially. If Tx ̸= x then
d(Tx, x) > 0 . By the definition of a Zc -contraction and the condition (ζ2) , we obtain

0 ≤ ζ (d(Tx, x), d(Tx, x0)) < d(Tx, x0)− d(Tx, x)

and so Equation (2.1) is satisfied.
In all of our fixed disc results we use the number ρ ∈ R

+ ∪ {0} defined by

ρ = inf
x∈X

{d(x, Tx) | Tx ̸= x}. (2.2)

We begin with the following theorem.
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Theorem 2.2 If T is a Zc -contraction with respect to ζ with x0 ∈ X and the condition 0 < d(Tx, x0) ≤ ρ

holds for all x ∈ Dx0,ρ − {x0} then Dx0,ρ is a fixed disc of T .

Proof Let ρ = 0 . In this case we have Dx0,ρ = {x0} . If Tx0 ̸= x0 then d(x0, Tx0) > 0 and using the
definition of a Zc -contraction we get

ζ (d(Tx0, x0), d(Tx0, x0)) ≥ 0.

This is a contradiction by the condition (ζ2) . Hence, it should be Tx0 = x0 .
Assume that ρ ̸= 0 . Let x ∈ Dx0,ρ be such that Tx ̸= x . By the definition of ρ , we have 0 < ρ ≤ d(x, Tx)

and using the condition (ζ2) we find

ζ (d(Tx, x), d(Tx, x0)) < d(Tx, x0)− d(Tx, x)

≤ ρ− d(Tx, x) ≤ ρ− ρ = 0,

a contradiction with the Zc -contractive property of T . It should be Tx = x , so T fixes the disc Dx0,ρ . ✷

In the following corollaries we obtain new fixed-disc results.

Corollary 2.3 Let x0 ∈ X . If T satisfies the following conditions then Dx0,ρ is a fixed disc of T :

1) d(Tx, x) ≤ λd(Tx, x0) for all x ∈ X ,
where λ ∈ [0, 1) .

2) 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ − {x0} .

Proof Let us consider the function ζ1 : [0,∞)× [0,∞) → R defined by

ζ1(t, s) = λs− t for all s, t ∈ [0,∞)

(see Corollary 2.10 given in [8]). Using the hypothesis, it is easy to see that the self-mapping T is a Zc -
contraction with respect to ζ1 with x0 ∈ X . Hence, the proof follows by setting ζ = ζ1 in Theorem 2.2.
✷

Corollary 2.4 Let x0 ∈ X . If T satisfies the following conditions then Dx0,ρ is a fixed disc of T :

1) d(Tx, x) ≤ d(Tx, x0)− ϕ (d(Tx, x0)) for all x ∈ X,

where ϕ : [0,∞) → [0,∞) is lower semicontinuous function and ϕ−1(0) = 0 .
2) 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ − {x0} .

Proof Consider the function ζ2 : [0,∞)× [0,∞) → R defined by

ζ2(t, s) = s− ϕ (s)− t,

for all s, t ∈ [0,∞) (see Corollary 2.11 given in [8]). Using the hypothesis, it is easy to verify that the self-
mapping T is a Zc -contraction with respect to ζ2 with x0 ∈ X . Hence, the proof follows by setting ζ = ζ2 in
Theorem 2.2. ✷

Corollary 2.5 Let x0 ∈ X . If T satisfies the following conditions then Dx0,ρ is a fixed disc of T :
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1) d(Tx, x) ≤ ϕ (d(Tx, x0)) d(Tx, x0) for all x ∈ X,

where ϕ : [0,∞) → [0, 1) be a mapping such that lim sup
t→r+

ϕ(t) < 1 , for all r > 0 .

2) 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ − {x0} .

Proof Consider the function ζ3 : [0,∞)× [0,∞) → R defined by

ζ3(t, s) = sϕ (s)− t,

for all s, t ∈ [0,∞) (see Corollary 2.13 given in [8]). Using the hypothesis, it is easy to verify that the self-
mapping T is a Zc -contraction with respect to ζ3 with x0 ∈ X . Therefore, the proof follows by setting ζ = ζ3

in Theorem 2.2. ✷

Corollary 2.6 Let x0 ∈ X . If T satisfies the following conditions then Dx0,ρ is a fixed disc of T :

1) d(Tx, x) ≤ η (d(Tx, x0)) for all x ∈ X,

where η : [0,∞) → [0,∞) be an upper semicontinuous mapping such that η(t) < t for all t > 0 .
2) 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ − {x0} .

Proof Consider the function ζ4 : [0,∞)× [0,∞) → R defined by

ζ4(t, s) = η (s)− t,

for all s, t ∈ [0,∞) (see Corollary 2.14 given in [8]). Using the hypothesis, it is easy to verify that the self-
mapping T is a Zc -contraction with respect to ζ4 with x0 ∈ X . Therefore, the proof follows by setting ζ = ζ4

in Theorem 2.2. ✷

Corollary 2.7 Let x0 ∈ X . If T satisfies the following conditions then Dx0,ρ is a fixed disc of T :

1)
d(Tx,x)
∫

0

φ(t)dt ≤ d(Tx, x0) for all x ∈ X,

where φ : [0,∞) → [0,∞) is a function such that
ε
∫

0

φ(t)dt exists and
ε
∫

0

φ(t)dt > ε , for each ε > 0 .

2) 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ − {x0} .

Proof Consider the function ζ5 : [0,∞)× [0,∞) → R defined by

ζ5(t, s) = s−
t

∫

0

φ(u)du,

for all s, t ∈ [0,∞) (see Corollary 2.15 given in [8]). Using the hypothesis, it is easy to verify that the self-
mapping T is a Zc -contraction with respect to ζ5 with x0 ∈ X . Therefore, the proof follows by taking ζ = ζ4

in Theorem 2.2. ✷

We give the following example.
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Example 2.8 Let X = R and (X, d) be the usual metric space with d(x, y) = |x− y| . Let us define the
self-mapping T1 : X → X as

T1x =

{

x ; x ∈ [−1, 1]
2x ; x ∈ (−∞,−1) ∪ (1,∞)

,

for all x ∈ R . Then T1 is a Zc -contraction with ρ = 1 , x0 = 0 and the function ζ6 : [0,∞)2 → R defined as
ζ6(t, s) =

3
4s− t . Indeed, it is clear that

0 < d(T1x, 0) = |x− 0| = |x| ≤ 1,

for all x ∈ D0,1 − {0} and we have

ζ6 (d(T1x, x), d(T1x, x0)) = ζ (|x| , |2x|) = 1

2
|x| > 0

for all x ∈ R such that d(Tx, x) > 0 . Consequently, T1 fixes the disc D0,1 = [−1, 1] .
Now we consider the self-mapping T2 : X → X defined by

T2x =

{

x ; |x− x0| ≤ µ

2x0 ; |x− x0| > µ
,

for all x ∈ R with 0 < x0 and µ ≥ 2x0 . The self-mapping T2 is not a Zc -contraction with respect
to any ζ ∈ Z with x0 ∈ X . However, T2 fixes the disc Dx0,µ . Indeed, by the condition (ζ2) , for all
x ∈ (−∞, x0 − µ) ∪ (x0 + µ,∞) we have

ζ (d(Tx, x), d(Tx, x0)) = ζ (|2x0 − x| , |2x0 − x0|)
= ζ (|2x0 − x| , |x0|) < |x0| − |2x0 − x| < 0.

This example shows that the converse statement of Theorem 2.2 is not true everywhen.

Remark 2.9 1) We note that the radius ρ of the fixed disc Dx0,ρ is not maximal in Theorem 2.2 (resp.
Corollary 2.3-Corollary 2.7) . That is, if Dx0,ρ1

is another fixed disc of the self-mapping T then it can be
ρ ≤ ρ1 . Indeed, if we consider the self mapping T3 : R → R defined by

T3x =

{

x ; x ∈ [−3, 3]
x+ 1 ; otherwise

with the usual metric on R , then the self-mapping T3 is a Zc -contraction with ρ = 1 , x0 = 0 and the function
ζ7 : [0,∞)2 → R defined as ζ7(t, s) =

1
2s− t . Hence, T1 fixes the disc D0,1 = [−1, 1] by Theorem 2.2. However,

the disc D0,2 = [−2, 2] is another fixed disc of the self-mapping T3 .
2) The radius ρ of the fixed disc Dx0,ρ is independent from the center x0 in Theorem 2.2 (resp. Corollary

2.3-Corollary 2.7) . Again, if we consider the self-mapping T3 defined in (1) , it is easy to verify that T3 is also
a Zc -contraction with ρ = 1 , x0 = 1 and the function ζ7 . Clearly, the disc D1,1 = [0, 2] is another fixed disc
of T3 .

In [1], Aydi et al. introduced the notion of a α -x0 -admissible map as follows:
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Definition 2.10 [1] Let X be a nonempty set. Given a function α : X ×X → (0,∞) and x0 ∈ X. T is said
to be an α-x0 -admissible map if for every x ∈ X,

α(x0, x) ≥ 1 ⇒ α(x0, Tx) ≥ 1.

Then using this notion it was given new fixed-disc results on a rectangular metric space in [1]. Now we
give the following definition.

Definition 2.11 Let T be a self-mapping defined on a metric space (X, d) . If there exist ζ ∈ Z , x0 ∈ X and
α : X ×X → (0,∞) such that

d(Tx, x) > 0 ⇒ ζ (α(x0, Tx)d(x, Tx), d(Tx, x0)) ≥ 0 for all x ∈ X,

then T is called as an α-Zc -contraction with respect to ζ .

Remark 2.12 1) If T is an α-Zc -contraction with respect to ζ , then we have

α(x0, Tx)d(x, Tx) < d(Tx, x0), (2.3)

for all x ∈ X such that Tx ̸= x0 . If Tx ̸= x0 then we have d(Tx, x0) > 0 .
Case 1. If Tx = x , then α(x0, Tx)d(x, Tx) = 0 < d(Tx, x0) .
Case 2. If Tx ̸= x , then d(Tx, x) > 0 . Since α(x0, Tx) > 0 , then by the condition (ζ2) and the definition

of an α-Zc -contraction, we find

0 ≤ ζ (α(x0, Tx)d(x, Tx), d(Tx, x0)) < d(Tx, x0)− α(x0, Tx)d(x, Tx)

and hence
α(x0, Tx)d(x, Tx) < d(Tx, x0).

2) If α(x0, Tx) = 1 then an α-Zc -contraction T turns into a Zc -contraction with respect to ζ and the
equation (2.3) turns into Equation (2.1) .

Now we give the following theorem.

Theorem 2.13 Let T be an α-Zc -contraction with respect to ζ with x0 ∈ X . Assume that T is α-x0 -
admissible. If α(x0, x) ≥ 1 for x ∈ Dx0,ρ and 0 < d(Tx, x0) ≤ ρ for x ∈ Dx0,ρ − {x0} , then Dx0,ρ is a fixed
disc of T .

Proof Let ρ = 0 . In this case Dx0,ρ = {x0} and the α -Zc -contractive hypothesis yields Tx0 = x0 . Indeed,
if Tx0 ̸= x0 then d(x0, Tx0) > 0 and using the definition of an α -Zc -contraction we get

ζ (α(x0, Tx0)d(Tx0, x0), d(Tx0, x0)) ≥ 0.

We have a contradiction by the condition (ζ2) . Hence, it should be Tx0 = x0 .
Assume that ρ ̸= 0 . Let x ∈ Dx0,ρ be such that Tx ̸= x . By the hypothesis, we have α(x0, x) ≥ 1 and

by the α -x0 -admissible property of T we get α(x0, Tx) ≥ 1 . Then using the condition (ζ2) we find

ζ (α(x0, Tx)d(Tx, x), d(Tx, x0)) < d(Tx, x0)− α(x0, Tx)d(Tx, x)

< ρ− d(Tx, x) ≤ ρ− ρ = 0,

2799



ÖZGÜR/Turk J Math

a contradiction with the α -Zc -contractive property of T . It should be Tx = x , so T fixes the disc Dx0,ρ . ✷

Let us consider the number m∗(x, y) defined as follows:

m∗(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

. (2.4)

Using simulation functions and the number m∗(x, y) , new fixed-point results were obtained in [17]. Moreover,
using this number, some discontinuity results at fixed point was given in [2]. Now we obtain a new fixed-disc
result using the number m∗(x, y) and the set of simulation functions.

We give the following definition.

Definition 2.14 Let (X, d) be a metric space, T : X → X a self-mapping and ζ ∈ Z . T is said to be a Ćirić
type Zc -contraction with respect to ζ if there exist an x0 ∈ X such that the following condition holds for all
x ∈ X :

d(Tx, x) > 0 ⇒ ζ (d(Tx, x),m∗(x, x0)) ≥ 0.

Now we give the following theorem.

Theorem 2.15 Let (X, d) be a metric space and T : X → X a Ćirić type Zc - contraction with respect to ζ

with x0 ∈ X . If the condition 0 < d(Tx, x0) ≤ ρ holds for all x ∈ Dx0,ρ−{x0} then Dx0,ρ is a fixed disc of T .

Proof Let ρ = 0 . In this case we have Dx0,ρ = {x0} and the Ćirić type Zc -contractive hypothesis yields
Tx0 = x0 . Indeed, if Tx0 ̸= x0 then we have d(x0, Tx0) > 0 . By the definition of a Ćirić type Zc -contraction
we have

ζ (d(Tx0, x0),m
∗(x0, x0)) ≥ 0. (2.5)

Since we have

m∗(x0, x0) = max

{

d(x0, x0), d(x0, Tx0), d(x0, Tx0),
d(x0, Tx0) + d(x0, Tx0)

2

}

= d(x0, Tx0),

we find
ζ (d(Tx0, x0),m

∗(x0, x0)) = ζ (d(Tx0, x0), d(x0, Tx0)) < 0

by the condition (ζ2) . This is a contradiction to Equation (2.5). Hence, it should be Tx0 = x0 .
Assume that ρ ̸= 0 . Let x ∈ Dx0,ρ be such that Tx ̸= x . Then we have

m∗(x, x0) = max

{

d(x, x0), d(x, Tx), d(x0, Tx0),
d(x, Tx0) + d(x0, Tx)

2

}

= max

{

d(x, x0), d(x, Tx),
d(x, x0) + d(x0, Tx)

2

}

.

By the hypothesis, we have
ζ (d(Tx, x),m∗(x, x0)) ≥ 0
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and so

ζ

(

d(Tx, x),max

{

d(x, x0), d(x, Tx),
d(x, x0) + d(x0, Tx)

2

})

≥ 0. (2.6)

We have the following cases:

Case 1. Let max
{

d(x, x0), d(x, Tx),
d(x,Tx0)+d(x0,Tx)

2

}

= d(x, x0) . From (2.6) we get

ζ (d(Tx, x), d(x, x0)) ≥ 0.

Using the condition (ζ2) and considering definition of ρ , we find

ζ (d(Tx, x), d(x, x0)) < d(x, x0)− d(Tx, x) ≤ ρ− d(Tx, x) ≤ ρ− ρ = 0.

This is a contradiction with the Ćirić type Zc -contractive property of T .

Case 2. Let max
{

d(x, x0), d(x, Tx),
d(x,x0)+d(x0,Tx)

2

}

= d(x, Tx) . From (2.6) we get

ζ (d(Tx, x), d(x, Tx)) ≥ 0.

Using the condition (ζ2) , again we get a contradiction.

Case 3. Let max
{

d(x, x0), d(x, Tx),
d(x,x0)+d(x0,Tx)

2

}

= d(x,x0)+d(x0,Tx)
2 . From (2.6) we get

ζ

(

d(Tx, x),
d(x, x0) + d(x0, Tx)

2

)

≥ 0.

Using the condition (ζ2) , we get

ζ

(

d(Tx, x),
d(x, x0) + d(x0, Tx)

2

)

<
d(x, x0) + d(x0, Tx)

2
− d(Tx, x)

≤ ρ− d(Tx, x) ≤ ρ− ρ = 0.

Again this is a contradiction with the Ćirić type Zc -contractive property of T .
In all of the above cases we have a contradiction. Hence, it should be Tx = x and consequently, T fixes

the disc Dx0,ρ . ✷

3. A common fixed-disc theorem
In this section, we give a common fixed-disc result for a pair of self-mappings (T, S) of a metric space (X, d) .
If Tx = Sx = x for all x ∈ Dx0,r then the disc Dx0,r is called the common fixed disc of the pair (T, S) . At
first, we modify the number defined in (2.4) for a pair of self-mappings as follows:

m∗

S,T (x, y) = max

{

d(Tx, Sy), d(Tx, Sx), d(Ty, Sy),
d(Tx, Sy) + d(Ty, Sx)

2

}

. (3.1)

Then we give the following theorem using the numbers m∗

S,T (x, y) , ρT = infx∈X{d(x, Tx) | Tx ̸= x} ,
ρS = infx∈X{d(x, Sx) | Sx ̸= x} and r ∈ R

+ ∪ {0} defined by

r = inf
x∈X

{d(Tx, Sx) | Tx ̸= Sx}. (3.2)

Let µ = min {ρT , ρS , r} .
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Theorem 3.1 Let T, S : X → X be two self-mappings on a metric space. Assume that there exists ζ ∈ Z and
x0 ∈ X such that

d(Tx, Sx) > 0 ⇒ ζ
(

d (Tx, Sx) ,m∗

S,T (x, x0)
)

≥ 0 for all x ∈ X

and
d(Tx, x0) ≤ µ, d(Sx, x0) ≤ µ for all x ∈ Dx0,µ.

If T is a Zc -contraction with respect to ζ with x0 such that 0 < d(Tx, x0) ≤ ρT for x ∈ Dx0,ρT
− {x0} (or

S is a Zc -contraction with respect to ζ with x0 such that 0 < d(Sx, x0) ≤ ρS for x ∈ Dx0,ρS
− {x0} ) , then

Dx0,µ is a common fixed disc of T and S in X .

Proof At first, we show that x0 is a coincidence point of T and S , that is, Tx0 = Sx0 . Conversely, assume
that Tx0 ̸= Sx0 , so d(Tx0, Sx0) > 0 . Using the condition (ζ2) , we have

ζ
(

d (Tx0, Sx0) ,m
∗

S,T (x0, x0)
)

= ζ (d(Tx0, Sx0), d(Tx0, Sx0)) < 0.

However, this is a contradiction by the hypothesis. Hence, we find Tx0 = Sx0 , that is, x0 is a coincidence
point of T and S . If T is a Zc -contraction (or S is a Zc -contraction) then we have Tx0 = x0 (or Sx0 = x0)

and Tx0 = Sx0 = x0 .
Let µ = 0 . In this case we have Dx0,µ = {x0} and clearly Dx0,µ is a common fixed-disc of T and S .
Let µ > 0 and x ∈ Dx0,µ be an arbitrary point. Suppose Tx ̸= Sx and so d(Tx, Sx) > 0 . Using the

hypothesis d(Tx, x0) ≤ µ , d(Sx, x0) ≤ µ for all x ∈ Dx0,µ and considering the definition of µ we get

ζ
(

d (Tx, Sx) ,m∗

S,T (x, x0)
)

= ζ

(

d (Tx, Sx) ,max

{

d(Tx, Sx0), d(Tx, Sx),

d(Tx0, Sx0),
d(Tx,Sx0)+d(Tx0,Sx)

2

})

= ζ
(

d (Tx, Sx) ,max
{

d(Tx, x0), d(Tx, Sx), 0,
d(Tx,x0)+d(x0,Sx)

2

})

= ζ (d (Tx, Sx) , d(Tx, Sx)) .

This leads a contradiction by the condition (ζ2) . Therefore, x is a coincidence point of T and S .
Now, if u ∈ Dx0,µ is a fixed point of T then clearly u is also a fixed point of S and vice versa. If T is

a Zc -contraction (or S is a Zc -contraction) then by Theorem 2.2, we have Tx = x (or Sx = x) and hence
Tx = Sx = x for all x ∈ Dx0,µ . That is, the disc Dx0,µ is a common fixed-disc of T and S . ✷

Example 3.2 Let us consider the usual metric space X = R and the self-mapping T1 defined in Example 2.8.
Define the self-mapping T4 : R → R by

T4x =

{

x ; x ∈ [−3, 3]
3x ; x ∈ (−∞,−3) ∪ (3,∞)

.

Clearly, we have µ = 1 . Then the pair (T1, T4) satisfies the conditions of Theorem 3.1 for µ = 1 , x0 = 0 and
the function ζ6 : [0,∞)2 → R defined as ζ6(t, s) =

3
4s− t . Hence, the disc D0,1 = [−1, 1] is the common fixed

disc of the self-mappings T1 and T4 .
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4. Applications of fixed points in neural networks

In this section, we discuss some possible applications of our fixed-disc results in the study of neural networks. It
is well known that some fixed point results have been extensively used in various types of neural networks and
that the multistability analysis of neural networks depends on the type of used activation functions (see [11]
and the references therein). For example, in [31], using the Brouwer’s fixed point theorem, the multistability
analysis was discussed for neural networks with a class of continuous Mexican-hat-type activation functions. In
numerical simulations, the following Mexican-hat-type function was used:

g(x) =















−1 , −∞ < x < −1
x , −1 ≤ x ≤ 1

−x+ 2 , 1 < x ≤ 3
−1 , 3 < x < +∞

.

Notice that the disc D0,1 is a fixed disc of the activation function g(x) . The graphic of g(x) can be shown in
the figure (this graphic is drawn using Mathematica [32]).

-4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Figure 1. The graph of the Mexican-hat-type activation function g(x) .

On the other hand, it is worth to mention that most of the popular activation functions used in neural
networks are those mappings having fixed-discs. For example, exponential linear unit (ELU) function defined
by

f(x) =

{

x ; if x ≥ 0
α(exp(x)− 1) ; if x < 0

,

where α is constant of ELUs, and S-shaped rectified linear unit function (SReLU) defined by

h(xi) =







tri + ari (x− tri ) ; xi ≥ tri
xi ; tri > xi > tli

tli + ali(x− tli) ; xi ≤ tli

,
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where
{

tri , a
r
i , a

l
i, t

l
i

}

are four learnable parameters used to model an individual SReLU activation unit, are
well-known activation functions (see [4] and [6] for more details).

Therefore, the study of features of mappings which have fixed-discs has significance in both theory and
application.

5. Conclusion and future work
In this paper, we have obtained new fixed-disc results presenting a new approach via simulation functions. Using
similar approaches, it can be studied new fixed-disc results on metric and some generalized metric spaces. As a
future work, it is a meaningful problem to investigate some conditions to exclude the identity map of X from
Theorem 2.2, Theorem 2.13, Theorem 2.15 and related results.
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