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ABSTRACT 

  This paper demonstrates that the conditional negative binomial model for panel 

data, proposed by Hausman, Hall and Griliches (1984), is not a true fixed-effects method.  This 

method—which has been implemented in both Stata and LIMDEP—does not, in fact, control for 

all stable covariates.  Three alternative methods are explored.  A negative multinomial model 

yields the same estimator as the conditional Poisson estimator and, hence, does not provide any 

additional leverage for dealing with overdispersion.  On the other hand, a simulation study yields 

good results from applying an unconditional negative binomial regression estimator with dummy 

variables to represent the fixed effects.  There is no evidence for any incidental parameters bias 

in the coefficients, and downward bias in the standard error estimates can be easily and 

effectively corrected using the deviance statistic. Finally, an approximate conditional method is 

found to perform at about the same level as the unconditional estimator.   
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1. INTRODUCTION 

 A major attraction of panel data is the ability to control for all stable covariates, without 

actually including them in a regression equation.  In general, this is accomplished by using only 

within-individual variation to estimate the parameters, and then averaging the estimates over 

individuals.  Regression models for accomplishing this are often called fixed-effects models.  

Fixed-effects models have been developed for a variety of different data types and models, 

including linear models for quantitative data (Mundlak 1961), logistic regression models for 

categorical data (Chamberlain 1980), Cox regression models for event history data (Yamaguchi 

1986, Allison 1996), and Poisson regression models for count data (Palmgren 1981). 

Here we consider some alternative fixed-effects models for count data.  First, we show 

that the fixed-effects negative binomial model proposed by Hausman, Hall and Griliches (1984) 

(hereafter HHG) is not a true fixed-effects method.  Next we consider a negative multinomial 

model, which leads back to the estimator for the fixed-effects Poisson model.  We then use 

simulated data to compare an unconditional negative binomial estimator with the fixed-effects 

Poisson estimator.  The negative binomial estimator does not appear to suffer from any 

“incidental parameters” bias, and is generally superior to the Poisson estimator.  Finally, we 

investigate an approximate conditional likelihood method for the negative binomial model.  Its 

performance on the simulated data is roughly comparable to that of the unconditional negative 

binomial estimator.   

2.  THE FIXED-EFFECTS POISSON MODEL 

 The fixed-effects Poisson regression model for panel data has been described in detail by 

Cameron and Trivedi (1998).  The dependent variable yit varies over individuals (i=1,…, n) and 



 4

over time (t=1,…,Ti).  It is assumed to have a Poisson distribution with parameter µit which, in 

turn, depends on a vector of exogenous variables xit according to the loglinear function 

itiit xβδµ +=ln  (1) 

where δi is the “fixed-effect”.   

 One way to estimate this model is to do conventional Poisson regression by maximum 

likelihood, including dummy variables for all individuals (less one) to directly estimate the fixed 

effects.  An alternative method is conditional maximum likelihood, conditioning on the count 

total ∑
t

ity  for each individual.  For the Poisson model, this yields a conditional likelihood that 

is proportional to  

∏∏ ∑ 















i t

it

s
is

it

y

)exp(
)exp(

x
x
β

β  (2) 

which is equivalent to the likelihood function for a multinomial logit model for grouped data. 

Note that conditioning has eliminated the δi parameters from the likelihood function.   

 For logistic regression models, it is well known that estimation of fixed-effects models by 

the inclusion of dummy variables yields inconsistent estimates of β (Hsiao 1986) due to the 

“incidental parameters” problem (Kalbfleisch and Sprott 1970) while conditional estimation does 

not suffer from this problem.  For Poisson regression, on the other hand, these two estimation 

methods—unconditional maximization of the likelihood and conditional likelihood—always 

yield identical estimates for β and the associated covariance matrix (Cameron and Trivedi 1998).  

Hence, the choice of method should be dictated by computational convenience.   

 The fixed-effects Poisson regression model allows for unrestricted heterogeneity across 

individuals but, for a given individual, there is still the restriction that the mean of each count 

must equal its variance: 
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 ititit yyE µ== )var()(          (3) 

In many data sets, however, there may be additional heterogeneity not accounted for by the 

model. 

As an example, let’s consider the patent data analyzed by HHG and reanalyzed by 

Cameron and Trivedi (1998).  The data consist of 346 firms with yearly data on number of 

patents from 1975 to 1979.  Thus, yit is the number of patents for firm i in year t.  This variable 

ranged from 0 to 515 with a mean of 35 and a standard deviation of 71.  A little over half of the 

firm years had patent counts of five or less. The regressor variables include the logarithm of 

research and development expenditures in the current year and in each of the previous five years.  

All the fitted models also include four dummy variables corresponding to years 1976 to 1979.   

 To analyze the data, we created a separate observation for each firm year, for a total of 

1730 working observations.  We then estimated a fixed-effects Poisson regression model by 

conventional Poisson regression software1, with 345 dummy variables to estimate the fixed 

effects.  Results for the research and development variables are shown in the first two columns of 

Table 1.  These numbers differ somewhat from those in Cameron and Trivedi (1998), but are 

identical to the corrected results reported in their web site 

(http://www.econ.ucdavis.edu/faculty/cameron/).  

[TABLE 1 ABOUT HERE] 

 A potential problem with these results is that there is still some evidence of 

overdispersion in the data.  The ratio of the deviance to the degrees of freedom is 2.04 

(deviance=2807 with 1374 d.f.) and the ratio of the Pearson goodness-of-fit chi-square to the 

degrees of freedom is 1.97 (deviance=2709 with 1374 d.f.).  For a good fitting model, these 

measures should be close to 1.  Substantial departures from this ratio could indicate a problem 

http://www.econ.ucdavis.edu/faculty/cameron/
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with the model specification, and also suggest that the estimated standard errors may be 

downwardly biased.   

3. THE HHG NEGATIVE BINOMIAL MODEL 

 HHG deal with the problem of overdispersion by assuming that yit has a negative 

binomial distribution, which can be regarded as a generalization of the Poisson distribution with 

an additional parameter allowing the variance to exceed the mean.  There are several different 

ways to parameterize the negative binomial distribution, and the choice can be consequential for 

regression models.  In the HHG model, the negative binomial mass function can be written as  
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where Γ is the gamma function.  The parameter θi is assumed to be constant over time for each 

individual while λ it depends on covariates by the function 

itit xβλ =ln . (5) 

The decision to decompose λ it as a function of the covariates is somewhat surprising, since λ is 

usually regarded as an overdispersion parameter.  That’s because (4) becomes the Poisson mass 

function as λ→∞. 

The mean and variance of yit are given by 
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Under this model, the ratio of the variance to the mean is 1+θi which can vary across individuals 

but, as already noted, is constant over time.    
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HHG further assume that for a given individual i, the yit are independent over time.  

These assumptions imply that ∑
t

ity also has a negative binomial distribution with parameters θi 

and∑
t

itλ .  Conditioning on these total counts, the likelihood function for a single individual is 

given by 
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thereby eliminating the θi parameters.  The likelihood for the entire sample is obtained by 

multiplying together all the individual terms like (7).  This likelihood may be maximized with 

respect to the β  parameters using conventional numerical methods.  In fact, the method has been 

implemented in at least two commercial statistical packages, Stata (www.stata.com) and 

LIMDEP (www.limdep.com).   

 In the middle two columns of Table 1, we report results of applying this method to the 

patent data2, using the same covariates as Cameron and Trivedi (1998).  The numbers reported 

here are the same as the corrected numbers given in their web site.  Note that the coefficients are 

similar in magnitude to those for the conditional Poisson method, but the estimated standard 

errors are appreciably larger because the model allows for overdispersion 

 Unfortunately, this negative binomial model and its conditional likelihood does not really 

fit the bill as a fixed-effects method.  The basic problem is that the θi parameters that are 

conditioned out of the likelihood function do not correspond to different intercepts in the 

loglinear decomposition of λ it.  HHG’s rationale is that if we write θi = exp(δi), equations (5) and 

(6) imply that  
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Therefore, it appears that this model does allow for an arbitrary intercept δi for each individual.  

The problem with this approach is that the δi’s play a different role than xit. Specifically, changes 

in xit affect the mean directly, and affect the variance only indirectly through the mean. But 

changes in δi affect the variance both indirectly, through the mean, and directly.  If we regard δi 

as representing the effects of omitted explanatory variables, then there is no compelling reason 

why these variables should have a different kind of effect from that of xit. 

 To put it another way, suppose we begin with equations (6) and specify 

)exp( iitiit zγβδλ ++= x  

where δi is an individual-specific intercept and zi is a vector of time-invariant covariates. Then 

conditioning on the total count for each individual does not eliminate δi or γzi from the likelihood 

function.   

 Symptomatic of this problem is that using HHG’s conditional likelihood in (7), one can 

estimate regression models with both an intercept and time-invariant covariates, something that 

is usually not possible with conditional fixed-effects models.  The last two columns of Table 1 

show results for estimating the conditional negative binomial model with an intercept and two 

time-invariant covariates.3  Both the intercept and one of the two covariates are statistically 

significant at beyond the .01 level.   

4.  A NEGATIVE MULTINOMIAL MODEL 

We now consider an alternative parameterization of the negative binomial model that is a 

more natural generalization of the Poisson model.  The mass function for a single yit is given by 
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with mean and variance functions 
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Note that the mean is allowed to vary with time, but the overdispersion parameter λ i is assumed 

to be constant for each individual.  To model dependence on covariates, we let 

itiit xβδµ +=ln . (10) 

Cameron and Trivedi (1998) refer to this as an NB2 model, to distinguish it from the previous 

NB1 model.   

 If we assume (along with HHG) that the event counts are independent across time for 

each individual, then this model is not tractable for deriving a conditional likelihood.  That’s 

because ∑
t

ity does not itself have a negative binomial distribution, so it’s awkward to condition 

on it.  More technically, under this specification, there is no complete sufficient statistic for the 

δi’s that is a function of the data alone.    
 As an alternative approach, let’s assume that the yit have a negative multinomial 

distribution, a well-known multivariate generalization of the negative binomial distribution 

(Johnson and Kotz 1969).  For a single individual, the joint mass function is given by  
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with µit specified as in (10).4  This multivariate distribution has the property that the marginal 

distribution of each yit is negative binomial as defined in (8).  Furthermore, the sum ∑
t

ity has a 

negative binomial distribution with parameters ∑
t

itµ and λ i.  Unlike the HHG model, this one 

does not assume that event counts in different time intervals are independent for a given 

individual.  In fact, the correlation (Johnson and Kotz 1969) between yit and yis (s≠t) is  

 







+








+

=
iis

is

iit

it
isit yy

λµ
µ

λµ
µρ ),(  (12) 



 10

 To derive a fixed effects estimator for β, we can condition the joint mass function on the 

total ∑
t

ity , which yields 
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Thus, conditioning gives us a distribution that doesn’t depend on the parameter λ i but is 

proportional to the conditional likelihood for the Poisson model in equation (2).  In other words, 

the fixed-effects negative multinomial model leads to the same conditional estimator of β as the 

fixed-effects Poisson model.5   

 So it seems that the negative multinomial approach doesn’t accomplish anything with 

respect to overdispersion. To understand this, recall that the negative binomial distribution can 

be generated by compounding a Poisson random variable with a gamma random variable.  The 

negative multinomial can be generated by compounding a set of independent Poisson random 

variables with a single gamma random variable.  Thus, the overdispersion in the negative 

multinomial can be thought of as arising from a single random variable that is common to all the 

event counts for a given individual (which is why the correlation in (12) is not zero).  

Conditioning on the total count for each individual removes all the unobserved heterogeneity, 

both that arising from the δi fixed-effects and the unobserved heterogeneity that is intrinsic to the 

negative multinomial distribution.   
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5.  CONVENTIONAL APPROACHES TO OVERDISPERSION 

 We have seen that the HHG method doesn’t condition out the fixed-effects, while the 

negative multinomial method conditions out too much to be useful.  What’s left? A relatively 

simple approach is to estimate the β coefficients under the fixed-effects Poisson model, but 

adjust the standard errors upward for overdispersion.  A commonly-used adjustment is to 

multiply the standard errors by the square root of the ratio of the goodness-of-fit chi-square to the 

degrees of freedom.  (Either Pearson’s chi-square or the deviance could be used. ) The first two 

columns of Table 2 show the Poisson coefficients and adjusted standard errors for the patent 

data.  The coefficients are the same as those in Table 1.  The standard errors were obtained by 

multiplying the standard errors in Table 1 by 1.404, the square root of Pearson’s chi-square 

divided by the degrees of freedom.   

[TABLE 2 ABOUT HERE] 

 An alternative approach is to estimate an unconditional negative binomial model.  That 

is, to specify a conventional NB2 regression model, with dummy variables to estimate the fixed-

effects.  Results of doing that for the patent data are shown in the last two columns of Table 2.6  

The coefficients are similar to those obtained with a Poisson specification, but the negative 

binomial standard errors are notably larger than the Poisson standard errors, even though the 

latter are already adjusted for overdispersion.   

 There are two potential problems with the unconditional negative binomial method.  

First, since there is a potential incidental parameters problem, it is questionable whether the 

coefficient estimates are consistent.  As yet, there is no proof of this one way or the other.  

Second, in the case of large sample sizes, it may be computationally impractical to estimate 

coefficients for large numbers of dummy variables.  Greene (2001) has shown that the 
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computational problem can be readily overcome for this and many other non-linear fixed-effects 

models, although conventional software would have to be modified to implement his methods.   

 To investigate the performance of the unconditional negative binomial estimator and the 

fixed-effects Poisson estimator, we generated simulated data under the following model.  For 

100 individuals (i=1,…, 100) and two time periods (t=1, 2), let yit have a negative binomial 

distribution with conditional mean µit and overdispersion parameter λ (constant over individuals 

and time).  Assume that yi1 and yi2 are independent, conditional on µit.  Restricting the panel to 

only two time periods produces conditions most likely to yield evidence of bias due to the 

incidental parameters problem.  Using samples of only 100 cases facilitates the use of 

conventional software to estimate the unconditional models (by including 99 dummies).   

 The conditional mean is specified as 

 )exp( iitit zx γβηµ +=  

where xit and zi have standard normal distributions with correlation ρ.  The variable zi will be 

treated as unobserved.  It can be interpreted as representing all the stable, unobserved 

characteristics of individual i that have some effect on yit.  Conditional on zi, the observed 

variables xi1 and xi2 are uncorrelated.  Unconditionally, their correlation is ρ2.   

 As a baseline model, we set β = 1, γ =1, λ =1, and ρ = 0.  For these parameter values, we 

generated data for 500 samples, each of size 100.  (With two observations per case, the working 

sample size was 200).  For each sample, we estimated β using a conventional negative binomial 

regression program with x as the predictor, along with 99 dummy variables to capture the fixed 

effects.  We then estimated β via a fixed-effects Poisson regression model, with an 

overdispersion correction for the standard errors. (Standard errors were multiplied by the square 

root of the ratio of the Pearson chi-square goodness-of-fit statistic to its degrees of freedom).   



 13

 This process was replicated over a range of plausible values for each parameter, with 

other parameters held at their baseline values.  For each set of parameter values, Table 3 gives 

the mean of the coefficient estimates, standard error (standard deviation across the repeated 

samples), root mean squared error, and proportion of times that the nominal 95 percent 

confidence intervals contained the true value.  For ease of comparison, the baseline model is 

replicated within each subpanel of Table 3.  These baseline estimates were made from new 

random draws in each subpanel, which should provide some feel for the sampling variability of 

these estimates.  

 One potential problem that occurred with the negative binomial estimator was that, for 

many of the samples, the estimate for the overdispersion parameter λ did not converge.  The 

number of nonconvergent samples is shown in Table 3. For the baseline model, this happened in 

about 20 percent of the samples.  For other models, the percentage of convergent samples ranged 

from zero for true λ = 50  to 100 for true λ = .2.  Nonconvergence for λ did not seem to affect the 

estimates for β, however.  For all models with appreciable numbers of nonconvergent samples, 

we compared the means and standard errors of β for the convergent and nonconvergent samples.  

In no case was there a statistically significant difference, so the results in Table 3 are based on all 

samples combined.   

 The general conclusions to be drawn from Table 3 are these: 

• There is little evidence for incidental parameters bias.  Both the negative binomial and 

Poisson estimates appear to be approximately unbiased under all conditions, although the 

negative binomial estimates are always a bit too low.   

• Root mean squared errors are appreciably lower for the negative binomial estimator, except 

when λ = 50 when the negative binomial distribution is very close to a Poisson distribution. 
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• Both estimators have confidence intervals that are too small, yielding coverage rates that are 

often considerably lower than the nominal 95 percent level.  The Poisson estimator is much 

worse in this regard, especially for some of the more extreme parameter values.  Although 

not obvious from the table, these reduced coverage rates stem from standard error estimates 

that are generally too small.   

 Now for the details.  Variation in λ is crucial for comparing the negative binomial with 

the Poisson because it controls the degree of overdispersion.  More specifically, as λ→∞, the 

negative binomial converges to the Poisson.  Interestingly, both estimators do better in both 

RMSE and CI coverage when λ is large rather than small, although the degradation in 

performance with decreasing λ is more rapid for the Poisson estimator.   

 The parameter γ  controls the variance of the stable, unobserved heterogeneity. The 

performance of the negative binomial estimator is hardly affected at all by changes in γ.  But for 

the Poisson, increases in γ  produce both substantial increases in RMSE and major decreases in 

CI coverage.  Variations in the true value of β also show little impact on the performance of the 

negative binomial estimator.  For the Poisson estimator, the CI coverage remains fairly stable 

with variations in β, but there is some evidence for an increase in the RMSE as β gets larger.   

 The parameter η is a scale factor that affects both the mean and variance of the counts.  

For these models, η = 1 produces a mean of about 3.8 while η = 8 yields a mean of 23.  This is 

potentially important because when the mean is small, large proportions of the sample will have 

a count of 0 and it becomes increasingly difficult to discriminate between a Poisson distribution 

and a negative binomial distribution.  In Table 3, we see that for η = 1, the Poisson estimator 

actually does a little better than the negative binomial estimator in CI coverage, although its 
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RMSE is still about 30 percent larger.  As η gets larger, the coverage rate for the Poisson 

estimator deteriorates, while remaining stable for the negative binomial estimator.   

[TABLE 3 ABOUT HERE] 

 Finally, we examine the impact of ρ, the correlation between the observed variable x and 

the source of unobserved heterogeneity.  When ρ = 0, as with all the models examined thus far, 

we satisfy the assumptions of a random effects model and could, presumably, do better using a 

random-effects negative binomial or Poisson estimator.  When ρ ≠ 0, random-effects estimators 

are likely to be biased, while fixed-effects estimators should remove that bias.  Table 3 shows 

that both the negative binomial and Poisson estimators do a good job of avoiding bias in the 

estimate of β.  However, with increasing ρ, the performance of the negative binomial estimator 

remains stable, while the Poisson estimator deteriorates substantially in both RMSE and CI 

coverage.    

 In sum, the message of Table 3 is that, under the specified model, the unconditional 

fixed-effects negative binomial estimator is virtually always a better choice than the fixed-effects 

Poisson estimator.  But it is still troubling that the negative binomial estimator is accompanied by 

underestimates of the standard errors, leading to insufficient coverage of confidence intervals.  It 

is natural to ask whether there is some way to adjust the standard errors upward.  Table 4 shows 

the consequences of multiplying the standard errors by the square root of the ratio of the 

deviance to its degrees of freedom7, where the deviance is defined as 

 { }∑∑ +++−=
i t

itititititit yyyyD )]/()log[()()/log( λµλλµ . (14) 

With this correction, confidence intervals have close to their nominal coverage for all parameter 

values considered in the simulation.  Somewhat surprisingly, standard error correction using the 

Pearson chi-square goodness-of-fit statistic did not produce any noticeable improvement over the 
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conventional model-based standard error estimates (results not shown).  Also, use of the 

deviance-based correction did not improve the confidence interval coverage for the Poisson 

estimator.   

[TABLE 4 ABOUT HERE] 

6.  AN APPROXIMATE CONDITIONAL ESTIMATOR 

Previously we remarked that conditional inference is not feasible for the NB2 model 

(with event counts independent over time for each individual) because there is no complete, 

sufficient statistic for the incidental parameters that is a function of the data alone.  However,  

Waterman and Lindsay (1996a), following the work of Small and McLeish (1989) have 

introduced an approximate method that mimics the beneficial properties of conditional inference, 

even in situations where a straightforward conditioning approach fails. This methodology is 

termed the projected score method.   

In conventional maximum likelihood estimation, the log-likelihood is differentiated to 

produce the score function. This function is then set equal to zero, and the solutions to this 

equation are the MLE's.  The projected score method brings the score function itself to the center 

of attention, and engineers a version of the score function that has properties equivalent to the 

conditional score function if it existed; the desirable property is that among all estimating 

functions that are insensitive to the incidental parameters, it provides the maximal information.  

Here are some details of the method.  Let β  be a vector of parameters of interest and let δ  

be a vector of nuisance (incidental) parameters.  Let U0(β, δ) be the conventional score function, 

that is, the first derivative of the log-likelihood function with respect to β.  Let U∞(β, δ) denote 

the optimal estimating function, which is defined as follows.  We restrict attention to all square, 

integrable functions g(β, δ) that satisfy the strong unbiasedness condition, 
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{ } 0),( 00 =δβgE    

for all true values of δ, and for any values of β0 and δ0. This condition implies that the estimating 

function is insensitive to the values of the nuisance parameters, which is what we desire in a 

conditional method.  Among functions that satisfy this condition, the optimal estimating equation 

is the one whose solution has lowest asymptotic variance.  This function exists whenever certain 

regularity conditions are satisfied (Waterman and Lindsay 1996a).  When a complete sufficient 

statistic exists, this optimal estimating function is identical to the score function for the 

conditional likelihood.  

It can be shown (Waterman and Linday 1996a) that the optimal estimating function U∞ 

can be expressed as an infinite series.  Consider a single individual i with nuisance parameters δi.  

Define Vα = ff /)(α  where f is the density function and f(α) is the α’th derivative of f with 

respect to δi.  Then, we have for individual i 

∑
∞

=
∞ −=

1
0 ),(),(

α
ααρδβδβ VUU  

where the ρa are coefficients that depend on the parameters but not the data.  

 We approximate U by the first r terms of this series: 

∑
=

−=
r

r VUU
1

0 ),(),(
α

ααρδβδβ  

Clearly one could construct an entire sequence of approximations to the optimal 

estimating function, but the hope is that the first approximation, denoted as the U2 estimating 

function is close enough for practical purposes. Waterman & Lindsay (1996b) show a number of 

examples for which this is the case.  The way in which these approximate score functions are 

engineered to be close to the optimal one is identical to the way a least squares line is engineered 
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to be close to the data.  That is a regression approach is used to obtain estimated values of ρa, but 

here the objects of interest are functions rather than data points.  This achieved by taking a set of 

derivatives of the score functions, their cross products and then finding expectations, so that the 

mathematical operations are differentiation and expectation.  The effort in accomplishing this is 

minimized by using symbolic software, such as Mathematica or Maple, which can derive the 

functions with relatively modest input from the analyst.  Once the projected score function has 

been obtained, the ML solutions can be obtained using standard software packages.  

Using the U2 approximation, we applied the projected score method to the NB2 model, 

which was the basis for the simulation study of the previous section.  (Mathematica and R 

programs for accomplishing this are available from the authors).  Simulation results are 

displayed in Table 5.   

Comparing the projected scores estimates in Table 5 with the unconditional estimates in 

Tables 3 and 4, we find noticeably less bias in the projected score estimates for every condition.  

On the other hand, the standard errors for the projected score estimates are somewhat larger than 

those for the unconditional estimates in every case but one.  Combining these results into the root 

mean squared errors, we find that the unconditional method does better in 13 out of the 21 

conditions.  With respect to confidence interval coverage, the projected score method is always 

appreciably better than the unconditional method using the uncorrected standard errors (Table 3).  

But when the unconditional estimates are corrected by the deviance (Table 4), the resulting 

confidence interval coverage is always closer to the nominal level than the coverage of the 

projected score method.  

[TABLE 5 ABOUT HERE] 
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In sum, it does not appear that the projected score method based on the U2 approximation 

offers any substantial advantage over the unconditional method with corrected standard errors, at 

least with respect to estimating β, the regression coefficients.  However, the projected score 

method was much better at estimating λ, the overdispersion parameter.   The number of 

convergence failures was far lower using the projected score method.  Furthermore, if we restrict 

our attention to samples in which the estimate of λ converged, the unconditional estimates of λ 

had substantially greater upward bias than the projected score estimates (not shown in the 

tables).  In principle, the projected score method could be improved by using more terms in the 

approximation. 

7.  CONCLUSION 

 The negative binomial model of Hausman, Hall and Griliches (1984) and its associated 

conditional likelihood estimator does not accomplish what is usually desired in a fixed-effects 

method, the control of all stable covariates.  That’s because the model is based on a regression 

decomposition of the overdispersion parameter rather than the usual regression decomposition of 

the mean.  Symptomatic of the problem is that programs that implement the conditional 

estimator have no difficulty estimating an intercept or coefficients for time-invariant covariates.   

 A good alternative is to do conventional negative binomial regression with direct 

estimation of the fixed effects rather than conditioning them out of the likelihood.  Greene (2001) 

has demonstrated the computational feasibility of this approach, even with large sample sizes.  

Simulation results strongly suggest that this estimation method does not suffer from incidental 

parameters bias, and has much better sampling properties that the fixed-effects Poisson 

estimator.  Bias in standard error estimates can be virtually eliminated by using a correction 

factor based on the deviance.   
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 The approximate conditional score method is another attractive alternative.  The 

approximation used here showed slightly less bias in the coefficient estimates but slightly more 

sampling variability than the unconditional estimator.  This performance could be improved still 

further by using a higher-order approximation.  Furthermore, estimation of the overdispersion 

parameter was much better with the approximate conditional method than with the unconditional 

method.  

REFERENCES 

Allison, Paul D. 1996. “Fixed Effects Partial Likelihood for Repeated Events.” Sociological 

Methods & Research 25: 207-222. 

Cameron, A. Colin and Pravin K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge, 

UK:  Cambridge University Press. 

Chamberlain, Gary A. 1980. “Analysis of Covariance with Qualitative Data.” Review of 

Economic Studies 47: 225-238.  

Guo, Guang. 1996. “Negative Multinomial Regression Models for Clustered Event Counts.” Pp. 

113-132 in Adrian E. Raftery (ed.), Sociological Methodology 1996.  Washington, DC:  

American Sociological Association.   

Greene, William. 2001. “Estimating Econometric Models with Fixed Effects.”  Unpublished 

paper available at http://www.stern.nyu.edu/~wgreene. 

Hausman, Jerry, Bronwyn H. Hall and Zvi Griliches. 1984. “Econometric Models for Count Data 

with an Application to the Patents-R&D Relationship.” Econometrica 52: 909-938. 

Hsiao, C. 1986. Analysis of Panel Data.  Cambridge, UK:  Cambridge University Press.   

Johnson, Norman L. and Samuel Kotz. 1969. Discrete Distributions.  New York, Wiley.   

http://www.stern.nyu.edu/~wgreene


 21

Kalbfleisch, John D. And David A. Sprott. 1970. “Applications of Likelihood Methods to 

Models Involving Large Numbers of Parameters” (with discussion).  Journal of the Royal 

Statistical Society Series B, 32: 175-208.   

Palmgren, Juni. 1981. “The Fisher Information Matrix for Log-Linear Models Arguing 

Conditionally in the Observed Explanatory Variables.” Biometrika 68: 563-566.  

Small, C. G. and D. L. McLeish. 1989. “ Projection as a Method for Increasing Sensitivity and 

Eliminating Nuisance Parameters.” Biometrika 76: 693-703.  

Waterman Richard P. and Bruce G. Lindsay. 1996a. “Projected Score Methods for 

Approximating Conditional Scores.”  Biometrika 83: 1-13. 

___________. 1996b. “A Simple and Accurate Method for Approximate Conditional Inference 

Applied to Exponential Family Models.” Journal of the Royal Statistical Society Series B, 

58: 177-188 

Yamaguchi, Kazuo. 1986. “Alternative Approaches to Unobserved Heterogeneity in the Analysis 

of Repeated Events.” Pp. 213-49 in Sociological Methodology 1986, edited by Nancy 

Brandon Tuma.  Washington, DC: American Sociological Association.   



 22

TABLE 1 
Conditional Regression Models for Number of Patents 

 
 Conditional Poisson Conditional Negative Binomial 
  

Coefficient 
Standard 

Error 
 

Coefficient 
Standard 

Error 
 

Coefficient
Standard 

Error 
LogRD-0 .322 .046 .363 .085 .272 .071 
LogRD-1 -.087 .049 .156 .099 -.098 .077 
LogRD-2 .079 .045 .174 .090 .032 .071 
LogRD-3 .001 .041 .015 .083 -.020 .066 
LogRD-4 -.005 .038 .029 .076 .016 .063 
LogRD-5 .003 .032 .136 .062 -.010 .053 
Log SIZE     .207 .078 
SCIENCE     .018 .198 
Intercept     1.660 .343 
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TABLE 2 
Regression Models with Overdispersion Corrections 

 
  

Fixed-Effects Poisson 
Unconditional 

Negative Binomial 
  

Coefficient 
Adjusted 

Standard Error 
 
Coefficient 

Standard 
Error 

LogRD-0 .322 .064 .356 .093 
LogRD-1 -.087 .068 .021 .102 
LogRD-2 .079 .063 .007 .096 
LogRD-3 .001 .058 .008 .089 
LogRD-4 -.005 .053 .117 .081 
LogRD-5 .003 .045 .011 .067 
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TABLE 3 
Simulation Results for Negative Binomial and Poisson Models 

 
 Negative Binomial Poisson 
 
Model 

 
β 

 
SE 

 
RMSE 

95% CI 
Coverage 

Non- 
Conv. 

 
β 

 
SE 

 
RMSE 

95% CI 
Coverage 

λ = .2 .978 .326 .327 .854 0 1.045 .458 .460 .724 
λ = .5 .966 .191 .194 .854 3 1.011 .278 .278 .746 
λ = 1 (base) .982 .145 .146 .826 156 1.018 .202 .203 .778 
λ = 10 .995 .063 .063 .902 500 1.005 .078 .078 .866 
λ = 50 .996 .052 .052 .952 500 1.002 .053 .053 .928 
γ = 0 .966 .124 .129 .846 327 1.003 .144 .144 .900 
γ = .5 .966 .139 .143 .819 281 1.005 .169 .169 .850 
γ = 1 (base) .974 .138 .140 .838 140  1.016 .202 .203  .782 
γ = 1.5  .967 .142 .146 .860 53 .999 .281 .281 .640 
β = 0 .008 .116 .116 .872 1 .006 .163 .163 .730 
β = .5 .474 .124 .126 .850 25 .490 .164 .164 .794 
β = 1 (base) .978 .131 .132 .866 144 1.014 .194 .194 .800 
β = 1.5 1.454 .151 .158 .806 261 1.513 .279 .279  .726 
η = 1 .978 .167 .168 .836 452 1.025 .221 .222 .860 
η = 2 .974 .137 .139 .870 353 1.008 .189 .189 .836 
η = 4 (base) .968 .139 .142 .844 152 1.009 .211 .211 .758 
η = 6 .972 .125 .128 .850 60 1.004 .202 .202  .752 
η = 8 .977 .131 .133 .840 19 1.006 .209 .209  .760 
ρ = 0 (base) .959 .140 .146 .822 139 .989 .197 .197 .780 
ρ = .50 .972 .160 .162 .846 38 1.011 .311 .311  .646 
ρ = .75 .978 .204 .205 .872 6 1.016 .451 .451  .588 
 



 25

TABLE 4 
Confidence Interval Coverage for Negative Binomial Model 

With Deviance Overdispersion Correction. 
 
 
Model 

95% CI 
Coverage

 
Model 

95% CI 
Coverage 

λ = .2 .982 β = 0 .960 
λ = .5 .972 β = .5 .972 
λ = 1 (baseline) .956 β = 1 (baseline) .948 
λ = 10 .956 β = 1.5 .940 
λ = 50 .956 η = 1 .954 
γ = 0 .966 η = 2 .964 
γ = .5 .956 η = 4 (baseline) .956 
γ = 1 (baseline) .960 η = 6 .968 
γ = 1.5  .952 η = 8 .952 
  ρ = 0 (baseline) .962 
  ρ = .50 .964 
  ρ = .75 .950 
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TABLE 5 
Simulation Results for Projected Score Method 

 
 Projected Score Negative Binomial 
 
Model 

 
β 

 
SE 

 
RMSE 

95% CI 
Coverage 

Non- 
Convg. 

λ = .2 .994 .336 .336 .929 22 
λ = .5 .993 .211 .211 .916 7 
λ = 1 (baseline) .988 .139 .139 .934 1 
λ = 10 1.002 .069 .069 .919 7 
λ = 50 1.001 .053 .053 .933 65 
γ = 0 .995 .136 .136 .932 0 
γ = .5 .997 .141 .141 .924 0 
γ = 1 (baseline) .996 .140 .140 .944 0 
γ = 1.5  1.003 .143 .143 .927 4 
β = 0 .005 .125 .125 .940 0 
β = .5 .504 .133 .133 .936 1 
β = 1 (baseline) 1.004 .140 .140 .936 0 
β = 1.5 1.493 .155 .155 .934 2 
η = 1 1.004 .178 .178 .930 0 
η = 2 1.008 .164 .164 .932 1 
η = 4 (baseline) .989 .141 .142 .920 0 
η = 6 1.000 .136 .136 .914 1 
η = 8 1.002 .132 .132 .934 0 
ρ = 0 (baseline) .993 .140 .140 .924 0 
ρ = .50 .996 .141 .141 .920 0 
ρ = .75 1.007 .136 .136 .948 0 
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NOTES 

                                                 
∗  University of Pennsylvania. 

1 We used the GENMOD procedure in SAS.  

2 To estimate the model, we used the NLMIXED procedure in SAS.  This required the 

specification of the log-likelihood for a single individual.   

3 SIZE is the firm book value in 1972.  SCIENCE is an indicator variable equal to 1 if the firm is 

in the science sector.   

4 This distribution is the same as the one described by Cameron and Trivedi (1998, p. 288) as a 

Poisson random effects model with gamma distributed random effects.   

5 See Guo (1996) for an application of the negative multinomial model in a random-effects 

setting.  

6 Estimates were obtained with SAS PROC GENMOD.   

7 With SAS PROC GENMOD, this correction can be implemented with the DSCALE option on 

the MODEL statement.   


	3. THE HHG NEGATIVE BINOMIAL MODEL
	4.  A NEGATIVE MULTINOMIAL MODEL
	5.  CONVENTIONAL APPROACHES TO OVERDISPERSION
	6.  AN APPROXIMATE CONDITIONAL ESTIMATOR

	7.  CONCLUSION
	REFERENCES
	TABLE 1
	Conditional Regression Models for Number of Patents
	TABLE 2
	Regression Models with Overdispersion Corrections
	TABLE 3
	Simulation Results for Negative Binomial and Poisson Models
	TABLE 4
	Confidence Interval Coverage for Negative Binomial Model With Deviance Overdispersion Correction.
	TABLE 5
	Simulation Results for Projected Score Method


