
Fixed-Parameter Algorithms

in Phylogenetics

JENS GRAMM1, ARFST NICKELSEN2 AND TILL TANTAU2,*

1Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
2Institut für Theoretische Informatik, Universität zu Lübeck, Germany

*Corresponding author: tantau@tcs.uni-luebeck.de

We survey the use of fixed-parameter algorithms in the field of phylogenetics, which is the study of

evolutionary relationships. The central problem in phylogenetics is the reconstruction of the evol-

utionary history of biological species, but its methods also apply to linguistics, philology or archi-

tecture. A basic computational problem is the reconstruction of a likely phylogeny (genealogical

tree) for a set of species based on observed differences in the phenotype like color or form of

limbs, based on differences in the genotype like mutated nucleotide positions in the DNA sequence,

or based on given partial phylogenies. Ideally, one would like to construct socalled perfect phyloge-

nies, which arise from a very simple evolutionary model, but in practice one must often be content

with phylogenies whose ‘distance from perfection’ is as small as possible. The computation of phy-

logenies has applications in seemingly unrelated areas such as genomic sequencing and finding and

understanding genes. The numerous computational problems arising in phylogenetics often are NP-

complete, but for many natural parametrizations they can be solved using fixed-parameter

algorithms.

Keywords: bioinformatics; phylogenetics algorithms; parameterized algorithms

Received 15 March 2006; revised 28 July 2006

1. INTRODUCTION

1.1. Phylogenetics

The word phylogeny comes from Greek phylon, meaning

race, and geneia, meaning origin. In phylogenetics one

studies how different species are related evolutionary.

The basic paradigm is that species spawn new species,

for example when part of a species’ population adapts to

a changing environment. Over time the set of extant

species changes as new species emerge and other species

become extinct. The ancestral relationship between the

species can be depicted by arranging them in a tree,

called a phylogenetic tree or phylogeny, where the leaves

are labeled with extant species and where bifurcations

correspond to events like adaptations that lead to new

species. Interior nodes are labeled with ancestral species

or not at all when the ancestral species are unknown or

not of interest. A classical example of a phylogeny is the

tree of life, a small part of which is shown in Fig. 1,

though in the tree of life we see taxa instead of species

(a taxon is an arbitrary grouping of organisms while the

term species applies only to the basic building blocks of

biodiversity).

Evolutionary processes are not restricted to biology as was

already noted by Charles Darwin himself in Chapter 14 of On

the Origin of Species [1]. In linguistics, languages—instead of

species—evolve over time, resulting in a tree of languages.

Nodes of the tree are labeled by languages and bifurcations

correspond to changes of words or grammar that resulted in

new dialects or languages. A small part of the tree of

languages is shown in Fig. 1.

Building phylogenies is not an easy task. The problems start

with determining the set of taxa since neither for biological

species nor for languages it is always clear where we should

draw the line. But suppose we have agreed on a set of taxa

and the task is to arrange them in a phylogeny, then we only

know which taxa there are now, but we do not know which

taxa there were in the past. In rare, fortunate cases we might

have access to fossils or to text in dead languages, but nor-

mally the path evolution took will be unknown to us.

Even when we know all taxa in the phylogeny, including

even possibly extinct early taxa, it is still often subject to

debate how they should be arranged. To solve this problem,

one idea is to infer the phylogeny by looking at different

traits, better known as characters in the biological literature,

of the taxa. Characters are attributes like the form of the

THE COMPUTER JOURNAL, 2007

The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

doi:10.1093/comjnl/bxm049

 The Computer Journal Advance Access published July 30, 2007

skeleton or, for languages, the way a certain word is spoken.

Taxa for which the form of the skeleton is similar or languages

for which a word is spoken in a similar way should be in the

same subtree of the phylogeny. The joint information from

many characters will often leave us with a single phylogeny

or at least few possible ones. In biology, principal sources of

characters are the phenotype of a taxon, which is roughly

‘the way the organisms of the taxon look,’ but also genomic

information like which genes are present in the organisms of

a taxon. In linguistics, characters include pronunciation,

word order and more generally grammatical structure.

The construction and study of phylogenetic trees has many

applications. First of all, a phylogeny allows us a glimpse of

how evolution works and can help us in classifying organisms.

Second, we can compare multiple phylogenies built for the

same set. For example, one can build two phylogenies of

languages, the first based on linguistic traits and the second

based on the genetic traits of the speakers of the language.

The resulting phylogenies will match in large parts, but the

places where they do not match may be especially interesting,

indicating for instance that a population may have switched to

another language for some reason. A third, rather intriguing

application of phylogenies is their use as measures in other

applications. One such application is the haplotype phase

determination problem, presented in detail in Section 7.2.

The output for this problem is a set of taxa, but a large

number of different sets of taxa are possible outputs

a priori. The tricky part is not so much filtering out the bio-

logically most likely solution, but measuring how likely a sol-

ution is. An elegant way of doing this is to declare those sets of

taxa as ‘good solutions’ that can be arranged in a phylogeny.

1.2. Computational problems in phylogenetics

The most fundamental problems in phylogenetics are not com-

putational in nature. Deciding what exactly counts as a taxon,

choosing a set of characters or deciding which states a taxon is

in are not computational problems, but require human experi-

ence and judgment. However, once these decisions have been

made, numerous computational problems arise that cannot be

solved ‘by hand’ when large amounts of input data need to be

processed, as is the case in phylogeny-based haplotyping, for

instance. In the following we give an overview of the compu-

tational problems that we address in this survey; good starting

points for further coverage of computational issues in phylo-

genetics are [3–6].

A fundamental computational problem in phylogenetics is

the construction of a phylogeny for a given set of taxa

(detailed mathematical definitions are given later). We are

also given a set of characters and we know for each character

and each taxon the state of the taxon with respect to the char-

acter. For example, when the taxa are elephants and mice and

the characters are size and color, elephants are in the state ‘big’

with respect to the character size and ‘gray’ with respect to the

character color, mice are in the states ‘small’ and ‘gray.’ State

information for taxa and characters is typically arranged in

matrices such as the ones shown in Tables 1 and 2.

One has to choose a model of evolution that says which phy-

logenies are considered good explanations of the observed

character–state matrix. A basic model is the following: All

taxa sharing a state for some character are descendants of

the same taxon. For example, if some mutation causes ele-

phants to be the first ‘big’ animal, this model insists that all

other ‘big’ animals must be descendants of elephants. One

possible way of checking whether this model applies to a phy-

logeny is to check, whether for each character and each pair of

states the path between any two taxa in the first state and the

TABLE 1. A character–state matrix for programming languages.

Language

Scope

start

Module

start For-statement

Variable

reassignment

Pascal begin unit Yes Allowed

Modula begin module Yes Allowed

Haskell (module No Not allowed

C f – Yes Allowed

Java f package Yes Allowed

TEX f – No Allowed

The ‘taxa’ are the six programming languages on the left. The

‘characters’ are the symbol used to start a scope, the keyword used to

start a module, the question of whether built-in for-loops exist and

the question of whether it is permissible to reassign another value to

a variable. This matrix cannot be arranged in a perfect phylogeny,

but if we remove the ‘taxon’ TEX, which did not inherit its syntax

from another programming language, the remaining rows can.

FIGURE 1. Excerpts of two important phylogenies. In the left phy-

logeny, taxa label only leaf nodes. The shown portion of the tree of

languages is taken from [2].

Page 2 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

path between any two taxa in the second state do not intersect.

Such a phylogeny is called perfect. Naturally, the model is

rather crude since, after all, not all large animals are related,

and the model is regarded as overly simplifying by prac-

titioners; but see the discussion after Definition 2.2 for a justi-

fication why we focus on perfect phylogenies nevertheless.

A second set of computational problems arises when it is

not possible to arrange taxa in a perfect phylogeny. We then

have several options: First, we can lower our standards of

what counts as a good phylogeny by allowing a small

number of ‘backward mutations’ in the tree. Second, we can

still try to find a perfect phylogeny, but only for a subset of

the taxa or for a subset of the characters. Third, we can

claim that the data must be in error and try to find a way—

as little disruptive as possible—to modify the data such that

a perfect phylogeny can be obtained. While this is not advisa-

ble in general (we cannot simply claim that elephants can fly,

just to fit them into a perfect phylogeny), genomic data is often

obtained through laboratory processes in which one cannot

avoid a percentage of wrong entries.

Phylogenies need not always be constructed ‘from scratch’

based on character state data. Rather, we often have access to

partial phylogenies that are subtrees of the phylogeny sought

for. An example is the tree of life: We do not wish to construct

this tree based on an enormous character database for millions

of taxa. Rather, the problem is to merge many different small

phylogenies from the literature into one big phylogeny, appro-

priately called a supertree. For a related problem we also do

not construct phylogenies from scratch, but we are given

several complete candidate phylogenies obtained through

external means and our job is to compute biologically

meaningful distances between them—a difficult problem all

by itself.

New, even more difficult computational problems arise

when our data is incomplete, which is often the case. For

certain characters and taxa we simply might not know the

state: we may not know the translation of a word into a

certain language or the genomic sequencing process may

have failed to determine the base at a certain nucleotide pos-

ition. In such cases we do not only need to find a good phylo-

geny, but we must also fill in the missing entries in a sensible

manner. Needless to say that this often introduces a whole new

level of complexity.

1.3. Parametrization and phylogenetics

Most computational problems in phylogenetics turn out the be

NP-complete, forcing us to look for heuristics, approximation

algorithms or fixed-parameter algorithms. The fixed-

parameter approach turns out to be especially successful.

The reason for this success is that a number of problematic

parameters are, indeed, small in realistic instances for phylo-

genetic problems—like the number of states per character,

the number of characters or our tolerance for errors. The

number of states per character, for instance, is at most four

(and in many cases even two), whenever genomic data is

involved (nature kindly uses only four nucleobases) and the

running time of many algorithms is exponential in the

number of states per character, but polynomial otherwise.

Next, the number of characters in input matrices is large in

general (Smith lists 138 different characters for a set of lice

species [7]), but it is sometimes possible and necessary to par-

tition the character set into small subsets and apply algorithms

only to these small subsets.

In the course of the present paper we will see other

examples of parameters that are small in practice, allowing

us to construct efficient, exact algorithms for many compu-

tational problems arising in phylogenetics.

1.4. Goals and overview

The central goal of this survey is to highlight selected fixed-

parameter algorithms from the area of phylogenetics. The

chosen examples are intended to illustrate the diversity of

computational problems for which fixed-parameter algorithms

have been developed within the area of phylogenetics.

We address this survey to readers interested in compu-

tational issues and algorithmics and assume no detailed

knowledge about biology. We try to give illustrative examples

and explanations, as space permits, accessible to non-experts.

We assume that you are familiar with fixed-parameter algor-

ithms, but most theorems can be understood without knowl-

edge about parametrized complexity classes—they only

come into play in the concluding summary. For an introduc-

tion to fixed-parameter theory, see for example the two

TABLE 2. Character–state matrix that is an instance of PP.

Species

Hyaline

margin

Marginal

carina

Premarginal

carina

Chelopistes guttatus 0 0 0

Oscvlotes macropoda 0 1 0

Oxylipeurus dentatus 1 1 1

Upupicola upupae 0 0 2

Perineus nigrolimbatus 2 0 2

It is a submatrix of a much larger character-state matrix, compiled

by Smith [7], that contains entries for 56 species and 138

characters. In the above matrix, the five rows are five different lice

species from the suborder Ischnocera (Phthiraptera). These lice are

permanent parasites of many birds and mammals throughout

the world. The columns are three characters referring to the form of

the head of adult lice. The numbers in the matrix encode the

different states of the characters. For example, for the character

marginal carina the 0-entries mean that the adult marginal carina

‘forms a complete thickened band running anteriorly around the

preantennal region of the head’ and the 1-entries mean that it

‘forms a band which is interrupted laterally (partially or

completely), medially (dorsally and/or ventrally) or both’ [7].

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 3 of 23

THE COMPUTER JOURNAL, 2007

monographs [8] and [9]. Except for the short proofs of a few

easy new results that we include for completeness, no detailed

proofs are included in this survey, but we tried to at least

sketch some proof ideas of theorems from the literature.

In Section 2, we introduce (one possible version of) the

formal problem of constructing a perfect phylogeny and

study how the parameters number of taxa, number of charac-

ters and number of states per character influence the tractabil-

ity of the problem. In Section 3, we study ways of measuring

the deviation of a given phylogeny from ‘perfection.’ Section

4 treats problems where the task is to find a phylogeny that is

near to perfection with respect to the introduced measures. In

Section 5, we look at problems where the task is to compute

distances between phylogenies. In Section 6, the problem of

merging several partial phylogenies is treated. In Section 7,

we consider applications in which the aim is not to construct

a phylogeny but where its construction is just a means to an

end, namely finding regulatory genomic elements, or determin-

ing haplotype phases. In the conclusion, we summarize the

complexity-theoretic results in a table and give an outlook.

2. CONSTRUCTION OF PERFECT PHYLOGENIES

In this section we study how difficult it is to construct a perfect

phylogeny. First, we define the problem PP (perfect phylogeny)

formally, and discuss possible variations. Then, we look at

what happens when we fix one of the three central

parameters number of taxa, number of characters and number

of states per character.

2.1. Formalization of the perfect phylogeny problem

Fix a set C of characters like size or color, and for each char-

acter c [C fix is a set Sc of states for this character, like

Ssize ¼ fsmall, medium, bigg. Then the input for the perfect

phylogeny problem is a set S of taxa together with one

mapping for each taxon s [S, each of which assigns an

element of Sc to each character c [C.

There are three natural parameters in such inputs:

(i) The number n of taxa.

(ii) The number m of characters.

(iii) The maximum number r of states a character can have.

For computational issues, the names of the characters, the

states for each character and even the taxa are not really

important. Therefore, we can make the notation simpler by

assuming that the set S of taxa is f1, . . . , ng, the character set

C is f1, . . . , mg and each state set is Si ¼ f0, . . . , r 2 1g. It is

customary to start the states with 0 so that if there are just

two states, then they are 0 and 1. The states of a taxon can

now be described by a vector from the set S1 � � � � � Sm ¼

f0, . . . , r 2 1gm. Thus, the n input taxa are described by

length-m vectors of numbers from f0, . . . , r 2 1g. Another

way to think about the input is in terms of an (n�m)-matrix

with entries from f0, . . . , r 2 1g. Be cautioned that in the bio-

logical literature these matrices are sometimes presented in

transposed form.

Before we define perfect phylogenies, let us first define

phylogenies.

DEFINITION 2.1 (Phylogeny). Let A be a matrix describing

n taxa. A phylogeny for the matrix A is a tree T whose node set

V is labeled using a labeling function l : V! f0, . . . , r 2 1gm

such that:

(i) Every row of A, that is, each taxon’s state vector, is a

label of some node in T.

(ii) The labels of the leaves of T are rows of A. (By com-

parison, the labels of inner nodes correspond to ances-

tral taxa, which need not, but may, be part of the input.)

Be cautioned that phylogenetic trees may not always be the

best way of describing evolutionary relationships, for instance

because they do not account for so-called horizontal gene

transfers in which a gene is transfered between unrelated

taxa by a ‘mixing’ of the genetic material. In a study of con-

served loci in bacterial pathogens, Feil et al. [10] conclude

that for lineages within a species ‘over the long term, the

impact of relatively frequent recombination is to obliterate

the phylogenetic signal in gene trees such that the relationships

between major lineages of many bacterial species should be

depicted as a network rather than a tree.’ Indeed, comparisons

of the different genomes that were sequenced during the last

decade show that such transfers are quite frequent, threatening

the very idea of trying to explain evolutionary history using

trees, see the reviews [11] or [12] for an overview and as litera-

ture starting points. In the present survey we restrict attention to

phylogenetic trees, nevertheless, since we should try to under-

stand these first, before tackling the more difficult phylogenetic

networks. We come back to phylogenetic networks in the

outlook at the end of this paper.

Recall that in the evolutionary model behind perfect phylo-

geny all taxa sharing a state for some character have the same

ancestor. This can be formalized as follows:

DEFINITION 2.2 (Perfect phylogeny). A phylogeny is

perfect if for every character c [C and every state j [
Sc ¼ f0, . . . , r 2 1g, the graph induced by the set of nodes

labeled by a state vector (s1, . . . , sm) with sc ¼ j is connected.

DEFINITION 2.3 (PERFECT PHYLOGENY). The input for the

problem PERFECT PHYLOGENY (abbreviated PP) is a charac-

ter–state matrix A for n taxa. The task is to decide whether

there exists a perfect phylogeny for A.

Some remarks on the definition are in order both with

respect to its biological relevance and to the chosen mathemat-

ical formalization.

Concerning the biological relevance, one can object that

real biological character–state matrices rarely admit a

Page 4 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

perfect phylogeny. For example, Table 2 displays a real-life

instance of PP and a perfect phylogeny for this matrix is

shown in Fig. 2. However, this table is just a small part of a

much larger matrix compiled by Smith [7] and the whole

matrix does not admit a perfect phylogeny. Nevertheless,

there are several reasons why we should still study perfect

phylogenies.

† PP is in some sense the most basic computational problem

in phylogeny construction and we would like to under-

stand this problem well before we attack more compli-

cated settings.

† Even if data cannot be arranged in a perfect phylogeny,

we may still try to find a phylogeny that is ‘as perfect

as possible,’ see Section 4.

† There are biological settings where the perfect phylogeny

model works quite well. Consider single nucleotide poly-

morphism sites (SNP sites) for instance, which are specific

base positions in the genome where we observe a vari-

ation across the population. The base (state) at such a

position might have been adenine originally and a

mutation caused it to change to cytosine in part of the

population. Such mutations are rare—often SNP sites

are hundreds of bases apart. If SNP mutations occur ran-

domly, it is extremely unlikely that the same site will

mutate more than once; and having at most one mutation

per site exactly defines the evolutionary model of perfect

phylogenies. Note, however, that this argument breaks

down when the chromosomal crossing over effect has

to be taken into account and the perfect phylogeny

model for SNPs works only when a small number of SNP

sites are considered.

Concerning the mathematical formalization of perfect phy-

logenies, we chose a broad definition for this survey. We allow

an arbitrary tree topology, the input taxa can be found both at

the leaves and at inner nodes, and the same label may be found

at different nodes. We only insist that there are no superfluous

leaves, even though this condition is not strictly necessary

either. Other definitions in the literature impose more structure

on perfect phylogenies.

† It is often required that the set of leaf labels equals the set

of rows of the input matrix, that is, it is not allowed to

place a taxon at inner nodes. A perfect phylogeny in

the sense of Definition 2.2 can be turned into a phylogeny

with the input taxa at the leaves by adding a pending leaf

to all inner nodes that harbor an input taxon.

† It is often convenient to have more control over the tree

topology. It is particularly convenient to consider binary

trees, which are trees in which every node either has

degree one (leaves) or degree three (inner vertices).

This can also be achieved easily: Replace all nodes of

too high degree by small binary trees with all nodes

labeled by the original node’s label; and remove all

nodes of degree two while joining their adjacent nodes.

† It is sometimes useful to impose the quite natural con-

dition that all labels are distinct. This can be accom-

plished by contracting subtrees whose nodes all have

the same label (and, indeed, sets of nodes that are

labeled identically must form a connected subtree in a

perfect phylogeny). However, this contraction process

may destroy the binary tree property and also the prop-

erty that input taxa must label leaves.

In a perfect phylogeny there is no designated root node and,

in general, it may be debatable which taxon should be con-

sidered the ‘root.’ If, for whatever reason, a root node has

been chosen, the phylogeny is called directed.

Having defined (the decision version of) the perfect phylo-

geny problem, the natural question is, how difficult is this

problem? Unfortunately, it is NP-complete.

THEOREM 2.1 ([13, 14]). PP is NP-complete.

This result suggests that in order to tackle the problem we

must look at restricted versions. We do so by fixing the differ-

ent central parameters number n of taxa, number m of charac-

ters and the maximum number r of states per character.

2.2. Number of taxa as the parameter

The first restriction is to limit the number n of taxa in the input.

Intuitively, if there are just, say, four taxa, it should not be par-

ticularly hard to find out whether we can arrange them in a

perfect phylogeny—after all, there are only a fixed number

of tree topologies for them.

THEOREM 2.2. PP can be solved in time O(2nn! . m).

Proof. For a fixed binary tree topology T and a one-to-one

assignment of elements in S and leaves of T, it can be tested

in time O(nm) whether the the inner nodes of T can be

labeled in a way such that T is a perfect phylogeny for S.

The number of possible binary trees with n distinctly labeled

leaves is known to be 1 . 3 . 5 . � � � . (2n 2 5) � 2n(n 2 2)!.

FIGURE 2. One possible perfect phylogeny for the character–state

matrix from Table 2. The labels assigned to the vertices of the phylo-

geny are shown in partentheses.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 5 of 23

THE COMPUTER JOURNAL, 2007

Therefore, enumerating all binary trees for S and testing each

for being a perfect phylogeny for S yields the stated running

time. A

Theorem 2.2 shows that our intuition was correct and PP is

(more or less trivially) fixed-parameter tractable with respect

to n. The sketched algorithm is very simple and cannot

handle a number n of taxa that is greater than perhaps 10—

while in practical situations we typically have over a

hundred taxa. More clever exhaustive search algorithms in

phylogenetics push the maximum number of taxa that can

be handled from about 12 on desktop machines to about 15

on workstations; but what we really would like to find is a

fixed-parameter algorithm for the parameter n-based, ideally,

on a kernelization algorithm followed by a search tree algor-

ithm, yielding a running time as the one stated in the below

open problem.

OPEN PROBLEM 2.1. Is there a fixed-parameter algorithm for

PP with respect to the parameter n with a running time in

O(cn
þ (mr)O(1)) for some c close to 1?

2.3. Number of characters as the parameter

Returning to an arbitrary number of taxa, we now have a

look at what happens when we fix the number m of charac-

ters. This is justified in an important practical application.

As argued by Gusfield in [15], the perfect phylogeny

model explains genomic variations well when crossing

over effects are not present. This implies that for short

genomic sequences, the perfect phylogeny model applies,

and for longer sequences, we can try to partition the

sequence into short intervals and derive perfect phylogenies

for these small sets of characters.

Once more, the intuition is that it should be easy to find a

perfect phylogeny if there are only, say, three characters

and, indeed, Morris, Warnow and Wimer present an algorithm

with the following running time:

THEOREM 2.3 ([16]). PP can be solved in time

Oðrmþ1mmþ1 þ nm2Þ:

The idea is to show that PP is polynomially equivalent to the

problem of triangulating colored graphs. For this latter

problem we are given a graph G ¼ (V, E) and a coloring c :

V! C, and the task is to find a supergraph G0 of G that is

properly colored by c and that is triangulated (every cycle of

length at least four contains a chord). The number of colors

for the triangulated colored graphs problem corresponds to

the number of characters in PP.

Using a different approach, Agarwala and Fernández-Baca

arrive at the following running time:

THEOREM 2.4 ([17]). PP can be solved in time

Oððr � n=mÞm � rnmÞ:

For fixed m, both of the above time bounds are polynomial

in n and r. However, neither algorithm shows that the problem

is fixed-parameter tractable as we still have m in the exponent

and another input parameter in the base. The following

theorem of Bodlaender et al. shows that it is unlikely that

this can be remedied:

THEOREM 2.5 ([18]). For every t, PP with parameter m

(number of characters) is W[t]-hard.

Interestingly, this hardness result is also proved by exploit-

ing the equivalence of PP to the problem of triangulating

colored graphs.

2.4. Number of states per character as the parameter

The third natural parameter for the perfect phylogeny problem

is the number of states per character. Fixed-parameter results

for this number are especially important since it is, indeed,

small in many applications. Consider, for instance, an input

in which characters are nucleotide positions in the genome

and the possible states for each character are the four bases

adenine, cytosine, guanine and thymine. Then the number of

states is four or, if we also take alignment-induced gaps into

account by adding a ‘no-data’ or ‘gap’ state, five. Even

better, in applications such as the phylogeny-based haplotyp-

ing presented in Section 7.2, we may assume that at most

one mutation per site occurs and, thus, there are only two

different states for each character.

The first fixed-parameter algorithm for the parameter r was

proposed by Agarwala and Fernández-Baca. It has the follow-

ing running time:

THEOREM 2.6 ([19]). PP can be solved in time

Oð23r � ðm3nþ m4ÞÞ:

This result was later improved by Kannan and Warnow.

THEOREM 2.7 ([20]). PP can be solved in time

Oð22r � m2nÞ:

An O(m2n) algorithm for the special case r ¼ 3 had already

been achieved by Dress and Steel [21]. Kannan and Warnow

[22] give an O(mn2) algorithm for r ¼ 4.

For the special case r ¼ 2 one can make use of a simple, but

powerful characterization of matrices that admit a perfect phy-

logeny. The characterization is in terms of a forbidden induced

Page 6 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

submatrix and has been rediscovered independently by several

authors, among others in [23] and [24].

THEOREM 2.8. For r ¼ 2, a matrix A of taxa has a perfect

phylogeny if and only if it does not contain the following

induced submatrix:

0 0
0 1
1 0
1 1

 !
:

Employing this characterization, which will also play a role

in Section 4.2, Gusfield devised an algorithm running in linear

time.

THEOREM 2.9 ([25]). For r ¼ 2, PP can be solved in time

O(mn).

The results of this section can be summed-up as follows: PP

with respect to either of the parameters n and r (number of taxa

and number of states per character) is in FPT, but with respect

to the parameter m (number of characters) it is in XP and hard

for W[t] for all t (Table 3 on page 20).

3. MEASURES OF DEVIATION FROM PERFECTION
OF PHYLOGENIES

In the previous section we studied perfect phylogenies. In

practice, we often have to deal with imperfect phylogenies

since, in reality, input matrices only rarely admit a perfect phy-

logeny. In this case, we may look for a phylogeny that is at

least ‘near’ to being perfect instead. For this, we need to

measure how strongly a phylogeny deviates from being a

perfect phylogeny.

3.1. Measures based on relaxed evolutionary models

The basic assumption of the evolutionary model underlying

perfect phylogenies is that mutations of a character to some

state happen only once. We start with two measures that

count, in different ways, how often this assumption is violated.

Note that the input for these problems is a phylogeny, and not

a matrix. In the closely related Section 4.1 we will treat, for

each measure, the question of finding some phylogeny for

an input matrix that minimizes the distance to perfection.

The first measure is the penalty of a phylogeny, due to

Fernández-Baca and Lagergren [26].

DEFINITION 3.1 (Length and penalty of a phylogeny).

For an edge of a phylogeny connecting nodes u and v, we

define the length of the edge as the Hamming distance of u

and v (the number of characters where the states differ). The

length of a phylogenetic tree T is the sum of lengths taken

over all edges of the tree. The penalty of a phylogenetic tree

T is defined as

penaltyðTÞ ¼ lengthðTÞ �
X
c[C

ðrc � 1Þ;

where rc is the number of states of character c that are present

in the phylogeny.

The idea behind this measure is the following: The length of

an edge e connecting taxa u and v is the number of mutations

that occurred between u and v. For a perfect phylogeny, a new

state is introduced by a mutation only once and therefore every

character c contributes exactly rc 2 1 to the length of the tree.

Hence, the penalty of a tree counts how often the assumption

‘each new state is introduced only once by a mutation’ is

violated. Perfect phylogenies have a penalty 0.

The second measure is the phylogenetic number, due to

Goldberg et al. [27]. For a state j and a character c let Tc, j

denote the subgraph of the phylogenetic tree T induced by

the set of nodes whose labels are in state j for the character c.

Then the phylogenetic number is defined as follows:

DEFINITION 3.2 (Phylogenetic number). The phylogenetic

number of a phylogeny T is the maximum number of times

that any given state arises in T, that is, the maximum

number, taken over all characters c and all states j, of con-

nected components in Tc,j. Phylogenies with phylogenetic

number ‘ are called ‘-phylogenies.

A 1-phylogeny is the same as a perfect phylogeny. Unlike

the penalty, which bounds the total number of violations

of the basic evolutionary model, the parameter ‘ does not

restrict the total number of violations, but violations may not

‘concentrate’ at a single state.

A third measure of a similar flavor is the number of bad

states. It is due to Moran and Snir [28] who study how to

get rid of bad states by a minimal number of recolorings

(compare Definition 3.6 in the next subsection).

DEFINITION 3.3 (Number of bad states). Given a phylogeny

T and a character c, the character’s number of bad states

is number of states j for which Tc,j is not connected. The

number of bad states of a phylogeny T is the maximum

numbers of bad states taken over all characters.

Clearly, for a given phylogeny all of the above measures can

be computed in polynomial time.

One can easily define further measures of a similar spirit;

for instance, we could maximize over the number of bad

states per character or sum over the number of times a given

state arises in T, and so on, leading to an abundance of possible

measures and only few hints as to which measure might be

most appropriate in a particular biological setting.

OPEN PROBLEM 3.1. Do a comparative study of the intro-

duced and similar measures with respect to their biological

relevance.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 7 of 23

THE COMPUTER JOURNAL, 2007

3.2. Measures based on the modification of
input phylogenies

We now introduce measures that are based on the idea that if

the input data does not admit a perfect phylogeny, the data

must be flawed. One then tries to modify or even remove

the taxa of a given phylogeny until a perfect phylogeny is

reached. Note, again, that the input is a phylogeny, and not a

matrix. The taxa are already arranged in a tree and we only

wish to know how the particular input phylogeny needs to

be modified to arrive at a perfect phylogeny. In Section 4.2

we study the related, but different, problem of modifying a

character-state input matrix so that the resulting matrix

admits a perfect phylogeny.

For the first measure of this type one tries to prune a phylo-

geny until it becomes perfect.

DEFINITION 3.4 (TREE PERFECTION BY TAXA REMOVAL). The

input for TREE PERFECTION BY TAXA REMOVAL is a phylogeny T

and a number k. The task is to decide whether we can turn the

phylogeny T into a perfect phylogeny by repeatedly cutting

away leaves such that at most k of the original leaves are

removed.

It is not straightforward how to minimize the number of taxa

removals since there are many ways to prune a phylogeny and,

indeed, this problem is NP-complete already for r ¼ 2 as the

following theorem shows.

THEOREM 3.1. For every r � 2, TREE PERFECTION BY TAXA

REMOVAL is NP-complete.

Proof. The problem clearly is in NP. Hardness is shown by

reducing VERTEX COVER to it. For a graph G ¼ (V, E) with

jVj ¼ n and jEj ¼ m, construct a star-shaped phylogeny T

with one center node and n leaves, one for each vertex v [V.

The taxa have m characters ce, one for each edge e [E.

Each character has two states 0 and 1. The center node is

labeled 0m. The leaf in T corresponding to vertex v in G is

labeled with the character–state vector that has state 1 for

character ce if and only if v is an endpoint of e. Now, for

each edge there are two taxa (leaves) in the phylogeny

for which the state of ce is 1. At least one of these taxa has

to be removed to make the phylogeny perfect, because of

the 0m vector in the ‘center.’ Therefore, the vertex covers of

G correspond exactly to sets of leaves whose removal lets

T become perfect. A

Slight modifications of this proof show that the problem

remains NP-complete for binary phylogenies, or if one

defines phylogenies in a way such that only leaves are

labeled with taxa.

OPEN PROBLEM 3.2. IS TREE PERFECTION BY TAXA REMOVAL

fixed-parameter tractable with respect to the parameter k

(number of removed taxa)?

A second measure counts how many characters must be

removed (disregarded) so that the phylogeny becomes

perfect. This number is much easier to compute.

DEFINITION 3.5 (TREE PERFECTION BY CHARACTER REMOVAL).

The input for TREE PERFECTION BY CHARACTER REMOVAL are

a phylogeny T and a number k. The task is to decide

whether the phylogeny T can be turned into a perfect

phylogeny by disregarding k characters.

THEOREM 3.2. TREE PERFECTION BY CHARACTER REMOVAL

can be solved in polynomial time.

Proof. A character is either ‘in error’ (because there is a state

such that the set of all taxa of this state for the character is not

connected, which can be checked in polynomial time) or the

character is ‘clean.’ We must disregard all erroneous charac-

ters and this suffices. A

A third measure, implicitly introduced by Moran and Snir

[28], is based on a more fine-grained analysis of the erroneous

characters. Instead of just disregarding those characters that

violate the connectedness condition, we try to ‘fix them’ by

changing the states at a minimal number of places. Such a

change of state may also be regarded as a recoloring, since

states correspond to colors in equivalent formulations of the

perfect phylogeny problem.

DEFINITION 3.6. (Recoloring number). Given a phylogeny

T, the recoloring number is the minimal number of state

changes (the number of times we need to change a state in

some node label) needed to arrive at a perfect phylogeny.

DEFINITION 3.7 (TREE PERFECTION BY RECOLORING). The

input for TREE PERFECTION BY RECOLORING are a phylogeny

T and a number k. The task is to decide whether the recoloring

number of T is at most k.

Finding an optimal recoloring for one character is not influ-

enced by recolorings necessary for another character, hence

we can compute the recoloring number for each character sep-

arately. Hence, the problem reduces to the problem for a single

character (called CONVEX RECOLORING OF TREES by Moran and

Snir), which Moran and Snir show to be NP-complete. Indeed,

Moran and Snir show something even stronger.

THEOREM 3.3 ([28]). TREE PERFECTION BY RECOLORING is

NP-complete, even if we allow only instances where the phy-

logeny forms a path and where there is only a single character.

On the other hand, Moran and Snir present an algorithm for

computing the recoloring number. Recall that b is the number

of bad states (see Definition 3.3) which are the states (or

colors) for which some action needs to be taken.

Page 8 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

THEOREM 3.4 ([28]). TREE PERFECTION BY RECOLORING can

be solved in time

O
b

log b

� �b

� bmn4

 !
:

The above theorem shows that computing the recoloring

number is fixed-parameter tractable with respect to the

number of bad states.

OPEN PROBLEM 3.3. With respect to which other parameters

is TREE PERFECTION BY RECOLORING fixed-parameter tractable?

4. CONSTRUCTION OF GOOD PHYLOGENIES

In the present section we study algorithms that construct phy-

logenies that are ‘almost’ or ‘nearly’ perfect. To define what

counts as a good phylogeny, we use the measures introduced

in the previous section. Having fixed a measure, our objective

now is to find a phylogeny of minimal measure for a given

input matrix. Intuitively, this is a much more difficult

problem than the ones studied in the previous section, where

we just wanted to compute the measure of a single phylo-

geny—and often already this seems difficult. However, it is

conceptually possible that it is hard to compute a measure

for a given phylogeny, but still easy to construct some phylo-

geny of minimal measure for given input matrix.

4.1. Minimizing penalty, phylogenetic number and
number of bad states

Let us start with algorithms that find phylogenies minimizing

the penalty (number of excess mutations) from Definition 3.1,

the phylogenetic number (one plus the maximum of the

number of excess mutations per state) from Definition 3.2,

or the number of bad states (number of states for which an

excess mutation has occurred) from Definition 3.3.

DEFINITION 4.1 (Measure minimization problems). The

input for the problems PHYLOGENETIC PENALTY MINIMIZATION,

PHYLOGENETIC NUMBER MINIMIZATION and PHYLOGENETIC BAD

STATES MINIMIZATION is a matrix A of taxa and a number p.

The task is to decide whether there exists a phylogeny for A

of penalty at most p, with a phylogenetic number of at most

p or with at most p bad states.

Fernández-Baca and Lagergren [26] call phylogenies that

minimize the penalty ‘near-perfect,’ but we use PHYLOGENETIC

PENALTY MINIMIZATION for consistency.

All problems are generalizations of PP since when the

penalty is 0 (or 1, for the phylogenetic number), the task is

simply to decide whether a perfect phylogeny exists. This

shows that we cannot hope for a fixed-parameter algorithm

for any of these problems with respect to the parameter p

alone. If we take the parameter r also into account, two theo-

rems are known about minimizing the penalty.

THEOREM 4.1 ([26]). PHYLOGENETIC PENALTY MINIMIZ-

ATION can be solved in time

OðmOð pÞ2Oð p2r2Þ � nÞ:

THEOREM 4.2 ([29]). For r ¼ 2, PHYLOGENETIC PENALTY

MINIMIZATION can be solved in time

Oð2Oð p2Þ � nm2Þ:

Theorem 4.2 tells us that for the particularly interesting case

of only two states per character there is a fixed-parameter

algorithm for finding a good phylogeny with respect to the par-

ameter penalty.

Much less is known about minimizing the phylogenetic

number or the number of bad states.

OPEN PROBLEM 4.1. For which parameters or parameter

pairs are PHYLOGENETIC NUMBER MINIMIZATION or PHYLO-

GENETIC BAD STATES MINIMIZATION fixed-parameter tractable?

4.2. Minimizing the modification of input data

The next measures that we considered were based on the idea

that one may modify the input to arrive at a perfect phylogeny.

Trying to minimize these measures leads to the following

problems:

DEFINITION 4.2 (PP BY TAXA REMOVAL). The input for PP BY

TAXA REMOVAL is a character–state matrix A of taxa and a

number k. The task is to remove at most k taxa (rows) from

A such that the resulting matrix admits a perfect phylogeny.

DEFINITION 4.3 (PP BY CHARACTER REMOVAL). The input for

PP BY CHARACTER REMOVAL is a matrix A of taxa and a number

k. The task is to remove at most k characters (columns) from A

such that the resulting matrix admits a perfect phylogeny.

Since for the case r ¼ 2 we have a characterization of

matrices that admit a perfect phylogeny by a forbidden subma-

trix (see Theorem 2.8) the following problem becomes import-

ant for r ¼ 2.

DEFINITION 4.4 (ROW DELETION). For a fixed matrix B, the

input for the ROW DELETION (B) problem is a matrix A and a

number k. The task is to remove at most k rows from A such

that the resulting matrix does not contain B as an induced

submatrix.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 9 of 23

THE COMPUTER JOURNAL, 2007

Combining the results proved in [30] on the row deletion

problem and results on the fixed-parameter tractability of the

hitting set problem, one gets the following results.

THEOREM 4.3. For every r � 2, both PP BY TAXA REMOVAL

and PP BY CHARACTER REMOVAL are NP-complete.

THEOREM 4.4. For r ¼ 2, PP BY TAXA REMOVAL can be

solved in time O(3.30k
þ n4) and also in time O(2.18kn þ n4).

THEOREM 4.5. For r ¼ 2, PP BY CHARACTER REMOVAL can

be solved in time O(1.29k
þ m2).

Proof. For r ¼ 2, the PP BY CHARACTER REMOVAL problem is

equivalent (by an exchange of the roles of rows and columns)

to ROW DELETION
0 0 1 1
0 1 0 1

� �
. Again for r ¼ 2, PP BY TAXA

REMOVAL is the row deletion problem for the transposed

(4 � 2)-matrix, but it can also be reduced to n instances of

ROW DELETION
0 1
1 0
1 1

� �
. Wernicke et al. [30] establish a close

relationship between ROW DELETION and the d-HITTING SET

problem. The task in the d-hitting set problem is to find a

hitting set of size at most k for a family of sets of size at

most d. On the one hand, this relation can be used to show

that PP BY TAXA REMOVAL and PP BY CHARACTER REMOVAL

for r ¼ 2 are NP-complete. On the other hand, fixed-parameter

algorithms for the d-HITTING SET problem with respect to k at

once yield fixed-parameter algorithms for ROW DELETION(B)

with respect to the parameter k for matrices B with d rows.

For 3-HITTING SET, Fernau [31] gives an algorithm with

running time O(2.18k
þ n), for 4-HITTING SET Niedermeier

and Rossmanith [32] give an algorithm with running time

O(3.30k
þ n). For the 2-HITTING SET problem, which is the

well known vertex cover problem, Chen et al. [33] give an

algorithm with running time O(1.29k
þ kn). A

For larger r, where no characterization in terms of forbidden

submatrices is known, the complexity of the removal problems

is open.

OPEN PROBLEM 4.2. Are PP BY TAXA REMOVAL and PP BY

CHARACTER REMOVAL with parameter k fixed-parameter

tractable for all r?

DEFINITION 4.5 (PP BY RECOLORING). The input for PP BY

RECOLORING is a matrix A of n taxa and a number k. The

task is to decide whether A has a phylogeny with recoloring

number of at most k.

Recall that computing the recoloring number of a given

phylogeny is fixed-parameter tractable with respect to the par-

ameter b (number of bad states), but nothing is known for the

problem PP by recoloring.

OPEN PROBLEM 4.3. How difficult is PP BY RECOLORING?

5. COMPUTING DISTANCES BETWEEN
PHYLOGENIES

In the present section we study how difficult it is to compute

the distance between phylogenies, which need not be

perfect. Computing such distances is important when several

candidate phylogenies are given, obtained either computation-

ally by different methods or compiled from different literature

sources. We discuss three classical, well-known editing dis-

tance measures as well as a recently introduced distance

measure based on planar embeddings of the involved trees.

One way to define a distance between phylogenies is to

count the number of modifications necessary to transform

one phylogeny into another. Possible modifications include

deletion and insertion of taxa or the movement of a subtree

of the phylogeny to another place. For different sets of

allowed modifications, we get different notions of distance.

Three increasingly general modifications have been studied

extensively in the literature, see the book chapter of DasGupta

et al. [34] for an entry point. Usually these operations are con-

sidered only on undirected, binary phylogenies in which taxa

label only leaves.

The first operation is the nearest neighbor interchange. In a

binary phylogeny, every internal edge has four subtrees

attached to it (two at the one end of the edge and two at the

other end) and the nearest neighbor interchange exchanges

two such subtrees. This means that the tree can be

changed into or into .

The second operation is the subtree prune and regraft oper-

ation. Here, we are allowed to cut an edge anywhere in the phy-

logeny and to reattach (regraft) the subtree that we have cut

away at some other place. In detail, starting with a phylogeny,

we consider some edge connecting two nodes u and v. Let Tu

and Tv be the two subtrees connected by the edge. Then the

subtree prune and regraft operation allows us to cut the edge

between u and v and to reattach the tree Tv at some other

place in Tu. To reattach the tree Tv, we split an edge in Tu by

adding a new node in the middle and connect the node v to

that new node (Fig. 3). The node u, which now has degree

two, is removed to make the tree binary again. Although not

quite obvious, it is not hard to see that nearest neighbor inter-

change is a special case of subtree prune and regraft.

The subtree prune and regraft operation models a horizontal

gene transfer, where a gene is transfered between unrelated

taxa by a mixing of their genetic material. As we pointed out

in the remark after Definition 2.1, we cannot hope to fully

understand evolutionary processes without taking horizontal

gene transfer into account. In a survey of the importance of

horizontal gene transfer [38] Gogarten, Doolittle and Lawrence

point out that ‘accumulating prokaryotic gene and genome

sequences reveal that the exchange of genetic information

through both homology-dependent recombination and hori-

zontal (lateral) gene transfer (HGT) is far more important, in

quantity and quality, than hitherto imagined. The traditional

Page 10 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

view that prokaryotic evolution can be understood primarily in

terms of clonal divergence and periodic selection, must be aug-

mented to embrace gene exchange as a creative force, itself

responsible for much of the pattern of similarities and differ-

ences we see between prokaryotic microbes.’

The third operation is the tree bisection and reconnection

operation. This operation is nearly the same as the subtree

prune and regraft operation, only we now allow to connect

an arbitrary node in Tv to Tu, rather than only the node v.

This operation is more general than the subtree prune and

regraft operation, but one can simulate a tree bisection and

reconnection operation by two subtree prune and regraft

operations.

DEFINITION 5.1 (Distance problems). The input for the three

problems NNI DISTANCE, SPR DISTANCE and TBR DISTANCE are

two binary, undirected phylogenies with input taxa labels only

at the leaves and a distance d. The task is to decide whether d

nearest neighbor interchanges, d subtree prune and regraft

operations or d tree bisection and reconnection operations

suffice to transform the first phylogeny into the second,

respectively.

Computing the distance between phylogenies turns out to be

a hard job. It is known that computing the distance of two phy-

logenies with respect to either the nearest neighbor inter-

change operation or the tree bisection and reconnection

operation is NP-hard and it is strongly suspected that the

same is true for the subtree prune and regraft operation.

THEOREM 5.1 ([39]). NNI DISTANCE is NP-complete.

The hardness is shown by a rather involved reduction from

EXACT COVER BY 3-SETS. Interestingly, the hardness was open

for a long time and appeared as an open problem in numerous

papers like [40–42], just to name the earlier ones.

OPEN PROBLEM 5.1. Is SPR DISTANCE also NP-complete?

(An NP-completeness proof for SPR distance given in [43]

turns out to be incorrect as argued by Allen and Steel [44],

but it might be possible to fix the proof.)

THEOREM 5.2 ([43, 44]). TBR DISTANCE is NP-complete.

THEOREM 5.3 ([44]). TBR DISTANCE can be solved in time

O(dO(d)
þ n4).

No exact time bound is given in [44]; the one stated above is

a loose upper bound that we derived by generously bounding

the running time of the algorithms given in the paper. As the

running time formula suggests, the O(dO(d)
þ n4) algorithm

uses a kernelization algorithm running in time O(n4) to

reduce the original problem instance to an instance of size at

most O(d). This reduced instance can then be solved by

brute force.

The kernelization is based on two easy reduction rules:

First, if a pendant subtree occurs identically in both trees,

then in both trees we replace the subtree by a single leaf that

gets a unique new label. Second, if a chain of pendant subtrees

occurs identically in both trees, the whole chain can be

replaced by a chain of three leafs labeled with three new

labels (Fig. 4). The kernelization algorithm simply applies

these rules until neither rule can be applied any more. The

resulting trees will then have size O(d).

OPEN PROBLEM 5.2. Are NNI DISTANCE or SPR DISTANCE with

parameter d (distance) also fixed-parameter tractable?

We conclude this section with a distance measure that was

introduced in [45]. It deviates from the above ones in that it is

based on planar embeddings of the two trees involved. Given a

leaf-labeled tree, a linear ordering on its leaves is called

FIGURE 3. Example of how the subtree prune and regraft operation

works. In the left phylogeny the edge between u and v is cut and then

the tree rooted at v is regrafted at a new position in the right phylo-

geny. The right phylogeny takes the presence or absence of the

gene encoding N-acetylneuraminate lyase into account. This gene

is present in vertebrates and bacteria but not in the other taxa,

suggesting that a horizontal gene transfer took place. The announce-

ment [35] in Nature that humans may have acquired over a hundred

genes directly from bacteria made newspaper headlines, but the tow

Science articles Microbial genes in the human genome: Lateral trans-

fer or gene loss? [36] and Are there bugs in our genome? [37] quickly

challenged the findings and suggest other explanations, at least for

most genes.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 11 of 23

THE COMPUTER JOURNAL, 2007

suitable if the tree can be embedded into the plane such that its

leaves are mapped to a straight line in which the given order is

maintained. Given two orderings on the same label set, their

crossing number is the number of edge crossings when

drawing the orderings onto two parallel layers and connecting

the corresponding labels by edges (see Fig. 5 for an example).

We then obtain a definition of distance for trees as follows:

DEFINITION 5.2 (Crossing distance). Given two leaf-labeled

trees T1 and T2 with the same leaf set, their crossing distance is

the minimal crossing number between two suitable orderings,

one with respect to T1 and one with respect to T2.

Note that under this definition trees with different topolo-

gies may have distance 0.

DEFINITION 5.3 (Crossing distance). The input for 5.3

CROSSING DISTANCE are two leaf-labeled trees T1 and T2

with the same n element leaf set and a distance d. The task

is to check whether the crossing distance between T1 and T2

is at most d.

The problem is called TWO-TREE CROSSING MINIMIZATION by

Fernau et al. [45]. They show that it is NP-complete, but fixed-

parameter tractable with respect to parameter d.

THEOREM 5.4 ([45]). CROSSING DISTANCE is NP-complete.

THEOREM 5.5 ([45]). CROSSING DISTANCE can be solved in

time O(210d . nO(1)).

The problem can be solved by a search tree algorithm that,

recursively, identifies ‘conflicting’ subsets of four leaf labels,

that is, four labels for which no suitable orderings without

crossing can be found. The algorithm branches recursively

for each possible orderings, one in each tree, for identified

leaves. In the case in which no size-four conflicting subset is

found, a more complex branching into a fixed number of

branches can be given.

Unfortunately, because of its high running time the above

result merely classifies the problem as fixed-parameter

tractable.

OPEN PROBLEM 5.3. Give a practical fixed-parameter

algorithm for computing the crossing distance.

6. COMBINING PHYLOGENIES

In this section we study approaches to combining several phy-

logenies into a single phylogeny. Suppose two researchers

have accumulated character data for two partially overlapping

sets of taxa and both have constructed phylogenies based on

their data (see Fig. 6 for an example). A natural question to

ask is, how can we combine these two phylogenies into a

single phylogeny?

The first approach is to combine the character–state

matrices into a supermatrix (as it is called in [46]) and to

build a phylogeny based on this combined primary data or

total evidence (as it is called in [47]). Another approach,

FIGURE 5. Visualization of the crossing number computation for the two phylogenies from Fig. 3. The two phylogenies are drawn in such a way

that the taxa lie on two parallel lines. Three crossings result when identical taxa in the different phylogenies are connected.

FIGURE 4. The second reduction rule in the kernelization algorithm

for TBR DISTANCE. Each capital letter is a subtree, each lowercase

letter is a label.

Page 12 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

which has gained momentum only in recent years, is to

ignore the primary data and to build a phylogeny based

only on the topologies of the two phylogenies. Phylogenies

that are based on the topology of other phylogenies rather

than on the underlying character–state data are called

supertrees.

An obvious shortcoming of the supertree approach is that

we expect phylogenies based on total evidence to be more

exact than phylogenies based only on ‘second-hand, indirect

data’ like tree topologies. To make matters worse, the super-

tree approach can yield phylogenies that are outright contra-

dictory to the primary data. Nevertheless, over the last years

numerous papers have presented supertrees, motivated by a

number of arguments that count in favor of the supertree

approach:

† The literature contains thousands of phylogenetic

studies. When combining published phylogenetic trees

to obtain larger trees, it is often hard or impossible to

revisit the underlying methods or data. For example,

Pisani et al. [48] use phylogenies from 124 different

publications, some of which date back decades, to con-

struct a supertree for 277 Dinosauria genera.

† In order to increase efficiency, one can try to compute

phylogenies in a two-phase process. In a first phase,

one computes small trees based on a phylogenetic

method of choice. Because the trees are small, one can

use time-intensive methods. In a second phase, one com-

bines these trees into one phylogeny.

† Phylogenetic trees can be computed based on different

character sets and the task is to combine the resulting

trees into a single supertree. Not all data may be available

for all taxa of interest, for instance genomic sequences

may be available only for a small set of species,

making it hard or impossible to construct a supermatrix

for the primary character data.

The term ‘supertree’ stems from the 1986 paper Consensus

supertrees: the synthesis of rooted trees containing overlap-

ping sets of labeled leaves by Allan Gordon [49]. However,

the strict consensus supertrees of Gordon can only be built

for conflict-free input phylogenies, which are only rarely

available. Today, the term is also used for trees constructed

using methods that handle conflicting input phylogenies

more gracefully.

In Section 6.1, we investigate strict consensus supertrees,

because it is helpful to understand the simple case of no con-

flicts first before tackling more difficult settings, but also

because a strict consensus supertree, in the few cases it

exists, is of great interest. The question whether such a strict

consensus supertree exists for given input phylogenies is sol-

vable in polynomial time [50] for directed trees, but is NP-hard

for undirected trees. This leads us to have a look at the

problem from a parametrized point of view.

There is more than one way to build a supertree from con-

flicting input phylogenies. A first, and rather straightforward

idea is to resolve conflicting input phylogenies by deleting a

minimal number of the conflicting input trees so that all con-

flicts are resolved. In the second part of Section 6.1 we present

such a fixed-parameter algorithm for the case in which all

input trees are unrooted and have four leaves.

Second, we can resolve conflicts by leaving out a bounded

number of input taxa from the analysis. In Section 6.2, we con-

sider a version of this problem in which the input trees are

rooted and share the same leaf set.

Third, we name a method called matrix representation with

parsimony (MRP), which was proposed independently by

Baum [51], Doyle [52] and Ragan [53]. This method trans-

forms the combination of directed input phylogenies into a

maximum parsimony problem on a binary character–state

matrix and then computes a maximum parsimony tree for

this matrix. One can compute a maximum parsimony tree by

applying the fixed-parameter algorithm for PHYLOGENETIC

PENALTY MINIMIZATION presented in Section 4 where the par-

ameter is the ‘deviation’ from being a perfect phylogeny.

FIGURE 6. (Parts of) Two phylogenies for Dinosauria from two

different publication and a strict consensus supertree for them.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 13 of 23

THE COMPUTER JOURNAL, 2007

Beyond that, it seems that parametrized algorithms tailored to

the case of MRP have not been studied so far. But see [54] for a

problem formulation slightly changing the optimization goal

of MRP and a fixed-parameter result for a constrained case.

For a more detailed discussion and critical appraisal of the

different supertree methods, we refer the reader to the mono-

graph edited by Bininda-Emonds [55].

6.1. Combining phylogenies using strict
consensus supertrees

For every method, including the strict consensus supertree

method, the most basic problem is to decide whether a super-

tree exists. For the next definitions recall that in a binary phy-

logeny all nodes have degree one or three.

DEFINITION 6.1 (Strict consensus supertree). A phylogeny T

induces a phylogeny T0 if T0 can be obtained from T by repeat-

edly deleting leaves and contracting edges. A phylogeny T is a

strict consensus supertree of trees T1, . . . , Tt if each Ti is

induced by T.

DEFINITION 6.2 (COMPATIBLE UNDIRECTED PHYLOGENIES).

The input for COMPATIBLE UNDIRECTED PHYLOGENIES (abbre-

viated CUP) are binary phylogenies T1, . . . , Tt. The task is to

decide whether there is a binary strict consensus supertree

for T1, . . . , Tt.

Already this basic problem turns out to be hard.

THEOREM 6.1 ([14]). CUP is NP-complete, even if all input

trees have four leaves.

The corresponding problem for directed trees is solvable in

time O(n3) for n taxa using an algorithm of Aho et al. [50].

Steel [58] raised the question of whether the undirected

version is fixed-parameter tractable with respect to the

number t of input trees. This parametrization is reasonable

since the combination of a small number of possibly large

trees is a realistic scenario. Bryant and Lagergren have

recently answered Steel’s question positively.

THEOREM 6.2 ([59]). CUP can be solved in time

Oð f ðtÞ � nOð1ÞÞ

for some function f.

Proof. First, the input trees can be combined to a display

graph that has tree-width t, provided CUP has a solution.

Second, the problem CUP can be described using a monadic

second-order formula on the constructed display graph. Fixed-

parameter tractability follows because of two classical results

from parametrized complexity theory: determining whether a

given input graph has tree-width t is fixed-parameter tractable

with respect to parameter t, [60], and evaluating a monadic

second-order formula on graphs of tree-width t is also fixed-

parameter tractable with respect to the parameter t [61]. A

Unfortunately, both theoretical results on which the fixed-

parameter algorithm for CUP is based are, indeed, theoretical

and do not have efficient, practical implementations. No one

has yet bothered to determine an explicit upper bound on the

function f mentioned in the above theorem.

OPEN PROBLEM 6.1. Give an efficient and practical para-

metrized algorithm with explicit running time bounds for

CUP for the parameter t (number of input trees).

A parametrization of CUP with respect to the maximum size

of the input trees does not even lead to a ‘theoretical’ fixed-

parameter algorithm by Theorem 6.1. On the other hand, the

problem is fixed-parameter tractable with respect to the total

number of n of input taxa since we can try all possible tree

topologies over the taxa (see also Theorem 2.2 and Open

Problem 2.1).

In practice, multiple phylogenies can only rarely be com-

bined into a strict consensus supertree. Similar to the case of

input matrices that do not permit a perfect phylogeny, we

must now find ways of resolving the conflicts. Perhaps, the

simplest approach is to delete potentially erroneous input

trees until a solution can be found. Here, the number of

deleted trees is a natural problem parameter.

DEFINITION 6.3 (CUP BY TREE REMOVAL). The input for CUP

BY TREE REMOVAL is the same as for CUP plus a number k. The

task is to remove at most k trees from the input such that the

remaining trees are an instance of CUP.

Theorem 6.1 implies that the above problem is NP-complete

for k ¼ 0 even for the extreme case that all input trees are

quartet trees (binary trees with four leaves as in Fig. 7); so

it is unlikely that we will make progress on the fixed-

parameter tractability of CUP BY TREE REMOVAL. However,

in one particular case there is, at least, still hope:

OPEN PROBLEM 6.2. Is CUP BY TREE REMOVAL with par-

ameter k fixed-parameter tractable when we allow only quar-

tets as input and all of them share a common taxon? (Note

that a set of quartets that share a common taxon can be

thought of as a set of directed triplets.)

FIGURE 7. A quartet for four Dinosauria genera.

Page 14 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

The situation is more favorable when we turn towards the

following ‘dense’ version of the problem:

DEFINITION 6.4 (MINIMUM QUARTET INCONSISTENCY). The

input for MINIMUM QUARTET INCONSISTENCY is a set S of n

taxa, a set Q containing a quartet tree for each four element

subset of S and a number k. The task is to remove k quartets

fromQ so that the remaining quartets have a binary supertree T.

THEOREM 6.3 ([62]). MINIMUM QUARTET INCONSISTENCY

can be solved in time O(4k . n þ n4).

The main idea is to employ old results by Bandelt and Dress

that allow one to lead ‘global’ conflicts in the input set back to

‘local’ conflicts of three quartet trees, and to determine that

there are exactly four ways to resolve a local conflict. This

results in a search tree algorithm with the stated running time.

Note that the running time in Theorem 6.3 is linear in the

input size since there are O(n4) input quartets for n taxa.

The algorithm described in [62] also exhibits how search

tree algorithms can be complemented by heuristic strategies

to prune the search space beyond the running time guarantee.

Considering arbitrary (non-quartet) input trees, it is neither

clear how the notion of ‘denseness’ should be defined in order

to get a result similar to Theorem 6.3, nor how the ideas of the

algorithm for MINIMUM QUARTET INCONSISTENCY, which are

tailored to quartet trees, could be adapted.

OPEN PROBLEM 6.3. Define an appropriate notion of ‘den-

seness’ for non-quartet trees. What is the parametrized com-

plexity of the resulting problem?

6.2. Combining phylogenies using agreement subtrees

Combining phylogenies using strict consensus supertrees is

rarely possible in practice, but always bound to fail when we

wish to combine multiple phylogenies over identical leaf

sets—a situation that arises in important applications. For

example, common heuristic phylogeny reconstruction

methods that optimize a maximum parsimony criterion or a

maximum likelihood criterion usually produce several

optimal or near-optimal trees. Choosing one of the near-

optimal trees arbitrary is, well, arbitrary and a ‘consensus’

of the trees may be preferable. Ad hoc methods for finding a

consensus like the majority consensus tree method work in

polynomial time—the randomized algorithm presented in

[63] runs in linear time for instance—but they may yield

poorly resolved output trees. In the following, we discuss a

more sophisticated version of the consensus problem.

For the rest of this section we consider only directed phylo-

genies, which no longer need to be binary.

DEFINITION 6.5 (MAXIMUM AGREEMENT SUBTREE). The

input for MAXIMUM AGREEMENT SUBTREE is a set S of n taxa,

directed input trees T1, . . . , Tt over S, and number k. The

task is to find a subset S0# S of size n – k such that there is

a directed phylogeny T over S0 such that each of T1, . . . , Tt

induces T.

Perhaps not surprisingly, this problem is NP-complete. The

following theorem shows that the situation is even worse:

THEOREM 6.4 ([64]). MAXIMUM AGREEMENT SUBTREE is

NP-complete even for t ¼ 3.

Concerning the maximum degree d of nodes in the trees, the

following result is known, which places the problem at least in

the class XP with respect to the parameter d.

THEOREM 6.5 ([65]). MAXIMUM AGREEMENT SUBTREE can

be solved in time O(nd
þ tn3).

For a more complete overview on agreement subtrees we

refer to [66]. For us, it is of particular interest that MAXIMUM

AGREEMENT SUBTREE is fixed-parameter tractable with

respect to parameter k (number of removed taxa):

THEOREM 6.6 ([66]). MAXIMUM AGREEMENT SUBTREE can

be solved in time O(2.18k
þ tn3) and also in time O(3k . tn).

We can restrict attention to ‘local’ conflicts formed by three

taxa, at least one of which has to be removed. This allows us to

reduce MAXIMUM AGREEMENT SUBTREE to 3-HITTING SET.

Applying the best known fixed-parameter algorithm for

3-HITTING SET [36] yields the first bound. Omitting the time-

intensive reduction in the beginning and searching one local

conflict at a time yields a O(3k . t n) time algorithm.

The result can be extended to the closely related MAXIMUM

COMPATIBILITY TREE problem [9]. For input trees with non-

identical leaf sets, Berry and Nicolas show that the resulting

problem MAXIMUM AGREEMENT SUPERTREE becomes

W[2]-hard, even when each input tree has only three leaves.

Consequently, a fixed-parameter algorithm corresponding to

Theorem 6.6 is out of reach.

7. APPLICATIONS OF PHYLOGENIES

In this final section before the conclusion we present two

applications of phylogenetics that are not related to taxonomy.

In these applications we are not ultimately interested in a sol-

ution phylogeny. Rather, we use a phylogeny or the phyloge-

netic model to determine something seemingly unrelated. In

the first application we use a phylogeny to help in the predic-

tion of regulatory elements of the genome, in the second appli-

cation we use perfect phylogenies as a measure of the quality

of haplotype phase predictions.

7.1. Prediction of regulatory elements using
phylogenetic footprinting

The cells of the human body permanently need to produce

different proteins like, for instance, hemoglobin, which picks

up oxygen in the lungs and transports it through the body.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 15 of 23

THE COMPUTER JOURNAL, 2007

Every protein is uniquely identified by the sequence of amino

acids that, chained together, form this protein; for example, the

sequence of hemoglobin starts with valine, histidine, leucine,

threonine, proline and contains a total of 146 amino acids.

This sequence is encoded in the genome using a sequence of

codons (blocks of three bases) where each codon encodes

one amino acid. A gene is, in essence, just a sequence of

codons in the DNA that tells the cell to produce, say, hemo-

globin. The human genome has tens of thousands of genes

for all the different proteins that need to be produced.

The process of translating the base sequence of a gene into a

protein is called gene expression. However, cells do not

simply express all genes in the genome at all times. Once,

say, the cell membrane has been constructed, the expression

of the protein(s) for the cell membrane needs to be stopped

(or, at least, reduced). For this reason, gene expression is regu-

lated by other parts of the genome. Before or after a gene there

are base sequences in the genome that are involved in the inhi-

bition or promotion of gene expression, depending on which

other proteins are present. These sequences in turn can again

be regulated by other regulatory elements in the genome,

leading to a highly complex regulatory network. Understand-

ing this network is one of the most challenging, interesting and

important tasks of molecular biology.

Phylogenetic footprinting, first proposed by Tagle et al.

[67], is a method for predicting which regions of the

genome are regulatory (involved in the regulatory process).

The basic idea relies on the following observation: Suppose

we have identified a gene and we expect that there are regulat-

ory elements before and after the gene, but we do not know

where they are exactly. Then we expect that regulatory

elements, which are as important as the genes themselves

for the survival of an individual, will not change (greatly) as

mutations occur throughout the genome. If a non-regulatory

part mutates, this does not change the chances of survival,

but when a mutation occurs inside a gene or a regulatory

area, then the individual may not survive. One says that the

regulatory elements are under pressure of selection, while

the surrounding parts of the genome are not. Thus, a possible

approach to predicting regulatory elements is to do a sequence

alignment of multiple genomic data and to search for parts of

the genome that stay (relatively) stable over evolutionary time

spans amid parts of the genome that vary.

In phylogenetic footprinting one attempts to improve the

prediction using a phylogenetic tree to judge how important

a mutation is. If we see only, say, three different sequences

in a candidate regulatory region, but the sequences of

closely related species vary strongly between the three

sequences, we are less likely to believe that the region is regu-

latory than if related species all share the same sequence inside

the regulatory region.

The above ideas lead to a problem called substring

parsimony problem. To state it formally we first define the

parsimony score.

DEFINITION 7.1 (Parsimony score). Recall the notion of the

length of a phylogenetic tree from Definition 3.1. Given a

partially labeled phylogenetic tree T, the parsimony score of

the tree is the minimal length of a label completion of T.

DEFINITION 7.2 (SUBSTRING PARSIMONY). The input for SUB-

STRING PARSIMONY is a partially labeled phylogeny T in which

exactly the leaves are labeled and two integers l and s. The

task is to decide whether each leaf label can be replaced by

a substring of length l such that the parsimony score of the

resulting tree is at most s.

The substrings of length l that we choose from each leaf are

the predicted regulatory elements. Note that in the substring

parsimony problem the phylogeny T is fixed and part of the

input. The idea is that it is typically already available in the lit-

erature or can be computed using one of the method presented

in the previous sections.

Blanchette, Schwikowski and Tompa prove the following

theorem:

THEOREM 7.1 ([68]). SUBSTRING PARSIMONY can be solved

in time O((r2l
þ m) . ln).

The problem can be solved using a dynamic program,

although the entries of its ‘table’ are attached to the nodes

of the phylogeny and the ‘table’ is built from the leaves

inward. The table entry for a node u of the phylogeny is a

table once more, which stores a number for each state vector

of length l, of which there are rl many. The number stored

for a state vector is the best parsimony score that can be

achieved for the subtree rooted at u, if u is labeled with the

state vector. Building the initial table entries for the leaves

is easy (there, all numbers in a table for a leaf are either 0 or

infinity) and combining two tables takes time rl . rl.

The theorem shows that substring parsimony is in FPT with

respect to the parameter pair (r, l). The parameter r is 4 in prac-

tice, but even for this low value the dominating part of the

running time is r2l ¼ 16l, which grows too quickly. Therefore,

Blanchette et al. develop a number of improvements for the

original algorithm and lower the dominating term first to rl

and even further for typical inputs.

In the same paper, Blanchette et al. also consider a general-

ization of SUBSTRING PARSIMONY. Sometimes regulatory

elements may lose their significance when the gene they

regulate is no longer important or when another regulatory

element takes over. In this case, there is selective pressure

only in a subtree of the phylogenetic tree, while in the rest

of the tree the parsimony score of the regulatory element

will be high.

To handle these losses, Blanchette et al. propose to search

for substrings that have a low parsimony score but still span

a large part of T. To determine the ‘size’ of a subtree, we do

not count the number of elements, but allow a more general

measure: We assign an age to each edge of T (in [68] the

age is called the length of the edge, but this term is defined

Page 16 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

differently in the present paper). Then the age of a subtree is

the sum over the ages of the edges. The substring parsimony

problem with losses can now be defined as follows (the

below definition is slightly simplified compared with [69]).

DEFINITION 7.3 (SUBSTRING PARSIMONY WITH LOSSES). The

input for the SUBSTRING PARSIMONY WITH LOSSES problem is a

partially labeled phylogenetic tree T in which exactly the

leaves are labeled, a labeling function that assigns an age to

each edge of T, two integers l and s and a minimum age a.

The task is to decide whether one can prune the tree

(remove leaves repeatedly) and replace each remaining leaf

label by a substring of length l such that the parsimony

score of the resulting tree is at most s and the age of the

tree is at least a.

Note that this problem is a generalization of SUBSTRING PAR-

SIMONY: Setting a to the age of the input tree T enforces that no

pruning takes place.

THEOREM 7.2 ([68]). SUBSTRING PARSIMONY WITH LOSSES

can be solved in time O((r2l
þ m) . ln).

A similar dynamic programming approach can be used as

for the basic version of the problem.

7.2. Prediction of haplotype phase using
perfect phylogenies

The haplotype phase determination problem or just haplotyp-

ing problem arises when one searches for genetic variations of

diploid organisms like humans. An example of important

genetic variations are single nucleotide polymorphisms

(SNPs), which we mentioned earlier. They are variations

across the population of a single nucleotide in the genome.

Thus, some people may have a DNA string where at a specific

position on a chromosome the nucleobase is adenine and some

other people may have guanine at the same position (Fig. 8).

Knowing which nucleobase is present can be important for

the prediction of drug response or susceptibility to diseases.

Suppose we wish to determine quickly and inexpensively

(for example, in a hospital during a study on drug response)

the state of a specific SNP for a person. This can be done, in

essence, by sampling cells from a drop of blood, extracting

the DNA, using a polymerase chain reaction to increase the

amount of DNA present, and then mixing in two primers. The

primers can be thought of as two keys, one that will fit when

the nucleobase is adenine at the specific SNP site and one

that will fit when the nucleobase is guanine. Then, depending

on which primer reacted, the result will either glow, say, red or

green under fluorescent light (or, frustratingly, not at all, when

one of the steps in the experiment was not executed correctly).

Humans are diploid organisms, which means that we have

two specimens of each chromosome, one inherited from the

mother and one from the father. But, then, it is possible that

we inherit one DNA string with adenine at the SNP site and

another DNA string with guanine. These two DNA strings are

called the haplotypes. The fact that we have two haplotypes

means that in the experiment the two primers may also both

glow, which indicates the heterozygous state in which we

have inherited two haplotypes with different states, or only

one may glow, which indicates one of the two homozygous

states in which both haplotypes agree.

A problem arises when we consider two SNP sites. For this,

we do two experiments, each with two special primers.

Suppose that we learn from the experiment that both sites

are heterozygous. Then we know that, say, at the first position

there is adenine on one haplotype and guanine on the other and

at the second position there is, say, cytosine on one haplotype

and guanine on the other. This information is also called the

genotype of the person (for these two SNP sites). What we do

not know is whether the haplotype on which there is

guanine at the first position is the same haplotype as the one

on which there is guanine at the second position. There

might have been a ‘switch’ from one SNP site to the

other, better known as a phase shift. This effect is depicted

in Fig. 9.

Determining the two haplotypes of a single genotype is

impossible, unless context information is available. If there

are h heterozygous SNP sites, then there are 2h21 pairs of hap-

lotypes that explain the observed genotype and each pair is

equally likely a priori. In order to determine the phase of

the haplotypes, we must make assumptions about which hap-

lotypes are more likely than others. For example, we might

assume that haplotypes change only rarely (they certainly do

not change within a few generations). Then if we are given

FIGURE 8. Parts of two different samples of human DNA base sequences. These sequence are inside the gene PRKAB2, which is located on the

human chromosome 1 between base positions 145 093 309 and 145 110 753 in the reference haplotype of the Human Genome Project. It is a regu-

latory subunit of protein kinase and is highly expressed in skeletal muscle and may have tissue-specific roles. Inside the gene, the base sequences

of any two samples are identical except at SNP sites. Two of them are shown, namely first rs6937 and then rs1047140 in the nomenclature of the US

National Center for Biotechnology Information [69], from whose genome map the data was obtained.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 17 of 23

THE COMPUTER JOURNAL, 2007

the genotypes of hundreds of persons of the same ethnic group,

we can try to find a minimal set of haplotypes such that every

observed genotype can be explained by assuming that the

person has two haplotypes from the small set. Many statistical

methods for haplotype phase determination are based on this

parsimony assumption.

In a seminal paper, Gusfield [15] proposed a different idea.

Gusfield argues that haplotypes evolve according to the evol-

utionary model underlying perfect phylogenies: Mutations

occur only rarely and there are no back-mutations. Therefore,

we should look for a set of haplotypes explaining the

genotypes that forms a perfect phylogeny (the taxa being

the haplotypes, the SNP sites being the characters, and the

nucleobases being the states). The following definitions for-

malize the problem.

DEFINITION 7.4 (Haplotype, genotype). A haplotype is

a state vector. The set Si of permissible states at position i

is typically (but need not be) a two element subset of fA, C,

G, Tg. A genotype is a sequence of sets, where the i-th set is

a subset of size one or two of Si. Two haplotypes explain a

genotype if the i-th subset of the genotype contains exactly

the two states of the i-th positions of the two haplotypes.

DEFINITION 7.5 (PP HAPLOTYPING). The input for the PP HAP-

LOTYPING problem is a set of genotypes. The task is to decide

whether there exists a set of haplotypes forming a perfect

phylogeny such that each genotype can be explained by two

haplotypes in the set.

The PP HAPLOTYPING problem is at least as hard as the PP

problem since we can reduce PP to PP HAPLOTYPING by

turning each taxon into a ‘genotype’ whose i-th set contains

only the i-th state of the taxon. Then every set of ‘haplotypes’

that explains the ‘genotypes’ contains the original set of taxa.

This shows that PP HAPLOTYPING is NP-complete.

The question arises which fixed-parameter results on the PP

problem carry over to the more general haplotyping problem.

Not too much is known on this since research has almost

entirely focused on the case r ¼ 2. For this, the following

remarkable result is known:

THEOREM 7.3 ([70]). For r ¼ 2, PP HAPLOTYPING can be

solved in time O(mn).

OPEN PROBLEM 7.1. How difficult is PP HAPLOTYPING for

r . 2?

In practice, the perfect phylogeny haplotyping problem is,

unfortunately, not quite the problem that we want to solve.

Genotype data that is obtained via the laboratory process

sketched earlier will always contain a certain amount of

missing data caused by impurities or incorrect handling.

Such missing data is commonly represented by question

mark entries in the genotype input.

DEFINITION 7.6 (INCOMPLETE PP HAPLOTYPING). The input

for INCOMPLETE PP HAPLOTYPING is a set of genotypes that

may contain question marks for certain characters. The task

is to decide whether the question mark entries can be com-

pleted in such a way that the resulting set of genotypes is an

instance of PP HAPLOTYPING.

The missing entries add yet another level of complexity.

This new problem, which is of great practical interest, is (pre-

sumably) no longer fixed-parameter tractable with respect to

the central parameter r. Indeed, the problem is (presumably)

not even in XP as the following theorem shows, which was

proved independently by Kimmel and Shamir and also by

Gramm, Nierhoff, Sharan and Tantau.

THEOREM 7.4 ([71, 72]). For every r � 2, INCOMPLETE PP

HAPLOTYPING is NP-complete.

The proof in [72] even shows something considerably stron-

ger: the incomplete perfect phylogeny haplotyping problem is

still NP-complete for r ¼ 2 if we impose a number of restric-

tions on the phylogeny, like being a path. The result is proved

using a reduction for NOT-ALL-EQUAL-3-SAT.

Because of the above result, already for r ¼ 2 we have to

look for some new parametrizations if we wish to find a fixed-

parameter haplotyping algorithm that can deal with missing

data. An obvious parametrizations is to consider the total

number q of question mark entries in the data.

THEOREM 7.5. For r ¼ 2, INCOMPLETE PP HAPLOTYPING can

be solved in time O(3q . mn).

Proof. There are only r þ r
2

� �
ways in which a question mark

can be completed at any given position (namely by r different

singleton sets and r
2

� �
different two-element sets of states). So

we can build all r þ r
2

� �� �q
possible completions and then test

for each whether it is an instance for the perfect phylogeny

haplotyping problem. For r ¼ 2, we know how to solve this

in linear time. A

OPEN PROBLEM 7.2. How difficult is INCOMPLETE PP HAPLO-

TYPING for r . 2?

FIGURE 9. The haplotype phase determination problem arises

when we observe two heterozygous SNP sites in the genotype. In

this case, there are two different pairs of haplotypes that explain

the observed genotype. The haplotype phase determination problem

asks us to decide which explanation is correct.

Page 18 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

Unfortunately, the total number q of question marks typi-

cally is not small in practice. Because of this, a different par-

ameter was studied by Gramm et al. in [72], namely the

maximal number c of question mark entries per character.

An analysis of publicly available genotype data shows that,

typically, this parameter is reasonably small. The second key

idea of the paper is to assume that phylogenies are directed

and that they are paths (no branching occurs, except possibly

at the root). At first sight it may seem strange to consider path

phylogenies, but in the human genome for around three-

quarters of the genomic loci one finds genotypes where all

SNP sites are heterozygous [73]. The only phylogenies that

explain such highly heterozygous genotypes are path

phylogenies.

THEOREM 7.6 ([72]). For r ¼ 2, INCOMPLETE PP PATH

HAPLOTYPING can be solved in time

Oð3Oðc2�6c�c!Þ � n2m3Þ:

The algorithm starts with a preprocessing phase in which

the input is simplified, quite similar to the way a kernelization

works. However, the result of the preprocessing is not a

problem kernel and its size still depends on the input size

rather than solely on the input parameter. Nevertheless, the

preprocessing enables us to run a dynamic program that is

built in order of increasing so-called leaf count ranges.

Currently, an effort is undertaken to implement the algor-

ithm from the above theorem in order to find out whether

the algorithm can be applied in practice (it is expected that

the algorithm will be more efficient than the worst-case analy-

sis suggests).

OPEN PROBLEM 7.3. How difficult is INCOMPLETE PP PATH

HAPLOTYPING for r . 2?

OPEN PROBLEM 7.4. Find a fixed-parameter algorithm for

INCOMPLETE PP HAPLOTYPING for the parameter c (maximum

number of ?-entries per column).

8. CONCLUSION

Fixed-parameter algorithms are a valuable tool in phyloge-

netics. We have seen that phylogenetics abounds in compu-

tational problems, many of which are NP-complete. Hence

we do not expect that efficient exact algorithms will be avail-

able for them in the near future, if ever. However, we also saw

that many of the computational problems can be solved effi-

ciently and exactly if some of the natural input parameters

are reasonably small. Table 3 summarizes how natural input

parameters influence the (in)tractability of computational pro-

blems in phylogenetics.

In addition to the concrete open problems that we pointed

out throughout this survey, in the following we sketch two

broader, less concrete prospective directions of future

research.

8.1. Future research field: from discrete
to stochastic problems

The results presented in this survey refer to problem formu-

lations for discrete input objects and discrete optimization cri-

teria. In computational biology there is a general lack of and a

need for fixed-parameter results addressing non-discrete com-

putational problems arising in stochastic analyses. Examples

include probabilistic sequence analysis [74] and maximum

likelihood analysis.

A concrete stochastic computational problem is the follow-

ing: The input for MAXIMUM LIKELIHOOD PHYLOGENY is a char-

acter–state matrix and transition probabilities for the

transitions between character states. The task is to find a phy-

logeny with the input taxa at the leaves that has a maximal

‘likelihood’ among all such phylogenies. Intuitively, the like-

lihood of a phylogeny is the sum of the likelihoods that the

character states at the leaves were generated given the labeling

of the inner nodes. Computing this likelihood is a non-trivial

task itself (see for instance [74–76] for details). Only recently

it has been shown that MAXIMUM LIKELIHOOD PHYLOGENY is

NP-hard [75, 76]. It remains open to address this and related

problems with appropriate fixed-parameter algorithms.

8.2. Future research field: from phylogenetic

trees to networks

The basic assumption made in this survey, namely that

hypotheses on evolutionary history can be represented by

trees, is often inappropriate. Phylogenetic trees cannot

explain—among other biological effects—the recombination

effect, where a genomic sequence is combined from two

source sequences by taking a prefix from the first and a

suffix from the second sequence. The resulting evolutionary

history can no longer be represented by a tree; rather, we

must use graphs.

Fixed-parameter algorithms might be particularly useful in

the study of these graphs since they are not arbitrary, but ‘tree-

like.’ They deviate from trees only by a small amount and we

propose this extent of deviation (however it is measured) as a

natural problem parameter.

There are numerous ways in which we can define ‘tree-

likeness’; we just highlight one particular extension of

perfect phylogenies to networks. A phylogenetic network is

a directed acyclic graph whose nodes have in-degree 0 (the

root node), in-degree 1 (‘regular’ inner nodes of a phylogeny)

or in-degree 2 (the recombination nodes) together with a label-

ing function that assigns character–state vectors to the nodes.

A ‘perfect’ phylogenetic network is defined the same way as a

perfect phylogeny, but with an additional rule for recombina-

tion nodes: We can split the character–state vector label of

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 19 of 23

THE COMPUTER JOURNAL, 2007

recombination nodes into two parts such that the first part is a

prefix of the label of one of the parent nodes and the second

part is a suffix of the label of the other parent node. The

number of recombination nodes is a measure of the network’s

deviation from being a tree. The computational problem is

now to find a phylogenetic network for a given set of taxa

that minimizes the number of recombination nodes. This

problem is NP-complete [77], but it is open whether it is fixed-

parameter tractable with respect to the number of recombina-

tion nodes. A partial answer was given by Gusfield et al. [78,

79] who show that the problem can be solved efficiently for

r ¼ 2 if we restrict the phylogenetic networks to so-called

galled trees. In another direction, the computational problem

of finding a phylogenetic network of maximum parsimony is

studied in [80] and shown to be fixed-parameter tractable.

Many of the problems addressed in this survey can be

extended to phylogenetic networks, but almost all of the

resulting problems are open.

Concluding this paper, we invite the reader to dive into the

presented field, to follow the pointers to literature, to pick up

open problems and to come up with exciting new or improved

fixed-parameter algorithms.

TABLE 3. Summary of the results on the fixed-parameter tractability of the surveyed problems, sorted according to parameters.

Parameter(s) Problem Complexity

Number of taxa (n) PP [FPT

of character (m) PP [XP and W[t]-hard for all t

of states per PP [FPT

character (r) PP BY TAXA REMOVAL � XP, unless P ¼ NP

TP BY TAXA REMOVAL � XP, unless P ¼ NP

PP BY CHARACTER REMOVAL � XP, unless P ¼ NP

TP BY CHARACTER REMOVAL [FPT (trivially)

PP BY RECOLORING open

TP BY RECOLORING open

PHYLOGENETIC PENALTIY MINIMIZATION [FPT for fixed p

PHYLOGENETIC NUMBER MINIMIZATION open

PHYLOGENETIC BAD STATES MINIMIZATION open

PP HAPLOTYPING open

INCOMPLETE PP HAPLOTYPING � XP, unless P ¼ NP

INCOMPLETE PP PATH HAPLOTYPING � XP, unless P ¼ NP

Removals (k) of taxa PP BY TAXA REMOVAL [FPT for r ¼ 2

TP BY TAXA REMOVAL [XP, otherwise open

MAXIMUM AGREEMENT SUBTREE [FPT

of characters PP BY CHARACTER REMOVAL [FPT for r ¼ 2

TP BY CHARACTER REMOVAL [FPT (trivially)

of trees CUP BY TREE REMOVAL � XP, unless P ¼ NP

MINIMUM QUARTET INCONSISTENCY [FPT

Bad states (b) TP BY RECOLORING [FPT

State changes (k) TP BY RECOLORING [XP, otherwise open

PP BY RECOLORING open

State changes and r (k, r) PP BY RECOLORING [XP, otherwise open

Penalty (p) PHYLOGENETIC NUMBER MINIMIZATION � XP, unless P ¼ NP

PHYLOGENETIC BAD STATES MINIMIZATION � XP, unless P ¼ NP

PHYLOGENETIC PENALTY MINIMIZATION � XP, unless P ¼ NP

Continued

Page 20 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

ACKNOWLEDGEMENTS

Jens Gramm was supported by a grant for the DFG project

Optimal solutions for hard problems in computational

biology (OPAL). Arfst Nickelsen was supported by a grant for

the DFG project Complexity of haplotyping problems.

REFERENCES

[1] Darwin, C. (1859) On the Origin of Species by Means of Natural

Selection. Murray, London 1859.

[2] Mateescu, A. and Salomaa, A. (1997) Formal languages: an

introduction and a synopsis. In Handbook of Formal

Languages, Vol. 1. Springer-Velag.

[3] Felsenstein, J. (2004) Inferring Phylogenies. Sinauer

Associates.

[4] Gusfield, D. (1997) Algorithm on Strings, Trees, and Sequences:

Computer Science and Computational Biology. Cambridge

University Press.

[5] Page, R.D.M. and Holmes, E.C. (ed.) (1998) Molecular

Evolution—A Phylogenetic Approach. Blackwell Science.

[6] Semple, C. and Steel, M. (2003) Phylogenetics. Oxford

University Press.

[7] Smith, V.S. (2001) Avian louse phylogeny (phthiraptera:

Ischnocera): a cladistic study based on morphology.

Zool. J. Linnean Soc., 132, 81–144.

[8] Downey, R.G. and Fellows, M.R. (1999) Parameterized

Complexity. Springer-Verlag.

[9] Niedermeier, R. (2006) Invitation to Fixed-Parameter

Algorithms. Oxford University Press.

[10] Feil, E.J. et al. (2001) Recombination within natural populations

of pathogenic bacteria: short-term empirical estimates and

long-term phylogenetic consequences. Proc. Nat. Acad. Sci.

USA, 98, 182–187.

[11] Philippe, H. and Douady, C.J. (2003) Horizontal gene transfer

and phylogenetics. Cur. Opin. Microbiol., 6, 498–505.

[12] Grishin, N.V., Wolf, Y.I., Rogozin, I.B. and Koonin, E.V.

(2002) Genome trees and the tree of life. Trends Genet., 18,

472–479.

[13] Bodlaender, H.L., Fellows, M.R. and Warnow, T.J. (1992) Two

strikes against perfect phylogeny. In Proc. of the 19th

International Colloquium on Automata, Languages and

Programming (ICALP), Vol. 623 of Lecture Notes in

Computer Science, pp. 273–283. Springer-Verlag.

[14] Steel, M. (1992) The complexity of reconstructing trees from

qualitative characters and subtrees. J. Classification, 9, 91–116.

[15] Gusfield, D. (2002) Haplotyping as perfect phylogeny:

conceptual framework and efficient solutions. In Proc. of the

Sixth Annual International Conference on Computational

Molecular Biology (RECOMB), pp. 166–75. ACM Press.

[16] McMorris, F.R., Warnow, T.J. and Wimer, T. (1993)

Triangulating vertex colored graphs. In Proc. of the Fourth

Symposium on Discrete Algorithms (SODA), Philadelphia, PA,

USA, pp. 120–127. SIAM Press.

[17] Agarwala, R. and Fernández-Baca, D. (1996) Simple algorithms

for perfect phylogeny and triangulating colored graphs.

Int. J. Foundations Comput. Sci., 7(1), 11–21.

TABLE 3. Continued

Parameter(s) Problem Complexity

PHYLOGENETIC PENALTY MINIMIZATION [FPT for r ¼ 2

Penalty and r (p, r) PHYLOGENETIC PENALTY MINIMIZATION [XP, otherwise open

Distance (d) NNI DISTANCE [XP, otherwise open

SPR DISTANCE [XP, otherwise open

TBR DISTANCE [FPT

CROSSING DISTANCE [FPT

Number of trees (t) CUP [FPT

MAXIMUM AGREEMENT SUBTREE � XP, unless P ¼ NP

Maximum node degree (d) MAXIMUM AGREEMENT SUBTREE [FPT

Substring length and r (r, l) SUBSTRING PARSIMONY [FPT

SUBSTRING PARSIMONY WITH LOSSES [FPT

?-Entries in matrix (q) INCOMPLETE PP HAPLOTYPING [FPT for r ¼ 2

?-Entries per column (c) INCOMPLETE PP PATH HAPLOTYPING [FPT for r ¼ 2

The abbreviation TP stands or tree perfection. The ‘(trivially)’ indicates that the problem can be solved in polynomial time, regardless of the

parameter.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 21 of 23

THE COMPUTER JOURNAL, 2007

[18] Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T.

and Warnow, T.J. (2000) The hardness of perfect phylogeny,

feasible register assignment and other problems on thin

colored graphs. Theoret. Comp. Sci., 244(1–2), 167–188.

[19] Agarwala, R. and Fernández-Baca, D. (1994) A polynomial

time algorithm for the perfect phylogeny problem when the

number of character states is fixed. SIAM J. Comput., 23(6),

1216–1224.

[20] Kannan, S. and Warnow, T. (1997) A fast algorithm for the

computation and enumeration of perfect phylogenies. SIAM

J. Comput., 26, 1749–1763.

[21] Dress, A. and Steel, M. (1992) Convex tree realizations of

partitions. Appl. Math. Lett., 5(3), 3–6.

[22] Kannan, S. and Warnow, T. (1994) Inferring evolutionary

history from DNA sequences. SIAM J. Comput., 23, 713–737.

[23] Estabrook, G.F., Johnson, C.S., Jr and McMorris, F.R. (1975)

An idealized concept of the true cladistic character. Math.

Biosci., 23(5), 263–272.

[24] Meacham, C. A. (1983) Theoretical and computational

considerations of the compatibility of qualitative taxonomic

characters. NATO ASI Series, Springer, G1 on Numerical

Taxonomy.

[25] Gusfield, D. (1991) Efficient algorithms for inferring

evolutionary trees. Networks, 21, 19–28.

[26] Fernández-Baca, D. and Lagergren, J. (2003) A polynomial

time algorithm for near-perfect phylogeny. SIAM J.Comput.,

32, 1115–1127.

[27] Goldberg, L.A., Goldberg, P.W., Phillips, C., Sweedyk, Z.

and Warnow, T. (1996) Minimizing phylogenetic number

to find good evolutionary trees. Discrete Appl. Math., 71,

111–136.

[28] Moran, S. and Snir, S. (2005) Convex recolorings of

phylogenetic trees: definitions, hardness results and

algorithms. In Proc. of the Ninth Workshop on Algorithms and

Data Structures (WADS), Vol. 3608 of Lecture Notes in

Computer Science, pp. 218–232. Springer-Verlag.

[29] Blelloch, G.E., Dhamdhere, K., Halperin, E., Ravi, R.,

Schwartz, R. and Sridhar, S. (2006) Fixed parameter

tractability of binary near-perfect phylogenetic tree

reconstruction. In Proc. of the 33rd International Colloquium

on Automata, Languages and Programming (ICALP), Vol.

4051 of Lecture Notes in Computer Science, Springer,

pp. 667–678.

[30] Wernicke, S., Alber, J., Gramm, J., Guo, J. and Niedermeier, R.

(2004) Avoiding forbidden submatrices by row deletions. In

Proc. of the 31st Annual Conf. on Current Trends in Theory

and Practice of Informatics (SOFSEM), Vol. 2832 of Lecture

Notes in Computer Science, pp. 349–360. Springer-Verlag.

[31] Fernau, H. (2004) A top-down approach to search trees:

Improved algorithmics for 3-hitting set. Technical Report

TR04-073, Electronic Colloquium of Computational

Complexity (ECCC).**

[32] Niedermeier, R. and Rossmanith, P. (2003) An efficient fixed

parameter algorithm for 3-hitting set. J. Discrete Algorithms,

1, 89–102.

[33] Chen, J., Kanj, I.A. and Jia, W. (2001) Vertex cover: further

observations and further improvements. J. Algorithms, 41(2),

280–301.

[34] Das Gupta, B., He, X., Jiang, T., Li, M., Tromp, J., Wang, L.

and Zhang, L. (1998) Computing distances between

evolutionary trees. In Du, D. and Pardales, P. M. Handbook of

Combinatorial Optimization, Vol. 2, pp. 35–76. Kluwer

Academic Publishers.

[35] Lander, E.S. et al. (International Human Genome Sequencing

Consortium). (2001) Initial sequencing and analysis of the

human genome. Nature, 409, 860–921.

[36] Salzberg, S.L., White, O., Peterson, J. and Eisen, J.A. (2001)

Microbial genes in the human genome: lateral transfer or gene

loss. Science, 292, 1903–1906.

[37] Andersson, J.O., Doolittle, W.F. and Nesbø, C.L. (2001) Are

there bugs in our genome? Science, 292(5523), 1848–1850.

[38] Gogarten, J.P., Doolittle, W.F. and Lawrence, J.G. (2002)

Prokaryotic evolution in light of gene transfer. Mol. Biol.

Evol., 19, 2226–2238.

[39] Das Gupta, B., He, X., Jiang, T., Li, M., Tromp, J. and Zhang, L.

(2000) On computing the nearest neighbor interchange distance.

In Discrete Mathematical Problems with Medical Applications,

Vol. 55 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, pp. 125–143. AMS Press.

[40] Robinson, D.F. (1971) Comparison of labeled trees with

valency three. J. Combinatorial Theory, Series B, 11, 105–119.

[41] Waterman, M.S. and Smith, T.F. (1978) On the similarity of

dendrograms. J. Theoret. Biol., 73, 789–800.

[42] Culik, K., II and Wood, D. (1982) A note on some tree similarity

measures. Inf. Process. Lett., 15, 39–42.

[43] Hein, J., Jiang, T., Wang, L. and Zhang, K. (1996) On the

complexity of comparing evolutionary trees. Discrete Appl.

Math., 71, 153–169.

[44] Allen, B. L. and Steel, M. (2001) Subtree transfer operations and

their induced metrics on evolutionary trees. Ann. Combinator.,

5, 1–13.

[45] Fernau, H., Kaufmann, M. and Poths, M. (2005) Comparing

trees via crossing minimization. In Proc. of the 25th Conf. on

Foundations of Software Technology and Theoretical

Computer Science (FSTTCS), Vol. 3821 of Lecture Notes in

Computer Science, pp. 457–469. Springer-Verlag.

[46] Sanderson, M.J., Purvis, A. and Henze, C. (1998) Phylogenetic

supertrees: assembling the tree of life. Trends in Ecol. Evol., 13,

105–109.

[47] Kluge, A.G. (1989) A concern for evidence and a phylogenetic

hypothesis of relationships among epicrates (boidæ, serpents).

Syst. Zool., 38, 7–25.

[48] Pisani, D., Yates, A.M., Langer, M.C. and Benton, M.J. (2006)

A genus-level supertree of the Dinosauria. Proc. Roy. Soc.

London, Series B, 269, 915–921.

[49] Gordon, A.D. (1986) Consensus supertrees: the synthesis of

rooted trees containing overlapping sets of labeled leaves.

J. Classification, 3, 31–39.

[50] Aho, A.V., Sagiv, Y., Szymansk, T.G. and Ullman, J.D. (1981)

Inferring a tree from lowest common ancestors with an

Page 22 of 23 J. GRAMM et al.

THE COMPUTER JOURNAL, 2007

application to the optimization of relational expressions. SIAM

J. Comput., 10(3), 405–421.

[51] Baum, B.R. (1992) Combining trees as a way of combining data

sets for phylogenetic inference, and the desirability of

combining gene trees. Taxon, 41, 3–10.

[52] Doyle, J. (1992) Gene trees and species trees: molecular

systematics as one-character taxonomy. Syst. Bot., 17, 144–

163.

[53] Ragan, M. (1992) Phylogenetic inference based on matrix

representation of trees. Mol. Phylogenet. Evol., 1, 53–58.

[54] Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D.

and Sanderson, M. J. (2003) Flipping: a supertree construction

method. In Bioconsensus, Vol. 61 of DIMACS: Series in

Discrete Mathematics and Theoretical Computer Sciences,

pp. 135–160. AMS Press.

[55] Bininda-Emonds, O. (ed.) (2004) Phylogenetic Supertrees.

Kluwer Academic Publishers.

[56] Pérez-Moreno, B.P., Sanz, J.L., Sudre, J. and Sigé, B. (1993) A

theropod dinosaur from the lower cretaceous of southern

France. Revue de Pal’eobiologie, 7, 173–188.

[57] Holtz, T.R., Jr. (1994) The phylogenetic position of the

Tyrannosauridae: implications for theropod systematics.

J. Paleontol., 68, 1100–1117.

[58] Steel, M. August 2003. Personal communication. Open question

posed at the Dagstuhl workshop 03311 on fixed parameter

algorithms.

[59] Bryant, D. and Lagergren, J. (2006) Compatibility of unrooted

trees is FPT. Theoret. Comp. Sci., 351, 296–302.

[60] Bodlaender, H.L. (1996) A linear-time algorithm for finding

tree-decompositions of small treewidth. SIAM J. Comput.,

25(6), 1305–1317.

[61] Courcelle, B. (1990) The monadic second-order logic of graphs

I. Recognizable sets of finite graphs. Inf. Comput., 85(1), 12–75.

[62] Gramm, J. and Niedermeier, R. (2003) A fixed-parameter

algorithm for Minimum quartet inconsistency. J. Comput.

Syst. Sci., 67, 723–741.

[63] Amenta, N., Clarke, F. and St. John, K. (2003) A linear-time

majority tree algorithm. In Proc. of the Third Workshop on

Algorithms in Bioinformatics (WABI), Vol. 2812 of Lecture

Notes in Computer Science, pp. 216–227. Springer-Verlag.

[64] Amir, A. and Keselman, D. (1997) Maximum agreement

subtree in a set of evolutionary trees: metrics and efficient

algorithm. SIAM J. Comput., 26(6), 1656–1669.

[65] Farach, M., Przytycka, T.M. and Thorup, M. (1995) On the

agreement of many trees. Inf. Process. Lett., 55(6), 297–301.

[66] Berry, V. and Nicolas, F. (2006) Improved parametrized

complexity of maximum agreement subtree and maximum

compatible tree problems. IEEE/ACM Trans. Comput. Biol.

Bioinformat., 3(3), 289–302.

[67] Tagle, D.A., Koop, B.F., Goodman, M., Slightom, J.L., Hess, D.

and Jones, R. (1988) Embryonic e and g globin genes of a

prosimian primate (Galago crassicaudatus) nucleotide and

amino acid sequences, developmental regulation and

phylogenetic footprints. J. Mol. Biol., 203, 439–455.

[68] Blanchette, M., Schwikowski, B. and Tompa, M. (2002)

Algorithms for phylogenetic footprinting. J. Comput. Biol.,

9(2), 211–223.

[69] National center of biotechnology information of the united

states. http://www.ncbi.nlm.nih.gov/. Accessed on March 21,

2006.

[70] Ding, Z., Filkov, V. and Gusfield, D. (2005) A lineartime

algorithm for the perfect phylogeny haplotyping (PPH)

problem. In Proc. of the Ninth Annual Int. Conf. on Research

in Computational Molecular Biology (RECOMB), Vol. 3500

of Lecture Notes in Computer Science, pp. 585–600.

Springer-Verlag.

[71] Kimmel, G. and Shamir, R. (2005) The incomplete perfect

phylogeny haplotype problem. J. Bioinformat. Comput. Biol.,

3, 359–384.

[72] Gramm, J., Nierhoff, T., Tantau, T. and Sharan, R. (2007)

Haplotyping with missing data via perfect path phylogenies.

Discrete Appl. Math., 155, 788–805.

[73] Zhang, J., Rowe, W.L., Clark, A.G. and Buetow, K.H. (2003)

Genome wide distribution of high frequency, completely

mismatching SNP haplotype pairs observed to be common

across human populations. Am. J. Human Genet., 73, 1073–

1081.

[74] Durbin, R., Eddy, S.S., Krogh, A. and Mitchison, G. (1998)

Biological Sequence Analysis—Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press.

[75] Chor, B. and Tuller, T. (2005) Maximum likelihood of

evolutionary trees is hard. In Proc. of the Ninth Annual Int.

Conf. on Research in Computational Molecular Biology

(RECOMB), Vol. 3500 of Lecture Notes in Computer

Science, pp. 296–310.

[76] Chor, B. and Tuller, T. (2005) Maximum likelihood

of evolutionary trees: hardness and approximation.

Bioinformatics, 21, 97–106.

[77] Wang, L., Zhang, K. and Zhang, L. (2001) Perfect phylogenetic

networks with recombination. J. Comput. Biol., 8: 69–78.

[78] Gusfield, D., Eddhu, S. and Langley, C. (2004) Optimal,

efficient reconstruction of phylogenetic networks with

constrained recombination. J. Comp. Syst. Sci., 2, 173–213.

[79] Gusfield, D. (2005) Optimal, efficient reconstruction of

root-unknown phylogenetic networks with constrained and

structured recombination. J. Comp. Syst. Sci., 70, 381–398.

[80] Nakhleh, L., Jin, G., Zhao, F. and Mellor-Crummey, J. (2005)

Reconstructing phylogenetic networks using maximum

parsimony. In Proc. of the Fourth Fourth International IEEE

Computer Society Computational Systems Bioinformatics

Conference, pp. 93–102. IEEE Computer Society Press.

FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS Page 23 of 23

THE COMPUTER JOURNAL, 2007

