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Recent results in the smoothing oj’signals ji-om linear s~.s[ems~i~h gaussian input and nleasurement noise hate
provided new perspectives on receiuer design. The particular new results and fierspectioes discussed in this paper
are [hose concernilz,qthe importa?z[ class of’ ‘on line’>jil~ers known as filters with delq, lag-jilters, or)xed- IOLT
smoothers.

Fixed-lag smoothers are now su$cient(y developed to be strong competitors qf the wide(y used Wiener and
Kalrnan Jilters for some applications, and the paper disrusres the various trade-offs be[ween, f’ilter pe)forrncrnce,
permissible delgy, filter contjrlexi~y, and design dz$crdp.

1. Introduction
ln control and communication systems, noisy

signals are frequently processed to achieve estimates of
signals, states, or parameters. Usually an effort is
made to construct estimators which achieve an
optimal estimate for some convenient criterion of
optimality such as the minimum mean square error
criterion. Ofthethree basic types ofestimators, namely
filters, predictors, and smoothers, we focus attention
in this paper on those estimators which have the best
inherent performance characteristics, namely smooth-
ers. The performance improvement possible from
smoothers relative to filters is achieved at the expense
of estimator complexity and at the expense of true on-
line estimation. Of the three basic types of smoothers,
namely fixed-point smoothers, fixed-lag smoothers, and
fixed-interval smoothers, the fixed-lag smoother is the
most usefu] since it yields an estimate which, aparL
from a small fixed delay in processing the incoming
signal data, is “on-line’>. In this paper, we study
“on-line” estimation via fixed-lag smoothing and in
particular the trade-ot~s between smoother complexity,
delay in estimation, and improvement in performance.

To be more precise in our various definitions,
consider that for discrete-time systems, any estimate
of x(k), k= O,l, . . . based on a sequenceAof noisy
measurements {z(O), . . . . z(j)] is denoted by x(k/j) and
similarly for continuous-time systems, any estimate of
x(t) derived from the set of measurements {z(T),
to < T .: s} is denoted by f(t/s). The relationship
between k and j (or t and s) determines the type of
estimator. Thus, we have for

/iltering j = k (or t = s) and j (or t) is variable;
sn?oothinq j > k (or s > t);
,fi.xed-point snloothing
k (or t) is fixed andj > k (or s > t) is variable:

fixed-lag smoothing
(j – k) [or (s – t)] is fixed and k [or t] is variable;
fixed-itz(eroal stnoothing
J (or s) IS fixed and k < j (or t < s) is variable:
prediction j < k (or s < t).
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1.1 History

The history of the development of fixed-lag smooth-
ing results is very much bound up with the history of
filtering theory and the broader field of estimation
theory. In 1601, Kepler, using rather awkward
methods, sought to estimate the orbit of Mars from
twelve observations. but it was not until 1795 that
Gauss with his more elegant least squares methods
was able to predict the planetary orbits with reasonable
accuracy. In the late 1930’s and early 1940’s,
Kolmogorov and Wiener working with stationery
random processes developed the least squares approach
for the discrete-time and continuous-time prediction
problems respectively. It appears that Kolmogorov’s
\vork was motivated from purely mathematical con-
sideration while Wiener was interested in applications
to a wide variety of problems including weather fore-
casting, economics and communication systems. This
latter interest led him to study filtering and fixed-lag
smoothing problems (Ref. I ). Wiener’s work was all
in the frequency domain with signals characterized by
their power spectral densities and filters derived in
terms of their transfer f-unctions. Further develop-
ments (Refs. 2, 3) made their appearance when the
signal was modelled by a dynamic system driven from
a white noise source. This enabled nonstationary
processes to be modelled conveniently, and subse-
quently such estimation problems were solved in the
time domain. In this respect, the work of Ka]man
(Refs. 4, 5) and Ka]man and Bucy (Ref. 6) was the most
significant. With the assumption of finite-d inlension-
ality and the use of state space ideas, these workers
developed highly eflicient computational filtering and
prediction algorithms which have found numerous
applications, the most spectacular of which are in the
aerospace field.

The application of the state-space ideas to smoothing
problems followed soon after (Refs. 7, 12), but inherent
in the early realizations of the fixed-lag smoothing
equations are instability problems which have only
recently been recognised. Stable realizations of the
fixed-lag smoothing equations have since been studied
in (Refs. 13-16). A more complete survey of the
literature on smoothing is given in Ref. 19.
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In summary, we have inherited some well developed
fixed-lag smoothing results using frequency domain
ideas and following in the tradition of Wiener. We
also have a number of more general and more recent
fixed-lag smoothing results using state space ideas and
following in the tradition of Kalman. The former set
of results are restricted in application to stationary
processes while the latter set of results are more
generally applicable to nonstationary processes but
require a finite dimensionality assumption. Both sets
of results require the assumption of gaussian signals
and gaussian noise. There are also nonlinear estima-
tion results available but these are usually restricted in
application to limited classes of nonlinear problems
and the resultant estimators are usually considerably
more complex and less well understood than those for
Iinear-gaussian problems. Further mention of these
will not be included here.

In the next section we review some of the most
significant fixed-lag smoothing results in the Wiener
tradition and in the following sections introduce the
more recent results in the Kalman tradition. Some
overall perspectives are discussed in the final section.

2. Fixed-lag Smoothing via Frequency
Domain Techniques

The application of Wiener’s fixed-lag smoothing
results and some of the ideas involved is perhaps best
illustrated by reference to a simple example which we
now study in some detail.

Consider the scalar valued stationary measurement
process

z(t) = y(t) + v(t) (1)

where the power spectral densities of the signal y(t)
and additive noise v(t), denoted @YY(w)and cD,,(u)
respectively, are specified. For our example, we will
consider the specifications

Q,,(o) = ~2 f ~-z , 0,,(0)) ==C2 (2)

where a2, b2 and C2 are positive real numbers. Sup-
pose also that the random processes v(t) and y(t) are
independent and thus @Yv(co)= @vY(0) = O. We have
immediately that

m==(o)) = Q,,(o) + ~vv(~)

and thus for our example

(a2 + c2b2) + C202
@zz(co) = -—-;2 + b=- -- (3)

The optimal z.orreulizable estimator yielding an

estimate y(tl m) which minimizes the mean square error

E[~(tl w) – y(t)]2 has the transfer function

For our example,

where k2 = b2 + (a2/c2). This transfer function is
easily inverted to yield the impulse response

The optimal realizah/e estimator yielding an esti-

mate ~(t – Tit) (where t is variable and T is fixed) is
more difficult to calculate. The relevant formula for
the transfer function involves a spectral factorisation
of O,,(u) as follows:

Ozz((l)) = 0: .(UPD;.(U) (4)

where OJZ(W) [@j Z(m)] has no lower [upper] half
plane singularities or zeros. The transfer function of
the realizable estimator is

where @zY(0) is the cross spectral density. Of course,
the spectral factorization of OZZ(0) is frequently a
nontrivial problem. although for our example it is
straightforward. Evaluation of the integrals in (5)
for our example yields

[

(k + b)e-jC’T – (b + j(o)e-k’ (6)
H(o) = (k – b)

kz + 02 1

Two points should be noted concerning H((o).
First, H(u) is not a rational function for T >0 (the
fixed-lag smoother case) and thus cannot be realized
by a finite dimensional network—in contrast to the
filtering case when T = O and H(cD) is rational.
Secondly, there is a lower half plane and therefore
unstable pole at o = –jk and an identical lower half
plane zero of H(o). These cancel with one another in
the filtering case when T = O, but as can be seen, no
cancellation is cornputationally possible in the fixed-
Iag smoothing case when T >0, for it is not possible
to present in closed-form the quotient resulting from
dividing the numerator by (jco + k).

The above two points have been made for the
particular transfer function (6) but they are also
applicable to the more general transfer functions (5)
and thus help to explain the cause of instability
problems in the earlier realizations of the fixed-lag
smoother, which can be regarded as realization of (6),
or more generally (5), without removal of the unstable
poles. Filters on the other hand, normally have stable
realizations, since the unstable poles are removable.

The impulse response of the transfer function (b) is

;0 for t <0,

k ~ be-k’ (k cosh kt + b sinh kt)

h(t) = { for O tT,
;k–b

~ (k cosh kT + b sinh kT)e-k’

i for t > T (7)

Observe that there is a cusp at t = T and that this
impulse response has the general shape of the un-
realizable response hu(t – T) for T > t >0, see Fig. 1.

h (t)

I T

Fig. 1—Fixed-lag smoother impulse response
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The realization of a system which achieves this impulse
response for the filtering problem when T = O is
straightforward, but for the fixed-lag smoothing case
when T > 0, the realization of the desired impulse
response h(t), even for our simple example, is a non-
trivial problem. Evidentally, approximation with a
stable finite dimensional system is required, and a
number of these may have to be tested for their
suitability.

So far, we have touched on the realization of fixed-
lag smoothers using Wiener’s results, but have yet to
examine their performance.

The minimum mean-square error for the optimal
unrealizable estimator above is, by stationarity.
independent of t, being

1

s

m @yy(co)@v,(co)do
‘MSE” = z .,7 @zZ(o)

a’——
2k

(8)

The minimum mean-square error for the optimal
realizable fixed-lag smoother is more complicated.
However. for our example the MMSE reduces to

MMSE = c’(k – b)[l – ‘~~b(l – e-’”)]

which clearly illustrates a general and intuitively
reasonable result, namely, that the MMSE is monotone
decreasing as T increases and in the limit as Tapproaches
infinity is the unrealizable error (8).

The trade-off between the fixed-lag T and the M MS E
as illustrated above suggests that in practice a fixed-
lag need not be chosen which achieves more than say
95 ~ of the improvement that is possible from smooth-
ing. It seems reasonable in the case of our simple
example to select T to be say 2 or 3 times the time
constant of the optimal filter, namely 7 = 1/k. It turns
out that more generally it is reasonable to select T to be
say 2 or 3 times the dominant time constant of an~
optimal filter to achieve essentially all the improve-
ment in performance that can be achieved by smooth-
ing.

Before going on to a study of fixed-lag smoothing
using Kalman filtering type ideas, we may note that
Wiener’s approach yields straightforward results for
the design of optimal realizable filters, and very simple
results for the design of unrealizable (or equivalently
infinite lag) smoothers, but when it comes to designing
stable realizable fixed-lag smoothers, the going is
considerably more difficult. This is because it is
difficult to carry out the manipulations to yield the
optimal realizable estimator impulse response in the
first place, and then it is tedious to design a stable
finite-dimensional realization to approximate this
response. The difficulties are clearly compounded if
one seeks the best trade-off for a given application
between estimator performance, estimator complexity.
and the delay required.

3. Fixed-lag Smoothing of Discrete-time
Signals via Kalman Filtering Techniques

Kalman filtering techniques can be applied when the
signal model is described by state space equations such
as the following equations for k = O, 1, 2, . . . .

x(k + 1) = $x(k) + Gw(k) (9)

y(k + 1) = h’x(k + 1) (10)

Here, the state x() is an n-vector, the disturbance
w(. ) is a p-vector, and the signal y(. ) is a scalar. The
signal measLlrement Z(. ) is a scalar qLlantity given
from

z(k+l)= y(k+l)+v(k+l) (Ii)

Also the disturbances W( ) and v(”) are independent
zero mean, white gaussian sequences with covariance
matrices

E[w(k)w’(k)] = Q, E[v’(k)] = R

with R positive. This signal model is more restrictive
than the corresponding Wiener model in that a finite
dimensionality constraint is involved, but we hasten
to point out that, in contrast to the Wiener results, the
results discussed in this section are readily generalized
for time-varying, multiple oLltpLlt signal models.

The Kalman filter yields the filtered state estinlates*

f(klk) = E {x(k) [z(0),z(l ), . . . z(k)}

from which signal estimates y(k[k) can also be achieved
since ~(klk) = h’x(klk).

+

I
DELAY

<) X (k)

[’1
DELAY

~ ~l(k)=x(k+l)

T

DELAY

xN(k)=x(k —N)

Fig. 2—A u.qmented signal nlodel

In order to outline just how Kalman filter results
can be applied to yield fixed-lag smoother results,
suppose that the signal model (9)-( 11) is augmented
with delay elements as depicted in Fig. 2 and is
described by the equations

x(k + 1)’1 (0 O . 01 ~ ~(k)l
xl(k + I)i ~ O~x (k),
x’(k + 1)~ = O ~ ~xz(k) ~

~ IN .I, .

I .~

xN(k”+ l), 1
I

O ~xN(k)j

[

~.

o
+ 10

[0

w(k) (12)

* The conditioned mean estimate is also a minimum mean square
error estimate in the scalar case.
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where manipulations yield the identities xi(k) =
x(k — i). Application of the Kahnan filter equations
to the signal model (12), (13) and ( 11) yields optimal
estimates fi(klk), ll(klk), . . . ~N(klk). The filtered
estimates fi(klk) are in fact the desired fixed-lag
estimates $i(k — ilk) since from (J 2) and the definitions
of filtered estimates and fixed-lag estimates, ~(k – ilk)

= E[x(k – i)lz(0),, z(I), . . . z(k)} = E{xi(k)lz(o),

z(l), . . . z(k)} = i’(klk).
After appropriate simplifications, Kalman filter

equations (Refs. 4, 5) for the aLlgmented signal model
yield the fixed-lag smoothing equations together with
the filtering equations as follows for i = 1, 2, . . . N.

f(k + Ilk + 1) = F$i(klk) + k;(k + 1)
$(k+l–ilk +l)=~(k+l– ilk)+ ki2(k+l)

(14)

Here ~(k + 1) is a white noise innovations process
given from

;(k + 1) = z(k + 1) – h’$~(klk)
and F and ki are given from

F=$–kh’

k = ~h(h’~h + R)- 1

E’ = ~(1 – hk’)

Pi = ~(F’)i

ki = PiP-]k (15)

where ~ is calculated from the equations

P = lim Fk
k- cc

Pk+l = $[~k - ~,h(h’~,h + R)h’~,]@ + GQG’

Fo=o (16)

In these equations, P is the covariance of the filtering
error [x(k) – i(klk)] and P—is the covariance of the
one-stage prediction error [x(k + 1) – ~(k + I Ik)].
Both these covariances are independent of k. The
steady state error covariance of the fixed-lag smoother
is given from

Ps = :~j, E{[x(k) – f(k – N Ik)l[x(k)

– ~(k – Nlk)]’}

= P – ~ D-’(F – P)(D- l)’ (17)
i=l

where D = P(F’)-]P- 1

Observe once again that as the lag N increases there
is an improvement in smoother performance. Further
manipulations yield that the error covariance reduction
implied by (17) effectively obtains its maximum value
when the fixed-lag N is of the order of two or three
times the value of the dominant filter time constant.
For any specified situation there appears to be no
simple way to predict how much the improvement is
going to be, other than by calculation via (17). In
many cases the improvement may be negligible, but
in other cases the improvement may be greater than
50 ~.

There are numeroLls alternative discrete-time fixed-
Iag smoothing structures including those driven directly
from the filtered states (Refs. 13, 14) and varioL1s
reduced order structures (Ref. 13). It should be noted
that the abovementioned smoothers are all inherently
stable, (in the sense of Lyapunov) in contrast to
structures earlier suggested in the literature. Another
featLlre which all these discrete-time fixed-lag smoothers
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share is that the trade-offs between the delay in
estimation N, the estimator performance given by
(17), and estimator dimension (dimension of estimator
(14) is (n + 1)N) are immediately available to the
designer.

A further point worthy of note is that for the case
where the measurement set is finite, as for fixed-interval
smoothing, it is not difficLdt to adapt the fixed-lag
smoother to yield the fixed-lag smoothed estimate for
the first part of the interval (equal in length to the
interval itself minus the fixed lag), and the fixed-inter-
val smoothed estimate for the latter part of the interval
(equal in length to the fixed lag). All that is required is
apply the recurrence relationships (14) but set z(k + 1)
= O and i(klk) = O and thus i(k + 1) = O for k
greater than the fixed-interval magnitude. This result
is interesting in the special case when the fixed lag is
chosen as identical to the fixed interval, for then the
adapted fixed-lag smoother is in fact an “on-line”
fixed-interval smoother, which incidentally is more
efficient computationally than the various well known
“off-line” fixed-interval smoothers in the literatLlre
(Ref. 20); as these involve both a forward pass of the
data through a filter and then a reverse pass of relevant
data through a second filter.

4. Fixed-lag Smoothing of Continuous-time
Signals via Kalman-Bucy Filtering
Techniques

For continuous-time signals y(”) it knot difficult to
express the fixed-lag smoothed estimate y(t – T[t) (of
y(t – T) given measurements to time t) in terms of a
filtered estimate y~(tlt) of a signal y=(t) defined as
yT(t), = y(t – T)., h ,fact, this definition leads im-
mediately to the ldentlty

~(t – Tit) = $=(tIt) (18)

Pressing the analogy with the discrete-time results
of the earlier section, we would expect that for the
cases where $(tlt) can be found via Kalman-Bucy
filtering techniques, then y~(tlt) could be foLlnd by
these same techniques. This is not the case since the
signal model for yT(t) involves a time delay and unless
this is approximated by a finite dimensional system,
and thereby an approximate value for yT(tlt) obtained,
Kalman-Bucy filtering cannot be applied as such. It
turns out that in practice, the filtering of an approxi-
mate value for yT(t) achieves an approximate value for
jT(tlt) and thus of ~(t – T/t). To be more precise, let
us consider the linear, time-invariant signal model
equations as

~= Fx+Gu
y = h’x
Z=y+v (19)

where U(”) and V(~) are zero mean white gaussian
processes with covariances E[uT(t)u’(T)] = Qd(t – r)
and E[v(t)v(~)] = Rd(t – ~) with R positive definite.
Also, E[u(t) v(T)] = O. (Once again, we have used a
signal model which is more restrictive than the Wiener
one in that a finite-dimensional constraint is involved,
bLlt we also note that results for time-varying multiple
output systems are readily obtained. ) In addition, we
consider the following augmentation to the signal
model (19),

k, = Fax. + G,y
y; = h.x. + J,y (20)

where F,, G., h., and J. are selected as the system
matrices of an approximate delay network (where the
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delay is T) such as are studied in the networks litera-
ture. Thus, we have that y,(t) & y~(t) = y(t – T).
Observe that the above augmentation does not affect
the signal y or the measurements z. It is purely a
device for solving the smoothing problem.

For the stationary smoothing problem, application
of Kalman-Bucy filtering equations (Refs. 5, 6) to the
augmented signal model, after some simplifications,
yields the following estimator for ~J(tlt) and~(tlt).

i = Fi + k(z – h’i)

k = ~hR-l

FP(t) + P(t)F’ – P(t)hR - ‘h’P(t) + GQG’ = P(t),
P(o)=o ‘

~ = Iitn P(t)
t-x

and .
%d = G.h’i + FJiJ + k.(z – h’i)

j. = h’i,x,

kJ = P,hR - 1

FUP: + P,(F’ – hk’) + GJh’P = O

The equations (21) are the Kalman-Bucy

(21)

(22)

filter
equations- associated with the signal model (19), and
equations (22) are augmentations of these associated
with the augmentation of the signal model. The more
general nonstationary equations can also be obtained.

The above filtering equations yield approximate
values for the fixed-lag smoothed estimates ~(t – Tit)
since y(t – T/t) = y~(t) & y.(t) and thus ~(t – Tit)
= yT(tlt) E j.(tit) Of course, the study of the
approximations is a study in its own right, bLrt the
performance measure that is relevant is

E{[;.(tit) – y(t – T)]2}
which we denote as P,. The valLle of P, can be deter-
mined by solving linear equations (Ref. 16), but the
details are perhaps too lengthy to sLlmmarize here.
No firm results are available which offer help in the
selection of a suitable value for the dimension ofxd in a
first trial design, but experience indicates that if this
is chosen to be of the order of that for x, a smoother
design, in most cases, can be achieved with P. virtually
the same as the optimal fixed-lag smoothed signal error
estimate which in turn may be considerably less than
the filtered signal error.

In spite of the inherent tedium in determining a
suitable trade-off between delay, estimator perform-
ance, and estimator complexity, sLlch a study can be
carried out systematically. The results can be readily
extended to multiple output systems or to achieving
fixed-lag smoothed state estimates bLlt since more than
one approximate delay is usually involved in solving
sLlch problems, any optimization procedure adopted
has many more parameters to contend with.

5. Further Fixed-lag Smoothing Results

So far, we have presented Wiener fixed-lag smooth-
ing results (chiefly because of their historical signifi-
cance) and the application of Kalman filtering results
to achieve fixed-lag smoothers (chiefly because this
approach has both simplicity and power). Other
results are, however, available and are very important
for an understanding of the subject.

Ref. 17 derives simple formulas for the contin LloLls-
time fixed-lag smoothing problem as

x(t – Tit) = f(t – Tlt – T)

J

t
+P $’,(T – t)hR - ‘[Z – h’i(~lr)]dT (~~)

t–T
/.1

PS=P– P
~

$’,(T – t)hR- lh’@f(T – t)d,. P
I–T

(24)

where ~~(. ) is the transition matrix associated with the
system matrix F – kh’ of the optimal filter. An
alternative expression for f(t – Tjt) is given in Ref.
18by

i(t – Tit) = P@’f(T) P- ‘i(tIt)

J

t
+P @’f(. - t) P-l GQG’p-’i(zlT)d, (25)

t–T
A relatively simple realization of (23) is depicted in

Fig. 3 where Ff denotes the filter closeci loop system
matrix. Unhappily, in the usLtal case when Ff has
negative eigenvalues, the matrix ( —Ff’) has positive
eigenvalues, and as a consequence the realization of
Fig. 3 contains instabilities.

Fig. 3-– Unstable .fi.~tvl-lag smoother seali:atim]

The instability problem has been solved in Ref. 15
by permitting a resetting to zero of the states of the
integrator in Fig. 3 at time instants 2nT for n = 1, 2,
. . . . . It turns out that using this resetting scheme
solves the instability problems but the modified
smoother output yields a smoothed estimate only
over the time intervals [2nT, 2(1I + I )T]. However,
switching between two sLich stable smoothers (the
second reset at instants 2(n + 1)T) achieves a stable
realization of the fixed-lag smoothing equations.
Stability is achieved at the expense of resetting, switch-
ing, and complexity, rather than at the expense of
optimality as in the previo Llssection and as disc L!ssed
in the next paragraph.

The instability problem associated with (23) and
(25) can also be avoided by approximate but stable
realizations of the impulse response associated with
the smoothing equations (23) and (25). This approach
also avoids the necessity for pure time-delay elements.
For further details, see Ref. 16. A second approach to
approximate realizations is to replace the integral in
(23) or (25) by an approximating sum. Then, in the
case of (25) for example, the smoothed estimate be-
comes a linear combination of weighted filtered
estimates, all with varioLls delays.

6. Concluding Remarks

The various fixed-lag smoothing results briefly
discussed in the previous sections suggest that the
possibility of fixed-lag smoothing for solving linear
estimation problems should not be overlooked in
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favour of the more straightforward task of filtering, as
appears to be the current practice. The improvement
in estimator performance in many cases would justify
the increase in estimator complexity required for
fixed-lag smoothing.

A s o suggested by the results mentioned in the paper
is the conclusion that the “on-line” fixed-lag smoothing
approach t o solving fixed-interval smoothing problems
should be used in the interests of efficiency rather than
the various “ off-line” fixed-interval algorithms cur-
rently in use, even if this means the selection of a fixed
lag equal to the period of the fixed interval.
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