
Fixed-Parameter Tractability and
Completeness III:

Some Structural Aspects of the W Hierarchy

Rod Downey∗

Mathematics Department
Victoria University

Wellington, New Zealand

Michael Fellows†

Computer Science Department
University of Victoria
Victoria, B.C. Canada

July 7, 2010

Abstract

We analyse basic structural aspects of the reducibilities we use to
describe fixed parameter tractability and intractability, in the model
we introduced in earlier papers in this series. Results include separa-
tion and density, the latter for the strongest reducibility.

1. Introduction

∗Downey’s research partially supported by a grant from Victoria University IGC, by
the United States / New Zealand Cooperative Science Foundation, and by the University
of Victoria and Simon Fraser University during a visit to British Columbia in August,
1991.
†Fellows research supported by the United States Office of Naval Research, by the

United States National Science Foundation, and by the National Science and Engineering
Research Council of Canada.

1

A wide variety of natural computational problems have the property that
their input consists of two or more parameters. Consider the following ex-
amples.

Example 1. The Vertex Cover problem takes as input a pair (G, k) consisting
of a graph G and a positive integer k, and determines whether there is a set
of k vertices in G having the property that every edge in G has at least one
endpoint in this set.

Example 2. The Graph Genus problem takes as input a pair (G, k) as above,
and determines whether the graph G embeds on the surface of genus k.

Example 3. The Planar Improvement problem takes as input a pair (G, k)
as above, and determines whether G is a subgraph of a planar graph G′ of
diameter at most k.

Example 4. The Graph Linking Number problem takes as input a pair (G, k)
as above, and determines whether G can be embedded in 3-space so that at
most k disjoint cycles in G are topologically linked.

Example 5. The Dominating Set problem takes as input a pair (G, k) as
above, and determines whether there is a set of k vertices in G having the
property that every vertex of G either belongs to the set, or has a neighbor
in the set.

Example 6. The Weighted CNF Satisfiability problem takes as input a pair
(φ, k) where φ is a propositional (boolean) formula in conjunctive normal
form, and k is a positive integer, and determines whether there is a weight
k satisfying truth assignment to the variables of φ. (A truth assignment has
weight k if it assigns exactly k variables the value true and all others the
value false.)

With the exception of examples 3 and 4, the above problems are known
to be NP -complete. We consider the question of what can be said about the
complexity of these problems when the parameter k is held fixed. In many
practical applications of computational problems having this form, efficient
algorithms for a small range of parameter values may be quite useful.

2

For each of examples 1–4 above, there is a constant α such that for ev-
ery fixed parameter value k the problem can be solved in time O(nα). For
example 1, we may take α = 1. This means that for each fixed k there is an
algorithm Ak that determines whether there is a vertex cover of size k in an
input graph G in time Ckn [BG]. For examples 2–4 we may take α = 3 by
the deep results of Robertson and Seymour [RS1,RS2].

Examples 5 and 6 illustrate the contrasting situation where for fixed val-
ues of k we seem to be able to do no better than a brute force examination
of all possible solutions. In both cases the best known algorithm is O(nk+1)
for fixed k.

We are thus concerned with an issue in computational complexity that
is very much akin to to the central issue in P versus NP . In the previous
papers of this series [DF1,DF2,DF3] we have established the framework of
a completeness theory with which to address the apparent fixed-parameter
intractability of problems such as examples 5 and 6. In particular, we defined
a hierarchy of classes of parameterized problems and showed that a variety of
natural problems are complete for various levels of this hierarchy. Dominating
Set, for example, is complete at the second level.

In this paper, we study structural aspects of the fixed-parameter com-
plexity hierarchy. For the remainder of this section we briefly recap the main
points of this theory.

Definition. A parameterized problem is a set L ⊆ Σ∗ × Σ∗ where Σ is
a fixed alphabet. In the interests of readability and with no effect on our
theory, we consider in this paper that a parameterized problem L is a subset
L ⊆ Σ∗×N . Furthermore, in this context we consider N as bring represented
as tally sets, that is N = {1n : n = 0, 1, 2...}. We simply write n for 1n in
these circumstances. We will tend to use k, i, j for members of N and x, y, z
for strings. For n ∈ N we write Lk = {y|(y, k) ∈ L}. We refer to Lx as the
xth slice of L.

Careful analysis of problem examples 1–4 above leads to three flavours of
tractability.

Definition. We say that a parameterized problem L is

3

(1) nonuniformly fixed-parameter tractable if there is a constant α and a se-
quence of algorithms Φx such that, for each x ∈ N , Φx computes Lx in time
O(nα);
(2) uniformly fixed-parameter tractable if there is a constant α and an algo-
rithm Φ such that Φ decides if (x, k) ∈ L in time f(k)|x|α where f : N → N
is an arbitrary function;
(3) strongly uniformly fixed-parameter tractable if L is uniformly fixed-parameter
tractable with the function f recursive.

The reader familiar with classical recursion theory will note that these
notions might be considered as analogues of piecewise recursive recursively
enumerable sets. Most reasonable variations of the above definitions can be
seen to coincide with one of the three flavors offered. For example, if in (1) we
require the sequence of algorithms Φx to be recursive, then equivalently we
have (2). In Section 2 we will show that the three forms of fixed-parameter
tractability defined above are distinct, even on the the recursive sets.

Problem example 1 is strongly uniformly f.p.tractable (as are most ex-
amples of fixed-parameter tractability obtained without essential use of the
Graph Minor Theorem). Example 2 can be shown to be strongly uniformly
f.p. tractable by the methods of [FL2]. The reader should note that the
graph minor theorem would only give nonuniform tractability and to get
uniformity needs additional algebraic tecchniques. Example 3 can be shown
to be uniformly f.p. tractable by the method of [FL1] (since the technique
of [FL2] is not presently known to apply, we do not know a strongly uniform
algorithm). Example 4 is at present only known to be nonuniformly f.p.
tractable.

If P = NP then examples 5 and 6 are also f.p. tractable. Thus aside from
proving P 6= NP , a completeness program would seem to be the best we can
do with respect to explaining the apparent fixed-parameter intractability of
these problems.

We define three flavors of problem reducibility corresponding to the three
flavors of f.p. tractability.

Definition. Let A,B be parameterized problems. We say that A is uni-

4

formly P -reducible to B if there is an oracle algorithm Φ, a constant α, and
an arbitrary function f : N → N such that
(a) the running time of Φ(B; 〈x, k〉) is at most f(k)|x|α,
(b) on input 〈x, k〉, Φ only asks oracle questions of B(f(k)) where

B(f(k)) =
⋃

j≤f(k)
Bj = {〈x, j〉 : j ≤ f(k)&〈x, j〉 ∈ B}

(c) Φ(B) = A.

If A is uniformly P -reducible to B we write A ≤uT B. Where appropriate
we may say that A ≤uT B via f . If the reduction is many:1 (an m-reduction),
we will write A ≤um B.

Definition. Let A,B be parameterized problems. We say that A is strongly
uniformly P -reducible to B if A ≤uT B via f where f is recursive. We write
A ≤mT B in this case.

Definition. Let A,B be parameterized problems. We say that A is nonuni-
formly P -reducible to B there is a constant α, a function f : N → N , and
a collection of procedures {Φk : k ∈ N} such that Φk(B

(f(k))) = Ak for each
k ∈ N , and the running time of Φk is f(k)|x|α. Here we write A ≤nT B.

Note that the above are good definitions since whenever A < B with <
any of the reducibilities, if B is f.p. tractable so too is A. Note also that the
above definitions allow us to specify the notions of f.p. tractability we had
before. Now nonuniformly f.p. tractabilility corresponds to being ≤nT ∅. We
will henceforth write FPT (≤) as the f.p. tractable class corresponding to
the reducibility ≤. We next turn to the complexity classes of parameterized
problems introduced in [DF1,DF2]. These classes correspond, in a finely
resolved way, to the complexity of checking a solution, as measured by circuit
depth.

Fix attention on any of the above reducibilities. We consider circuits in
which some gates have bounded fan-in and some have unrestricted fan-in. It
is assumed that fan-out is never restricted.

Definition. A Boolean circuit is of mixed type if it consists of circuits having
gates of the following kinds.

5

(1) Small gates: not gates, and gates and or gates with bounded fan-in.
We will usually assume that the bound on fan-in is 2 for and gates and or
gates, and 1 for not gates.

(3) Large gates: And gates and Or gates with unrestricted fan-in.

We will use lower case to denote small gates (or gates and and gates),
and upper case to denote large gates (Or gates and And gates).

Definition. The depth of a circuit C is defined to be the maximum number
of gates (small or large), not counting not gates, on an input-output path
in C. The weft of a circuit C is the maximum number of large gates on an
input-output path in C.

Definition. We say that a family of circuits F has bounded depth if there is
a constant h such that every circuit in the family F has depth at most h. We
say that F has bounded weft if there is constant t such that every circuit in
the family F has weft at most t. F is a decision circuit family if each circuit
has a single output. A decision circuit C accepts an input vector x if the
single output gate has value 1 on input x. The weight of a boolean vector x
is the number of 1’s in the vector.

Definition. Let F be a family of boolean circuits. We allow that F may have
many different circuits with a given number of inputs. To F we associate the
parameterized circuit problem LF = {(C, k) : C accepts an input vector of
weight k}.

Definition. A parameterized problem L belongs to W [t] if L reduces to the
parameterized circuit problem LF (t,h) for the family F (t, h) of mixed type
decision circuits of weft at most t, and depth at most h, for some constant
h.

Definition. A parameterized problem L belongs to W [P] if L reduces to
the circuit problem LF where F is the set of all circuits (no restrictions).

Definition. We designate the class of fixed-parameter tractable problems
FPT .

6

In the papers [DF1,DF2,DF3,ADF] we have identified many natural com-
plete problems for these classes. We mention the following variant of Satis-
fiability.

Definition. A boolean expression X is termed t-normalized if:
(1) t = 2 and X is in product-of-sums (P-o-S) form,
(2) t = 3 and X is in product-of-sums-of-products (P-o-S-o-P) form,
(3) t = 4 and X is in P-o-S-o-P-o-S form,
... etc.

WEIGHTED t-NORMALIZED SATISFIABILITY
Input: A t-normalized boolean expression X and a positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

Our analogue of Cook’s Theorem is the following.

Theorem. For any fixed reducibility,
(1) (Downey-Fellows [DF1,2]) For t ≥ 2, Weighted t-Normalized Satisfiabil-
ity is complete for W [t].
(2) (Downey-Fellows [DF3]) Weighted Satisfiability for 2CNF formulas is
complete for W [1].

The above leads to an interesting hierarchy

FPT ⊆ W [1] ⊆ W [2] ⊆ ... ⊆ W [P]

Note that if P = NP then the hierarchy collapses. We conjecture that
each of the containments is proper. Many natural problems are complete
for various levels. For example, Independent Set is complete for W [1] and
Dominating Set is complete for W [2].

In the present paper we explore some structural aspects of the W hier-
archy. In Section 2 we present some basic preliminary results and review
the needed background material in recursion theory and computational com-
plexity. In Section 3 we turn to results concerned with embeddings into the
relevant degree structures. In Section 4 we prove some density results akin
to the well-known Ladner theorem for NP -completeness. In Section 5 we
present some related results on relativizations.

7

2. The Basics

We shall need a little basic recursion theory (see Soare[So]). The reader
should recall that K0 = {〈x, y〉 : φx(y) ↓} encodes the halting problem. (Here
φx denotes the x-th partial recursive function.) There is a natural notion
of reducibility ≤T , called Turing reducibility, between languages and the
equivalence classes are called degrees (of unsolvability). The most complex
(with respect Turing reducibility) recursively enumerable (r.e.) degree is the
degree of K0 above and this degree is denoted by 0′. We shall need the
following result.

(2.1) Lemma(Shoenfield limit lemma) B ≤T A iff there is a recursive
function f(,) such that, for all x,
(i) lims f(x, s) = f(x) exists,(i.e. f(x, s) 6= f(x, s + 1) only finitely often)
and
(ii) f(x) = B(x).

Here we identify sets with their characteristic functions. Similarly it
follows that a function g is recursive in 0′ (and we say g is ∆0

2) iff g(x) =
limsG(x, s) for a recursive G with G(x, s) 6= G(x, s + 1) only finitely often.
We shall additionally say that G is an r.e. function if G(x, s + 1) > G(x, s)
whenever G(x, s+ 1) 6= G(x, s). Such highly undecidable sets and functions
are relevant to our studies as can be seen from the following theorem.

(2.2) Theorem (i) Suppose that A ≤uT B(or A ≤um B) with A and B
recursive. Then there exists an r.e. function f such that A ≤uT B
(resp. A ≤um B) via f .
(ii) Suppose that A ≤nT B (or A ≤nm B with A and B recursive. Then
there exists an r.e. function f such that A ≤nT B (resp. A ≤nm B)
via f .

Proof We do (i) for ≤uT , the others being esentially similar. So suppose
that A and B are recursive and A ≤uT B. Then there is a procedure Φ, a
constant α and a function g so that for all k
(2.3) (∀z)((〈z, k〉 ∈ A iff Φ(B(g(k)); 〈z, k〉) = 1 and runs in time ≤ g(k)|z|α).

We claim that 0′ can compute a value that works in place of g(k) in
the above. That is for each k, 0′ can compute m = m(k) satisfying (2.3)

8

with m in place of g. Call this (2.3)′. The reason is that the expression
in the scope of the universal quantifier is recursive and hence the whole ex-
pression is ≤T K0. (For the reader who has forgotten this sort of thing,
we briefly remind them that for each pair 〈n, k〉 we can enumerate a partial
recursive function ψ〈n,k〉 = φh(n,k) whose index h(n, k) is given by the s-m-n
theorem with domψ〈n,k〉 equal to N if there is some z with 〈z, k〉 /∈ A but
Φ(B(n); 〈z, k〉) = 1, or 〈z, k〉 ∈ A and Φ(B(n); 〈z, k〉) = 0, or Φ(B(n); 〈z, k〉)
not running in time n|z|α; and we have ψ〈n,k〉 the empty function other-
wise. Now K0 can decide if 〈h(n, k), h(n, k)〉 ∈ K0 and hence can com-
pute the least n such that domψ〈n,k〉 = ∅. For such an n we have that

Ak = Φ(B(n)) in running time n|z|α.
Now it is clear that we can such an n(k) via a function where values only
increase and hence we can take an m to perform the role of g that is r.e.. 2.

As we mentioned earlier, one possible variation for the definition would be
to consider a recursive collection Φg(k) of reductions with Φg(k)(B

g(k)) = Ak
in running time O(|z|α). This gives nothing new.

(2.4) Remark (i) Suppose A and B are recursive sets with A ≤nT B via a
recursive collection {Φg(k) : k ∈ N} of reductions all running in time O(|z|α).
Then A ≤uT B.
(ii) Furthermore,if the running time is recursively bounded (and hence can
be taken to be g(k)|z|α), then A ≤sT B.

Proof (i). We shall define a single reduction ∆ that takes the role of each
of the Φg(k). On input 〈z, k〉, ∆ first computes a stage s = s(k) where g(k) ↓
in |s| steps. Thereafter ∆ simulates Φg(k). For (ii), use this and g(k) + s(k)
in place of g(k) for the running time. 2

We will now construct examples to show that the basic classes are indeed
different for the various reducibilities.

(2.5) Theorem (i) FPT (≤uT) ⊂ FPT (≤nT) even for recursive sets.
(ii) FPT (≤sT) ⊂ FPT (≤uT)

Proof (ii) We prove this by a simple diagonalization argument.Let
{〈Φe, φe〉 : e ∈ N} denote an enumeration of all pairs consisting of a pro-

9

cedure and a partial recursive function.We shall satisfy the requirements for
e ∈ N :

R〈e,n〉: Either φe is not total, or
for some k, x, Φe(∅; 〈x, k〉) 6= A(〈x, k〉),or

Φe(∅; 〈x, k〉) does not run in time φe(|k|)|x|n

Aditionally, we must ensure that A ∈ FPT (≤uT). We devote A〈e,n〉 to
meeting R〈e,n〉. We ensure that at most one element of row 〈e, n〉 enters A,
and if z enters A〈e,n〉 then z is of the form 〈1m, 〈e, n〉〉 for some m.

We shall build A in stages. At stage s we decide the fate of 〈1s, k〉 for all
k ∈ N . At stage s, the construction runs as follows:
For each 〈e, n〉 ≤ s, if R〈e,n〉 is not yet declared satisfied, compute s steps
in the computation of φe(〈e, n〉). (Call this φe,s(〈e, n〉).) If φe,s(〈e, n〉) ↑ do
nothing for 〈e, n〉 at this stage keeping m(〈e, n〉, s) = m(〈e, n〉, s − 1). If
φe,s(〈e, n〉) ↓ declare R〈e,n〉 as satisfied and perform the following diagonal-
ization for 〈e, n〉. Run Φe(∅; 〈1s, 〈e, n〉〉) for φe(〈e, n〉)s many steps. If this
does not halt in this many steps we need do nothing since the running time
is wrong. If Φe(∅; 〈1s, 〈e, n〉〉) ↓ in φe(〈e, n〉)s many steps set

A((〈1s, 〈e, n〉〉) = 1− Φe(∅; 〈1s, 〈e, n〉〉).

In either case set m(〈e, n〉, 1s) = 2φe(〈e, n〉)(s + 1).It is clear that the
diagonalization succeeds ensuring that A 6= Φe(∅). Note that A ∈ FPT (≤uT)
since for any k , 〈z, k〉 ∈ A iff z is of the form 1t and 〈1t, k〉 is put into A at
stage t. This can be decided in time m(k, t)t and since m(k, t) 6= m(k, t+ 1)
at most once we see that A ∈ FPT (≤uT).

(i) Again we use a simple diagonalization argument. Now we need a
family of reductions {∆k : k ∈ N} with ∆k(∅) computing Ak. By the limit
lemma we need to meet the following requirements.

R〈e,n〉: Either limsφ(〈e, n〉, s) fails to exist,or
Φe(∅) 6= A〈e,n〉 ,or

10

it does not run in time φe(〈e, n〉)|z|α.

Here we are working with pairs consisting of a procedure and a binary
recursive function. We are denoting by φ(p) the value of limsφ(p, s) if it
exists.We shall additionally,and without loss of generality assume that φe is
nondecreasing in both variables where defined. In the construction to follow
a value can be used for 〈e, n〉.

At stage s, if R〈e,n〉 is not as yet declared satisfied and 〈e, n〉 ≤ s find the
least unused j ≤ s ,if any, such that j = φe,s(〈e, n〉, t) ↓ for some t ≤ s. If
either φe,s(〈e, n〉, t) ↑ for all t ≤ s or there is no unused j do nothing. If j and
hence t exists declare j as used. Now compute js steps in the computation
of Φe(∅; 〈1s, 〈e, n〉〉).

It is clear that A is recursive. Now ∆k is one of the following two reduc-
tions:
Either ∆k = Ψ which, on input 〈x, k〉 says that 〈x, k〉 6∈ A, or ∆k = ∆ which,
on input 〈x, k〉 computes s where Rk is satisfied, and then has 〈y, k〉 ∈ A iff y
is of the form 1s and 1−Φe(k)(∅; 〈1s, k〉) = 1 and 〈y, k〉 /∈ A otherwise. Note
that the algorithm runs in constant time, so that A ∈ FPT (≤nT). 2

3. Embedding Type Results

In this section we shall analyse the general degree structures associated
with the various reducibilities. That is, we look at (REC,≤qT), the recur-
sive sets under ≤qT for q ∈ {u, n, s}. We will concentrate on embedding
type results such as Ladner[Ld], Ambos-Spies[AS], Melhorn[Me] etc, which
eventually give enough definability to calculate the degree of the theory of
(REC,≤pT) in Shinoda-Slaman[SS], and to get the undecidability result of
Ambos-Spies and Nies[AN1,2]. We shall describe a basic technique that al-
lows us to prove analogues of all these results. Local definability however
presents special problems in our setting and we treat this in the next section,
where we look, for instance, at density.

We begin with the easiest illustration of our technique.

(3.1) Theorem If C is any complexity class generated by a superpolynomial
function f , then there exist recursive sets A and B in C such that A 6≤nT B

11

and B 6≤nT A. (We write this as A|nTB.) Furthermore A and B can be chosen
so that for all k, Ak and Bk are in P -time.

Proof In C we build A and B to meet the requirements below.

R2〈e,n〉:For k = 2〈e, n〉 either
φe(k, s) has no limit, or

there is an x such that Φφe(k)(A; 〈x, k〉) 6= B(〈x, k〉).

R2〈e,n〉+1:Same as R2〈e,n〉 but with A and B reversed.

Fix a recursive superpolynomial f for C. To meet the requirements we
employ a priority argument. We first describe the basic module: that is the
method whereby we meet a single requirement, R2〈e,n〉, say.

Again we shall have a notion of used. Again we employ row 2〈e, n〉 to
meet R2〈e,n〉. Let k = 2〈e, n〉. Initially we await a stage s0 such that for some
t0 ≤ s0 and some corresponding least unused j0 we have

j0 = φe,s0(k, t0)

We then declare j0 as used. Note that j0 is our current guess for the final
value of φe(k). (Further note that this value may not exist.) Now await a
stage u0 > s0 where

f(|〈1u0 , k〉|) > j0|〈1u0 , k〉|n.

As f is superpoly such a stage must u0 must exist. Further note that we
can wait and arrange matters so that we can see this in time O(|x|n+1). See
if Φj0(Au0−1; 〈1u0 , k〉) halts in at most j0u0 many steps.(Here At denotes the
portion of A that we have decided by stage t.) We say that R2〈e,n〉 recieves
attention via 〈j0, u0〉. If the computation does indeed halt then set

Bu0(〈1u0 , k) = 1− Φj0(Au0−1; 〈1u0 , k〉)

and declare that A[m0] = Au0−1[m0] where m0 = u(Φj0(Au0−1; 〈1u0 , k〉), the
maximum length of an element queried in the computation.(This is called
the use of the computation.We remind the reader that here we are using the
notation that Q[x] = {z : z ∈ Q and |z| ≤ |x|}.) If the computation does
not halt, do nothing.

12

By the above process, if R2〈e,n〉 recieves attention via 〈j0, u0〉 then j0 is
not a possible value of limsφe(k, s) if indeed Φφe(k)(A) = B. But it follows
that either Φφe(k)(A) 6= B or R2〈e,n〉 recieves attention infinitely often. The
latter case means that it has no limit.

The reader should realize that there is the usual priority conflict in the
above. A R2d requirement usually requires us to change B and preserve
A, to preserve any disagreement made. An R2d+1 type requirement asks us
to change A and preserve B. The idea with such arguments is to define
a priority ordering that allows all of the requirements to be met. In this
particular construction, it is easiest to break the Rj into infinitely many
subrequirements of the form:

R2〈e,n〉,m: Either φe(k, s) changes value at least k times, or
Φφe(k)(A) does not run in time φe(k)|x|n,or

there is some x with Φphie(k)(A; 〈x, k〉) 6= B(〈x, k〉).

We have similar requirements of type R2〈e,n〉+1,m. We then use the finite
injury method to combine strategies. In the formal construction to follow we
use the convention that all computations etc halting at stage s use elements
of length below s.

(3.2)Definition We say that R2〈e,n〉,m requires attention at stage s + 1 if
〈2〈e, n〉,m〉 is least so that (i),(ii) and (iii) below all hold.
(i) No requirement is currently under attack.
(ii) Count(2〈e, n〉, s) = m− 1.
(iii) There is some unused j ≤ s such that for some t ≤ s, φe,s(2〈e, n〉, t) = j.
For the least such j declare that R2〈e,n〉,m to require attention via j.

Construction
Stage 0. Do nothing
Stage s+ 1 If no requirement is currently under attack see if there is an Rq

for q ≤ s which requires attention.If no such Rq exists do nothing.If Rq, for
q = 〈2〈e, n〉,m〉, say, requires attention, declare j as used, and that Rq to be
currently under attack with parameter j. Reset Count(2〈e, n〉, s) = m.

If some R2〈e,n〉,m is currently under attack and has parameter j (say),

13

see if f(s) > j|〈1s, 2〈e, n〉〉|n. If not do nothing. If so declare R2〈e,n〉,m to
be no longer under attack at stage t = j|〈1s, 2〈e, n〉|n + 1. (This will pro-
tect any possible Φj(As−1; 〈1s, 2〈e, n〉〉) computation that halts in at most
j|〈1s2〈e, n〉〉|n many steps.)

Now see if Φj(As−1; 〈1s, 2〈e, n〉〉) halts in at most j|〈1s, 2〈e, n〉〉|n many
steps. If not do nothing else. If so then set

B(〈1s, 2〈e, n〉〉) = 1− Φj(As−1; 〈1s, 2〈e, n〉〉).

Proceed analogously for the R2〈e,n〉+1,m type requirements.

End of Construction

To see that the construction succeeds, if ever we attack some Rk we
eventually conclude this attack. We get to set B(〈1s, k′〉) (or A(〈1s, k′〉) as
the case may be) and hence by the assumption that |s| > u(Φj(As−1; (〈1s, k′〉)
it must be that

Φj(As−1; 〈1s, k′〉) = Φj(A; 〈1s, k′〉),

and hence Φj(A) 6= B. Note also that if we argue by priorities, we see that
each Rk will be attacked if necessary and hence we either force φe(k

′, s) to
change infinitely often, or the running time is wrong. 2

Simple variations of the above technique can be used to improve (2.5).

(3.3) Theorem (i) FPT (≤nT) contains infinitely many problems pairwise
incomparible with respect to ≤uT).
(ii) FPT (≤uT) contains infinitely many problems pairwise incomparible with
respect to ≤sT .

Proof sketch of (e.g.) (ii) We build {Ai : i ∈ N} in stages to meet the
following requirements:

Ri,j,e,n:If i 6= j then either φe is not total, or
the running time of Φe(Ai; 〈x, k〉) exceeds φe(k)|x|n, or

for some x, k ,Φe(Ai; 〈x, k〉) 6= Aj(〈x, k〉).

14

Additionally we must ensure that for all i, Ai ∈ FPT (≤uT). Again we use
row k = 〈i, j, e, n〉 to meet Ri,j,e,n. assume i 6= j. We will describe the basic
module. We wait for a stage s where φe,s(k) ↓. At stage s, if no other Rq is
under attack, Ri,j,e,n asserts control (as with (3.1), assuming that 〈i, j, e, n〉 is
least), and sees if Φe(Ai,s−1; 〈1s, k〉) halts in fewer than φe(k)sn many steps.
If so we set

Aj(〈1s, k〉) = 1− Φe(Ai,s−1; 〈1s, k〉).

In either case it declares Re as satisfied and declares it to be under attack until
stage φe(k)sn+1. (Again this is to protect the Φe(Ai,s−1; 〈1s, k〉) computation
from Ai enumeration.)

It is clear that Ai ∈ FPT (≤uT) for all i giving (ii) ,and (i) is essentially
similar. 2

The idea of using the curent guess as to the values of the constants to meet
the requirements for constructions analysing the structure of (REC,≤qT) for
q ∈ {u, s, n} is very flexible and allows us to show that a lot of classical ≤pT
have analogues in our setting.

For instance using this idea it is quite straightforward to show that each
complexity class properly containing P contains minimal pairs, that is A,B /∈
FPT such that if C ≤ A,B then C ∈ FPT . We can also construct recursive
D /∈ FPT such that if E ⊕ G ≡ D then E and G do not form a minimal
pair . (Analogue of Downey[Do]). This would seem to indicate that the
central strategies of Shinoda-Slaman[SS] ought to extend to be able to verify
the following conjecture:

(3.4) Conjecture: (i) The degree of the (first order) theory of (P (N),≤qT
) for q ∈ {s, u, n} is that of second order arithmetic, and the degree of
(REC,≤qT) is that of first order arithmetic. Thus they are as ‘complicated
as possible’.
(ii) All recursively presentable lattice can be embedded into (REC,≤qT).

Again similar comments apply for the structures (REC,≤qm). In this case
we would be looking at the analogue of Ambos-Spies and Nies[AN]:

15

(3.5) Conjecture: The theory of (REC,≤qm) is undecidable for any q ∈
{s, u, n}.

In both cases we remark that there are some differences since the partial
orderings generated by the reducibilities need one or two more quantifiers in
the non-strongly uniform cases so an approach more like that uses for the r.e.
wtt degrees ([ANS]) may be necessary. In the next section we examine local
embeddings where we must work below, say, a given degree. Here analogues
do not always work .

4. Density

From the last section,it would seem that most results from (REC,≤pT)
ought to lift to our setting. However if we look at the structure {B : B ≤uT A}
for a given A, this is not in general true. First we shall examine tha analogue
of Ladner’s result that the polynomial degrees of recursive sets are dense,
which in particular show that if P 6= NP then there are NP languages that
are neither polynomial time nor NP - complete. The analogous fact for the
weft hierarchy would be that if W [t] 6= W [t + 1] then there exist infinitely
many intermediate problems between W [t] and W [t+ 1]. This is indeed true
for strong uniform reducibility as we now see.

(4.1) Theorem. If A and B are recursive with A <s
q B, then there exists

a set C with A <s
q A⊕ C <s

q B,where q ∈ {m,T}.

Proof We begin by briefly recalling the construction of Ladner[Ld]. Recall
that this worked as follows. There were given recursive sets A 6< B (working
with ≤pm, say).Let {zn : n ∈ N} be a standard P -time length/lexicographic
P -time ordering of Σ∗. We can assume that A and B are given as the
range of p-time functions with domain N in unary notation. We write
As = {f(10), ..., f(1s)} if f(N) = A in this sense. We can also ask that
if |f(1y)| > |f(1y−1)| then for all z > y, |f(z)| ≥ |f(1y)|. We call this a
P-standard enumeration. So we will assume that we have such enumerations
of A and B. Recall also for a reduction ∆ on a set E , u(∆(E;x)) denotes
the length of the longest element used in the computation. Let {Φ′e : e ∈ N}
denote a standard enumeration of all P -time m-procedures.

16

We must build C to satisfy the requirements:

R′2e : Φ′e(A⊕ C) 6= B

R′2e+1 : Φ′e(A) 6= C

additionally ensuring that C ≤pm B. For the sake of the R′j we define a
polynomial time relation R(n) on N = {1}∗. Then we declare that x ∈ C iff
R(|x|) = 0 and x ∈ B. Clearly this makes C ≤pm B.

Now we meet the R′j in order by ‘delayed’ diagonalization. So we begin
with R′0. We set at each stage s, R(s) = 1 until a stage t is found where (i)
- (iv) below hold. (Here we consider s, t etc as being in N .)
(i) Φ′0,t(At ⊕ ∅; zn) ↓ in less than t steps.
(ii) At[q] = A[q] if |q| < u(Φ′0(At ⊕ ∅; zn).
(iii) Bt[zn] = B[zn].
(iv) Φ′0,t(At ⊕ ∅; zn)(= Φ′0(A⊕ ∅; zn)) 6= B(zn) = Bt(zn).

At stage t we say that we have diagonalized R′0 at zn, this being found
by looking back for an A- and a B- certified disagreement.

The idea is then to move to R′1 and then to R′2 etc. For R′1 we set
R(t + 1) = 0, causing C to look like B locally. So we keep R(u) for u > t
equal to zero until a stage v is found with some m ≤ v and

Φ′0,v(Av; zm) 6= Cv(zm),

via A− and B− certified computations. We then move to R′2 setting R(v+1)
to be 1 again. Thus the set C so constructed looks like B with ‘holes’ in it.

Keeping the above ideas in mind we turn to the result at hand. Now we
are given A < B with ≤ either ≤sT or ≤sm. Again we must construct C, now
to meet the following requirements

R2〈e,n〉: Either φe is not total,
or (∃k)(Bk 6= Φe(A⊕ C(φe(k))))

or (∃x, k)(Φe(A⊕ C(φe(k)); 〈x, k〉) does not run in time φe(k)|x|n.

R2〈e,n+1〉: Either φe is not total,

17

or (∃k)(Ck 6= Φe(A
(φe(k))))

or (∃x, k)(Φe(A
(φe(k)); 〈x, k〉) does not run in time φe(k)|x|n).

To aid the discussion we will use several conventions. First, if φe,s(k) ↓,
then the computation Φe(E

(φe(k)); 〈x, k〉) cannot call any y of the form (k′, z)
for k′ > φe(k). Also since we get a win for free if φe,s(k) ↓ and the running
time of Φe(E

(φe(k)); 〈x, k〉) exceeds φe(k)|x|n, we shall assume that in the
above the third option does not pertain to Rj and concentrate on the first
two. This is because if the running time exceeds the bounds during the
construction, we can cancel the relevant requirement. The argument to follow
is a priority one with the Ladner strategy embedded.

Without loss of generality we can take φe to strictly increasing. Again
there will be long intervals with C(〈x, k〉) equal to ∅ and long intervals where
it looks like B, for ‘many’ k. We have problems, since, for instance, we cannot
decide if φe is total. We first focus on the satisfaction of a single R0 = Rα〈e,n〉.
We then describe the basic module for an odd type requirement ,and finally
describe the coherence mechanism whereby we combine strategies.

The Basic R0-Module.

To meet R0 above, we perform the following cycle. We have a parameter
k(0, s) that is nondecreasing in s and such that lims k(0, s) = k(0) exists.
This is meant to be the number of “rows” devoted to R0. It remains constant
until we change it.

1. (Initialization.) Pick k(0, 0) = 1.
2. Wait until a stage s occurs with one of the following holding:

2(a). (Win.) “Looking back” we see a disagreement. That is, as with the
Ladner argument, we see an n < s with zn ∈ {〈x, j〉 : j < k(0, s)}.

Φe,s(A⊕ C(φe(k(0,s)−1)); zn) 6= B(zn)

via A- and B-certified computations, or

2(b). Not (2a) and φe,s(k(0, s)) ↓.

18

Comment If s does not occur then φe(k(0, s)) ↑ and hence φe is not total.
In this case we call k(0, s) a witness to the nontotality of φe.

If 2(a) pertains, we declare R0 to be satisfied (forever) and end its effect
(forever). If 2(b) pertains, then we perform the following action.

3. R0 asserts control of C(φe(k(0,s))). That is, R0 asks that for all t ≥ s, until
2(b) pertains, we promise to set C(φe(k(0,s)))(y) = 0 for all y with |y| = t and
y ∈ (Σ∗)(φe(k(0, s))). This can be achieved via a restraint r(n, k).

4. Reset k(0, s+ 1) = k(0, s) + 1 and go to 2.

The Outcomes of the Basic R0 Module.

We claim that 2(b) cannot occur infinitely often and hence lims k(0, s) =
k(0) exists. Note that we have only reset k(0, s) if 2(b) pertains in step 3.
So suppose k(0, s) → ∞ and hence φe(k(0, s)) → ∞. Then for each q and
almost all y , we have C(〈q, y〉) = 0.

We write A =∗ B to denote that the symmetric difference of A and B is
finite. So Cq =∗ ∅ for all q. Furthermore, for all q, we can compute a stage
h(q) where

[∀t > h(q)](Cq(〈y, q〉) = 0 for all y with |y| > h(q))

where h(q) is the stage where R0 asserts control of row q.

Finally, we know that for all k,

Φe((A⊕ C)(φe(k))) = Bk

This allows us to get a reduction ∆(A) = B. For each input 〈y, k〉, ∆
simply computes B(〈y, k〉) for all y with |y| ≤ h(k), and C(〈z, k′〉) for all
k′, z with k′ ≤ φe(k) and |z| ≤ h(k). Then ∆ simulates Φe(A

(φe(k)); 〈y, k〉) if
|y| > h(k) with the exception that, if Φe calls some 〈r, k′〉 with |r| ≤ h(k)
(and necessarily k′ ≤ φe(k)), then ∆ uses the table of values for C to provide
the answer.

Note that the computations of ∆(A; 〈x, k〉) and Φe(C; 〈x, k〉) must agree
and hence ∆(A) = B, a contradiction. Thus 2(b) can pertain only finitely
often. It follows that there are two outcomes.

19

Outcome (0, f): 2(a) occurs for some t. Then we win R0 with finite effect.
(Comment: Once R0 is met in this way, say at stage t, then we are completely
free to do what we like with all y for which |y| > t without injuring R0.)

Outcome (0,∞): 2(a) does not occur. Then φe is not total. Note that the
effect of R0 is in this case infinite and for some k = lims k(0, s) − 1, we will
have

C(φe(k)) =∗ ∅

and furthermore, there is a reduction ∆0 with time bound φe(k)|x|n for which

∆0(A
(φe(k))) = B(k)

Note that for the basic module, ∆0 is simply Φe.

The Basic Module for R1.

This is essentially the same as for R0 except that for R1 we wish to
set C(〈x, k〉) = B(〈x, k〉). Herein is the basic conflict: an even-indexed
requirement Rj asks that lots of rows look like ∅ and an odd-indexed Rj asks
for them to look like B.

Combining Strategies.

We cannot perform a delayed diagonalization as in the proof of Ladner’s
theorem, since we cannot know if φe(k) is defined. The combination of strate-
gies needs the priority method. Let us consider a module for R1 that works
in the outcomes of R0. We cannot know if this outcome is (0, f) or (0,∞).
Instead we have a strategy based on a guess as to R0’s behavior. Basically
R0 always believes that k(0, s) is k(0), that is, that the current value is the
final one. Let e = e(0), n = n(0), f = e(1) and m = n(1).

Whilst R1 believes that φe(k(0, 0)) ↑, R1 acts as if R0 is not there. So
if k(0, 0) = k(0) and φe(k(0, 0)) ↑ then we win R1 for the same reasons as
we did for R0. On the other hand, if φe(0) ↓ for some least stage s, then R0

will assert control of C(φe(k(0,0))). For the sake of R1 we have probably been
setting C(0, x) = B(0, x) for all x with |x| < s. Since R0 has higher priority
than R1, R1 must release its control of C0 (and indeed of Cj for j ≤ φe(k(0))
) until a stage, if any, occurs where 2(a) pertains to R0 so that R0 is satisfied

20

and releases control forever (or it becomes inactive because of a time bound
being exceeded). Note that if 2(a) pertains at t, then R1 is free to reassert
control of C0 for all y of the form 〈y, 0〉 with |y| > t. Also, in this case, as R1

is the requirement of highest overall priority remaining, its control cannot be
violated and hence it will be met.

On the other hand, while R0 can hope that 2(a) will pertain to R1, R0

may have outcome (0,∞) and R0 will never release control of C0. The key
idea at this point is that we begin anew with a version of R1 believing that
k(0, s+ 1) = k(0). That is, R0 will never again act.

This version of R1 can only work with Cq for q > φe(k(0, s)) = φe(k(0, 0)).
Some care is needed since potentially we need all of B to meet R1.

An elegant solution to this difficulty is to shift B into C above φe(k(0, s)).
Thus R1 will ask that

C(〈x, q〉) = B(〈x, q − φe(k(0, s))− 1〉)

for q > φe(k(0, s)). It does so until either k(0, t) is reset again, or 2(a)
pertains, or the time bounds are exceeded. In the latter cases, it reverts to
the (0, f)-strategy. In the first case it begins anew on q > φe(k(0, t)). Since
this restart process only occurs finitely often, it follows that we eventually
get a final version of R1 whose actions will not be disturbed.

Thus there is a final version of R1 that is met as follows. As lims k(0, s) =
k(0) exists, there is a value r and a stage s0 so that for q ≥ r and s > s0,
R1 is not initialized at stage s and can assert control on Cq if it so desires.
If R0 has outcome (0, f), then r = 0, otherwise r = φe(k(0)− 1) + 1. So we
know that if R1 fails then for all j there is a stage h(j) (computable from
the parameters r and s0) where for y with |y| > h(j)

C(〈y, r + j〉) = B(〈y, j〉) and

Φf (A; 〈y, r + j〉) = C(〈y, r + j〉).

Thus if R1 fails again we can prove there is a reduction ∆(A) = B with
running time O(|z|m) and computable constants.This is a contradiction.

21

The outcomes for R1 are thus either (1,∞) and (1, f). In the former case
we know that for a finite number of rows j and for almost all y, C(〈y, j〉) =
B(〈y, j〉). But we also know that for such rows there is a reduction ∆f such
that

∆f (A; 〈y, j〉) = C(〈y, j〉) in time O(|y|m) and computable constants.

We continue in the obvious way with the inductive strategies. Consider eg
R2. It is confronted with at worst a finite number of rows permanently
controlled by R0 and a finite number by R1. However, in each case we know
that there is a reduction from a computable number of rows af A to these
rows, and hence a reduction

Ψ2(A; 〈y, j〉) = C(〈y, j〉)

for all j cofinally under the control of either R0 or R1. Therefore to argue
that R2 is met, we get to use Ψ2 to help construct a reduction from A to
B. That is, for Ri, let e = e(i) and n = n(i).Then inductively we have a
reduction and constants p(2),m(2) and r(2) with

Ψ2(A
m(2); 〈x, j〉) = C(〈x, j〉)

for all j ≤ p(q) running in time m(2)|x|r(2). Futhermore, we have a stage s2
such that for all k < 3, Rk ceases further activity.

Thereafter R2 is free to assert control over any rowq of C for q > p(2).
If we suppose that R2 fails, then for each such q, R2 will eventually assert
control of Cq at some stage h(q) to make C(〈x, q〉) = 0 for all x with |x| >
h2(q) and we have Φe(2)(C) = B.

Now to get a reduction ∆ from A to B we go as for R0 except that now if
Φe(2) makes an oracle question of 〈y, j〉 for j ≤ p(2) ,we use Ψ2 to answer this
question.Thus we get a reduction ∆2 that runs in time O(|x|r(2)+n(2)), with
computable constants and correct use. Thus again B ≤ A,a contradiction.

The remaining details give no further insight and we leave them to the
reader. 2

What happens to ≤qT , ≤qm for q ∈ {u, n}? Answer: The above proof will
go through if we only consider reductions E ≤qT F (or m reductions) via a

22

function φ(x) with an approximation φ(x, s) for which there is a recursive
function g such that

{s : φ(x, s) 6= φ(x, s+ 1)} ≤ g(x).

That is although we do not know the constants we do know in advance the
maximum number of times that our approximation can change. In the con-
text of the Robertson-Seymour application, we would not necessarily know
the obstruction set but would know in advance a bound on the possible size
of the set. Of course this won’t in general happen, leaving the following
question apparently open.

(4.3) Question Do any of the other reductions generate a dense struc-
ture on the recursive sets? Indeed, for any of the other reductions if, for some
k, W [k] 6= W [k + 1], then is there an infinite collection of classes between
W [k] and W [k + 1]?

We will briefly observe that we can easily get a density result for certain
classes of sets with additional hypotheses. We also look at these questions for
the degrees at large where we find substantial differences from the classical
case. Before we do so we remark that (4.1) has many obvious variations : for
instance one can put an infinite antichain between A and B, or recursively
presentable lattices,etc. Again these results don’t really give new insights
and we omit them.

We begin with a weak density result. Some parameterized problems ex-
hibit concentrated nondeterminism. A well known example of this is the
following.

PLANAR k-COLOURABILITY
Input A planar graph G and an interger k.
Question Is G k-colourable?

Now for any k 6= 3 we know that this is linear time and hence certainly
in FPT . Yet we also know that it is NP complete. Although it is not in
the W - hierarchy unless P = NP , it shows that many natural problems are
concentrated in the sense that for some k, Bk itself is not in P -time. With
this motivating example in mind we have:

23

(4.4) Theorem For ≤ any of the reductions, if A and B are recursive sets,
with A < B and such that Bm 6≤ A for some m, then there is a C such that
A < C < B.

Proof We give the proof for ≤uT , the others being similar. Suppose that
Bm 6≤uT A. We define Ck to be empty for all k 6= m. Then we meet

R2〈e,n〉: Either lims φe(m, s) does not exist,or
Φe(A

(φe(m))) 6= Cm, or
there exists x such that the running time
of Φe(A

(φe(m)); 〈x,m〉) exceeds φe(m)|x|n.

R2〈e,n〉+1: Either φe(m, s) has no limit, or
Φe((A⊕ C)(φe(m))) 6= Bm, or
the running time is wrong.

The proof is fairly similar to some of our earlier ones and we only sketch it.
We first break the requirements down into

R′2〈e,n〉,q: Either φe(m, s) changes at least q times, or as before.
and similarly with the R2〈e,n〉+1,q. So for simplicity asume that the time
bound for R′j = R′2〈e,n〉,q is not exceeded, nor is the use bound. We give
R′j priority j. We allow it to assert controll of Cm when it has the priority
and it has seen φe(m, s) change exactly q times. At such a stage it will set
C(〈x,m〉) = 0 until we get a disagreement or we see φe(m, t) 6= φe(m, s) for
some t > s. Such a stage must exist by hypothesis. It is clear that either we
win via some R′j, q with finite effect, or for all q we see that φ(m, s) changes
q times and hence φe(m, s) has no limit. 2

We remark also that density fails for the nonrecursive sets. This stands
in contrast to the situation for ≤pT , as was realized by Shinoda. Shin-
oda[unpubl.] observed that the Ladner density argument can be modified
to work for any sets A and B with A <p

T B. Recall, for R2e that we wish
to keep C(x) equal to 0 until a stage and a zn are found where we know
that Φe(A⊕ C; zn) 6= B(zn). Now if Φe has use bounded by |x|n(e) + e, then

by stage, say, 22|x|
n(e)+e

, B can figure out, in P -time relative to B, if there
is some zn with |zn| = s and Φe(A ⊕ C; zn) 6= B(zn). Thus we inductively

24

promise that we won’t switch until we see a stage t which occurs for the first

zn such that Φe(A ⊕ C; zn) 6= B(zn), where t = 22|zn|n(e)+e

, and similarly for
the requirements with odd indices.

This means that the whole construction can be made P -time in B giving
the following result.

(4.5) Theorem (Shinoda[unpubl.]) For any sets A and B, if A <p
T B then

there exists C with A <p
T C <p

T B.

Now we show that (4.5) fails for ≤pT .

(4.6) Theorem There exists A /∈ FPT (≤sT)such that for all B <s
T A, B ∈

FPT (≤sT).

Proof We build an r.e. set A =
⋃
sAs in stages to satisfy the following

requirements.

Ne,n: Either φe is not total, or
(∃x, k)(Φe(A

(φe(k)); 〈x, k〉) has running time exceeding φe(k)|x|n, or
Φe(A) ∈ FPT (≤sT), or

A ≤sT Φ(A).

Pe: Ā6 = We where We denotes the e-th r.e. set.

We will carefully describe the ideas for the modules before we describe
the formal construction. As usual a Pe,n or an Ne,n ceases activity if the
running time ever proves wrong. So we can assume only to be considering
such good (Φe, φe) pairs.

We meet the Pe,n as follows.We pick a fixed follower z = z(e, n) =
〈0, 〈e, n〉〉 targetted for A. We wait until we see a stage s with 〈0, 〈e, n〉〉 ∈
We,s and then put 〈0, 〈e, n〉〉 into A. This is the basic module but needs
modification to live with the Ne,n.

Now Ne,n will have two outcomes. These are labelled (〈e, n〉, f〉 and
(〈e, n〉,∞). It is the former if φe is not total, and the latter if φe is total.

25

The idea is the following. Associated with almost all elements targetted
for A (i.e. of the form 〈0, j〉) we have a current (e, n)-state. This will initially
be f . We raise the state to ∞ if we see a stage s and a number q such that
φe,s ↓ and

Φe(A
j+1
s) 6= Φ(Ajs)

where Aks is the result of putting 〈0, k〉, ..., 〈0, s〉 into As and changing nothing
else. The idea is that we cancel, by enumeration into A all followers of the
form 〈0, j′〉 for j′ ≤ s and j′ > j. we then reassign 〈0, j〉 the Pg,m of highest
priority not yet satisfied and having no follower of state∞. We also promise
that if 〈0, j〉 enters at stage t then we also cancel 〈0, j′〉 by enumeration for
all j < j′ ≤ t. We call this the dump. For a single Ne,n the idea succeeds.
For consider the outcomes. Either for almost all 〈0, j〉, 〈0, j〉 is cancelled or
has state ∞; or for almost all j, 〈0, j〉 is cancelled or has state f . If the
first option pertains we define a reduction ∆ taking Φe(A) to A as follows.
Suppose we have defined it for all j ≤ k. Find the first r with r > k and the
first stage S where 〈0, r〉 has state ∞, and is given it at stage s. Then for
all r′ with k < r′ < r, 〈0, r′〉 ∈ A if 〈0, r′〉 ∈ As. Also, there is some q = q(r)
such that

Φe(As; q) 6= Φe(A
r
s; q).

Now we define ∆. Inductively,we know that for each 〈0, k〉 < 〈0, r〉 with state
∞ not yet in A will be asociated with a number q(k) such that the value of
Φe(A; q(k)) determines if q(k) enters A. Then ∆ says that for k < m < r,
〈0,m〉 ∈ A iff Φe(A; q(d)) 6= Φe(As; q(d)) for the least d with q(d) /∈ As.
Finally ∆ says that 〈0, r〉 ∈ A iff Φe(A; q(r)) 6= Φe(As; q(r)). This generates
a very large constant but note that we get,for each row, Φe(A) ≤sT A via a
constant time reduction.

If the final state is f then we claim that Φe(A) ∈ FPT (≤sT). To see this,
as the final state is f for almost all j, there is a stage t and a k such that for
all j > k, 〈0, j〉 has state f and if m < k then

〈0,m〉 ∈ A iff 〈0,m〉 ∈ As.

Now we know that for all s > t and all y, j if |y| ≤ s and φe,s(j) ↓, then

Φe(A
j
s; y) = Φe(As; y).

26

It follows that no matter whether 〈0, j〉 enters or not, we always get the same
answer. Thus to compute Φe(A; 〈0, j〉) find the least stage s > t, |y| where
φe(j) ↓ and compute Φe(As; y). This is the correct answer.

For more than one strategy we need to nest the states. To do this requires
the so-called tree of strategies 0′′ priority method. For more on this method
we refer the reader to Soare[So].

Let T = {∞, f}∗, with ∞ <L f inducing the lexicographic ordering on
T .We refer to members of T as guesses. We shall use the phrase ‘initial-
ize’. We take this to mean that all followers, etc currently associated with a
requirement are no longer associated. We remind the reader that all compu-
tations are bounded by s at atage s.

(4.5) Definition We say that Pe requires attention at stage s if Pe is least
such that one of the following holds:

(i) for some follower x of Pe, we have x ∈ We,s.
(ii) Pe has no follower at stage s.

Construction
Stage s find the least number of the form 〈0, j〉 not yet in A such that for
some k,

(i) 〈0, j〉 has j-state σ ∗ (k, f)
(ii) There is at least k elements of the form 〈0, q〉 not yet in A with q < j

having state σ and (potentially followers) or followers.
(iii) φe(k),s(j) ↓.

(iv)Φe(k)(A
j+1
s−1; y) 6= Φe(k)(Ajs−1; y) for some y with |y| < s.

If such 〈0, j〉 exists, declare 〈0, j〉 to have state σ ∗ (k,∞) and put 〈0, j +
1〉, ..., 〈0, s〉 into As. Declare 〈0, j〉 as unassigned and initialize any Pq not
having a follower with state ≤L σ ∗ (k,∞). Now find the least 〈0, j′〉 with
j′ < j such that 〈0, j′〉 has state ≤L σ∗(k,∞). For any 〈0, r〉 with j′ < r < j,
declare 〈0, r〉 as no longer a potential follower EVER AGAIN (and having
no state henceforth.)

27

Now see if Pe requires attention. If (i) holds via x = 〈0, q〉, put 〈0, q′〉 into
A for q < q′, s. Initialize all Pk for k > e. If (ii) holds find the least 〈0, j〉 not
yet asigned to a requirement and still a potential follower, and assign 〈0, j〉
to Pe.

End of Construction

Verification (sketch) Clearly A is r.e.. Let TP denote the true path of the
construction,that is TP is in [T] the collection of all paths through T and is
the leftmost one visited infinitely often. Specifically λ ⊆ TP , and whenever
σ ⊆ TP , then σ∗(0,∞) ⊆ TP if (∃∞s)(s is a σ∗(0,∞)−stage) and otherwise
σ ∗ (0, f) ⊆ TP . We claim that TP exists and each Pe requires attention
at most finitely often. This is easily proven by induction on |σ|. Thus if
σ ⊆ TP we can go to a stage t where, for all e with e < |σ|, Pe does not
require attention after stage t and for no stage s > t is s a τ -stage with
τ ≤L σ and τ 6⊆ σ. Now at the least σ-stage after t, Pe will be assigned a
follower x with state σ if it does not already have one. This follower cannot
be cancelled or initialized by choice of t and hence will succeed in meeting
Pe.

Finally to see that all the Ne,n are met, we can argue almost precisely
as we did in the basic module. By the fact that there are only 2f+1 many
f states, we can see that almost all j eventually get in the same f state. If
the relevant state is of the form τ ∗ (e,∞) then A ≤ Φ(A) and if this is of
the form σ = τ ∗ (e, 0) it is the case that Φe(A) is in FPT (≤sT). The only
difference is that, in the latter case for no (0, j) of state σ and no stage s > t
for some parameter t is it the case that φe(j) ↓ and for some y with |y| ≤ s,

Φe(A
j+1
s) 6= (Ajs).

Since the only things that survive have state σ it follows that Φe(A) ∈
FPT (≤sT). 2

5. Oracle Results

In this section we shall explore oracle results. These results provide
some evidence that methods that relativise are not sufficient to resolve ques-
tions such as FPT (≤uT) =?W [P]. Of course the exact meaning of this

28

imprecise statement is not quite clear in view of such results as Shamir’s
IP = PSPACE result (Shamir[Sh]) which is known to fail relative to a
random oracle. None the less we feel that the results of this section at least
indicate that the relevant separation or collapse results will be hard. This
is in the same spirit as Baker, Gill and Solovay[BGS]. We also believe that
these oracle separation results support our thesis that the weft hierarchy is
infinite.

We begin with an oracle result that supports the thesis that FPT =
?W [P] is independent of P =?NP . In view of this result we believe that it
is unlikely that there is a proof that P 6= NP implies FPT 6= W [P] unless
the hierarchies collapse.

(5.1) Theorem There is a recursive oracle A relative to which W [P] = FPT
yet P 6= NP .

Proof We do this for ≤sT and observe that the obvious modifications work
for the other reducibilities. Let Qe denote the e-th P -time relation. Define
KB via

〈〈x, e, 0n〉, k〉 ∈ KB for some y with |y| = |x|, y has weight k and QB
e (y) holds in n steps.

In view of the direct relationship between circuits and relations, it is clear
that KB is W [P]-complete.

Now let f be any recursive function from N to N . suppose we build a
recursive setA such that for each k and all x with |x| ≤ f(k) we haveA(〈x, k〉)
can be computed in g(k) many steps, and for all y with |y| > f(k) we have
A(〈y, k〉) = A(〈y, k〉). We claim that A ≡sm B, so that W [P]B = W [P]A. To
see this for the k-th row for the reduction from A to B, say, we first compute
g(k) and f(k). As A and B are recursive we can write the corresponding
initial segments in a table. Otherwise 〈x, k〉 ∈ A iff 〈x, k〉 ∈ B, and hence
A ≡sm B.

Now take any B with W [P]B = B. That is, define B via

〈〈x, e, 0n〉, k〉 ∈ B iff for some y with |y| = |x|, y has weight k and Qe(y) holds in n steps.

Now it will suffice to define f, g and A as above and ensure that PA 6= NPA.

29

We do this as follows. We must meet the requriements

Rk : Γk(A) 6= C,

where C ∈ NPA and Γk denotes the k-th P -time procedure with use qk, say.
We meet Rk via row k + 1. We define C so that

〈x, k〉 ∈ C iff (∃y)[|y| = |x| and 〈y, k〉 ∈ C], and hence C ∈ NPA.

At stage k, we will have defined f(i), g(i) for i ≤ k and a restraint
r(k). Choose x so that 2|x| exceeds qk(〈x, k〉), and |x| > r(k). Now compute
Γk(A

∗
k; 〈x, k + 1〉) where A∗k is the result of setting A equal to B on all 〈x, j〉

for j ≤ k and |x| > f(j), and setting A(〈x, k〉) equal to what we have decided
at stages ≤ k for y with |y| ≤ f(j). (So, basically we’ve decided at stage k
the precise contents of A on 〈x, j〉 for j < k.) Set A∗k(〈z, r〉) = 0 for r ≥ k+1.

Now if Γk(A
∗
k; 〈x, k + 1〉) = 1 define 〈x, k + 1〉 = 0 for all z with |z| ≤

r(k + 1) with r(k + 1) ≥ r(k) and also exceeding all uses seen so far. (This
means that future actions will not affect these protected computations). If
Γk(A

∗
k; 〈x, k+1〉) = 0 then for some y with |y| = |x| we have that 〈y, k+1〉 is

not queried during the computation of Γk(A
∗
k; 〈x, k+1〉) computation because

2|x| exceeds qk(|x|). Now put 〈y, k+1〉 into A and otherwise set A(〈z, k+1〉) =
0 for all z with |z| ≤ r(k + 1). Set f(k + 1) = r(k + 1) and define g(k + 1)
appropriately.

This ensures that Γk(A) 6= C via the witness 〈x, k + 1〉 since inductively
all previous restraints are maintained, and hence all previous disagreements
are also preserved. Thus NPA 6= PA) and yet FPTA(≤sm) = W [P]A. 2

(5.2) Corollary There exist recursive oracles A and B with W [P]A =
W [P]B = FPTA = FPTB , A ≡sm B, NPB = PB, yet PA 6= NPA.

Proof Take A and B as in the proof above. We claim that NPA = PA. This
will then give the desired result. Define D via:

〈x, e, 0pe(|x|)〉 ∈ D iff some computation of Φe(B;x) accepts in n steps.

Then as usual D is NPB complete. We claim that D ∈ PB. To see this
simply note that

〈x, e, 0pe(|x|)〉 ∈ D iff (∃j)[j ≤ |x| and 〈〈x, e, 0ph(e)(|x|)〉j ∈ B],

30

where Qh(e) is the relation representing Φe. Hence PD = NPD. 2

Now we turn to results separating the W hierarchy. Ideally we would like
an oracle that separates the whole W hierarchy, showing it infinite. Unfor-
tunately at this stage we don’t know how to do this. Using a Baker,Gill and
Solovay construction it is not difficult to show that W [P] can be different
from FPT in relativised worlds (indeed in random worlds). We do a little
better. We construct an A such that W [1]A 6= FPTA. Before we do this we
briefly describe how to interpret oracle results in circuits. This is a matter
where there is no universal agreement. One natural idea that we use in our
construction is to view an assignment of values to the inputs into oracle and
gates as determining a word, and considering the gate as outputing one if the
word is in A. For our purposes this seems a reasonable model for an oracle
circuit.

To separate W [P] from FPT we use the set C defined as follows.

〈z, k〉 ∈ C iff (∃y(|y| = |x| and y ∈ A and y has weight k).

Now C is in W [1]A via the circuit such that, on input 〈z, k〉 the circuit to
accept 〈z, k〉 consists of a single oracle gate with inputs z1, ..., z|z| ordered left
to right. Then 〈z, k〉 ∈ C iff there is a weight k work accepted by the gate
(i.e. in A). It is routine then to build A to meet

Re,n: Either φe is not total ,or
there is an 〈x, k〉 such that ΦA; 〈x, k〉) 6= C(〈x, k〉),or

the running time is incorrect.

To do this we assign Re,n some row k = k(n) with mk > O(mn). Then we
meet Re,n as follows. Wait till φe(k) ↓. Then find an x of sufficient length as
not to injure other requirements, and so that |x|k exceeds φe(k)|x|n. We can
then diagonalize via 〈x, k〉 in the standard way, using the string not addressed
in the A computation of length |x| (if it is the case that Φe is outputting 0),
or doing nothing as the case may be but then restraining the result so as
not to be disturbed by future actions. The strategies combine sequentially
as usual and the result follows. Thus we have for each of the reducibilities
(noting that the above can be easily modified for the others):

31

(5.3) Theorem There is a recursive oracle A such that W [1]A 6= FPTA (for
any of the reducibilities).

Now we address some remarks to the above. On the positive side it shows
that in relativised worlds (with the model used) that W [1] can differ from
mon − W [1] although they are the same in the real world. (Here mon −
W [t] denotes the version of W [t] obtained by only considering circuits with
no inverters.) Thus the give an example of the failure of relativization, or
perhaps suggests that other relativization models might be more appropriate
(more on this later.) Furthermore standard techniques would seem to show
that this oracle failure will hold relative to a random oracle. This gives an
amusing example of the failure of the battered random oracle hypothesis.

On the negative side, the above is rather unsatisfying. The separation is
achieved not by analysing the structure of the circuits involved but rather by
the manner by which a procedure can address information from an oracle.
In a way it clearly demonstrates the shortcomings of the Baker-Gill-Solovay
results too. We feel that it would be infinitely more satisfying to get a
separation achieved more by the combinatorics and less on the oracle. This
might well lead to real insight into the issues involved.

Open Questions, Generalizations, etc

There are several obvious generalizations one could pursue. One could
look at parameterizations of the hierarchy, PSPACE, #P etc. This seems
a very interesting exercise and we have some results with Karl Abrahamson
[ADF] on games and the number of moves to win and PSPACE. Here one
asks that the parameterization works in space O(|x|α) for a fixed alpha. We
also have some partial results on analogues of DP . Here Valiant-Vazirani[VV]
works for the analogue DP for W [P] but not at the W [1] level and weight
is lost in the procedure they use to take the hashed formula and convert to
CNF .

Quite aside from the above we feel that central questions in the area
include whether collapse propogates upward in the hierarchy (i.e. W [t] =
W [t+1] implies W [t] = W [u] for all u > t.) nother question is to understand
the exact relationship of the concepts here with classical notions such as

32

NP . We have some contributions in this area also to be found in [ADF].Also
things such as f.p. crypto would seem very worthwhile. After all one really
needs is feasibly one way functions.

Finally the degree structure of, in particular W (≤uT) and W (≤nT) remains
to be explored.

References

[ADF] K. Abrahamson, R. Downey, and M. Fellows, “Fixed Parameter Tractabil-
ity and Completeness IV: W [P] and PSPACE,” to appear.

[ADF2] K. Abrahamson, R. Downey, and M. Fellows,“Fixed Parameter
Intractability II,” in STACS‘93, (1993) 374-385.

[AS] K. Ambos-Spies, “On the Structure of the Polynomial Degrees of Re-
cursive Sets,” Habilitationschrift, Universitat Dortmund, 1984.

[AN] K. Ambos-Spies and A. Nies, “The Theory of The Polynomial Time
Many-One Degrees is Undecidable,”to appear.

[AN2] K. Ambos-Spies, A. Nies, and R.A. Shore, “The Theory of the Recur-
sively Enumerable Weak Truth Table Degrees is Undecidable,”to appear.

[BGS] T. Baker, J. Gill, and R. Solovay, “Relativizations of the P =?NP
Question,” Siam J. Comput. 4(1975), 431-442.

[BDG] J. Balcazaar,J. Diaz, and J. Gabarro,“ Structural Complexity” Vol-
umes 1 and 2 Springer Verlag (1987,1989).

[BG] J. F. Buss and J. Goldsmith, “Nondeterminism Within P ,” to appear,
SIAM J. Comput.

[Bo] H. L. Bodlaender, “On Disjoint Cycles,” Technical Report RUU-CS-90-
29, Dept. of Computer Science, Utrecht University, Utrecht, The Nether-
lands, August 1990.

[CD] P. Cholak and R. Downey,“Undecidability and Definability for Param-
eterized Polynomial Time Reducibilities,”(to appear) Logical Methods (ed.

33

Crossley, Remmel, Shore and Sweedler) Birkhauser, Boston.

[Do] R.Downey, “Nondiamond Theorems for Polymomial Time Reducibility,”
J.C.S.S. 45 (1992) 385-395.

[DF1] R. Downey and M.Fellows, “Fixed Parameter Tractability and Com-
pleteness, ” Congressus Numerantium 87 (1992) 161-187.

[DF2] R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness I: Basic Results,” to appear.

[DF3] R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness II: On Completeness for W [1],” to appear.

[DF4] R. Downey and M. Fellows,“Fixed Parameter Tractability and Com-
pleteness,” Monograph in Preparation.

[DF5] R. Downey and M. Fellows,“Feasible Parameterized Tractability,” to
appear, Feasible Mathematics II (ed. Clote and Remmel) Birkhauser,
Boston.

[FL1] M. Fellows and M. Langston,“On Search, Decision, and the Efficiency
of Polynomial Time Algorithms,” in STOC’89, (1989) 501-512.

[FL2] M. Fellows and M. Langston,“An Analogue of the Myhill-Nerode The-
orem and It’s Use in Computing Finite Basis Characterizations,”in FOCS’89
(1989) 520-525.

[GJ] M. Garey and D. Johnson, Computers and Intractability, Freeman,
San Francisco, 1979.

[La] R. Ladner,“On the Structure of Polynomial Tine Reducibility,” JACM,
22 (1975) 155-171.

[Me] K. Melhorn,“Polynomial and Abstract Subrecursive Classes,” JCSS, 12
(1976) 147-178.

[RS1] N. Robertson and P. Seymour,“Graph Minors XIII: The Disjoint Paths
Problem,” to appear J. Comb. Th. B.

34

[RS2] N. Robertson and P. Seymour,“Graph Minors XV: Wagner’s Conjec-
ture,” to appear, J. Comb. Th. B.

[Sh] A. Shamir,“IP=PSPACE,” FOCS 31 (1991) 145-152.

[Sho] J. Shinoda, Personal Communication.

[SS] J. Shinoda and T. Slaman, “On the Theory of PTIME Degrees of
Recursive Sets, J.C.S.S. 41 (1990) 321-366.

[ShS] R. Shore and T. Slaman, “The P -T -Degrees of Recursive Sets; Lattice
Embeddings, Extensions of Embeddings, and the Two Quantifier Theory,”
Theoretical Computer Science 97 (1992) 263-284.

[St] L. Stockmeyer, “Planar 3-Colourability isNP -Complete,” SIGACT News,5(1973)
19-25.

[VV] L.G. Valiant and V.V. Vazirani, “NP is as easy as detecting unique
solutions,”Theoretical Computer Science 47 (1986), 85-93.

35

