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Abstract—We investigate the outage probability and the average
bit error rate (BER) of a dual-hop fixed gain relaying system in the
presence of co-channel interference and thermal noise at the relay
and the destination. Our analysis assumes Rayleigh fading for
the source-relay and relay-destination channels and Rician fading
for the interfering channels. We present new closed-form/series
expressions for the outage probability and the average BER, which
allow for a rapid performance evaluation of fixed-gain relaying
in interference-impaired environments. The achievable diversity
order is also studied. It is further shown through numerical results
that the Rician K-factor of the interfering channel has a negative
effect on the overall outage probability and BER, yet this effect
is very small.

I. INTRODUCTION

Amplify-and-forward (AF) relaying has now become a well
studied protocol under thermal noise-limited conditions, (see
e.g. [1]–[3] and references therein). However, in practice,
the interference present in relay networks can cause severe
performance degradation [4].

Several recent works have studied the performance of AF
and decode-and-forward (DF) relaying for interference-limited
(negligible thermal noise) relay(s) or destination(s), see e.g.
[4]–[10]. In [4], the impact of interference on the performance
of a dual-hop channel state information (CSI)-assisted AF relay
network has been investigated. The authors of [5] have analyzed
the performance gains of a half-duplex multi-user network
where the relay-destination slot is reused, causing interference
at the destination nodes. In [6], [7], the performance of different
DF relaying systems in the presence of interference has been
investigated. Assuming an interference-limited destination, in
[8], the outage probability of a fixed gain AF relay system
over Rayleigh fading channels has been investigated. In [9],
the performance of a dual-hop CSI-assisted AF system with
interference-limited relays has been studied. In [10], the out-
age probability of dual-hop CSI-assisted AF relaying with
interference-limited relays and destinations has been derived.

In cellular applications, the case of interference at the relay
has practical significance since relays may operate at the cell
edge providing extended coverage. Thus, due to the reuse of
frequency bands it is likely that relays are affected by line-
of-sight (LoS)/non LoS co-channel interference and thermal
noise. Nonetheless, the joint effects of interference and thermal-
noise on the performance of dual-hop fixed gain relay networks
has not been investigated in the existing literature. Motivated
by the absence of such an analysis, in this paper, we study
the outage probability and the average bit error rate (BER) of

dual-hop fixed gain AF relaying with interference and thermal
noise at the relay. In addition, the case where there exists
interference at the destination is also considered, and analyzed
separately. Assuming Rayleigh fading for the source-relay and
relay-destination channels and Rician fading for the interfering
channel, we derive new outage and BER expressions upon
statistically characterizing the signal-to-interference plus noise
ratio (SINR). The Rician fading assumption on the interference
link is motivated by the fact that it is used to model wireless
propagation comprising a LoS component and a scattered com-
ponent. Therefore, the derived analytical expressions quantify
the impact of interference on relay system performance for
a large set of environments. The analysis of Rician channels
is generally more difficult and as a special case, includes the
commonly assumed Rayleigh fading.

II. SYSTEM MODEL

A. Mode of Operation

We consider a communication system, where a source, S,
communicates with a destination, D, through a relay, R. All
nodes are equipped with a single antenna. It is assumed that
S does not have a direct link to D. The communication in the
system is divided into two orthogonal time intervals. In the first
time interval, S sends its symbol s0 to R. In the second time
interval, R communicates with D.

At R, the received signal in the presence of a single inter-
ferer, with an average power, P1, and additive white Gaussian
noise (AWGN) can be expressed as

yr =
√

Pshsre
jθsrs0 +

√
P1h1e

jθ1s1 + nr, (1)

where Ps is the transmit power, s1 is the interference symbol
and h1 is the channel amplitude of an interferer located in the
proximity of R; hsr and hrd are the Rayleigh fading amplitudes
of the S-R and R-D links, respectively, with average powers
E[|hsr|2] = σ2

sr and E[|hrd|2] = σ2
rd, respectively, with

E[·] denoting expectation. The phase of the useful and the
interfering signal at R, are denoted by θsr and θ1, respectively.
It is further assumed that h1 is a Rician distributed random
variable (RV) with E[|h1|2] = σ2

1 , and is independent of
hsr and hrd. Finally, nr denotes the AWGN at R satisfying
E[|nr|2] = N01.

B. Considered Scenarios

Depending on whether or not there exists interference at D,
two cases are considered in this paper which are referred to as
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Scenario (a) and Scenario (b), respectively. Specifically:

• Scenario (a): R experiences interference and AWGN
while D is interference-free and subject to AWGN only.
Reference [4] first considered Scenario (a) in an analysis
of CSI-assisted AF relays.

• Scenario (b): R experiences interference and AWGN
while D is interference-limited. An interference-limited D
was also considered in [8], however, no interference was
assumed at R.

1) Scenario (a): Let GF denote the fixed gain employed by
R. In the absence of interference at D, the received signal can
be expressed as

yd = hrde
jθrdGF

(√
Pshsre

jθsrs0 +
√

P1h1e
jθ1s1 + nr

)
+nd

(2)
where nd is the AWGN at D satisfying E[|nd|2] = N02, and
θrd denotes the phase of the R-D channel. Therefore, we obtain
the overall SINR as

γeq1 =
Ps|hsr|2|hrd|2

|hrd|2N01 + P1|hrd|2|h1|2 + N02
G2

F

. (3)

2) Scenario (b): The received signal at D is given by

yd = hrde
jθrdGF

(√
Pshsre

jθsrs0 +
√

P 1h1e
jθ1s1

)
(4)

+ hrde
jθrdGFnr +

√
P 2h2e

jθ2s2,

where h2 is the Rician faded channel from an interferer located
in the proximity of D with average power E[|h2|2] = σ2

2 ; s2

is the signal from the interferer in the proximity of D and θ2

denotes the phase of the interfering channel at D. The overall
SINR can be thus expressed as

γeq2 =
Ps|hsr|2|hrd|2

|hrd|2N01 + P1|hrd|2|h1|2 + P2|h2|2
G2

F

. (5)

III. OUTAGE PROBABILITY ANALYSIS

In this section, the outage probability under Scenarios (a) and
(b) is studied. In the case of outage probability, it is reasonable
to assume that s0, s1 and s2 are complex Gaussian distributed
RVs with unity average power. Since the relay’s output power
is constrained, GF takes the form:

GF =

√
Pr

Psσ2
sr + P1σ2

1 + N01
. (6)

1) Scenario (a): Using (6) we can simplify (3) as

γeq1 =
γ1γ2

(1 + u)γ2 + C
, (7)

where γ1 = Ps

N01
|hsr|2, γ2 = Pr

N02
|hrd|2, and u = P1

N01
|h1|2. The

constant C = γ̄1 + η1 + 1, where we have defined γ̄1 = Psσ2
sr

N01

and η1 = P1σ2
1

N01
.

To derive the outage probability of γeq1, conditioning on γ2

and u, we first express the cumulative distribution function (cdf)

of γeq1 as

Fγeq1(γT ) = Pr
{

γ1γ2

(1 + u)γ2 + C
< γT

}
=
∫ ∞

0

∫ ∞

0

Pr
{

γ1 < (1 + x) γT +
CγT

y

}
fu(x)fγ2(y)dxdy

(8)

where Pr {·} denotes probability and γT represents the outage
threshold SNR. The cdf of γ1, Fγ1(x) and the probability
density function (pdf) of γ2, fγ2(x) are given by Fγ1(x) = 1−
e−

x
γ̄1 and fγ2(x) = 1

γ̄2
e−

x
γ̄2 , respectively, where γ̄2 = Prσ2

rd

N02
.

Since the interferer at R, is subject to Rician fading, the pdf
of u is given by

fu(x) =
(1 + ω1)e

−ω1− (1+ω1)x
η1

η1
I0

(
2

√
ω1(1 + ω1)x

η1

)
(9)

where ω1 is the Rician K-factor, defined as the ratio of the
powers of the LoS component to the scattered components,
and I0(·) is the zeroth order modified Bessel function of the
first kind defined in [11, Eq. (8.431.1)].

Substituting the pdfs and the cdf into (8) we obtain

Fγeq1(γT ) = 1 − (1 + ω1)e
−ω1− γT

γ̄1

η1γ̄2

∫ ∞

0

e
−
(

1+ω1
η1

+
γT
γ̄1

)
x

× I0

(
2

√
ω1(1 + ω1)x

η1

)
dx

∫ ∞

0

e−
CγT
γ̄1y − y

γ̄2 dy. (10)

Using [11, Eq. (3.471.9)] and [12, Eq. (9)]∫ ∞

0

xe−
p2x2

2 I0(ax)dx =
1
p2

e
a2

2p2 (11)

in (10) yields

Fγeq1(γT ) = 1 − 2(1 + ω1)
e
−ω1− γT

γ̄1
+

ω1
1+

η1γT
(1+ω1)γ̄1

1 + ω1 + η1γT

γ̄1

(12)

×
√

CγT

γ̄1γ̄2
K1

(
2

√
CγT

γ̄1γ̄2

)
where K1(·) is the first order modified Bessel function of the
second kind defined in [11, Eq. (8.432.6)]. As expected, we
notice in (12) that the existence of interference at the relay
increases the overall outage probability. Furthermore, taking
the first order derivative of (12) with respect to ω1 we obtain

∂Fγeq1(γT )
∂ω1

= 2(η1γT )2
√

Cγ̄1γT

γ̄2
K1

(
2

√
CγT

γ̄1γ̄2

)
(13)

× ω1

((1 + ω1)γ̄1 + η1γT )3
e
−ω1− γT

γ̄1
+

ω1
1+

η1γT
(1+ω1)γ̄1 .

Since
∂Fγeq1 (γT )

∂ω1
> 0 holds, we infer that the outage probability

is an increasing function of ω1. As a result, an interferer with
a high Rician K-factor increases the outage probability, as
compared to an interferer with a low Rician K-factor.

2) Scenario (b): In this scenario, we can express the overall
SINR as

γeq2 =
γ1γ2

(1 + u)γ2 + Cv
, (14)
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where v = P2
N02

|h2|2.
The outage probability can be expressed as

Fγeq2(γT ) = Pr

(
γ1γ2

(1 + u)γ2 + Cv
< γT

)
=
∫ ∞

0

∫ ∞

0

∫ ∞

0

Pr

(
γ1 < (1 + x) γT +

CγT z

y

)
(15)

× fu(x)fγ2(y)fv(z)dxdydz.

Since the interferer at D is subject to Rician fading, the pdf of
v can be expressed as

fv(x) =
(1 + ω2)e

−ω2− (1+ω2)x
η2

η2
I0

(
2

√
ω2(1 + ω2)x

η2

)
,

(16)
where η2 = P2σ2

2
N02

and ω2 is the Rician K-factor.
Substituting the cdf of γ1 and the pdfs of γ2, u, and v we

obtain

Fγeq2(γT ) = 1 − (1 + ω1)(1 + ω2)e
−ω1−ω2− γT

γ̄1

η1η2γ̄2

×
∫ ∞

0

e
−
(

1+ω1
η1

+
γT
γ̄1

)
x
I0

(
2

√
ω1(1 + ω1)x

η1

)
dx

×
∫ ∞

0

e−
(1+ω2)z

η2 I0

(
2

√
ω2(1 + ω2)z

η2

)

×
∫ ∞

0

e−
CγT z

γ̄1y − y
γ̄2 dydz. (17)

With the help of (11) and [11, Eq. (3.471.9)] we solve the
integrals with respect to x and y as follows

Fγeq2(γT ) = 1 − 2

√
CγT

γ̄1γ̄2

(1 + ω1)(1 + ω2)(
1 + ω1 + η1γT

γ̄1

)
η2

× e
−ω1−ω2− γT

γ̄1
+

ω1
1+

η1γT
(1+ω1)γ̄1

∫ ∞

0

√
ze−

(1+ω2)z
η2

× I0

(
2

√
ω2(1 + ω2)z

η2

)
K1

(
2

√
CγT z

γ̄1γ̄2

)
dz. (18)

Unfortunately, a closed-form expression for the outage prob-
ability of fixed gain relaying under the assumption of Scenario
(b) is very difficult, if not impossible, to be obtained. Nonethe-
less, the integral in (18) can be evaluated in a series form by
making the change of variables, t2 = z, and using [11, Eq.
(8.447.1)], [11, Eq. (6.631.3)], [11, Eq. (9.220.4)], [11, Eq.
(9.220.2)], and [11, Eq. (9.210.2)], yielding for the case of
ω2 �= 0

Fγeq2(γT ) = 1 − (1 + ω1)e
−ω1−ω2− γT

γ̄1
+

ω1
1+

η1γT
(1+ω1)γ̄1(

1 + ω1 + η1γT

γ̄1

)
×

M∑
m=0

(m + 1) ωm
2 Ψ

⎛⎝m + 1, 0,
CγT(

1+ω2
η2

)
γ̄1γ̄2

⎞⎠ (19)

where Ψ (·, ·, ·) denotes the Tricomi confluent hypergeometric
function defined in [11, Eq. (9.210.2)]; M represents the suffi-
ciently large number of terms required for the series in (19) to

converge, which in practical cases takes values between one and
20. We also note that for the special case when h2 experiences
Rayleigh fading (ω2 = 0), using [13, Eq. (2.16.8.5)] in (18)
yields

Fγeq2(γT ) = 1 − (1 + ω1)Cη2γT(
1 + ω1 + η1γT

γ̄1

)
γ̄1γ̄2

× e
−ω1−

(
1−Cη2

γ̄2

)
γT
γ̄1

+
ω1

1+
η1γT

(1+ω1)γ̄1 Γ
(
−1,

Cη2γT

γ̄1γ̄2

)
(20)

where Γ(·, ·) is the complementary incomplete Gamma function
defined in [11, Eq. (8.350.2)].

A. Diversity Order

1) Scenario (a): Using approximation [14, Eq. (9.6.9)] fol-
lowed by the McLaurin series representation of the exponential
function in (12) and taking only the first order terms, (12) yields
for high signal-to-noise ratio (SNR)

Fγeq1(γT ) ≈ γT

γ̄1
+ η1

γT

γ̄1
. (21)

Then, expressing η1 as η1 = μγ̄1, where μ is a finite non-
zero constant, and using the definition of the diversity order
(d = − limγ̄1→∞ log

(
Fγeq1(γT )

)
/ log (γ̄1)) it follows that the

diversity order of the interference-limited fixed gain relaying
scheme with interference-free reception at D, is zero.

2) Scenario (b): For asymptotically high γ̄1/γT

and for ω2 �= 0, using the approximation
Ψ (m + 1, 0, Cη2γT / [(1 + ω2) γ̄1γ̄2]) ≈ 1/ (m + 1) [14,
Eq. (13.5.11)] and the infinite series expansion of the
exponential function, (19) yields

Fγeq2(γT ) ≈ 1 − (1 + ω1)e
−ω1− γT

γ̄1
+

ω1
1+

η1γT
(1+ω1)γ̄1(

1 + ω1 + η1γT

γ̄1

) . (22)

Taking the first order terms of the Taylor series expansion of
(22), we arrive at (21). Therefore, similarly to Section III-A1, it
follows that the diversity order of the interference-limited fixed
gain relaying scheme with interference-limited reception at D,
is zero. For the special case of ω2 = 0, we may infer zero
diversity order from (20) and [11, Eq. (8.351.4)].

IV. AVERAGE BER ANALYSIS

In this section we derive the system’s exact error performance
using a characteristic function (CF) method. Moreover, we as-
sume that both the desired signal, s0 and the interference signals
at R and D, s1 and s2, are binary phase-shift keying (BPSK)
modulated [4]. In the special case of Rayleigh faded interferer/s,
we present new exact closed-form BER expressions.

A. Scenario (a)

After demodulation, matched filtering and sampling, the
decision statistic for the data symbol can be expressed as

D0 = hrdGF

(√
Pshsrs0+

√
P1h1 cos(θ1 − θsr)s1 + ñr

)
+ñd

(23)
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where ñr and ñd are zero mean Gaussian RVs with variances
N01
2 and N02

2 respectively. The average BER conditioned on
hsr can be written as

P̃b = Pr

[
hrdGF

√
Pshsrs0 (24)

+ hrdGF (I + ñr) + ñd < 0

∣∣∣∣∣s0 = +1, hsr

]
where I =

√
P1h1 cos θs1 and θ = (θ1 − θsr) modulo 2π.

Following [15], [16] we assume that θ is uniformly distributed
over (0, 2π]. Simplifying further yields

P̃b = Pr

[√
Pshsrs0 (25)

+ I + ñr +
ñd

GFhrd
< 0

∣∣∣∣∣s0 = +1, hsr

]
.

Let X1 = ñr + ñd

GFhrd
and Λ = I + X1. Therefore, (25) can be

written as

P̃b = Pr
(
I + W < −

√
Pshsr

)
= 1 − FΛ

(√
Pshsr

)
. (26)

Since the cdf, FΛ(x) can be written as [17, Eq. (3-23)]

FΛ(x) =
1
2

+
1
π

∫ ∞

0

sin(xz)
ω

ΦΛ(z)dz (27)

where ΦΛ(z) is the CF of the RV, Λ, given by ΦΛ(z) =
ΦI(z)ΦX1(z). Hence (26) can be re-expressed as

=
1
2
− 1

π

∫ ∞

0

sin(
√

Psrz)
z

ΦΛ(z)dz. (28)

Using the pdf of the Rayleigh distributed RV, hsr

fhsr
(x) =

2x

σ2
sr

e
− x2

σ2
sr , (29)

the unconditional average BER, Pb can be written as

Pb =
1
2
− 2

πσ2
sr

∫ ∞

0

∫ ∞

0

r sin(
√

Psrz)e
− r2

σ2
sr

ΦΛ(z)
z

drdz.

(30)

Using [11, Eq. (3.952.1)] we can simplify (30) as

Pb =
1
2

(
1 −

√
Psσ2

sr

π

∫ ∞

0

ΦΛ(z)e−
Psσ2

srz2

4 dz

)
. (31)

Now consider ΦI(z). Using [15, Appendix A] we can write

ΦI(z) = E
[
ejzI

]
=
∫ ∞

0

J0

(√
P1rz

)
fh1(r)dr (32)

where J0(·) is the zeroth order Bessel function of the first kind.
Substituting fh1(r) into (32) yields

ΦI(z) =
2(1 + ω1)e−ω1

σ2
1

∫ ∞

0

re
− (1+ω1)r2

σ2
1 (33)

× I0

(
2r

√
ω1(1 + ω1)

σ2
1

)
J0

(√
P1rz

)
dr

= e
− P1σ2

1z2

4(1+ω1) J0

⎛⎝√ω1P1σ2
1

1 + ω1
z

⎞⎠ ,

where the last line follows with the help of [11, Eq. (6.633.4)].
Using [11, Eq. (8.432.6)], ΦX1(z) is expressed as

ΦX1(z) = e−
N01z2

4

(
1

σ2
rd

∫ ∞

0

e
−N02z2

4G2
F h e

− h

σ2
rd dh

)
(34)

=
√

N02

GFσrd
ze−

N01z2

4 K1

(√
N02

GFσrd
z

)
.

Hence, substituting (34) and (33) into (31), we obtain

Pb =
1
2

(
1−
√

PsN02σ2
sr

πG2
Fσ2

rd

∫ ∞

0

ze
−
(
Psσ2

sr+
P1σ2

1
1+ω1

+N01

)
z2
4 (35)

× J0

⎛⎝√ω1P1σ2
1

1 + ω1
z

⎞⎠K1

(√
N02

GFσrd
z

)
dz

)
.

To the best of the authors’ knowledge, Eq. (35) cannot be
simplified to a closed-form expression. However, using the
following series expansion of J0(x) [11, Eq. (8.402)]

J0(x) =
∞∑

m=0

(−1)m

(m!)2
(x

2

)2m

, (36)

we can write (35) as

Pb =
1
2

(
1 −
√

PsN02σ2
sr

πG2
Fσ2

rd

∞∑
m=0

(−1)m

(m!)2

(
ω1η1N01

4(1 + ω1)

)m

(37)

×
∫ ∞

0

z2m+1e
−
(
Psσ2

sr+
P1σ2

1
1+ω1

+N01

)
z2
4

K1

(√
N02

GFσrd
z

)
dz

)
.

Further, using [13, Eq. (2.16.8.4)] and after some algebraic
manipulations, we can express the average BER as

Pb =
1
2

(
1−

⎛⎜⎝ (γ̄1 + η1 + 1)
√

γ̄1

√
π
(
γ̄1 + η1

1+ω1
+ 1
) 3

2
γ̄2

⎞⎟⎠ (38)

×
∞∑

m=0

(
− ω1η1

1+ω1

)m

(m!)2
Γ
(
m + 3

2

)
Γ
(
m + 1

2

)(
γ̄1 + η1

1+ω1
+ 1
)m

× Ψ

⎛⎝m +
3
2
, 2,

γ̄1 + η1 + 1(
γ̄1 + η1

1+ω1
+ 1
)

γ̄2

⎞⎠).

Note that in the special case of a Rayleigh faded interferer,
substituting ω1 = 0 and m = 0 into (38) and using

Ψ(a, 2a − 1, x) =
x

3
2−ae

x
2

2(a − 1)
√

π

(
Ka− 1

2

(x

2

)
−Ka− 3

2

(x

2

))
(39)

it can be shown that Pb admits the following closed-form
solution

Pb =
1
2

(
1 − 1

2γ̄2

√
γ̄1

γ̄1 + η1 + 1
e

1
2γ̄2 Θ

(
1

2γ̄2

))
, (40)

where Θ(x) = K1(x) − K0(x).
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B. Scenario (b)

Let us now assume the case of Scenario (b). After demodu-
lation, the decision statistic for s0 can be expressed as

D0 = hrdGF

(√
Pshsrs0 +

√
P1h1 cos θs1 + ñr

)
(41)

+
√

P2h2 cos (θ2 − θrd − θsr) s2

and the average BER conditioned on hsr can be written as

P̃b = Pr

(√
Pshsrs0 +

√
P1h1 cos(θ)s1 + ñr (42)

+
√

P2h2 cos (ϕ) s2

hrdGF
< 0

∣∣∣∣∣s0 = +1, hsr

)

where ϕ = (θ2 − θrd − θsr). Let Υ =
√

P1h1 cos(θ)s1 + ñr +√
P2h2 cos(ϕ)s2

hrdGF
= I + X2. By using a similar approach as in

Section IV-A we can re-express (42) as

Pb =
1
2

(
1 −

√
Psσ2

sr

π

∫ ∞

0

ΦΥ(z)e−
Psσ2

srz2

4 dz

)
(43)

where the CF of Υ is expressed as

ΦΥ(z) = ΦI(z)ΦX2(z) (44)

= e
− P1σ2

1z2

4(1+ω1) J0

⎛⎝√ω1P1σ2
1

1 + ω1
z

⎞⎠ΦX2(z).

Moreover, ΦX2(z) is expressed as

ΦX2(z) = e−
N01z2

4

∫ ∞

0

J0

(√
P2yz

GF

)
fY (y)dy (45)

where Y = h2
hrd

and fY (y) is the pdf of the ratio of a
Rician/Rayleigh RV. Using the cdf of h2 and the pdf of hrd

we can express the cdf of Y as

FY (y) =
∫ ∞

0

Fh2(xy)fhrd
(x)dx (46)

= 1 − 2
σ2

rd

∫ ∞

0

x Q

(
√

2ω2,

√
2(1 + ω2)

σ2
2

xy

)
e
− x2

σ2
rd dx

where Q(a, b) is the Marcum Q-function [12, Eq. (1)]. Simpli-
fying (46) using [12, Eq. (40)] and [12, Eq. (41)] yields

FY (y) =
(1 + ω2)σ2

rdy
2

(1 + ω2)σ2
rdy

2 + σ2
2

e
− ω2σ2

2
(1+ω2)σ2

rd
y2+σ2

2 . (47)

Differentiating (47) with respect to y, we obtain the pdf as

fY (y) =
2ω2(1 + ω2)2σ4

rdσ
2
2y3

((1 + ω2)σ2
rdy

2 + σ2
2)3

e
− ω2σ2

2
(1+ω2)σ2

rd
y2+σ2

2 (48)

+
2(1 + ω2)σ2

rdσ
2
2y

((1 + ω2)σ2
rdy

2 + σ2
2)2

e
− ω2σ2

2
(1+ω2)σ2

rd
y2+σ2

2 .

Hence, by substituting (48) into (45), ΦX2(z) can be evalu-
ated. Unfortunately, however, with ω2 �= 0, ΦX2(z) can not be

evaluated in closed-form. Nevertheless, using (44) in (43), the
average BER can be expressed as

Pb = 1
2

(
1 −

√
Psσ2

sr

π

∫∞
0

(∫∞
0

J0

(√
P2yz
GF

)
fY (y)dy

)
(49)

×J0

(√
ω1P1σ2

1
1+ω1

z

)
e
−
(

Psσ2
sr+

P1σ2
1

1+ω1
+N01

)
z2
4

dz

)
.

In the special case where h2 is Rayleigh distributed, we can
substitute ω2 = 0 into (47) and next using (45), ΦX2(z) can
be written as

ΦX2(z) =
2σ2

2e−
N01z2

4

σ2
rd

∫ ∞

0

y J0

(√
P2yz
GF

)
(
y2 + σ2

2
σ2

rd

)2 dy. (50)

Using [13, Eq. (2.12.2.28)] and noting that K−1(x) = K1(x),
(50) can be evaluated as

ΦX2(z) =
√

P2σ2

GFσrd
z e−

N01z2

4 K1

(√
P2σ2

2

GFσrd
z

)
. (51)

Finally, if h1 is also Rayleigh distributed, it can be shown that
the overall BER takes the form

Pb =
1
2

(
1 − η2

2γ̄2

√
γ̄1

γ̄1 + η1 + 1
e

η2
2γ̄2 Θ

(
η2

2γ̄2

))
. (52)

V. NUMERICAL RESULTS

In this section, we illustrate the expressions derived in
Sections III and IV using numerical examples and examine the
effect of interference on the system’s performance. It is noted
that all results presented here were also verified by simulations.

Fig. 1 depicts the outage probability of dual-hop AF fixed
gain relaying for different values of the Rician K-factor, ω1,
and assuming Scenario (a). The power of the interfering signal
at R is assumed to be 20 dB and 40 dB lower than the received
signal power, while the average SNRs at the S-R and R-D links
are assumed equal to each other, so that η1 = γ̄1 − 20 dB =
γ̄2 − 20 dB and η1 = γ̄1 − 40 dB = γ̄2 − 40 dB. As can be
seen, the outage probability is hardly affected by the Rician
K-factor of the interferer channel at R, yet any increase in ω1

results in a small outage probability increase.
Similar results regarding the outage probability of the fixed

gain system under consideration of the Scenario (b) are shown
in Fig. 2, where the relative received power of the interferers
at both R and D are assumed 20 dB and 40 dB lower than the
received signal power at R and D, respectively. In particular,
it is noted that there is hardly any dependence of the outage
probability on the Rician K-factor of the interferer on the relay,
as well as that the achievable diversity order is zero, as was
analytically shown in Section III-A2.

Fig. 3 illustrates the BPSK-modulated BER results for both
Scenarios (a) and (b). In addition to the aforementioned ob-
servations, one may note that in the case of η2 = γ̄1 − 20 dB
and for low-to-medium SNRs, there is a cross-over point in the
average BER curves of Scenarios (a) and (b). This interesting
observation can be explained from the fact that, in the low SNR
region, the BER is dominated by the AWGN power. Therefore,
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Fig. 1. Outage probability of Scenario (a) for η1 = γ̄1−20 dB = γ̄2−20 dB
and η1 = γ̄1 − 40 dB = γ̄2 − 40 dB.

Fig. 2. Outage probability of Scenario (b) for γ̄1 = γ̄2 and η1 = η2 =
γ̄1 − 20 dB and η1 = η2 = γ̄1 − 40 dB.

a low interference power, (η2 = γ̄1 − 20 dB) at D in the case
of Scenario (b) can lead to a lower BER, as compared to high
AWGN power at D in case of Scenario (a). We also note that
the BER cross-over point in the case of η2 = γ̄1 − 40 dB is at
γ̄1 = 40 dB.

VI. CONCLUSIONS

In this paper, we investigated the performance of a dual-hop
fixed gain AF relay system with interference. Both interference-
free and interference-limited reception at the destination were
studied by deriving new expressions for the outage probability
and, as well as precise average BER expressions. It was shown
that, as expected the presence of interference at the relay
and/or the destination significantly degrades the performance.
Numerical results, which were verified by simulations, revealed
that the overall performance is hardly affected by the Rician-K
factor of the interfering channel.

Fig. 3. BER of Scenarios (a) and (b), for γ̄1 = γ̄2 and η1 = η2 = γ̄1−20 dB
and η1 = η2 = γ̄1 − 40 dB.
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