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ABSTRACT 

This paper presents a method for solving moving boundary problems associated with 

phase-change. This method is an explicit interface-tracking scheme that involves the 

reconstruction and advection of the moving interface on a fixed grid. Three distinct steps are 

undertaken to handle the movement of the interface: advection and reconstruction (tracking); 

calculation of normal velocities; and the solution of the governing equations for different phases. 

Details of each step and its implementation is provided. The transient heat diffusion equation in 

two space dimensions is the governing equation for energy transport. In order to validate the 

approach, results obtained from the front tracking scheme are compared with exact analytical 

solutions for melting problems in Cartesian and cylindrical coordinates. It is shown that the 

numerical and analytical results are in excellent agreement. Finally, problems involving the 

multi-dimensional solidification of a pure aluminum ingot subject to bi-directional heat 

extraction are presented. The results indicate that the algorithm was able to accurately track the 

front under these aggressive conditions which caused large curvature. In Part II, the 

front-tracking approach described herein is applied to directional solidification problems 

influenced by melt convection. 
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INTRODUCTION 

Moving liquid-vapor or solid-liquid interfaces encountered in phase change and materials 

processing problems may in general be highly distorted.  The shape and position of such an 

interface is not known a priori, but instead must be obtained as part of the problem solution.  

The problem in such cases consists not only of a careful solution of the governing equations in 

the two phases but also of an accurate tracking of the interface in response to the thermal, 

compositional, or flow fields computed at each time step. 

The interface between phases has been variously treated in the literature with 

interface-capturing and interface-tracking methods [1].  In the interface-capturing category, an 

attempt is made to resolve the details of the structure of the interface.  The interface is modeled 

only to the extent that the actual physical discontinuity is known to be someplace near the middle 

of the (temperature) gradient; no specific modeling is needed for the interface, except perhaps for 

finer meshing in its vicinity.  The enthalpy method is an example of this one-domain method.  

The different phases are considered together in the solution, and the properties are either changed 

discretely at the interface or continuously over a range near the interface.  The interface itself is 

generally not tracked. 

Methods of interface tracking, as distinct from capturing, may be divided into 

front-tracking and volume-tracking approaches.  Interface-tracking studies in the literature were 

reviewed by Chen et al. [2] with reference to the simulation of bubble rise and distortion.  In 

front tracking [3] the interface is identified by an ordered set of marker points located on the 

interface, and is represented by the distance between the points and some reference surface.  A 

line connecting the marker points, usually a piecewise polynomial, represents the front.  An 

irregular grid is used in the vicinity of the interface.  In an extension of this method Unverdi and 
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Tryggvason [4] represented the interface by an indicator function, which takes a value of unity in 

one phase and zero in the other.  An additional Eulerian grid is generated on the front, which 

explicitly tracks the interface and moves through the stationary grid.  More recent efforts by 

Udaykumar et al. [5] to improve the accuracy of interface tracking may also be considered to fall 

under the front-tracking category.  They proposed a method in two dimensions to track the 

position of the interface explicitly by a Lagrangian translation of marker particles, while the field 

equations are solved on an underlying fixed grid as in Eulerian methods. 

An increasing number of approaches for treating interfaces have become available, such 

as Lagrangian approaches including boundary-fitted grids [3, 6] and boundary-integral methods 

[7], Eulerian approaches including volume-of-fluid [8], level-set [9], phase-field [10], and 

enthalpy [11, 12] methods, and Mixed approaches [4, 5].  Shyy et al. [13] provide a good 

review of interface tracking methods. 

Most of the interface-tracking studies in the literature are implemented in two dimensions. 

 The extension of these methods to three dimensions introduces a number of serious 

complications.  Some studies [2, 14, 15] have successfully adapted the front-tracking 

approaches discussed above to the modeling of three-dimensional bubble dynamics.  However, 

the solution methodologies are quite complex and computationally intensive.  More importantly, 

in both the two- and three-dimensional implementations, the interface has not been exactly 

tracked.  In order to properly represent the relevant physics at the interface in the simulations, 

the interface position must be accurately known.  The accuracy of the tracking is particularly 

important in properly accounting for surface-tension effects. 

A sharp resolution of the interface may be accomplished by an adaptive grid approach, 

where the grid is adjusted locally to coincide with the interface.  However, it is difficult to 
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adjust the grids to track highly deformed interfaces.  Another approach that has been successful 

in maintaining a sharp resolution of the interface is the use of body-fitted coordinates (see for 

instance [16]).  This mapping method transforms the deformed physical domain into a regular, 

fixed-grid computational domain.  In theory, this method provides a true tracking of the 

interface.  However, in practice, the switching between the original and transformed coordinate 

systems required at each time step can make the computations in this approach extremely 

expensive.  Moreover, only geometries that do not lead to singular mappings can be handled by 

this method.  Jayaraman et al. [17] presented a promising method for tracking in three 

dimensions using adaptive unstructured grids to represent the three-dimensional interfaces. 

The new approach for tracking the interface in Labonia et. al. [18] is motivated by the fact 

that a fixed-grid approach lends itself to simplified computations, in addition to being able to 

handle large deformations and multiple interfaces.  The main disadvantage in the use of fixed 

grids has been the difficulty in precisely tracking the interface [1].  In their work, Labonia et al. 

presented a scheme for explicitly tracking the interface on a fixed grid in three dimensions that 

eliminated this disadvantage. 

When applied to problems such as the solidification of liquid melts, interface tracking 

requires the solution of a system of equations for the conservation of mass, momentum, energy, 

and perhaps, species.  The movement of the interface in such a problem is governed by an 

energy balance, and by additional conditions if an alloy is considered.  For the present study, the 

governing equation is the energy equation, with conduction as the only transport mechanism.  In 

order to demonstrate that the algorithm is capable of solving solidification problems, a series of 

benchmark two-dimensional test problems are investigated.  Pure aluminum is used as the 

phase-change material.  In Part II of this work [19], the method developed in the present study is 
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applied to solve directional solidification problems with melt convection. 

 

NUMERICAL METHOD 

In solving a solid-liquid phase-change problem, at each time step during the solidification 

or melting process, the governing conservation equations must be solved, and it is then necessary 

to compute the movement of the interface.  There are three distinct steps involved:  interface 

reconstruction and advection (tracking); calculation of normal velocities; and solution of the 

governing equations.  The second and third steps involve the imposition of boundary conditions 

and matching conditions at the interface, and hence follow and depend upon the first step.  In 

this section, we describe methods used for performing each of these tasks. 

 

1.  INTERFACE TRACKING 

The front-tracking scheme described in the present work is an adaptation of that presented 

by Labonia et al. [18].  Previously, the method was used to calculate the propagation of a front 

in an artificial problem wherein the temperature field did not change with time [18].  In order to 

analyze actual solidification problems, several refinements to the scheme were required as 

described in this section.  Additional detail, particularly regarding the identification of 

intersection points, can be found in [18]. 

 The actual process of interface tracking is itself accomplished in three steps: 

identification of marker points; calculation of surface normals; and identification of intersection 

points.  A procedure for the reconstruction of the interface is also described.  The 

reconstructed interface, however, is not directly used in the interface tracking, and its utility is 

primarily graphical in nature.  The concepts involved are first described with respect to 
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unidirectional phase change, and subsequently, the additional considerations involved in dealing 

with multidirectional problems are discussed. 

 

Identification of Marker Points: 

Our first task is to find the points where the interface intersects the Cartesian grid lines. 

We do this in three parts.  First, we identify the points where the interface cuts the vertical lines 

in the grid (see Fig. 1a), i.e., intersection of the lines (x = xi, y = yj, z) with the interface.  We 

term these points of intersection as marker points, since these are the points used in advecting the 

interface according to the imposed boundary conditions.  It is to be noted that there will always 

be points of intersection between the vertical grid lines and the interface.  Next, the points of 

intersection of the interface with the other two sets of (horizontal) grid lines, (xi, y, zk) and (x, yj, 

zk), will simply be referred to as intersection points.  It is recognized that unlike the marker 

points, there may or may not be intersection points between the interface and the horizontal grid 

lines.  These intersection points are required in order to apply the matching conditions at the 

interface. 

Once the interface is advected over time step t, new marker points (and intersection 

points) corresponding to the new interface location need to be determined.  The procedure for 

determining the new marker points at time step (t + t) is represented in Fig. 1(a) in two 

dimensions. The marker points (denoted by a solid square symbol in Fig. 1a) at time step t are 

shown.  For the next time step (t + t), these are advected in the direction of the interface 

normal at the normal velocity as determined by the interface condition.  The resulting new 

locations of these points, known as advected points (denoted by an open circle in Fig. 1a), would 

in general no longer lie on the vertical grid lines.  New marker points at this time step (t + t) 



 

 7 

need to be obtained from these advected points as shown in Fig. 1(a).  For the two-dimensional 

cases highlighted in this study, this is accomplished simply by fitting cubic-spline segments to 

each set of advected points; the intersection of the cubic-spline fits with the vertical grid lines 

yields the new marker points.  For this cubic-spline fitting process, the front is represented as 

segments of the following polynomial: 

dcxbxaxz  23
 (1) 

The first and second derivatives calculated from both shared segments on each point should be 

equal.  Location information from all the advected points (xi, yj) and the derivatives at the two 

end points is used to find a set of first derivatives at each advected point.  Next, the new marker 

points are found at the locations where the line segments between two adjacent advected points 

intersect the vertical gridlines, as indicated in Fig. 1(a).  In the more general three-dimensional 

case, bilinear interpolation between the advected points is used.  A local coordinate system at 

each surface element defined by the four advected points A, B, C and D (as shown in Fig. 2a) is 

used to perform this interpolation in transformed space.  This is much more accurate than 

simply interpolating using Cartesian coordinates, since the quadrilateral interface segment in 

question (as shown in Fig. 2a) could in general be quite distorted.  The transformation proposed 

here ensures that the bilinear interpolation is carried out on a local rectangular grid, thus 

improving the accuracy of determination of the marker points 

Special handling is required for the boundary points.  These are marker points that lie on 

the boundaries of the domain (calculation of the normal velocities for these points is addressed in 

the next subsection).  Should the interface merge with the top wall, the calculated location for 

the boundary point falls outside the computational domain (Fig. 1a).  The location of the 

boundary point is then corrected by finding the intersection between a line joining the projected 
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boundary point location and the first interior advected point, and the top boundary.  The new, 

corrected position for the boundary point (solid circle) then lies along the top boundary (again 

this is shown in Fig. 1a). 

 

Calculation of Surface Normals: 

Surface normals are calculated from cubic spline fits [20] to the marker points in the two 

orthogonal directions, that is, in the x-z and y-z planes.  At the boundaries, a cubic spline is used 

at the faces of the domain (or edges for the 2D case).  The cubic spline requires only two points 

and two second derivatives, and hence, yields a unique solution for the intersection point.  Also, 

the choice of a cubic-spline fit to the marker points on the domain face is superior to simple 

straight-line segments for the following reason.  If the advected point does not lie exactly on a 

grid line (and thus, does not coincide with the new marker point), a straight-line fit between 

advected points would yield a unique normal at the marker point.  However, if the advected 

point does fall on a grid line, only a cubic spline may be used to get a unique normal due to the 

continuity of its first derivative.  A cubic-spline fit also better represents the curvature of the 

interface. 

 

Identification of Intersection Points: 

At this stage, the marker points and the interface normals are all available.  The 

intersection points of the interface with the other, horizontal coordinate lines (these are not 

marker points) need to be found next, by the procedure described in [18].  A knowledge of the 

intersection points is necessary for the solution of the governing equations (which is discussed in 
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Section 3).  It is emphasized that the intersection points are obtained in this study using the 

information about the marker points, and not from the advected points. 

At this stage, given a normal velocity, the marker points representing the interface can be 

advected to the next time step, and the entire reconstruction procedure repeated.  However, the 

normal velocities are not known a priori in most problems of practical interest.  Instead, they 

need to be calculated using the physically imposed interface boundary conditions as detailed in 

the next important stage of the calculation, discussed in Section 2. 

 

Multidirectional Phase-Change: 

For clarity, the preceding explanation is for the simplest case of a single set of marker 

points.  Using a single set of marker points is recommended for situations where the interface 

does not take on an acute angle with respect to the axis along which the marker point locations 

are measured, i.e. its slope remains small.  In general, however, the interface is more arbitrarily 

oriented and may take on any shape. 

For such cases, multiple sets of marker points may be used, for increased accuracy.  

Details of this approach are as follows. 

1. Marker Points.  The procedure used to recover two sets of marker points for the 2D case 

is shown in Fig. 1(b).  In regions where the absolute value of the slope of the interface is 

greater than 1 (i.e., the interface is more vertical than horizontal), horizontal marker 

points are recovered.  In regions where the absolute value of the slope is less than 1, 

vertical marker points, based on locations where the interface intersects vertical grid lines 

are found.  Both sets of marker points are advected and reconstructed in an identical 

manner to that described previously. 
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2. Intersection Points.  With the possible existence of two sets of marker points 

representing the interface, there are also two different types of intesection points in 

multi-directional phase change problems.  All of the points (solid circles in Fig. 1b) 

where the interface intersects with grid lines are intersection points if they are not 

included in the set of marker points; for example, point A (horizontal intersection point 

where the absolute value of the slope is less than 1) and point B (vertical intersection 

point where the absolute value of the slope is greater than 1) in Fig. 1(b).  Information 

on the intersection points is used to satisfy the boundary conditions on the interface. 

 

2.  CALCULATION OF NORMAL VELOCITIES 

In order to apply the boundary conditions appropriately at the interface, it is necessary to 

determine the exact location (marker points) of the interface within each control volume that 

houses a part of the interface.  In fact, it is this desire to apply the physical interface conditions 

exactly at the tracked interface which led to the formulation of the present approach over existing 

interface-capturing methods and volume-of-fluid (VOF) methods. 

In the solidification example we are considering, the normal velocity Vn of the interface is 

obtained from the difference between the normal gradients of temperature in the liquid and solid 

as latent heat is liberated via the following equation (Stefan condition): 

n
L

L

S

S HV
n

T
k

n

T
k 









 (2) 

We apply this condition in transformed space (, , ) centered at the marker point P of interest 

as illustrated in Fig. 2(b).  Following the definition of a gradient in general curvilinear 

coordinates, the discrete approximations for the temperature derivatives are: 
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The temperatures at the interface points E, W, N, S, and P are specified by the boundary 

condition on the interface (T = Tm).  The normal derivative at the interface then is 
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in which g
k
 are the contravariants found from the coordinate transformation [18].  Once the 

temperature gradients in the liquid and solid are obtained, the normal velocity can be evaluated 

simply with an equation of the form (depending on the exact nature of the interface boundary 

condition) of Eq. (2). 

An additional constraint needs to be taken into account at the physical boundaries of the 

domain.  Since the marker points at the boundaries are constrained to advect along the 

boundaries, only two of the three components of the velocity are needed.  On a vertical side wall 

(0, y, z), for example, the interface cannot move in the x direction.  Therefore, due to the equal 

and opposite reaction of the wall, the x component of Vn must be ignored, and the marker point 

on the interface is advected only in the y and z directions.  This procedure, adopted due to the 

constraint posed by the walls, enables the movement of the interface at the wall to be correctly 

represented. 

 

3. SOLUTION OF THE GOVERNING EQUATIONS  

In order to solve the governing equations in the two phases, a methodology needs to be 
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devised for applying the equations for each of the phases in the interfacial cells.  The interfacial 

cell is partitioned according to the actual position of the interface in the cell, and the equations 

are solved separately in each phase.  Although the front tracking method is developed for 

three-dimensional work, we will only consider one- and two-dimensional benchmark problems in 

the present study, and so the solution scheme is only presented in two space dimensions.  More 

general three-dimensional problems will be considered in future work. 

With the interface location defined by using a set of marker points, we partition the 

domain into solid and liquid regions.  The governing equations for conservation of energy, 

assuming negligible convection can be written as 

T
t

T
i

2



   (5) 

in which subscript i refers to either the liquid or solid phase.  The finite difference analog of Eq 

(5) is 
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in which Forward Time Centered Space (FTCS) discretization is used. The discrete 

approximation to the derivatives gives a five-point stencil in 2D; the algebraic form of Eq. (6) is: 

n
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where SNWEPP AAAAAA  0  

The truncation error due to the discrete operators is expected to be of second order in 

space and first order in time for the bulk of the domain.  The finite-difference stencil used to 

calculate the gradients at the interface may not be second-order accurate.  Since these points are 

few in number, the deterioration in global accuracy below )( 2xO  is expected to be minimal 
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[21]. 

The discretization scheme employed at the interface is highlighted in Fig. 3.  Point yj lies 

in the solid phase, while yj+1 lies in the liquid phase. The two are separated at ym by the interface. 

 If we are interested in discretizing the diffusion term at yj+1, i.e. in the liquid phase, such that the 

truncation error is )( xO  , the following procedure is employed (with a similar result for the 

solid phase):  
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and Tm is the value of the variable at the interface location, and 
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Therefore 
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It can be shown that the truncation error for the above expression is )( xO  . 

 If the grid points are too close to the interface (taken to be a distance of 0.1 x in this 

study), we use another approach to calculate the temperature at such points.  For example, if yj 

is too close to the interface as shown in Fig. 3, we discretize the diffusion term at yj-1 in terms of 
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yj using considerations similar to those shown above.  Once the temperatures of yj-1 and yj-2 have 

been found, a second-order polynomial fit of the form 

ttt cybyayT  2)(  (13) 

is used to calculate the temperature at yj. 

After constructing the discretization equations, we cast them into linear form but do not 

assume that a particular method would be used for their solution.  Therefore, any suitable 

solution method can be employed at this stage.  In this work, we choose Gauss-Seidel iteration 

with successive over-relaxation: 
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   (14) 

The accuracy of the calculated temperature field has a strong influence on the accuracy of the 

predicted front locations.  In order to obtain highly accurate front locations, the tolerance on the 

convergence criteria used for the present study is 10
-6

. 

 

SUMMARY OF SOLUTION SCHEME 

Three distinct processes are involved in the solution scheme: interface tracking, 

calculation of normal velocities and the solution of governing equations over the entire domain.  

A summary of the steps involved is as follows: 

1. Read inputs: grid space, step size, thermal properties, and initial condition data. 

2. Define marker points and intersection points and calculate the normal vector. 

3. Calculate the normal velocities at each marker point. 

4. Move the marker points; the new location of these points need not lie on the grid.  These 

points are then denoted advected points.  

5. Obtain new marker points from the advected points, and calculate the surface normals. 
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6. Solve the energy equation in both phases. 

7. Go to step 3, and repeat the process for the next time step. 

 

RESULTS 

1D Melting Problem 

In order to evaluate the ability of the algorithm to account for phase-change, a simple 

moving boundary problem was solved first.  A moving boundary problem that has an exact 

solution is the melting of a flat interface, the so-called Neumann problem [22].  The domain and 

boundary conditions are shown in Fig. 4.  This problem is often used to validate numerical 

methods for phase-change (for example, see Refs. [13, 21]). 

The energy equation (5) for this 1D case may be rewritten in non-dimensional form as 

2

2

yt 
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in which the following non-dimensional quantities are used 
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and the thermal properties of the liquid and solid are assumed equal.  The non-dimensional form 

of the Stefan condition (2) is 



























ls
yy

St
dt

tds )(
 (17) 

in which )(ts  is the (non-dimensional) front location and St is the Stefan number, an important 

non-dimensional parameter for this problem: 

HTTct mHp  )(S  (18) 
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Initially, the domain is all solid at the melting temperature ( = 0).  The wall at x = 0 

(Fig. 4) is maintained at a constant hot temperature of  = St, causing melting to proceed from the 

wall with the front progressing in the direction of increasing x.  An exact solution may be 

derived for this problem [22, 23].  The temperature distribution is given by 

)(
2

),(  erf
t

y
erfty 












  (19) 

and the location of the melting front is found from 

tts  2)(  (20) 

in which  is obtained from the root of the transcendental equation: 

 




St
erf )()exp( 2  (21) 

Simulations were performed with initial and boundary conditions for this benchmark 

problem set at Stefan numbers of 0.1, 2.85 and 5.  The corresponding values for  are 0.22, 0.9 

and 1.06, respectively.  Higher Stefan numbers correspond to higher wall superheat and result in 

more rapid melting.  A total of 31 mesh points were used in the y-direction.  One of the 

limitations of the front-tracking approach is that the algorithm requires a solid/liquid interface to 

be present in the domain at all times.  To circumvent this limitation, the initial condition used 

for the simulation was that found from the exact solution after some small amount of time, 0t  , 

has elapsed.  At this time, a thin sliver of liquid has formed next to the heated wall, such that the 

interface is located at )( 0ts  = 0.325.  The corresponding temperature distribution in the solid is 

therefore given by: 

)(0,)(
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Results for the interface location at a Stefan number of 0.1 are shown in Fig. 5(a).  The 

exact interface position found from Eq. (19) is also shown on this plot.  The time step used for 

this case was t = 1.010
-4

.  Results from the simulation are shown every 1000 time steps.  As 

can be readily observed from Fig. 5(a), the agreement between the numerical and analytical 

results is excellent.  The maximum error is less than 0.14%, while the error is less than 0.08% 

for the bulk of the results.  It is important to note that as melting proceeds, the error does not 

increase, indicating that the algorithm is able to reliably and accurately resolve the evolution of 

the front position. 

Results obtained at higher Stefan numbers of 2.85 and 5 are shown in Figs. 5(b) and (c), 

respectively.  The time step used was decreased to t = 1.010
-6

 for the cases with St = 2.85 and 

5 since the higher Stefan numbers cause more rapid solidification.  The results exhibit similar 

good agreement as for St = 0.1. 

 

Directional Solidification Problem 

Next, a 2D melting problem in cylindrical coordinates was modeled, in order to test the 

ability of the algorithm to track a circular-shaped interface using two sets of marker points.  The 

energy equation in cylindrical coordinates is 
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in which  = T - Tm.  The corresponding boundary conditions in the center and the matching 

condition at the interface are: 

0'2lim
0















rQ

r
rkl

r


  (24) 



 

 18 

Sr
dt

tdS
H

r
k

r
k lls 









0

)(



 (25) 

The initial condition is: 

0)(0  tTT m  (26) 

The similarity variable selected to solve this problem is: 

t

r
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  (27) 

A schematic of this melting problem is shown in Fig. 6.  Initially, the domain is all 

solid at the melting temperature ( = 0).  The center is maintained as a constant line heat source 

of 'Q , causing melting to proceed from the center with the front progressing in the direction of 

increasing r.  The exact solution of this problem is available in Poulikakos [24].  The 

temperature distribution is given by using the exponential intergral function, 







d
e

Ei 




)( , 

in the following form 

    


 EiEi
k

Q
S

l


4

'
)(  (28) 

and the location of the melting front at any given time S is not known.  It is obtained as the root 

of the following transcendental equation: 

0
4

'




Sl He
Q

S 



 (29) 

Then the location of the melting interface at a given time s(t) can be obtained by using the 

definition of similarity variables as follows: 

Stts   4)(  (30) 
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Simulations were performed with the thermophysical properties of aluminum as in Table 

1, for line heat source values of 'Q  = 500, 1000 and 2000 W/cm.  The corresponding values 

for S  are 0.1305, 0.1899 and 0.3301, respectively.  Higher line heat source values correspond 

to higher temperatures at the center and result in more rapid melting.  A total of 101  101 mesh 

points were used in the quarter domain (7.5 cm  7.5 cm) of this problem.  Since the algorithm 

requires a solid/liquid interface to be present in the domain at all times, the initial condition used 

for the simulation was that found from the exact solution after some small amount of solid (s(t) = 

1.45 cm) was already melted.  The corresponding temperature distribution in the melt was 

obtained from Eq. (28). 

Figure 7 shows computed results for the front location as well as the exact interface 

position found from Eq. (30) for the different line heat source strengths considered.  As can be 

readily seen in Fig. 7(a), the agreement between the numerical and analytical results is good, with 

the maximum error being less than 0.8%.  Results for faster melting at 'Q = 1000 W/cm and 

'Q = 2000 W/cm are shown in Fig. 7(b) and 7(c), respectively.  Under these conditions, 

agreement between computation and the exact solution remains good.  The maximum error in 

these results is 1.3 and 3.1%.  As for the 1D melting problem, the error does not increase with 

time. 

Temperature traces in the melt region are shown in Fig. 8(a) for the medium heat flux 

case ( 'Q = 1000 W/cm).  As for the front locations, the computed temperature profiles can be 

seen to agree well with the analytical result, although the discrepancy between the computed and 

exact results increases slightly with increasing time.  Temperature contours for the entire 

domain from the simulated results are shown in Fig. 8(b).  As can be seen, the contours are 

uniform and circular in shape as expected, indicating that a circular front, reconstructed using the 



 

 20 

front-tracking scheme on a fixed, Cartesian grid, is not causing any undesirable spatial 

perturbations in the temperature field. 

Finally, numerically simulated and analytical (exact) front locations are compared in Fig. 

8(c) (for 'Q = 1000 W/cm).  The good agreement seen between the two sets of results in Fig. 

7(b) is again evident here.  It can be readily seen that the algorithm has captured the circular 

front shape on a fixed Cartesian grid with minimal error. 

 

Ingot Casting Problem 

The final test problem solved in this study is the classic problem of phase change in a box 

[27].  An initially superheated melt is subjected to a uniform and constant heat flux (200 W/cm
2
 

as a case study here) from all four walls.  A schematic of this problem is shown in Fig. 9.  

Again, pure aluminum is taken to be the phase-change material.  Planes of symmetry about the 

center of the domain are used to reduce the problem to one-quarter of the total domain size.  

This problem is a more demanding test of the algorithm than the previous cases since the 

expected solution is strongly two-dimensional.  This has important implications for the 

front-tracking algorithm that has been developed, which, by the nature of the definitions of the 

marker points, will tend to resolve interfaces more accurately in one direction.  Therefore, as for 

the melting in cylindrical coordinates problem considered above, the algorithm with two sets of 

marker points is applied for this problem, the large interface deflections of which severely test 

the algorithm. 

Contour plots for the temperature fields at two different times at (t = 24 and 40 s) are 

shown as isotherms in Figs. 10(a) and 10(b) respectively.  In these two figures, the bold line 

represents the front location, and coincides with the isotherm for the melting temperature.  The 
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temperature field in the solid is seen to exhibit a linear variation with distance from the wall 

when the entire domain has nearly solidified.  The front locations in the ingot casting problem 

were compared with the results obtained using the enthalpy method [28] under the same 

conditions.  The comparison of these front locations every 4 seconds is shown in Fig. 10(c) with 

dashed lines representing the enthalpy method, and the front tracking method with one and two 

sets of marker points represented using dash dot and solid lines respectively.  The results from 

these methods show very good agreement at the beginning, with the difference increasing slightly 

as the front propagates with time.  With only one set of vertical marker points, the prediction of 

front locations in the left and top is less accurate than towards the right where the front is more 

horizontal. 

 

CONCLUSIONS 

A three-dimensional front tracking algorithm, previously developed by Labonia et al. [18] 

has been extended so that a solution scheme for the governing equations for temperature is 

included.  The algorithm has also been modified to use cubic-spline reconstruction for 

determining the marker points; this has been found to be superior to the linear interpolation 

technique adopted in [18].  Additionally, improved accounting systems for handling the 

addition and deletion of marker points at the boundary have been added.  These critical 

additions enable the algorithm to solve realistic problems; previously, interfaces were only 

tracked for (unrealistic) situations where the temperature field did not change with time. 

The performance of this extended algorithm was then examined by considering a series of 

one- and two-dimensional test problems.  First, a benchmark 1D melting problem was solved, 

and the results were compared to an analytical solution.  The agreement between analytical and 
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numerical results was excellent, giving confidence in the ability of the algorithm to adequately 

model phase-change processes.  Next, a benchmark 2D cylindrical melting problem was solved. 

The numerically predicted temperature profiles and front locations exhibited good agreement 

with the exact analytical solution.  Hence, the front-tracking scheme was seen to be able to 

solve the difficult challenge of tracking a circular front on a Cartesian grid with minimal error. 

Finally, the classic ingot solidification problem [27] was solved.  The results from this 

test problem indicate that the algorithm is able to solve practical solidification problems with 

strongly multidimensional features. 

The results shown in this paper demonstrate that this front-tracking scheme is accurate yet 

highly computationally efficient.  The scheme is able to explicitly track the interface, yet is 

comparable in computational expense to less accurate front-capturing techniques.  The fully 

transient simulations reported in this work required less than 20 minutes of CPU time on a Unix 

workstation. 

In Part II of this work [19], the front-tracking scheme described in the present study is 

applied to real-world phase change problems including the directional solidification of pure tin 

and the Bridgman crystal growth of succinonitrile subject to convection in the melt region. 
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NOMENCLATURE 

Roman Symbols 


KA   coefficients in discrete equations 

A  area  

a, b, c, d  coefficients for the polynomial equation 

cp    specific heat capacity at constant pressure 


KD   diffusive coefficients in discrete equations 

D  species diffusion coefficient 

f  volume fraction 

g  contravariants from the coordinate transformation 

H  height of computational domain 

K  slope of interface 

k  thermal conductivity 

L  length 

n  ordinate in normal direction 

m  slope of liquidus line 

r  radial coordinate 

s(t)  solidification front location 

St  Stefan number, HTTc mHp  /)(  

t  time 

T  temperature 

U  velocity 

V  front moving velocity 



 

 

V  volume 

w  relaxation factor 

x, y, z  Cartesian coordinates 

 

Greek Symbols 

  thermal diffusivity 

  tolerance 

H  Enthalpy of freezing 

t  time step 

x, y  spatial mesh sizes 

  density 

  ordinate in tangential direction 

  transformed coordinates  

 

Subscripts 

0  initial condition 

1, 2, 3  x, y and z directions 

e  east face 

E  east cell 

i, j  mesh point index 

l  liquid 

m  at solidification front 

n  north face 



 

 

N  north cell 

P   grid node 

s  south face; solid 

S  south cell 

w  west face 

W  west cell 

 

Superscripts 

*  reference or dimensional quantity 

n  time step 

 

 



 

 

FIGURE CAPTIONS 
 

Fig. 1.  Schematic diagrams outlining the procedure for recovering new marker points at time t 

+ t both in the bulk of the domain and at corners. (a) Single set of marker points and (b) 

Two sets of marker points in both vertical and horizontal directions. 

 

Fig. 2.  (a) The local coordinate system at each surface element transformed from Cartesian 

coordinates (x,y,z) to transformed coordinates (,,). (b) Nomenclature used for 

interface temperature gradient equations. 

 

Fig. 3.  Schematic indicating the nomenclature used for the finite difference stencil around the 

interface for a 1D case. 

 

Fig. 4.  Schematic of the problem geometry and boundary conditions for the benchmark 

Neumann melting problem. 

 

Fig. 5.  Numerically simulated and analytically determined melting front locations for the 1D 

melting problem: (a) St = 0.1, (b) St = 2.85 and (c) St = 5.0. 

 

Fig. 6.  Schematic of the 2D cylindrical melting problem. 

 

Fig. 7.  Numerically simulated and analytically determined melting front locations for the 2D 

cylindrical melting problem: (a) 'Q = 500 W/cm, (b) 'Q = 1000 W/cm, and (c) 'Q = 

2000 W/cm. 

 

Fig. 8.  Numerically simulated and analytically determined results for the 2D cylindrical melting 

problem. The line heat source for these results is 'Q = 1000 W/cm. (a) Melt 

temperatures at three different times, (b) Contour plot of temperatures at t = 107.9 s, and 

(c) Melting front locations. 

 

Fig. 9.  Schematic of the problem geometry and boundary conditions for the ingot casting 

problem. 

 

Fig. 10. Results for the ingot casting problem: (a) Isotherms at t = 24 s, (b) Isotherms at t = 40 s, 

and (c) Comparison of front locations at every 4 s for the ingot casting problem; 

enthalpy method represented by dashed lines and front tracking method from the present 

work with one set and two sets of marker points represented by dash dot and solid lines. 



 

 

 

Table 1.  Thermophysical properties of pure aluminum [25, 26]. 

 

Property Value Units 

ks 237.65 W/mK 

kl 94.14 W/mK 

Cp,s 903.74 J/kgK 

Cp,l 1079.47 J/kgK 

 2700 kg/m
3
 

H 397.48 kJ/kg 

 

 



 

 

  

Top end point

Interface at time t + t

Advected points New marker point

Marker point

Interface at time t
 

 

 
  

Vertical marker points

Intersection points

Horizontal marker points

Advected points  

New marker points 

Point A

Point B

 
Figure 1, Li et al. 
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Figure 2, Li et al. 
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Figure 3, Li et al. 
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Figure 4, Li et al. 
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Figure 5, Li et al. 
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Figure 6, Li et al. 
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Figure 7, Li et al. 
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Figure 8, Li et al. 
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Figure 9, Li et al. 
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Figure 10, Li et al. 

(a) (b) 

(c) 

Results using two sets of marker points 

Results using one set of marker points 

Results using enthalpy method [28] 
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