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Abstract— Classical floorplanning minimizes a linear
combination of area and wirelength. When Simulated
Annealing is used, e.g., with the Sequence Pair represen-
tation, the typical choice of moves is fairly straightfor-
ward.

In this work, we study the fixed-outline floorplan
formulation that is more relevant to hierarchical design
style and is justified for very large ASICs and SoCs.
We empirically show that instances of the fixed-outline
floorplan problem are significantly harder than related
instances of classical floorplan problems. We suggest new
objective functions to drive simulated annealing and new
types of moves that better guide local search in the new
context. Wirelength improvements and optimization of
aspect ratios of soft blocks are explicitly addressed by
these techniques.

Our proposed moves are based on the notion of
floorplan slack. The proposed slack computation can
be implemented with all existing algorithms to evaluate
sequence pairs, of which we use the simplest, yet seman-
tically indistinguishable from the fastest reported [28].
A similar slack computation is possible with many other
floorplan representations. In all cases the computation
time approximately doubles.

Our empirical evaluation is based on a new floorplan-
ner implementation Parquet-1 that can operate in both
outline-free and fixed-outline modes. We use Parquet-1
to floorplan a design, with approximately 32000 cells, in
37 minutes using a top-down, hierarchical paradigm.

Index Terms— VLSI CAD, Physical Design, Floorplan-
ning, Hierachical Design, Placement

I. INTRODUCTION

We describe the classical floorplanning framework

and compare it to a modern fixed-outline formulation.

A. Classical Outline-Free Floorplanning

A typical floorplanning formulation entails a collec-

tion of blocks, which can represent circuit partitions

in applications. Each block is characterized by area

(typically fixed) and shape-type, e.g., fixed rectangle,

rectangle with varying aspect ratio, an L-shape, a

T-shape, or a more general rectilinear polygon, etc

(such shapes may optimize layouts of special types of

circuits, e.g., datapaths). A solution to such a problem,

i.e., a floorplan, specifies a selection of block shapes

and overlap-free placements of blocks. Depending on

shape constraints, a floorplanning formulation can be

discrete or continuous. For example, if at least one

block is allowed to assume any rectangular shape

with fixed area and aspect ratio in the interval
�
a ✁ b ✂

(where a ✄ b) the solution space is no longer finite or

discrete. Multiple aspect ratios can be implied by an

IP block available in several shapes as well as by a

hierarchical partitioning-driven design flow for ASICs

[26], [13] where only the number of standard cells in

a block (and thus the total area) is known in advance.

In many cases, e.g., for row-based ASIC designs,

there are only finitely many allowed aspect ratios,

but solution spaces containing a continuum are used

none the less, primarily because existing computational

methods cannot handle such a large discrete solution

space directly [13]. We point out that in the classical

floorplanning formulations, movable blocks tend to

have fixed aspect ratios, but the overall floorplan is

not constrained by an outline. While several recent

works allow for variable block aspect ratios, the more

modern fixed-outline formulation (see below) has not

been addressed.

Objective functions not directly related to area typi-

cally involve a hypergraph that connects given blocks.

While more involved hypergraph-based objective func-

tions have been proposed, the popularity of the HPWL

(half-perimeter wirelength) function is due to its sim-

plicity and relative accuracy, given that routes are not

available. The HPWL objective became even more

relevant [13] with the wide use of multi-layer over-

the-cell routing in which more nets are routed with

shortest paths.

A fundamental theorem for many floorplan represen-

tations, says that at least one area-minimal placement

can be represented [20]. This does not hold for ob-

jectives that include wirelength because none of the

optimal solutions may be “packed” which implies that

more nets can be routed with shortest paths. Figure 1

shows a small example that area-minimal placements

do not hold for minimum wirelength objectives. We

also note that lack of incremental move structures in

a floorplan representation is an important weakness

of typical topological floorplanners. Thus wirelength

has to be calculated from scratch after each floorplan

evaluation. For designs with lot of wires, calculating

the wirelength from scratch after each move can slow

down the floorplanner considerably [1].

For the remaining part of this work, we will be

dealing with the area and HPWL objectives only, but

even this simplified setting implies multi-objective op-
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P1 A B P2

Fig. 1. Example to show that area-minimal placements
do not hold for minimum wirelength objectives. Blocks
A and B, connected by 2-pin nets to fixed pins P1 and
P2 respectively. The blocks touch in no optimal solution
if the pins are sufficiently far from each other.

timization. Mathematically, best trade-offs are captured

by the non-dominated frontier (NDF), also known as

the Pareto front.

Defi nition: a solution of a multi-objective optimization

problem belongs to the non-dominated frontier iff no

other solution improves upon one of the objective func-

tions while preserving (or improving) other objective

functions.1 Of those works on abstract floorplanning

that address both objectives, most minimize a linear

combination [27], [23], [28] with arbitrarily chosen

coefficients. By a simple corollary of the definition

of NDF, this produces non-dominated solutions, most

likely different for different coefficients. Note, how-

ever, that area and wirelength have different dimen-

sions. Given that net lengths have the same order of

magnitude as the x and y dimensions of the floorplan

itself, areas tend to be several orders of magnitude

larger than wirelengths and path delays. One can take

the square root of the area so that the the terms become

of the same magnitude. However, even if one tries

to connect the area of a region to its perimeter, that

relation depends on the aspect ratio (the rectangle

1x100 has perimeter length 202, and the rectangle

10x10 has perimeter length 40, even though both have

area 100). Since aspect ratio changes in the course

of floorplanning, one cannot come up with a fixed

coefficient. Moreover, net length may be much larger

than the perimeter because of the large number of nets.

Here, again, there is no fixed coefficient because the net

length changes during the course of floorplanning and

it is difficult to predict optimal net lengths (some nets

may be very short and some may be very long). The

problem is exacerbated, because for different designs,

different coefficients may be required to find the NDF.

In our experiments, area terms dominated wirelength

terms unless highly problem-specific coefficients are

used. In other words, it is difficult to fully automate

a floorplanner that explores non-dominated solutions

with respect to wirelength and area objectives. The

relationship between linear combination objectives and

the Pareto curve (NDF) is studied in [12]. It is shown

that with a suitable choice of coefficients, any point on

the ”Lower Convex Hull” of the NDF can be found.

1The design of optimization heuristics can be viewed as a problem
with at least two objective functions — runtime and solution quality.

This suggests a systematic method of modifying the

coefficients to probe the hull and also characterizes

the limitations of the linear combination approach.

To summarize, classical floorplan approaches entail

difficult multi-objective optimization and often rely on

representations that may not capture any minimum

wirelength solutions.

(a) (b)

Fig. 2. Layout of a modern chip. Figure (a) shows the
actual layout. Figure (b) shows an abstract floorplan
captured from the layout in (a). The example illustrates
the hierarchical nature of designs and the need to
support a hierarchical flow.

B. Modern Fixed-outline Floorplanning

As pointed out in previous works [13], [4], some

of fundamental difficulties in classical floorplanning

are gracefully resolved in the context of modern ASIC

design. Modern hierarchical ASIC design flows based

on multi-layer over-the-cell routing naturally imply

fi xed-die placement and floorplanning rather than the

variable-die style, associated with channel routing,

two layers of metal and feedthroughs. Each top-down

step of such a flow may start with a floorplan of pre-

scribed aspect ratio, and with blocks of bounded (but

not fixed) aspect ratios. The objective is to minimize

wirelength subject to (i) the fixed floorplan outlines,

and, perhaps (ii) zero white-space. Floorplans with no

white-space are called “mosaic” by Hong et al. [11]. (i)

implies that the white-space is no longer an objective,

but rather a constraint, because it can be computed

in advance. Modern design flows use hierarchy as a

means to reduce the complexity. Figure 2 (a) shows

the layout of a modern chip. Figure 2 (b) abstracts the

actual layout in (a) to generate a hierarchical floorplan.

This example serves to illustrate the need to support a

hierarchical flow.

The modern floorplanning formulation was proposed

by Kahng [13] and is an “inside-out” version of the

classical outline-free floorplanning formulation — the

aspect ratio of the floorplan is fixed, but the aspect

ratios of the blocks can vary. To our knowledge, it has

not yet been explicitly addressed in the literature, partly

due to the lack of benchmarks. Since our work ad-
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dresses this formulation, we re-evaluate the relevance

of classical floorplanning results in the new context:

1) Zero white-space requirement is practical be-

cause at top level (during floorplanning) there

are no unused resources — the space between

blocks can be used for routing, buffers, etc. For

example, ”buffer islands” are discussed in [7].

Therefore, whitespace must be allocated more

carefully. The new formulation makes research

on classical “block packing” more relevant. That

is because all wirelength-minimal solutions in

this formulation can be captured by compacted

representations such as sequence pairs [20], O-

trees [23], B
�

-trees [5] and corner block lists

[11]. In fact, any floorplan with zero white-

space can be captured by known representations,

because it is “compacted”.

2) Multi-objective minimization of area and wire-

length, via linear combinations or otherwise, is

no longer an issue since white-space is fixed.

3) Handling blocks with variable aspect ratios ap-

pears increasingly important because there may

be very few or no floorplans with a given out-

line for any given fixed configuration of aspect

ratios. A number of works [19], [21], [6], [29]

handle the floorplan sizing problem, i.e., changes

of aspect ratios without reordering blocks, by

methods of mathematical optimization (convex

linear and non-linear programming). However,

such methods are difficult to combine with com-

binatorial optimization and entail excessive run-

times. For example [29] cites runtime of 19.5

hours for the ami49 benchmark (other works cite

smaller runtimes). Additionally, such approaches

entail a mix of two very different computational

engines. The implementation reported in [11]

appears to handle discrete variable aspect ratios

by randomized re-instantiation of blocks based

on a set of 16 alternatives.

4) Perhaps, the greatest shortcoming of known ap-

proaches to floorplanning with respect to the

new formulation is the lack of appropriate neigh-

borhood structures, i.e., incremental changes

(“moves”) that preserve the fixed outline of the

floorplan. Notably, every floorplan encoded by

the corner block list(CBL) representation [11]

has zero white-space with respect to the ”rooms”

the floorplan creates (i.e. is “mosaic”), but CBL

based moves can change the floorplan’s aspect

ratio considerably.

5) Given that the new floorplanning formulation is

more constrained, we see increased relevance of

research on accommodating application-specific

constraints, such as alignment, abutment, order,

regions [28], symmetry [24], etc.

We conclude that classical floorplanning is largely

relevant to the new floorplan formulation proposed by

Kahng [13], however the new formulation must be ad-

dressed through ways other than novel representations.

This is primarily due to the fact that known floorplan

representations and manipulation algorithms do not

allow effective traversals of the solution space without

violating important constraints, such as the fixed-

outline constraint discussed in our work. While such

representations and algorithms may be proposed in the

future, an alternative approach is to allow temporary

violations and either tolerate or fix them. For example,

not every corner block list [11] yields a valid floorplan,

but the feasibility constraint is clearly stated in [11] and

tolerated by the reported implementation. Constrained

modern floorplanning has also been addressed recently

by Feng et. al [9]. Their work assumes initial locations

of blocks to be floorplanned are available and the

techniques are more applicable for incremental floor-

planning. There are a number of works that do floor-

planning with various realistic objectives (congestion,

timing, power, etc). However fixed-outline constraints

and the optimization of the HPWL present a simpler,

but necessary part of practical floorplanning. Thus, we

view simplified floorplanning formulations as a useful

filter for promising computational techniques.

Industrial design instances, can be broadly classified

into ASICs, SoCs, and Microprocessor. ASIC chips

frequently contain a handful (1-20) of large macros,

a moderate number (100s) of large multi-row cells,

and many small standard cells — up to several million

and increasing. ASIC chips typically have whitespace

ranging from 40% to 80%

SoC designs are similar to ASIC designs, but with

many more large macros in the placement area. In

extreme cases the bulk of the design is concentrated in

standard pre-designed library cores, RAMs, etc, with

only a small fraction of movable logic providing minor

control functions.

Microprocessor designs are generally laid out hier-

archically, and this approach often leads to many small

partitions. Some of these partitions are small standard-

cell placement instances with very few fixed cells, and

a small number of movable cells ( ✄ 10000).

Particularly note that many current designs are hi-

erarchical and are designed top-down [14], [16], [8].

As pointed out in [8] floorplanning is becoming in-

creasingly important for prototyping hierarchical de-

signs. The top level in any hierarchical design flow

may use a variable die. Variable-die floorplanning is

employed in [25] because only one level of hierarchy

goes through their floorplanner. However, fixed-die

floorplanning offers new possibilities. Fixed-outline

floorplanning could be incorporated in a top-down

hierarchical flow employing multi-level floorplanning

as described in Section III-F. It can also be used in
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an ASIC floor-placement flow [1] to place mixed-size

ASIC designs in a fixed-die context. A methodology to

place standard-cell designs with numerous macros by

combining floorplanning and standard-cell techniques

is proposed in [1]. The proposed design flow is as

follows:� An arbitrary black-box (no access to source code

required) standard-cell placer generates an initial

placement.� To remove overlaps between macros, a physi-

cal clustering algorithm constructs a fixed-outline

floorplanning instance.� A fixed-outline floorplanner, generates valid loca-

tions of macros.� With macros considered fixed, the black-box

standard-cell placer is called again to place small

cells.

This design flow provides a somewhat new “killer

application” for the many floorplanning techniques

developed in the last five years and fixed-outline

floorplanning formulations are relevant in the fixed-die

context which is very popular in ASIC design. Floor-

planning is heavily used in design flows for complex

hierarchical SoC design today. Given the dominance

of fixed-outline design, our techniques are applicable

to many chips that are being designed today.

In this work, we study neighborhood structures

for the well-known sequence pair representation. Our

proposed slack-based moves are more likely to reduce

the floorplan span in a given direction (H or V)

than random pair-wise swaps and block rotations used

in most works based on sequence pairs. Wirelength

minimization and handling aspect ratios of soft blocks

are also more transparent with slack-based moves.

The remaining part of the paper is organized as

follows. Section II discusses the background on floor-

planning and the sequence pair representation. We

introduce the concept of floorplan-slack in Section III.

It also discusses better local-search in the annealing

context and special moves aimed at HPWL mini-

mization and handling soft-blocks using slacks. Fixed-

outline floorplanning and applications to hierarchical

floorplan design is also explained. Section IV presents

empirical validation of our work, and future directions

are discussed in Section V.

II. BACKGROUND: THE SEQUENCE PAIR

FLOORPLAN REPRESENTATION

An overwhelming majority of floorplanners rely on

the Simulated Annealing framework [26] but differ by

internal floorplan representations.
The sequence pair representation for classical floor-

plans of N blocks has been proposed in [20]. Unlike
most new graph-based representations, it consists of
two permutations (orderings) of the N blocks. The two
permutations capture geometric relations between each

pair of blocks. Recall that since blocks cannot overlap,
one of them must be to the left or below from the other,
or both. In sequence pair✁✄✂✆☎✝☎✝✞

a
✞✟☎✝☎✠✞

b
✞✟☎✝☎☛✡☞✞✄✂✆☎✠☎✝✞

a
✞✟☎✝☎✝✞

b
✞✟☎✝☎✌✡✎✍✑✏

a is to left of b (1)✁✒✂✆☎✠☎✝✞
a
✞✟☎✝☎✝✞

b
✞✟☎✝☎✌✡✓✞✟✂✔☎✝☎✝✞

b
✞✄☎✠☎✝✞

a
✞✟☎✝☎✕✡✖✍✑✏

a is above b (2)

In other words, every two blocks constrain each

other in either vertical or horizontal direction. The

sequence pair representation is shift-invariant since it

only encodes pairwise relative placements. Therefore,

placements produced from sequence pairs must be

aligned to given horizontal and vertical axes, e.g., x ✗ 0

and y ✗ 0. Multiple sequence pairs may encode the

same block placement, e.g., for three identical square

blocks, both ✘ ✄ a ✁ c ✁ b ✙ ✁ ✄ c ✁ a ✁ b ✙✛✚ and ✘ ✄ a ✁ c ✁ b ✙
✁ ✄ c ✁ b ✁ a ✙✛✚ encode the placement with a straight on

top of c, and b aligned with c on the right.

The original work on the sequence pair representa-

tion [20] proposed an algorithm to compute placements

from a sequence pair by constructing the horizontal

(H) and vertical (V) constraint graphs. The H and V

graphs have N ✜ 2 vertices each — one for each of

N block, plus “the source” and “the sink”. For every

pair of blocks a and b there is a directed edge a ✢ b

in the H graph if a is to the left of b according to

the sequence pair (Formula 1). Similarly there is a

directed edge a ✢ b in the V graph if a is above b

according to the sequence pair (Formula 2) — exactly

one of the two cases must take place. Vertices that

do not have outgoing edges are connected to the sink,

and vertices that do not have incoming edges are

connected to the source. Both graphs are considered

vertex-weighted, where the weights in the H graph

represent horizontal sizes of blocks, and the weights in

the V graph represent vertical sizes of blocks. Sources

and sinks have zero weights.

B C

A

CB

A
<ABC>,<BAC>       

<ABC>,<BCA>

Fig. 3. Two sequence pairs with edges of the horizontal
(dashed) and vertical (solid) constraint graphs.

Block locations are the locations of block’s lower

left corners. The x locations are computed from the H

graph, and y locations are computed from the V graph

independently. Therefore, we will only look at the

computation of the x locations. One starts by assigning

location x ✗ 0 to the source. Then, the H graph is

traversed in a topological order. To find the location
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of a vertex, one iterates over all incoming edges and

maximizes the sum of the source location and source

width. Figure 3 illustrates the algorithm on two exam-

ples. The worst-case and average-case complexity of

this algorithm is O ✘ n2 ✚ , since the two graphs, together,

have a fixed O ✘ n2 ✚ number of edges, and topological

traversals take linear time in the number of edges.

We say that a block placement is “representable” (or

“can be captured”) by a sequence pair iff there exists

a sequence pair which encodes that placement. A fun-

damental theorem from [20] implies that at least one

minimal-area placement is representable with sequence

pair (in fact, there are many). Therefore, sequence pair

representation is justified for area minimization.

Sequence pairs can be used to floorplan hard rectan-

gular blocks by Simulated Annealing [20], [21], [27],

[28]. The moves are (i) random swaps of blocks in

one of the two sequence pairs, and (ii) rotations of

single blocks. Sequence pairs are modified in constant

time, but need to be re-evaluated after each move. No

incremental evaluation algorithms have been reported,

therefore the annealer spends most of the time evalu-

ating sequence pairs.

The sequence pair representation and necessary al-

gorithms have been extended to handle fixed blocks

[21] as well as arbitrary convex and concave recti-

linear blocks [10]. Recently, the original O ✘ n2 ✚ -time

evaluation algorithm [20], has been simplified and sped

up to O ✘ n log ✘ n ✚ ✚ by Tang et al. [27], and then to

O ✘ n log ✘ log ✘ n ✚ ✚ ✚ [28]. Importantly, those algorithms do

not change the semantics of evaluation — they only

improved runtime, and lead to better solution quality

by enabling a larger number of iterations during the

same period of time. While O-trees [23] and corner

block lists [11] can be evaluated in linear time, the

difference in complexity is dwarfed by implementation

variations and tuning, e.g., the annealing schedule. The

implementation reported by Tang et al. [28] seems to

outperform most known implementations, suggesting

that the sequence pair is a competitive floorplan rep-

resentation.

In our experiments, the simple O ✘ n2 ✚ evaluation al-

gorithm from [27] performs faster than the O ✘ n log ✘ n ✚ ✚ -

time algorithm from the same paper. We implement the

O ✘ n log ✘ n ✚ ✚ -time algorithm using C++ STL maps.2 On

ami49 benchmark with 49 blocks the O ✘ n log ✘ n ✚ ✚ -time

algorithm is slower than O ✘ n2 ✚ -time algorithm by a

factor of 7X. On a benchmark with 32498 blocks the

O ✘ n log ✘ n ✚ ✚ -time is slower than O ✘ n2 ✚ -time algorithm

by a factor of 4X. This is primarily due to the simplic-

ity and lower implementation overhead of data struc-

tures used by the O ✘ n2 ✚ -time algorithm. A more recent

paper [28] claims that their advanced O ✘ n log ✘ log ✘ n ✚ ✚ ✚ -

time algorithm outperforms the quadratic algorithm in

2STL maps are implemented using red-black trees.

practice. Given that it is considerably more involved,

but based on the same principles, we choose to base our

work on the quadratic algorithm, leaving out a potential

speed up.

All three algorithms are based on the following

theorem [27]: The x-span of the floorplan to which

sequence pair ✘ S1 ✁ S2 ✚ evaluates, equals to the length

of the longest common weighted subsequence of S1

and S2, where weights are copied from block widths.

Analogous statement about the y-span deals with the

longest common subsequence of SR
1 and S2 , where

R stands for “reversed” and weights are copied from

block heights. Moreover, the computations of x and y

locations of all blocks can be integrated into the longest

common subsequence computations.

E
F D

A

CB
X−slack

(a) (b)

Fig. 4. In Figure (a) X-slack of blocks B and C is shown
by the solid arrow. Slack is the distance a block can
be moved in a particular dimension without increasing
the area of the floorplan. In Figure (b) blocks with
zero Y-slack are shown. They lie on a “critical path”
marked with arrows.

E
F D

A

CB

F
E

B C

A

x−Slack for Block A =

y−Slack for Block E =

ABFECD>
<FEDBCA,

(b)

D

x(Aright) − x(Aleft)

y(Etop ) −y(Ebottom)

(a)

Left−Bottom Packing Right−Top Packing

Fig. 5. Slack Computation. In Figure (a) the floorplan
is evaluated left-to-right and bottom-to-top. In Figure
(b) the floorplan is evaluated right-to-left and top-to-
bottom. The slacks for each block is the difference
between its positions in the two evaluations.

III. BETTER LOCAL SEARCH

We propose several ideas for improved move se-

lection in Simulated Annealing and greedy floorplan

optimization. We will also introduce our contribution

in wirelength minimization and handling soft blocks.

A. Slack Computation

The notion of slack can be used with any of the

above mentioned sequence pair evaluation algorithms
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and potentially other floorplan representations. It is

based on the following series of observations

� x and y locations are computed independently.� in each dimension, the floorplan is constrained by

one or more “critical paths” in respective con-

straint graphs. A critical path is a path of blocks

that constrain each other in the same direction and

are tightly packed so that any change in block

location must produce overlaps or increase the

span of the floorplan.� in each dimension, the computation of block lo-

cations based on the constraint graphs is math-

ematically identical to the propagation of arrival

times in Static Timing Analysis. Formally, STA

is performed on an edge-weighted graph, while

the constraint graphs are vertex-weighted, How-

ever, this difference is superficial since a vertex-

weighted graph can be trivially transformed into

an edge-weighted graph, e.g., by distributing ver-

tex weights to incident edges, or otherwise.� after the x-span X of the floorplan and x-locations

of blocks are known, one can perform a symmetric

computation of locations in right-to-left direction,

assigning location X to the sink vertex. This will

be analogous to the back-propagation of required

arrival times in Static Timing Analysis.� by analogy with Static Timing Analysis, the dif-

ference between the two locations computed for

each block — slack — is related to the “most

critical path” on which this block lies. In partic-

ular, zero slacks are always associated with paths

that constrain the floorplan. Negative slacks are

impossible as long as blocks do not overlap.

Slacks can be computed with any sequence pair

evaluation algorithm that can work in left-to-right and

right-to-left modes, which includes all algorithms we

are aware of. Figure 5 shows floorplan evaluations for

the same sequence pair in bottom-left mode and top-

right mode.

A fast O ✘ n2 ✚ algorithm for floorplan evaluation using

sequence pairs was presented by Tang et. al [27]. It is

based on Longest Common Subsequence (LCS) com-

putation. The positions of blocks are recorded in left-

to-right (bottom-to-top) order. The algorithm works as

follows. Assume the blocks are 1 �✁�✂� N, and the input se-

quence pair is ✘ X ✁ Y ✚ . Both X and Y are a permutation

of 1 �✁�✂� N. Block position array Position
�
b ✂ ✁ b ✗ 1 �✁�✁� N, is

used to record x or y coordinate of block b, depending

on weight w ✘ b ✚ equals to the width or height of block

b respectively. To record the indices in both X and

Y for each block b, the array match
�
b ✂ ✁ b ✗ 1 �✁�✂� N is

constructed to be match
�
b ✂ � x ✗ i and match

�
b ✂ � y ✗ j

if b ✗ X
�
i ✂ ✗ Y

�
j ✂ . The array Length

�
1 �✁�✁� N ✂ is used to

record the length of candidates of the LCS. The actual

algorithm for LCS computation is shown in Figure 6.

To calculate the actual positions of the blocks two calls

to LCS ORIG are made. X-positions are calculated by

initializing the weights array weights
�
1 �✂�✁� N ✂ with the

widths of blocks and invoking LCS ORIG(X ✁ Y ✁ xlocs).

Y-positions are calculated by initializing the weights

array w
�
1 �✂�✁� N ✂ with the heights of blocks and invoking

LCS ORIG(XR ✁ Y ✁ ylocs), where XR is the sequence X

in reversed order. Figure 7 shows the pseudo code

to evaluate the floorplan in bottom-left mode, given

a sequence pair ✘ X ✁ Y ✚ using LCS computations.

To evaluate the floorplan in the top-right mode we

need to evaluate the LCS of the two sequences in

right-to-left order. This can be achieved easily by

reversing the two sequences and invoking LCS ORIG.

The pseudo code for SP EVAL REV is presented in

Figure 8. It reverses the two sequences, X and Y before

calling the original algorithm. To compute the slacks

we need the locations of the bottom-left corner of each

block when evaluating the sequence pair in top-right

mode. Lines 12 through 16 of SP EVAL REV achieve

this.

Figure 9 presents pseudo code for the procedure

EVAL SLACKS, which evaluates slacks for each

block in the design, given a sequence pair ✘ X ✁ Y ✚ . As

illustrated in Figure 4 (a), the slack of a block in

a floorplanning instance represents the distance (in a

particular dimension) at which this block can be moved

without changing the outline of the floorplan. Blocks

with zero slack in the Y dimension are shown in Figure

4 (b). Such blocks must lie on critical paths in the

relevant constraint graph. Figure 10 annotates blocks

in a given floorplan with horizontal (x) and vertical (y)

slacks.

The above mentioned code which evaluates slacks

for blocks depends on the fact that LCS ORIG(X ✁ Y )

and LCS ORIG(XR ✁ Y R) procedures give the same

value for the length of the lcs of two sequences X and

Y . We formalize this as a lemma below. The following

notation is used; lcs ✘ X ✁ Y ✚ is the longest common

sub-sequence of sequences X and Y and LCS ✘ X ✁ Y ✚ is

the length of lcs ✘ X ✁ Y ✚
Lemma 1 For two weighted sequences X and Y the

length of lcs of X and Y is the same as the length of

the lcs of reversed sequences X R and Y R.

Proof The weights of individual blocks in the two

sequence pairs ✘ X ✁ Y ✚ and ✘ X R ✁ Y R ✚ are the same.

Thus by definition of lcs, lcs ✘ X ✁ Y ✚ ✗ lcs ✘ X R ✁ Y R ✚
and also LCS ✘ X ✁ Y ✚ ✗ LCS ✘ XR ✁ Y R ✚ . Alternatively,

as explained in [20], LCS ✘ X ✁ Y ✚ for a sequence pair

✘ X ✁ Y ✚ representing a floorplan, is the length of the

longest path in the horizontal constraint graph (HCG)

implied by the sequence pair. i.e. the width of the

floorplan. Reversing the two sequences to form the

sequence pair (XR ✁ Y R) amounts to reversing the

direction of all the edges of the directed acyclic graph

(DAG) represented by the HCG. Since the longest
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1 LCS ORIG(X
✞
Y

✞
Position

✞
weights) /*Position

�
1

☎✝☎✠☎
N ✁ records block positions*/

2 for i = 1 to N /*Initialize Match Array match*/
3 begin

4 match
�
X
�
i ✁✂✁ ☎ x ✄ i;

5 match
�
Y
�
i ✁✂✁ ☎ y ✄ i;

6 end

7 for i = 1 to N /*Initialize Length Array Length with 0*/

8 Length
�
i ✁☎✄ 0;

9 for i = 1 to N
10 begin

11 b ✄ X
�
i ✁ ;

12 p ✄ match
�
b ✁ ☎ y;

13 Position
�
b ✁✆✄ Length

�
p ✁ ;

14 t ✄ Position
�
b ✁✞✝ weights

✁
b
✍
;

15 for j = p to N
16 if(t

✡
Length

�
j ✁ ) then Length

�
j ✁✆✄ t;

17 else break;

18 end

19 return Length
�
N ✁ ;

Fig. 6. Pseudo code for LCS ORIG.
✁
X

✞
Y

✍
is the input sequence pair. The computation is in left-to-right

mode.

1 SP EVAL ORIG(X
✞
Y

✞
xlocs

✞
ylocs) /*xlocs

✞
ylocs record block positions*/

2 for i = 1 to N /*Initialize Weight Array*/

3 weights
�
i ✁☎✄ widths

�
i ✁ ;

4 xSize = LCS ORIG(X
✞
Y

✞
xlocs

✞
weights); /*Save block x-locs in xlocs*/

5 for i = 1 to N /*Initialize Weight Array*/

6 weights
�
i ✁☎✄ heights

�
i ✁ ;

7 for i = 1 to N /*Reverse X sequence*/

8 XR
�
i ✁☎✄ X

�
N ✝ 1 ✟ i ✁ ;

9 ySize = LCS ORIG(XR
✞
Y

✞
ylocs

✞
weights); /*Save block y-locs in ylocs*/

10 return;

Fig. 7. Pseudo code for SP EVAL ORIG. It computes the location of blocks in bottom-left mode. xSize
and ySize are the floorplan span. widths

�
1

☎✝☎✠☎
N ✁ and heights

�
1

☎✝☎✝☎
N ✁ hold the dimensions of blocks.

1 SP EVAL REV(X
✞
Y

✞
xlocsRev

✞
ylocsRev) /*xlocsRev

✞
ylocsRev record block positions*/

2 for i = 1 to N /*Reverse X sequence*/

3 XR
�
i ✁✠✄ X

�
N ✝ 1 ✟ i ✁ ;

4 for i = 1 to N /*Reverse Y sequence*/

5 Y R
�
i ✁✡✄ Y

�
N ✝ 1 ✟ i ✁ ;

6 for i = 1 to N /*Initialize Weight Array*/

7 weights
�
i ✁✠✄ widths

�
i ✁ ;

8 xSize = LCS ORIG(XR
✞
Y R

✞
xlocsRev

✞
weights); /*Save block x-locs in xlocsRev*/

9 for i = 1 to N /*Initialize Weight Array*/

10 weights
�
i ✁✠✄ heights

�
i ✁ ;

11 ySize = LCS ORIG(X
✞
Y R

✞
ylocsRev

✞
weights); /*Save block y-locs in ylocsRev*/

12 for i = 1 to N /*Get bottom-left positions of blocks*/

13 begin

14 xlocsRev
�
i ✁✠✄ xSize ✟ xlocsRev

�
i ✁☛✟ widths

�
i ✁

15 ylocsRev
�
i ✁✠✄ ySize ✟ ylocsRev

�
i ✁☛✟ heights

�
i ✁

16 end

17 return;

Fig. 8. Pseudo code for SP EVAL REV. It computes the location of blocks in top-right mode.
SP EVAL REV reverses the two sequences of the sequence pair before calculating the LCS.
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1 EVAL SLACKS (X
✞
Y) /*

✁
X
✞
Y
✍
is the sequence pair*/

2 N = NumberOfBlocks;

3 xlocs
�
1
☎✠☎✝☎

N ✁ ✞ ylocs
�
1
☎✝☎✝☎

N ✁ /*Block positions in bottom-left mode*/

4 xlocsRev
�
1
☎✠☎✝☎

N ✁ ✞ ylocsRev
�
1
☎✝☎✝☎

N ✁ /*Block positions in top-right mode*/

5 xSlacks
�
1
☎✝☎✝☎

N ✁ ✞ ySlacks
�
1
☎✝☎✝☎

N ✁ /*X and Y slacks for each block*/

6 SP EVAL ORIG(X
✞
Y
✞
xlocs

✞
ylocs);

7 SP EVAL REV(X
✞
Y
✞
xlocsRev

✞
ylocsRev);

8 for i = 1 to N
9 begin

10 xSlack
�
i ✁✠✄ xlocsRev

�
i ✁☛✟ xlocs

�
i ✁ ;

11 ySlack
�
i ✁✠✄ ylocsRev

�
i ✁ ✟ ylocs

�
i ✁ ;

12 end

13 return;

Fig. 9. Pseudo code for EVAL SLACKS. xlocs, ylocs, xlocsRev, ylocsRev hold the positions of blocks

path in this new reversed HCG is the same as the old

HCG, the length of lcs of (X R ✁ Y R) should be the same

as the length of the lcs of (X ✁ Y ). Similar argument

holds for the vertical direction.

We now prove that the slacks for a block cannot be

negative and blocks with zero slacks lie on the critical

path.

Theorem 1

(a) Slacks for a block cannot be negative.

(b) A block has zero slack in a particular dimension

iff it lies on the “critical” path in that dimension.

Proof

(a) We will base our discussion on the x-slack of a

block. As computed by procedure EVAL SLACKS

(Figure 9), x-slack for each block is the difference

in the x-locations of the block calculated in top-

right mode and bottom-left mode. Let b be a block

in the design. The sequence pair ✘ X ✁ Y ✚ can be

represented as ✘ ✘ Xl ✁ b ✁ Xr ✚ ✁ ✘ Yl ✁ b ✁ Yr ✚ ✚ . Similarly the

reversed sequence pair ✘ X R ✁ Y R ✚ can be represented as

✘ ✘ XR
r ✁ b ✁ XR

l ✚ ✁ ✘ Y R
r ✁ b ✁ Y R

l ✚ ✚ . The x-location of block b in

the bottom-left mode is given by,

xlocBLb ✗ LCS ✘ Xl ✁ Yl ✚ [28].

Similarly the x-location of block b in top-right mode

is given by, xlocTRb ✗ xSize ✁ widthb
✁ LCS ✘ XR

r ✁ Y R
r ✚ ,

where xSize is the x-span of the floorplan. i.e.

xSize ✗ LCS ✘ X ✁ Y ✚ ✗ LCS ✘ XR ✁ Y R ✚ . According to

Lemma 1, LCS ✘ XR
r ✁ Y R

r ✚ ✗ LCS ✘ Xr ✁ Yr ✚ . Thus xlocTRb

can be written as,

xlocTRb ✗ LCS ✘ X ✁ Y ✚ ✁ widthb
✁ LCS ✘ Xr ✁ Yr ✚

For two sequences X ✗ ✘ Xl ✁ b ✁ Xr ✚ and Y ✗ ✘ Yl ✁ b ✁ Yr ✚ , if

LCS ✘ X ✁ Y ✚ ✄ LCS ✘ Xl ✁ Yl ✚✆✜ widthb ✜ LCS ✘ Xr ✁ Yr ✚ ,
then the lcs of sequences X and Y is

✘ lcs ✘ Xl ✁ Yl ✚ ✁ b ✁ lcs ✘ Xr ✁ Yr ✚ , and the length of this

lcs is LCS ✘ Xl ✁ Yl ✚ ✜ widthb ✜ LCS ✘ Xr ✁ Yr ✚ , which cannot

be greater than LCS ✘ X ✁ Y ✚ . Thus, by contradiction, the

following inequality holds.

LCS ✘ X ✁ Y ✚ ✂
LCS ✘ Xl ✁ Yl ✚✑✜ widthb ✜ LCS ✘ Xr ✁ Yr ✚

✄ ✘ LCS ✘ X ✁ Y ✚ ✁ widthb
✁ LCS ✘ Xr ✁ Yr ✚ ✚ ✁ LCS ✘ Xl ✁ Yl ✚ ✂

0
✄

xlocT Rb
✁ xlocBLb

✂
0

✄
xSlackb

✂
0

We have proved that for any block b, its x-slack is

non-negative. This holds true for the y-slack too. QED.

(b) As above, we base our discussion on the

x-critical path. A critical path of a floorplan in

x-dimension is defined as the longest x-path of the

floorplan. There can be more than one critical path.

However the length of all the critical paths is the

same and equal to the LCS ✘ X ✁ Y ✚ , where ✘ X ✁ Y ✚ is the

sequence pair representing the floorplan. If a block b

lies on the x-critical path then b is a part of the lcs

of X and Y . As shown in theorem 1(a), the following

equality holds.

LCS ✘ X ✁ Y ✚ ✗ LCS ✘ Xl ✁ Yl ✚✑✜ widthb ✜ LCS ✘ Xr ✁ Yr ✚
✄ ✘ LCS ✘ X ✁ Y ✚ ✁ widthb

✁ LCS ✘ Xr ✁ Yr ✚ ✚ ✁ LCS ✘ Xl ✁ Yl ✚ ✗
0

✄
xlocTRb

✁ xlocBLb ✗ 0
✄

xSlackb ✗ 0

Similarly if a block b has zero x-slack, then

xlocT Rb
✁ xlocBLb ✗ 0

✄ ✘ LCS ✘ X ✁ Y ✚ ✁ widthb
✁ LCS ✘ Xr ✁ Yr ✚ ✚ ✁ LCS ✘ Xl ✁ Yl ✚ ✗

0
✄

LCS ✘ X ✁ Y ✚ ✗ LCS ✘ Xl ✁ Yl ✚✑✜ widthb ✜ LCS ✘ Xr ✁ Yr ✚
✄

b is on the longest x-path or the critical path.

The same argument holds for blocks on the y-critical

path. QED.

Based on the above theorem we have the following

corollary.

Corollary If a move improves the floorplan span

in x or y direction then it must involve some 0-slack

blocks.

Proof Let a move M improve the x-span of the

floorplan represented by sequence pair ✘ X ✁ Y ✚ . Let

✘ XN ✁ YN ✚ be the sequence pair after the move. M could

be of any type. e.g. swap, rotate etc. If the move M

does not involve any block on the x-critical path, then

LCS ✘ XN ✁ YN ✚ ✂
LCS ✘ X ✁ Y ✚ because lcs ✘ X ✁ Y ✚ is also

a sub-sequence of ✘ XN ✁ YN ✚ . Thus, a move M must

involve a block with zero x-slack in order to improve
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the floorplan’s x-span. Similar result holds for the

y-direction. QED.

B. Slack-based moves

Once slacks are known, they can be used in move

selection. Both the timing analysis interpretation above

and the common subsequence interpretation from [27]

imply that if a move (such as pair-wise swap) does not

involve at least one block with zero slack in a given

dimension, then the floorplan span in that dimension

cannot decrease after the move. This is because such

a move cannot improve critical paths or, equivalently,

longest common subsequences. Therefore we bias

move selection towards blocks having zero slack in

at least one dimension. Of those blocks, the ones with

large slack in the other direction are potentially good

candidates for single-block moves, such as rotations,

and more gradual aspect ratio changes, — discrete

or continuous — can be chosen efficiently. Blocks

with two zero slacks, especially small blocks, are good

candidates for a new type of move, in which a block

is moved simultaneously in both sequence pairs to

become a neighbor of another block (in both sequence

pairs, and, thus in placement). Namely, we attempt to

move a critical block C next to a block L with as large

slacks as possible, since large slacks imply that white-

space can be created around L (more precise conditions

can be written, but will still be heuristic). Figure

10 illustrates such a move. The following example

illustrates the four possible ways of moving a block

close to another by manipulating the sequence pair.

Example: Consider the five-block sequence pair ✄ ✄
a ✁ b ✁ c ✁ d ✁ e ✙ ✄ c ✁ a ✁ d ✁ e ✁ b ✙ ✙ . We wish to move block

e close to block a in the floorplan. This can be done

in four ways:� ✄ a ✁ e ✁ b ✁ c ✁ d ✙ ✁ ✄ c ✁ a ✁ e ✁ d ✁ b ✙ (e is to right of a)� ✄ e ✁ a ✁ b ✁ c ✁ d ✙ ✁ ✄ c ✁ e ✁ a ✁ d ✁ b ✙ (e is to left of a)� ✄ a ✁ e ✁ b ✁ c ✁ d ✙ ✁ ✄ c ✁ e ✁ a ✁ d ✁ b ✙ (e is below a)� ✄ e ✁ a ✁ b ✁ c ✁ d ✙ ✁ ✄ c ✁ a ✁ e ✁ d ✁ b ✙ (e is above a)

In addition to changing the sequence pair, our im-

plementation changes block orientation and aspect ratio

based on current slacks. We observe that [22] already

suggested the analogy with static timing analysis in the

context of FPGA placement. However, their algorithms

are rather different and explicitly rely on H and V

constraint graphs, while our proposed algorithms do

not.

C. Handling Soft Blocks Using Slack Information

In a floorplanning instance, soft blocks have a fixed

area but an aspect ratio which is variable between

certain pre-determined limits. We added slack-based

move types to change aspect ratios of soft blocks.

During annealing, at regular intervals, a procedure

called PackSoftBlocks is invoked to shape the soft

blocks to improve the area of the total floorplan.

PackSoftBlocks adopts a greedy approach. A block

with low (preferably zero) slack in one dimension

and high slack in the other dimension is chosen. The

height and the width of such a block is changed within

allowable limits so that its size in the dimension of

smaller slack is reduced (to increase the slack). Such

moves are greedily applied to all soft blocks in the

design. Figure 11 gives the pseudo code for the greedy

procedure PackSoftBlocks.

D. Wirelength Minimization

In classical floorplanning, the global objective is to

minimize wirelength and total area of the design. This

implies multi-objective minimization. Typically, most

simulated annealing based floorplanners use a linear

combination of area and wirelength as an objective for

the annealer. In our floorplanner, we too use a linear

combination of area and HPWL to evaluate annealer

moves. Since area and wirelength have different

dimensions they need to be normalized to give a

reasonable linear combination. In our implementation,

the area term is normalized by the total area of all

blocks, and the wirelength term is normalized by the

current wirelength of the floorplan at every move.

The ∆ term in the simulated annealing algorithm is

calculated as follows.

∆area ✗ areanew
✁ areaold

totalAreablocks

∆HPWL ✗ HPWLnew
✁ HPWLold

HPWLold

∆ ✗ ✘ 1 ✁ weightHPWL ✚✁� ∆area ✜ weightHPWL � ∆HPWL

weightHPWL is the linear weight attributed to the

HPWL term and its value is between 0 and 1. During

the annealing, all moves for which ∆ is negative are

accepted. All moves with a positive ∆ are accepted

if random ✄ exp ✘ ✂ ∆ �
tempinitial

tempcurrent
✚ , where random is a

random number between 0 and 1. Thus the probability

of accepting a bad move decreases as tempcurrent is

reduced.

Additional moves are designed to improve the

wirelength. For a given block a, we calculate, using

analytical techniques, its “ideal” location that would

minimize quadratic wirelength of its incident wires.3

We determine the ideal location ✘ xa ✁ ya ✚ of block a

which minimizes the following function.

∑
N ✄ a

∑
v ✄ N

✘ xv
✁ xa ✚ 2 ✜ ✘ yv

✁ ya ✚ 2

3Analytical techniques are used because they are fast and easy to
implement.
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Fig. 10. A slack-based move in a highly suboptimal floorplan of benchmark hp. x and y slacks are shown
as percentages of the respective spans of the floorplan. Module cmp3 — the smallest with zero y slack — is
moved upon the module cntu, which has the high y slack. This move improves vertical span and slightly
worsens the horizontal span, but the floorplan area is reduced.

1 PackSoftBlocks (Direction)

2 Calculate X-Slacks and Y-Slacks for all N blocks (EVAL SLACKS () );

3 Sort blocks in increasing order according to X-Slacks in sortedBlks X-Slacks

4 Sort blocks in increasing order according to Y-Slacks in sortedBlks Y-Slacks

5 for i = 1 to N

6 begin

7 if(Direction = Horizontal)

8 currBlock = sortedBlks X-Slacks[i];

9 else if(Direction = Vertical)

10 currBlock = sortedBlks Y-Slacks[i];

11 Shape currBlock to increase the slack in the critical direction &

reduce the slack in the other direction, within allowable limits;

12 end

13 return;

Fig. 11. Pseudo code for PackSoftBlocks. PackSoftBlocks is called once with Direction = Horizontal and
once with Direction = Vertical.

The ideal location ✘ xa ✁ ya ✚ of block a is simply the

average of the position of all modules connected to

block a. We then identify the block b closest to the

ideal location. This is done by expanding a circle

centered at the ideal location and identifying the closest

block b. We then attempt to move block a in the

sequence pair so that in both sequences it is located

next to b. As explained in Section III-B, we evaluate

the four possible ways to do that, and choose the best.

Thus an attempt is made to move a close to its ideal

location to minimize quadratic wirelength.

Another type of move attempts to minimize both the

floorplan size and wirelength objectives at the same

time. Find a block b closest to the ideal location of

the chosen block a such that the block b has large

slack in at least one dimension. Depending on whether

b has a large slack in the X-dimension or in the Y-

dimension, we place a with a horizontal relation or a

vertical constraint relative to b, respectively. Empirical

measurements confirm that adding the proposed move

types improves final floorplans.

0
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150

200

250

0 100 200 300 400 500 600 700 800

n100 area= 194586 WS= 7.75% AR= 3.22 time= 45.91s

Fig. 12. A floorplan with 100 blocks, generated without
a constraining outline, has aspect ratio 3.22:1.

E. Fixed-outline Constraints

Fixed-outline floorplans enable top-down design of

very large scale ASICs and SoCs. Figure 12 shows

the result of a floorplan with pure area minimization

without any fixed outline constraints. The white-space

achieved is 7.75% with an aspect ratio of 3.22:1.

However this floorplan can be completely useless for a

situation where 1:1 aspect ratio is imposed by a higher-

level floorplan.

The following notation will be used in our floorplan-
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ning formulations. For a given collection of blocks with

total area A and given maximum white-space fraction

γ, we construct a fixed outline with aspect ratio α ✂
1.4

H � ✗ � ✘ 1 ✜ γ ✚ Aα W� ✗ � ✘ 1 ✜ γ ✚ A ✁ α

Aside from driving the annealer by area minimiza-

tion, we consider the following objective functions:

1) The sum of the excessive length and width of

the floorplan,

2) The greater of the excessive length and width of

the floorplan.

Denoting the current height and width of the floorplan
by H and W , we define these functions as

(1) max ✂ H ✄ H ☎✝✆ 0 ✞✠✟ max ✂ W ✄ W☎✡✆ 0 ✞ (2) max ✂ H ✄ H ☎✝✆ W ✄ W☎✝✞
The choice of these functions is explained by the fact

that the fixed-outline constraint is satisfied when and

only when each of those functions takes value 0.0 or

less. For this reason we cannot consider the product of

fixed outline violations.

Our experiments show that a classic annealer-

based floorplanner is practically unable to satisfy the

fixed-outline constraints (for all of the three above-

mentioned objective functions). Therefore we addition-

ally bias the selection of moves. Figure 13 shows the

evolution of the fixed-outline floorplan during Simu-

lated Annealing with slack-based moves. The scheme

works as follows. At regular time intervals during

the simulated annealing the current aspect ratio is

compared to the aspect ratio of the fixed outline. If the

two are different, then the slack-based moves described

earlier are applied to change the current aspect ratio in

the needed direction. For example, if the width needs

to be reduced then we chose the blocks in the floorplan

with smallest slack in the x direction and insert them

above or below the blocks with largest slack in the y

direction. These moves have better chances of reducing

the area and improving the aspect ratio of the current

floorplan at the same time. Through these repeated

moves during the simulated annealing the structure of

the floorplan is biased towards the aspect ratio of the

fixed outline. Our techniques also work with multi-

objective minimizations (area+HPWL) and handle soft

blocks in designs. As shown in Section IV, our imple-

mentation is successful in satisfying a variety of fixed-

outline constraints. One concern about the intelligent

move selection techniques during simulated annealing

is that it may limit the solution space coverage. In

general, these characteristics are necessary if simulated

annealing is to be successful. We interleave the intel-

ligent moves with totally randomized moves to ensure

that simulated annealing does not get trapped in a local

minima.

4The restriction of α ☛ 1 is imposed without loss of generality
since our floorplanner can change orientations of individual blocks.

Current Outline

Required Outline
Success

Failure

Restart

y−violation

x−violation

(Initial)
(1000 moves)

(End of annealing)

Fig. 13. Snap-shots from fixed-outline floorplanning.
The number of annealing moves is fixed, but if the
evolving floorplan fits within the required fixed-outline,
annealing is stopped earlier. If at the end of annealing
the fixed-outline constraints are not satisfied, it is
considered a failure and a fresh attempt is made.

F. Hierarchical Layout

Hierarchical design is becoming increasingly attrac-

tive as a way to manage design complexity [18], [15]. It

is argued in [18] that hierarchy is needed for humans,

not for algorithms. The need for hierarchical design

makes it imperative that the whole design flow sup-

port a hierarchical design methodology. We argue that

fixed-outline floorplanning is an integral component of

such a multi-level hierarchical flow. As discussed in

[15], the top level floorplan might need to be fixed

early on in the design cycle to avoid costly iterations

later. Once the top-level floorplan is finalized, the

high-level blocks and their shapes impose a fixed-

outline constraint on the lower levels of design. A

design team might decide to implement each high-

level block flat, in which case there would be no need

for a fixed-outline floorplanning tool. However, if the

design team decides to implement high-level blocks

in a hierarchical fashion as well then fixed-outline

floorplanning becomes necessary. With increasing chip

sizes, such a scenario is not unrealistic.

We use our techniques in fixed-outline floorplanning

to develop a hierarchical floorplanning flow which is

justified for very large ASICS and SoCs. We employ a

simple connectivity based clustering scheme to create

a top-level of hierarchy with clustered blocks. Each

top-level clustered block is soft with aspect ratios

allowed from 0.75 to 1.5 and has an area equal to

1 � 15 � sum o f area o f all sub ✁ blocks. Thus a white-

space of 15% is allotted to each top-level block, so that

Parquet can find a solution satisfying the fixed-outline

constraints. The connectivity based clustering we use,

is a multi-level greedy approach employing a series of

passes till the design reduces to manageable size. In

each pass we group highly connected cells together.

Thus the design size reduces by a factor of 2 in each

pass. We remove any net that connects cells only within
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a cluster. More involved clustering schemes, like multi-

way partitioning, could be employed for better HPWL

minimization. We use these experiments to show that

the fixed-outline floorplanner acts as an engine to

enable hierarchical floorplanning. The top-level design

is floorplanned without any fixed-outline constraints

and the objective is to minimize area. The top-level

clustered blocks impose fixed-outline constraints on the

sub-blocks. Each top-level block is now floorplanned

with these constraints.

Circuit min/avg min/avg avg
area WS time

(mm2) (%) (sec)

apte 46.60 / 47.73 0.09 / 2.42 8.75
xerox 19.39 / 20.06 0.24 / 3.52 7.75

hp 8.86 / 9.17 0.39 / 3.73 7.58
ami33 1.16 / 1.19 1.0 / 3.0 32.84
ami49 35.91 / 36.38 1.31 / 2.56 31

TABLE III

Outline-free, area minimization results with soft

blocks. Slack-based moves are applied during

annealing to modify the aspect ratio of soft blocks.

All blocks have a variable aspect ratio. Averages and

minima are over 100 independent starts.

Circuit min/avg min/avg min/avg avg
area WS HPWL time

(mm2) (%) (mm) (sec)

apte 46.97/48.95 0.87/4.75 464/560 15.4
xerox 19.51/20.62 0.83/6.20 373/468 20.1

hp 8.96/9.72 1.50/8.96 177/214 15.3
ami33 1.18/1.24 2.43/7.05 62.5/75.4 31.0
ami49 36.07/37.8 1.75/6.20 673/812 31.9

TABLE IV

Outline-free, area + HPWL minimization results with

soft blocks. Averages and minima are over 100

independent starts.

IV. EMPIRICAL VALIDATION

We implement a floorplanner based on Simulated

Annealing, Parquet-1. Runtimes are measured (in sec-

onds) on a 1000MHz PC/Intel system that runs Linux.

Implementations are in C++ and compiled with g++

2.95.2 -O3.5

A. Annealing Schedule

Parquet-1 mostly follows a geometric cooling sched-

ule. The initial temperature is chosen to be high enough

5The C++ source code of Parquet is available on the Web at
http://vlsicad.eecs.umich.edu/BK/parquet/

(i.e. tempinitial ✗ 30000) for most designs under con-

sideration. For a design with N blocks, the temperature

is decreased by a factor of ω ✄ 1 every 1 � 5N moves,

as follows.

tempcurrent ✗ ω � tempold

At certain deterministically defined temperatures, ω
varies. The cooling is rapid in the initial phase (low

value of ω) and very slow at the end (high value of

ω). Thus most of the time during annealing is spent

at low temperatures. ω is changed with temperature as

follows.

ω ✗ 0 � 85 ✁✠✁ 30000 ✘ tempinitial ✚ ✙ tempcurrent ✙ 2000

✗ 0 � 90 ✁ ✁ 2000 ✙ tempcurrent ✙ 1000

✗ 0 � 95 ✁ ✁ 1000 ✙ tempcurrent ✙ 500

✗ 0 � 96 ✁ ✁ 500 ✙ tempcurrent ✙ 200

✗ 0 � 80 ✁ ✁ 200 ✙ tempcurrent ✙ 10

✗ 0 � 98 ✁ ✁ 10 ✙ tempcurrent ✙ 0 � 1 ✘ tempcool ✚
There is also an option to run the annealer for a

specified length of time. In this mode the temperature

schedule remains the same but the number of moves

between each iteration changes.

B. Classical Floorplanning Context

Table I compares Parquet-1 to leading-edge floor-

planning results on standard MCNC benchmarks in the

area-only minimization context with no fixed-outline

constraints. According to those results, our floorplanner

is competitive with published implementations both in

terms of final area and runtimes. We note, however,

that all recently reported floorplanners easily achieve

white-space well below 10%, therefore leaving very

little possible improvement.

Table II shows results for simultaneous minimization

of area and wirelength in a design. Results for different

wirelength weights are presented.

Table III presents the area minimization results for

designs with soft blocks. All blocks have a variable

aspect ratio. Table IV presents the area and HPWL

minimization results for designs with soft blocks.

In the following sub-section, we are going to show

that fixed-outline floorplanning is significantly harder

than outline-free floorplanning.

C. Fixed-outline floorplanning

The standard version of the floorplanner, without

any of the slack based moves could not solve a single

instance within the fixed outline, although it gave

competitive area results. We tried different objective

functions to drive the annealer as explained in Section

III-E. When using the objective of minimizing the

sum of excessive length and excessive width of the

floorplan, the final aspect ratio of the floorplan is biased

slightly towards the required aspect ratio. However,

just changing the objective function was not powerful
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Circuit Enh. O-Tree[23] TCG[17] CBL[11] FastSP[28] SP(Parquet-1)
area time area time area time area time min/avg min/avg avg

area white-space time

(mm2) (sec) (mm2) (sec) (mm2) (sec) (mm2) (sec) (mm2) (%) (sec)

apte 46.92 11 46.92 1 NA NA 46.92 1 47.07 / 48.14 1.08 / 3.28 4
xerox 20.21 38 19.83 18 20.96 30 19.80 14 19.83 / 20.73 2.42 / 6.65 3

hp 9.16 19 8.94 20 NA NA 8.94 6 9.14 / 9.49 3.39 / 6.95 4
ami33 1.24 118 1.20 306 1.20 36 1.20 20 1.19 / 1.23 2.85 / 6.01 9
ami49 37.73 406 36.77 434 38.58 65 36.50 31 37.27 / 38.01 4.91 / 6.76 16

TABLE I

Outline-free area minimization results for Enhanced O-Tree(on Sun Ultra60), TCG(on Sun Ultra60, CBL(on

Sun SPARC 20, Fast-SP(on Sun Ultra 1) and Parquet-1(on 1000MHz PC/Intel system). Averages and

minima for Parquet-1 are over 100 independent starts.

Circuit HPWL Weight = 0.1 HPWL Weight = 0.5 HPWL Weight = 0.9
min/avg min/avg avg min/avg min/avg avg min/avg min/avg avg

area HPWL time area HPWL time area HPWL time

(mm2) (mm) (sec) (mm2) (mm) (sec) (mm2) (mm) (sec)

apte 47.08 / 49.75 530 / 591 10 47.31 / 50.50 516 / 563 10 55.87 / 65.82 478 / 495 10
xerox 19.98 / 20.99 376 / 544 10 20.07 / 21.61 372 / 466 10 20.23 / 22.97 360 / 397 10

hp 9.17 / 9.99 189 / 254 10 9.31 / 10.49 177 / 212 10 9.71 / 12.93 163 / 185 10
ami33 1.21 / 1.26 72.8 / 89.55 25 1.20 / 1.30 63.2 / 74.2 25 1.38 / 1.58 51.9 / 56.4 16
ami49 37.41 / 39.21 770 / 1026 29 38.67 / 40.51 727 / 841 29 40.6 / 45.49 589 / 659 30

TABLE II

Outline-free, area + HPWL minimization results. A linear combination of area and half perimeter

wirelength is minimized during simulated annealing. Results for different HPWL weights are presented.

Averages and minima are over 100 independent starts.
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Fig. 14. Probability of success and average runtimes for floorplanning design n100 with fixed-outline constraints
performed by annealing with three alternative objective functions and slack-based moves. The maximum white-
space for the design is 15%. i.e. γ ✄ 15%. In order to remove noise we plotted average of 50 runs for each
aspect ratio.

enough and the floorplanner could not satisfy the fixed-

outline constraints for a single instance. This confirms

the inadequacy of the classical min-area floorplanning

formulation and algorithms in the fixed-outline context.

To achieve fixed-outline floorplan, we consider three

objectives in terms of excessive height and width as

described in Section III-E (the sum of and the greater

of) and the area. We stop the annealer as soon as

it finds a solution satisfying a given fixed outline. If

the current outline is smaller, its aspect ratio can be

different from the aspect ratio of the fixed outline. If

the annealer’s temperature schedule runs out and no

satisfying solution is found, we deem this a failure.

We constrained our final solutions to have a maxi-

mum white-space of 15% and tried to achieve floor-

plans satisfying different fixed-outlines. Experiments

are performed on n100 benchmark and the results are

averaged for 50 runs for each aspect ratio. Figure 14

shows plots of (i) the probability of success of satisfy-

ing the fixed outline constraint vs desired aspect ratio

of the fixed outline, and (ii) the average runtimes for

all runs vs the desired aspect ratio of fixed outline. The
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plots reflect the difficulty in satisfying fixed-outline

floorplans with given aspect ratios, which highly de-

pends on the dimensions of the blocks. As seen from

the plots, our simulated annealer fairly often failed to

satisfy the given outline, however, the probability of

success is typically over 50%, i.e., at least five in ten

starts are successful. This consistent rate of success

suggests that our slack-based moves indeed improve

local search (simulated annealing without slack-based

moves is never able to satisfy the fixed outline). Also

note that in most of the unsuccessful attempts the final

solutions are within 1-2% from the desired outline, yet

we regard them as failures.

Out of the three objective functions we tried, min-

imizing the sum of excessive width and height and

minimizing the area is more successful than minimiz-

ing the maximum of excessive width or height. Finding

an explanation of this empirical result remains an open

problem.

When we decreased γ in our experiments, some

fixed outlines are never satisfied, which may be due

to the absence of solutions with a given aspect ratio

and very small white-space. The plot of probability

of success of satisfying the fixed-outline constraint

for a design(n100) with 12% white-space, is shown

in Figure 15. As expected, decreasing γ worsens the

probability of success. The average runtimes required

to satisfy the fixed-outline constraints also increase

with lower γ.

Figure 16 shows the plots of probabilities of success,

HPWL and average time vs. aspect ratios for design

n100 fixed-outline constraints in the wirelength min-

imization mode. The time taken to satisfy the fixed-

outline constraints increases significantly compared to

those in Figure14, because of the overhead of cal-

culating the wirelength from scratch for every move.

The probabilities of success decrease a little. However

for very skewed aspect ratios, wirelength minimization

suffers. In the outline-free mode, Parquet achieves an

average wirelength of 323 and average white-space

of 10.18% over 50 independent starts for the design

n100. Our experiments with other publicly available

benchmarks (n50, n200, ami49 etc) produced consis-

tent results.

D. Hierarchical Layout Context

We develop a hierarchical floorplanning flow em-

ploying the fixed-outline floorplanner, Parquet, as an

engine. For our experiments we use the publicly avail-

able6 ibm06 placement benchmark [1]. ibm06 is a

mixed-size placement benchmark with 32498 cells,

including 178 macros. The standard cells are of varying

widths but similar height and a modified standard cell

6The benchmarks are available on the Web at
http://vlsicad.eecs.umich.edu/BK/ISPD02bench/

placement algorithm which can handle macros should

be employed to place such a design. However, we

perform this experiment to demonstrate the scalability

of hierarchical floorplanning. We consider all blocks

to be hard, thus further constraining the problem. We

employ a simple connectivity based clustering scheme

to create a top-level of hierarchy with 238 clustered

blocks (each top-level block having approximately 128

blocks). Big macros are kept out of this clustering.

A white-space of 15% is allotted to each top-level

clustered block. Each top-level clustered block is soft

with aspect ratios allowed from 0.75 to 1.5. The

top-level design is floorplanned without any fixed-

outline constraints and the objective is to minimize

area. The top-level floorplan is shown in Figure 17

(a). The top-level clustered blocks impose fixed-outline

constraints on the sub-blocks. Each top-level block is

now floorplanned with these constraints. The final flat

floorplan of ibm06 is shown in Figure 17 (b). We

achieved a dead-space of 17.44% in 37 minutes. In

comparison floorplanning ibm06 design flat achieved a

deadspace of 55.62% in 1070 minutes. We tried speed-

ing up the flat floorplanning by using the O ✘ n log ✘ n ✚ ✚
fast sequence pair evaluation algorithm [27]. However,

as pointed out in Section II, O ✘ n log ✘ n ✚ ✚ algorithm

performed worse than O ✘ n2 ✚ algorithm. While, in our

experiments we only used a single level of hierarchy,

the flow could be easily changed to handle multiple

levels of floorplanning hierarchy. Also, we considered

only area as an objective, but a linear combination

of area and wirelength can also be considered as an

objective. We perform the hierarchical floorplanning

experiment to demonstrate that multi-level floorplan-

ning is much more scalable than flat floorplanning.

Indeed, floorplanning almost 32K objects flat using the

sequence pair representation would require inordinate

amounts of time. The floorplan obtained by hierar-

chical floorplanning can further be compacted using

efficient layout compaction schemes or employing low

temperature annealing. However, with close to 32K

objects as in our case, it might be too costly to even

try low temperature annealing with the sequence pair

representation. We conclude that in comparison to the

flat floorplanner, the hierarchical floorplanner scales

much better in terms of runtime and solution quality.

Thus, hierarchical floorplanning can used to floorplan

a large number of top-level blocks efficiently and also

to support a multi-level hierarchical design flow.

V. CONCLUSIONS

Our work makes an important step in identifying and

evaluating fundamental optimization techniques that

are successful for wirelength optimization in large-

scale fixed-outline floorplanning. In perspective, we

expect our techniques to be useful (i) in floorplanning

with more realistic objective functions, (ii) during
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Fig. 15. Probability of success and average runtimes for floorplanning design n100 with fixed-outline
constraints. The objective function is area. The maximum white-space for the design is 12%. i.e. γ ✄ 12%.
Probabilities and runtimes for a design with maximum white-space of 15% are also provided for comparison.
The probabilities of success with 12% white-space are significantly lower compared to those with 15%
white-space. because of smaller γ. We plotted average of 50 runs for each aspect ratio.
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Fig. 17. Hierarchical Floorplanning of ibm06 design with 32498 blocks. ibm06 is a mixed-size design and
has 178 macros. We use a connectivity based clustering scheme to reduce the design size at top level to
238 clustered blocks (each top-level block having approximately 128 blocks). Big macros are kept out of
this clustering. All blocks are hard. The top level is floorplanned without any fixed-outline constraints. The
top-level blocks impose fixed-outline constraints on the lower level. The top-level floorplan is shown in Figure
(a). The final flat floorplan is shown in Figure (b). 17% deadspace was achieved in 37m. In comparison Figure
(c) shows the floorplan of ibm06 obtained by flat floorplanning. 55% deadspace was achieved in 1070m.
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related optimizations with additional degrees of free-

dom such as added logic [re-]synthesis, and (iii) in

non-classical design flows such as virtual prototyping.

These extensions will be explored in our future work.

This work points out that a non-standard floor-

planning formulation — fixed-outline floorplanning

is significantly harder than classic min-area outline-

free floorplanning. We implement an annealing-based

floorplanner Parquet-1 that uses a recently discovered

[27] sequence pair evaluation algorithm and study its

performance both in the fixed-outline and outline-free

contexts. We use the concept of slacks in a floorplan

for better local search. We added special techniques,

based on slacks of individual blocks in a floorplan,

to handle soft blocks. These new techniques when

incorporated into the simulated annealing framework

perform well and achieve an area utilization close to

99% for MCNC benchmarks within reasonable time.

We also introduce special moves based on analytical

methods to better drive wirelength (HPWL) minimiza-

tion during simulated annealing. For the standard for-

mulation, our floorplanner is competitive, both in terms

of runtime and solution quality, with other leading-

edge implementations and represents current state-

of-the-art. However, our implementation experiences

serious difficulties in the fixed-outline context until

the algorithm is modified. In particular, more relative

white-space is required to satisfy an outline of a given

area when its aspect ratio is fixed.

We propose new objectives that more successfully

drive our annealing-based floorplanner to satisfy fixed-

outline constraints. New types of slack-based moves,

that may be applicable to most floorplanner implemen-

tations based on simulated annealing, are introduced.

These special moves performed during annealing pro-

vide better control of the x and y dimensions of the

floorplan. We study the sensitivity of relative white-

space in the design on the effectiveness of our proposed

methods. We also study the effect on wirelength mini-

mization when trying to achieve various fixed-outlines.

Our experiments show that classical methods fail

for fixed-outline instances constructed from stan-

dard MCNC benchmarks and other publicly available

benchmarks, but when new objectives and slack-based

moves are added to our Parquet-1 implementation, it

finds acceptable fixed-outline floorplans for a variety

of aspect ratios. We also conclude that minimizing the

sum of excessive width and height is a more successful

approach than minimizing the greater of the two.

We demonstrate a top-down, hierarchical floorplan-

ning flow with a single level of hierarchy. We are able

to floorplan 32498 blocks and achieve a dead-space of

17.44% in 37 minutes. In comparison flat floorplanning

achieved a deadspace of 55.62% in 1070 minutes.

We do not necessarily advocate our particular way

of doing hierarchical floorplanning, and plan to study

this our future work. We also note that large designs

can be first partitioned using recursive bisection, but

not necessarily all the way down to the level of

detail where the differences in block sizes and shapes

complicate recursive bisection. Our on-going work [1]

aims to combine recursive bisection and floorplanning

techniques in the context of mixed-mode placement.

In our on-going research we are extending the pro-

posed methods to top-down, multi-level hierarchical

floorplanning and related applications to standard-cell

placement with large macro cells.
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