
Networks, Vol. 46(3), pp. 124-135, 2005

Fixed-Parameter Tractability and Data Reduction

for Multicut in Trees∗

Jiong Guo and Rolf Niedermeier

Institut für Informatik,

Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2,

D-07743 Jena, Germany.

{guo,niedermr}@minet.uni-jena.de.

May 26, 2005

Abstract

We study an NP-complete (and MaxSNP-hard) communication

problem on tree networks, the so-called Multicut in Trees: given an

undirected tree and some pairs of nodes of the tree, find out whether

there is a set of at most k tree edges whose removal separates all given

pairs of nodes. Multicut has been intensively studied for trees as

well as for general graphs mainly from the viewpoint of polynomial-

time approximation algorithms. By way of contrast, we provide a

simple fixed-parameter algorithm for Multicut in Trees showing

∗Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research

group PIAF (fixed-parameter algorithms), NI 369/4. Parts of this work have been done

while the authors were at the Universität Tübingen.

1

Networks, Vol. 46(3), pp. 124-135, 2005

fixed-parameter tractability with respect to parameter k. Moreover,

based on some polynomial-time data reduction rules which appear to

be of particular interest from an applied point of view, we show a

problem kernel for Multicut in Trees by an intricate mathematical

analysis.

Keywords. NP-hard problems, Multicut in Trees, exact algo-

rithms, fixed-parameter tractability, data reduction rules, problem ker-

nel.

1 Introduction

Many hard network problems become easy when restricted to trees. There

are, however, notable exceptions of important graph problems that remain

hard even on trees. A well-known example is the Bandwidth Minimiza-

tion problem restricted to trees of maximum node degree three, where it

remains NP-complete [17]. In this paper we deal with another well-studied

graph problem that remains NP-complete when restricted to trees [13].

The problem is Multicut in Trees, where we are asked to remove

a minimum number of edges of an unweighted tree in order to disconnect

all pairs of nodes given in a set of “route demands.” We refer to Sect. 2

for the formal definition. See Costa, Létocart, and Roupin [8] for a recent

survey on Multicut problems. It follows from the work of Garg, Vazi-

rani, and Yannakakis [13] that Multicut in Trees is NP-complete and

MaxSNP-hard. Whereas the latter implies that polynomial-time approxi-

mation schemes are out of reach, a factor-2 polynomial-time approximation

algorithm is known [13]. By way of contrast, we investigate the exact solv-

ability of this problem by exponential-time algorithms.

Exact algorithms for NP-hard problems have become a flourishing field

2

Networks, Vol. 46(3), pp. 124-135, 2005

of research [15, 24]. In particular, fixed-parameter algorithms may often be

seen as valuable alternatives to approximation algorithms [9, 10, 11, 12, 18,

19]. The basic idea is to try to derive exact algorithms with a combinatorial

explosion (i.e., exponential running time factor) that can be confined to some

(hopefully small) problem parameters. As to fixed-parameter algorithms for

Multicut in Trees, we are aware of only one result concerning a com-

pletely different “parameterization.” For the more general edge-weighted

case of Multicut in Trees with respect to the parameter d := “maximum

number of paths passing through a node or an edge,” a fixed-parameter

dynamic programming algorithm derives from our very recent algorithm for

the so-called “Tree-like Weighted Set Cover” [14]. The corresponding

combinatorial explosion amounts to 3d. By way of contrast, for (unweighted)

Multicut in Trees we give a fixed-parameter algorithm for the parameter

k := “number of edges that are removed.” The corresponding combinatorial

explosion amounts to 2k. Moreover, we provide an in-depth analysis on data

reduction by preprocessing for Multicut in Trees. Altogether, we show

that Multicut in Trees is amenable to two core techniques of parame-

terized algorithm design—bounded search trees and reduction to a problem

kernel. The main mathematical contribution of this paper is the derivation

of the bound on the problem kernel.

Since our main technical result is the derivation of a polynomial-time

problem kernelization for Multicut in Trees, let us discuss the gen-

eral issue in more detail. Quoting Fellows [11, Page 9] from one of his

recent surveys, “data reduction and kernelization rules are one of the pri-

mary outcomes of research on parameterized complexity.” It has become

commonplace now, going back to work of Cai et al. [5], that every fixed-

parameter tractable problem is kernelizable. This observation exclusively

3

Networks, Vol. 46(3), pp. 124-135, 2005

relies on asymptotic mathematical considerations concerning the running

time bounds, though, and it is of no algorithmic or practical use. Hence,

the usefulness of problem kernelization is tied to the concrete development

of effective data reduction rules that work in polynomial time and, for in-

stance, can be used in a preprocessing phase to shrink the given problem

instance1. As a matter of practical experience, we are far from being allowed

to expect that showing fixed-parameter tractability “automatically” brings

along data reduction rules for a problem kernelization. In fact, many fixed-

parameter tractable problems still await the development of effective data

reduction rules. Weihe [22, 23] gave a striking example for the effectiveness

of data reduction rules for a domination-like graph problem occurring in the

context of railway optimization. Two simple data reduction rules followed

by simple brute-force search on small isolated components sufficed to opti-

mally solve all real-world instances he considered. The “drawback” is that

his rules obviously do not suffice to mathematically prove a problem kernel

for the considered problem—in fact, according to parameterized complex-

ity theory [10], the considered problem is fixed-parameter intractable and,

because of that, will not allow for a problem kernel in the strict mathe-

matical sense following the formal definition given in Section 2. By way of

contrast, for the fixed-parameter tractable graph problem Vertex Cover,

there is even a linear size problem kernel [1, 6] that can be computed in

polynomial-time based on efficient data reduction.

In this paper, we provide a seemingly first example for a problem kernel

of size exponential with respect to parameter k (more precisely, size O(k3k))

1Observe, however, that as a matter of theoretical [20] as well as practical experience,

data reduction rules are not only useful in a preprocessing phase but should be applied

again and again during the whole solution process.

4

Networks, Vol. 46(3), pp. 124-135, 2005

where it seems hard to show a polynomial or even linear size problem ker-

nel. At first glance, this seems a little disappointing because the size of

the problem kernel exceeds the size of the search tree we derive (O(2k)).

However, firstly, one has to take into account that Multicut in Trees

is a more general problem than Vertex Cover, already making problem

kernelization a harder thing to do. Secondly, the developed data reduction

rules are of comparable simplicity as the ones developed by Weihe for his

problem such that we nevertheless may expect a strong practical impact of

our rules. Observe that all our bounds are purely worst-case results (rely-

ing on very special or even artificial cases that may very rarely occur) and

the practical experiences for real-world or other test data sets may be much

better. Thirdly, our extensive worst-case analysis of the problem kernel size

and the discovered “worst-case structures” may help to spot future points

of attack for improved kernelization strategies etc. on the one hand or to

get a better understanding of what really makes the problem so hard on

the other hand. Fourthly, we consider it as a worthwhile task of also purely

mathematical interest to show upper size bounds on problem kernels. It

took us a significant amount of time until we were able to prove the above

stated worst-case bound on the problem kernel and we conjecture that it

will be a hard task to reduce this bound to a polynomial in k.

2 Preliminaries

We prove fixed-parameter tractability results for an NP-complete problem.

Formally, a (parameterized) problem is fixed-parameter tractable if it has a

solution algorithm that runs in O(f(k) · nc) time, where f is an arbitrary

computable function only depending on an input parameter k, n is the

5

Networks, Vol. 46(3), pp. 124-135, 2005

problem size, and c is a constant [10, 19] (see [9, 11, 12, 18] for recent

surveys). A core tool in the development of fixed-parameter algorithms are

data reduction rules, often yielding a reduction to a problem kernel. Here,

the goal is, given any problem instance I with parameter k, to transform

it in polynomial time into a new instance I ′ with parameter k′ such that

the size of I ′ is bounded by a function depending only on k′, k′ ≤ k, and

(I, k) has a solution iff (I ′, k′) has a solution. See Abu-Khzam et al. [1] for

a recent and thorough investigation of reduction to a problem kernel (also

called kernelization) for the best-studied parameterized problem Vertex

Cover (the problem parameter there being the size of the vertex cover set)

from a theoretical as well as a practical side.

We need some special notation concerning networks (trees). We often

contract an edge e. Let e = {v,w} and let N(v) and N(w) denote the sets

of neighbors of v and w, respectively. Then, contracting e means that we

replace v and w by one new node x and we set N(x) := (N(v) ∪ N(w)) \

{v,w}. Using an adjacency list representation of graphs, edge contraction

can be done in constant time. We occasionally consider paths P1 and P2

in the tree and we write P1 ⊆ P2 when the node set (and edge set) of P2

contains that of P1.

The (unweighted) Multicut in trees problem is defined as follows:

Input: An undirected tree T = (V,E), n := |V |, and a collec-

tion H of m pairs of nodes in V , H = {(ui, vi) |ui, vi ∈ V, ui 6=

vi, 1 ≤ i ≤ m}.

Task: Find a subset E′ of E of minimum size whose removal

separates each pair of nodes in H.

Note that by removing edges a tree decomposes into subtrees forming a

6

Networks, Vol. 46(3), pp. 124-135, 2005

forest. Then, two nodes are separated if they are in different trees of the

forest. An edge subset E′ of E as specified above is called a multicut. We

refer to a pair of nodes (ui, vi) ∈ H as a demand path P due to the fact that,

in a tree, the path is uniquely determined by ui and vi. To turn Multicut

in Trees into a parameterized problem, we will add a nonnegative integer k

as a further input and we replace the above task by the following one.

Task: Find a subset E′ of E with |E′| ≤ k such that the removal

of E′ separates each pair of nodes in H.

Multicut in Trees was shown to be NP-complete and MaxSNP-hard even

for an input tree being a star [13]2. Garg, Vazirani, and Yannakakis [13]

gave a factor-2 approximation algorithm that also works for the more gen-

eral case with edge weights. Călinescu, Fernandes, and Reed [7] provided

a polynomial-time approximation scheme (PTAS) for finding unweighted

multicuts in graphs with bounded degree and bounded treewidth. Very re-

cently, as a corollary to a result for “Tree-like Weighted Set Cover”

we gave a fixed-parameter algorithm for weighted Multicut in Trees,

solving the problem optimally in O(3d ·mn2) time [14]. Herein, parameter d

denotes the maximum number of paths passing through a node or an edge

of the given tree. Here, we complement the above results by showing fixed-

parameter tractability for Multicut in Trees with respect to the perhaps

most natural parameterization—the parameter k now being the size of E′.

Our exact solution algorithm has the exponential factor 2k. The mathe-

matically most demanding part, however, is to show that few simple and

efficient data reduction rules running in polynomial time lead to a problem

2More specifically, this special case is shown to be equivalent to Vertex Cover, also

with respect to approximability [13].

7

Networks, Vol. 46(3), pp. 124-135, 2005

kernel. Finally, we mention in passing that Anand et al. [4] proved a fixed-

parameter tractability result for the related multicommodity flow problem

in trees. More specifically, for the parameter l referring to the “rejected

flows,” they have the combinatorial explosion 2ll! in the super-polynomial

part of the complexity of their fixed-parameter algorithm.

3 A Simple Algorithm and First Data Reduction

Rules

In this section we start with easy observations concerning the fixed-parameter

tractability of Multicut in Trees. In particular, we sketch a simple search

tree with size bounded above by 2k—this size bound seems hard to improve,

though.

3.1 Bounded Search Tree Algorithm

We show the fixed-parameter tractability of Multicut in Trees by giving

a simple depth-bounded search tree of size at most 2k: Consider an instance

of Multicut in Trees with an undirected and unrooted tree T and a

collection of node pairs H. We first root T at an arbitrary node. Then, for

each node pair (u, v) ∈ H, we find the least common ancestor of u and v,

i.e., the node w that is an ancestor of both u and v and that has the greatest

depth in T measured by the distance from the root. Observe that w has

to be on the unique path between u and v. Then, we process the node

pairs in H in the non-ascending order of the depth of their least common

ancestors. For a node pair u and v which is not yet separated, if the least

common ancestor w is one of u and v, then we delete the edge which is

8

Networks, Vol. 46(3), pp. 124-135, 2005

incident to this node and lies on the uniquely determined path between u

and v; otherwise, the path between u and v has two edges incident to w.

We branch into two cases, each case representing the deletion of one of the

two edges. After deleting an edge, we remove all non-connected node pairs

from H and then proceed with the next node pair in H. Since only k edge

deletions are allowed, we have a bounded search tree of size at most 2k. This

results in the following theorem.

Theorem 1. Multicut in Trees can be solved in O(2k ·mn) time, where

k denotes the maximum number of tree edges that may be removed.

Proof. The correctness of the algorithm follows directly from its description.

At each node of the search tree, we delete all node pairs from H which are

no longer connected. This can be clearly done in O(mn) time.

3.2 Parameter-Independent Data Reduction Rules

The following four simple data reduction rules are of central importance for

deriving a problem kernel for Multicut in Trees in the next section. We

can often observe that data reduction rules are very useful in practice. In

particular, this is true for data reduction rules that are independent of the

parameter k as, for example, the ones given in the case of the NP-complete

Dominating Set problem [2, 3]. We call a data reduction rule independent

of the parameter k if it can be applied without any knowledge of the value

of k. Four more data reduction rules whose applicability depends on the

parameter k will be given in Section 4.

Idle Edge. If there is a tree edge with no demand path passing through it,

then contract this edge.

9

Networks, Vol. 46(3), pp. 124-135, 2005

Unit Path. If a demand path has length one, then the corresponding edge e

has to be in E′. Contract e and remove all demand paths passing

through e and decrease the parameter k by one.

Dominated Edge. If all demand paths that pass through edge e1 of T also

pass through edge e2 of T , then contract e1.

Dominated Path. If P1 ⊆ P2 for two demand paths, then delete P2.

We term such reduction rules as correct if a Multicut in Trees in-

stance (T,H) with parameter k has a yes-solution iff the newly generated

instance (T ′,H ′) with parameter k′ has a yes-solution. Observe that k′ < k

only if the Unit Path rule applies.

Lemma 1. The above four reduction rules are correct and they can be exe-

cuted in O(mn3 + m3n) worst-case time such that finally no more rules are

applicable.

Proof. The correctness of the Idle Edge and Unique Path rules is easy to

observe. The Dominated Edge rule is correct since, if all demand paths

that pass through edge e1 also pass through edge e2, then adding e1 to E′

is never better than adding e2 to E′. The Dominated Path rule follows

from the observation that if P1 ⊆ P2 for two demand paths, then each edge

removal which destroys P1 also destroys P2.

Next, we estimate the running time for each particular rule. Then, we

estimate the maximum overall running time of successive applications of

these rules until none of them applies any more.

Idle Edge. During a depth-first traversal of the tree, we clearly can mark

each edge e as to whether or not a path passes through e. Accordingly, e

may be contracted. This is doable in O(mn) time.

10

Networks, Vol. 46(3), pp. 124-135, 2005

Unit path. Inspecting each demand path, this rule is executable in O(m)

time.

Dominated Edge. Basically, for each pair of edges in the tree we compare

their corresponding sets of demand paths, i.e., the demand paths passing

through these edges, respectively. Doing this for all of the O(n2) pairs, each

comparison taking O(m) time, we end up with O(mn2) time in total.

Dominated Path. Comparing all O(m2) pairs of demand paths, in each

case we basically have to compare two paths of length O(n), leading to

O(m2n) running time.

Eventually, we have to estimate for each rule how often it may apply.

Clearly, we have O(n) possible applications for the first three rules. As to

the fourth rule, O(m) is an upper bound for the possible number of applica-

tions. Altogether, we thus can conclude that after O(mn3+m3n) worst-case

running time for applying the rules, none of them will be applicable any

longer.

Obviously, the running time bound of Lemma 1 gives a very rough esti-

mate. In particular, it is conceivable that the reduction rules will perform

much better in practical implementations and tests. This is a typical ob-

servation also for other data reduction rules with relatively high polynomial

worst-case running times, as, for example, was observed for the data reduc-

tion rules for Dominating Set [2, 3].

4 Problem Kernel for Multicut in Trees

In this section we introduce four more data reduction rules and, based on

these rules, we prove the problem kernel for Multicut in Trees by giving

11

Networks, Vol. 46(3), pp. 124-135, 2005

an upper bound on the size of the reduced input tree. Recall that a param-

eterized problem such as Multicut in Trees is said to have a problem

kernel if, after the application of the data reduction rules, the resulting in-

stance (T,H) with parameter k has size f(k) for a function f depending only

on k. In order to simplify the presentation, we adopt a stepwise manner.

That is, first we show a bound for a very special case of a tree, a caterpillar,

and then for a spider of caterpillars which is also a special case of a tree but

can contain several caterpillars as subtrees. Finally, a bound will be given

for general trees, implying the main result of this work.

4.1 Some Notations and Definitions

In the next subsections the bound on the size of the input tree T = (V,E)

(and, thus, also the set of demand pairs H) will be achieved by first par-

titioning the nodes of T into six disjoint sets and then giving for each of

these node sets a bound on its size. For an undirected and unrooted tree T ,

we distinguish two sorts of nodes, leaves having only one incident edge and

inner nodes having more than one incident edge. The sets of leaves and

inner nodes are denoted by L and I, respectively. For an inner node v, we

call the leaves (if existing) adjacent to it v’s leaves.

The desired partition of V is then defined as follows:

• I1 := { v ∈ I | |N(v) ∩ I| ≤ 1};

Observe that, if we delete all leaves from T , the nodes in I1 become

leaves in the resulting tree.

• I2 := { v ∈ I | |N(v) ∩ I| = 2};

Note that I2 6= ∅ only if |I1| ≥ 2.

12

Networks, Vol. 46(3), pp. 124-135, 2005

x1

x2

x3

x4

x5

y1 y2v1 v2 v3 v4 v5

w1 w2 w3 w4 w5 w6 w7

Figure 1: A caterpillar: There is no I3-node and no L3-leaf. Nodes y1

and y2 are the two I1-nodes. In particular, L1 = {x1, x2, x3, x4, x5}, I2 =

{v1, v2, v3, v4, v5}, and L2 = {w1, w2, w3, w4, w5, w6, w7}.

• I3 := { v ∈ I | |N(v) ∩ I| ≥ 3};

Set I3 is empty iff, by deleting all leaves from T , the resulting tree is

a path.

• L1 := { v ∈ L | N(v) ⊆ I1};

• L2 := { v ∈ L | N(v) ⊆ I2};

• L3 := { v ∈ L | N(v) ⊆ I3};

We use the terms Li-leaves and Ii-nodes for 1 ≤ i ≤ 3 in the obvious

way.

The definitions of the special trees considered in the next subsections—

caterpillar and spider of caterpillars—are as follows.

Definition 1. Caterpillar

Given a tree T = (V,E), we partition V as described above. A tree T =

(V,E) is a caterpillar if |I1| = 2 and |I3| = 0. Then, the inner nodes of I2

form a path between the two nodes in I1. We call this path the backbone of

the caterpillar.

Definition 2. Spider of Caterpillars

Given a tree T = (V,E), we partition V as described above. A tree T =

13

Networks, Vol. 46(3), pp. 124-135, 2005

x1
x2

x3

x4

x5

x6 x7
x8

z1

y1 y2

y3

v1
v2

v3
v4

v5
v6

v7
v8

v9

v10

u1

u2

w1

w2
w3

w4

w5

w6

w7

Figure 2: A spider of caterpillars: Node z1 is the only I3-node with L3 =

{u1, u2}. I1 = {y1, y2, y3}, I2 = {v1, . . . , v10}, L1 = {x1, . . . , x8}, and L2 =

{w1, . . . , w7}. The oval depicts a maximal caterpillar component.

(V,E) is a spider of caterpillars if |I3| = 1. Then, the inner nodes of I

induce a spider with the I3-node as the center node. The paths induced by

the I2-nodes are called the backbones of the spider.

Figure 1 and Figure 2 display examples for a caterpillar and a spider of

caterpillar, respectively.

Finally, we define the “caterpillar component” of a tree as follows:

Definition 3. Given a tree T = (V,E), we partition V as described above. A

caterpillar component of T is an induced subtree of T exclusively consisting

of I2-nodes and their L2-leaves.

Note that a caterpillar component can be contained in other caterpillar

components. We call a caterpillar component maximal if it is not con-

tained in any other caterpillar component. See Figure 2 for an example of a

14

Networks, Vol. 46(3), pp. 124-135, 2005

maximal caterpillar component. Clearly, the set of all maximal caterpillar

components of a tree is unique and no two maximal caterpillar components

intersect each other. We say that an I1-node or an I3-node is adjacent to a

caterpillar component if it is adjacent to an I2-node of the component.

4.2 Further Parameter-Dependent Data Reduction Rules

In this subsection we extend our set of so far four reduction rules (Sec-

tion 3.2) by four more rules. We need these rules to show the bound on

the size of the reduced input tree, the problem kernel. Note, however, that

these rules depend on the parameter value k.

Disjoint Paths. If an instance of Multicut in Trees has more than k

pairwise edge-disjoint demand paths, then there is no solution with

parameter value k.

Overloaded Edge. If more than k length-two demand paths pass through

an edge e, then contract e, remove all demand paths going through e,

and decrease the parameter k by one.

Overloaded Caterpillar. If there are k + 1 demand paths (v, u1), (v, u2),

. . ., (v, uk+1) such that nodes u1, . . . , uk+1 belong to the same cater-

pillar component that does not contain v, then (one of) the longest of

these demand paths can be deleted.

Overloaded L3-Leaves. If there are k + 1 demand paths (v, u1), (v, u2),

. . ., (v, uk+1) such that nodes u1, . . . , uk+1 are all L3-leaves of an I3-

node u, then remove all these demand paths and add a new demand

path between v and u.

15

Networks, Vol. 46(3), pp. 124-135, 2005

Lemma 2. The above four reduction rules are correct and they can be ex-

ecuted, together with the four rules in Section 3.2, in polynomial time such

that finally no further rule is applicable.

Proof. Disjoint Paths. The correctness of this reduction rule is obvious

since, for every two edge-disjoint demand paths, we need to add at least two

edges to E′. The maximum edge-disjoint paths problem can be solved for

trees in polynomial time [13].

Overloaded Edge. The correctness of this rule follows from the fact that

if edge e were not contracted, then one would need to remove more than

k edges in order to cut all length-two demand paths passing through e. Note

that the Overloaded Edge rule is “similar in spirit” to the removal of high-

degree vertices in the well-known data reduction rule for Vertex Cover

attributed to Buss [10]. It can be clearly done in O(n · m) time.

Overloaded Caterpillar. In order to cut more than k demand paths by

removing only k edges one has to remove an edge that is covered by at least

two demand paths. Then, however, a longest demand path is always cut and,

hence, it can be omitted. Since there can be O(n2) caterpillar components,

one for each node pair, this rule can be done in O(n3 · m) time.

Overloaded L3-Leaves. In order to cut these more than k demand paths

by removing only k edges one has to remove at least one edge on the path

between u and v. Then, cutting these demand paths is equivalent to cutting

a demand path between u and v. This rule can clearly be done in O(n · m)

time, since there are at most m demand paths starting at a node.

Together with the polynomial running time of the four rules in Sec-

tion 3.2, we get the polynomial running time for all these rules.

16

Networks, Vol. 46(3), pp. 124-135, 2005

Our main result concerning problem kernelization refers to reduced in-

stances of Multicut in Trees:

Definition 4. We call an instance of Multicut in Trees reduced when

none of the eight given data reduction rules applies.

4.3 Some Observations on Reduced Instances

With the data reduction rules given in Sections 3.2 and 4.2, we arrive at

the following observations on a reduced instance of Multicut in Trees.

Without loss of generality, we assume that the reduced tree instance has at

least three nodes.

Lemma 3. In a reduced instance, each I1-node has at least two L1-leaves

adjacent to it.

Proof. Consider an I1-node u of the reduced instance. It has at least one

L1-leaf. Suppose that u has only one L1-leaf called v. Since the instance has

at least three nodes, there is another node w 6= v adjacent to u. From the

assumption that u has only one L1-leaf, w is an inner node. Due to the Idle

Edge rule there must be a demand path starting at v. Furthermore, because

of the Unit Path rule all demand paths going through edge {u, v} have to

go through edge {u,w} as well. This, however, means that the Dominated

Edge rule could be applied to {u, v}, a contradiction to the fact that the

given instance is reduced.

Lemma 4. In a reduced instance, for each L1-leaf v adjacent to an I1-

node u, there exists a demand path between v and another L1-leaf of u.

Proof. Assume that there is an L1-leaf v adjacent to u with u ∈ I1 and

there is no demand path between v and other L1-leaves of u. Note that by

17

Networks, Vol. 46(3), pp. 124-135, 2005

Lemma 3 u has at least two L1-leaves. Since the instance is reduced, due to

the Idle Edge rule there must be a demand path starting at v. Moreover, the

Unit Path rule implies that each demand path starting at v then also has to

pass an edge different from {u, v}. This implies that u has a uniquely deter-

mined inner node w adjacent to it and all demand paths starting at v also

pass {u,w}. But then the Dominated Edge rule would apply to edge {u, v},

a contradiction to the fact that the instance is reduced.

Lemma 5. In a reduced instance, there are at most k edge-disjoint demand

paths.

Proof. The claim follows directly from the Disjoint Paths rule.

Lemma 6. In a reduced instance, there are at most k2 length-2 demand

paths.

Proof. The claim follows from the fact that there are at most k edge deletions

allowed and, due to the Overloaded Edge rule, deleting one edge can destroy

at most k length-2 demand paths.

Lemma 7. In a reduced instance, there can be at most 2k2 L1-leaves.

Proof. This claim directly follows from Lemma 4 and Lemma 6.

Lemma 8. In a reduced instance, there can be at most k I1-nodes and at

most k − 1 I3-nodes.

Proof. Lemma 3 and Lemma 4 imply that for each I1-node, there is at

least one length-2 demand path between two of its L1-leaves. Moreover,

the length-2 demand paths for different I1-nodes are pairwise edge-disjoint.

Then, by Lemma 5, there can be at most k I1-nodes. Furthermore, consider

18

Networks, Vol. 46(3), pp. 124-135, 2005

the subgraph T ′ of the input tree T that is induced by the inner nodes of T .

It is clear that T ′ is a tree and the leaves of T ′ correspond one-to-one to the

I1-nodes of T . Since, in a tree with k leaves, there are at most k − 1 inner

nodes having at least three neighbors, it is easy to derive that |I3| ≤ k−1.

Now, with Lemma 7 and Lemma 8, it “only” remains to show that the

sizes of sets I2, L2, and L3 of a reduced Multicut in Trees instance can

be bounded by a function in k. To this end, we need the following two

lemmas which are decisive for showing the size bound of L3 and I2 ∪ L2,

respectively.

Lemma 9. For each I3-node u in a reduced instance, each of its L3-leaves

is the starting point of at least two demand paths which pass through two

distinct neighbors of u.

Proof. Consider an L3-leaf v of u. If only one demand path starts at v,

then either the Unit Path rule or the Edge Domination rule would apply to

edge {u, v}. If all demand paths starting at v passed only through one neigh-

bor w 6= v of u, then the Edge Domination rule would apply to edges {u, v}

and {u,w}. This is a contradiction to the fact that the input instance is

reduced.

Lemma 10. 1. In a reduced instance, an I2-node v having no L2-leaf

adjacent to it has to be a starting point of at least two demand paths,

passing through two distinct inner nodes adjacent to v.

2. In a reduced instance, for an I2-node v with some L2-leaves adjacent

to it, each of these L2-leaves has at least two demand paths passing

through two distinct neighbors of v.

19

Networks, Vol. 46(3), pp. 124-135, 2005

Proof. 1. Consider an I2-node v with two adjacent inner nodes u and w.

If there is no demand path starting at v and passing through u, then all

demand paths passing through edge {u, v} also pass through edge {v,w}

and, hence, the Edge Domination rule would apply. This contradicts the

fact that the input instance is reduced. If there is no demand path starting

at v and passing through w, an analogous argument applies.

2. Consider an I2-node v with two adjacent inner nodes u and w where v

has r L2-leaves w1, w2, . . . , wr. Note that due to the Unit Path rule all

demand paths have length at least two. If there is only one demand path

starting at wi, 1 ≤ i ≤ r, then clearly the Edge Domination rule applies to

the edge {v,wi}. The Edge Domination rule also applies to {v,wi} when

all demand paths starting at wi either pass through edge {u, v}, or {v,w},

or {v,wj} for i 6= j.

In the following we prove the size of the problem kernel first for cater-

pillars, then for spiders of caterpillars, and finally for general trees. More

precisely, in the case of caterpillars where there is neither an I3-node nor a

L3-leaf, we show how to bound the size of I2 ∪ L2. In the case of spiders

of caterpillars where there is only one I3-node, we present the basic idea for

showing the size bound for L3. The problem kernel size for general trees

follows by combining the arguments developed for the first two cases.

4.4 Problem Kernel for Caterpillars

With the observations made in Section 4.3, we show the problem kernel for

Multicut in Trees when the input tree is restricted to be a caterpillar3.

3
Multicut in Caterpillars is also NP-complete, even if the tree nodes have at most

five neighbors [16]. The reduction is very similar to the one used by Călinescu et al. [7]

20

Networks, Vol. 46(3), pp. 124-135, 2005

x1

x2

xi

x′

1

x′

2

x′

j

y1 y2

v1 v2 vm1
vm2

vm3
vm4

vm5
vm6

vm

w1 w2 wl wp

P1

P2 P3 P4 P5 P6 P7

Figure 3: An instance of Multicut in Caterpillars. There are m I2-

nodes, v1, . . . , vm, and p L2-leaves, w1, . . . , wp. The backbone of this caterpillar is

the path between v1 and vm. The dashed lines denote seven edge-disjoint demand

paths, P1, . . . , P7.

Consider a reduced instance with a caterpillar T = (V,E), i.e., there are

no I3-nodes, no L3-leaves, and there are exactly two I1-nodes, y1 and y2,

as illustrated in Figure 3. Since the number of L1-leaves is bounded by 2k2

(Lemma 7), in order to give a bound on the size of V it suffices to show

that |I2| + |L2| is bounded by a function of k.

As illustrated in Figure 3, we assume that the inner nodes of the cater-

pillar are ordered on a line, the first is y1, the last is y2, and the I2-nodes

in between are ordered from left to right in ascending order of their indices.

An I2-node vi is to the right of another I2-node vj if i > j. Furthermore,

we use HI2 to denote the set of the demand paths in H which pass through

at least one I2-node. We define the “right backbone endpoint” of a demand

path in HI2 as the I2-node with highest index among the I2-nodes that

the demand path passes through. The “left backbone endpoint” is defined

symmetrically. In Figure 3, HI2 = {P2, P3, P4, P5, P6}. The left backbone

endpoint of demand path P3 is vm1
and the right backbone endpoint of P3

is vm2
.

By Lemma 5, there can be at most k edge-disjoint demand paths in T .

to show the NP-completeness of Multicut in Binary Trees (Theorem 6.1 in [7]).

21

Networks, Vol. 46(3), pp. 124-135, 2005

In the following, we show that there is a maximum cardinality set of edge-

disjoint demand paths with some special properties. These special properties

are useful for giving a bound on the size of the reduced caterpillar.

Lemma 11. In polynomial time one can find a maximum cardinality set of

edge-disjoint demand paths P := {P1, P2, . . . , Pl} with l ≤ k which has the

following two properties.

Property (1). One demand path is between two L1-leaves of y1 and one is

between two L1-leaves of y2. Let P1 and Pl denote these two demand

paths; then we have {P1, Pl} ⊆ (P \ HI2).

Property (2). If the paths in P ∩ HI2 are ordered in ascending order of

the indices of their left backbone endpoints, i.e., for Pi, Pj ∈ (P ∩HI2)

with i < j, Pi’s left backbone endpoint is to the left of Pj ’s left backbone

endpoint, then, for each Pi ∈ (P ∩ HI2) with 1 < i < l,

• there is no other demand path P ∈ (HI2 \P) such that P is edge-

disjoint to all paths in P \ {Pi} and Pi’s right backbone endpoint

is to the right of P ’s right backbone endpoint;

• there is no other demand path P ∈ (HI2 \P) such that P is edge-

disjoint to all paths in P \ {Pi}, P and Pi have the same right

backbone endpoint, and Pi’s left backbone endpoint is to the left

of P ’s left backbone endpoint.

Proof. Since a maximum cardinality set of edge-disjoint demand paths can

be found in polynomial time [13], we only need to show how to, in polynomial

time, modify an arbitrary maximum cardinality set of edge-disjoint demand

paths P such that it fulfills the above properties.

22

Networks, Vol. 46(3), pp. 124-135, 2005

Property (1). By Lemma 4, there always exists for an I1-node a demand

path between two of its L1-leaves. Without loss of generality, assume that

there is a demand path P between x1 and x2, two L1-leaves of y1. If P con-

tains no demand path between two of y1’s L1-leaves, i.e., P /∈ P, then there

must be a demand path P ′ in P passing through one of the edges {x1, y1}

and {x2, y1}; otherwise, P would be edge-disjoint to all demand paths in P,

a contradiction to the maximality of P. Moreover, P ′ cannot end in y1

since T is reduced with respect to the Unit Path rule. Therefore, P ′ has

to pass the edge {y1, v1}. Then, replacing P ′ by P in P, the resulting set

remains a maximum cardinality set of edge-disjoint demand paths.

Property (2). For each Pi ∈ (P ∩ HI2), we can in O(m · n) time find

all demand paths P ∈ (HI2 \ P) which are edge-disjoint to all paths in P \

{Pi}, where m denotes the number of demand paths in H. Let vl
i and vr

i

denote Pi’s left and right backbone endpoints. For each of these paths P

with vl and vr denoting P ’s left and right backbone endpoints, to check

whether vr
i is to the right of vr or vr

i = vr and vl
i is to the left of vl can

be done in constant time. If there exists such a demand path P for Pi,

replace Pi by P ; the demand paths in P remain pairwise edge-disjoint.

Based on a maximum cardinality set of edge-disjoint demand paths P

as given in Lemma 11, we prove the main theorem of this subsection.

Theorem 2. Multicut in Caterpillars has a problem kernel which

consists of a caterpillar containing at most O(kk+1) nodes.

Proof. Suppose that we have computed a maximum cardinality set of edge-

disjoint demand paths P as described in Lemma 11. We assume that P1 is

between x1 and x2, two L1-leaves of y1, and Pl is between x′

1 and x′

2, two

L1-leaves of y2. Note that there can be more than one path in P between

23

Networks, Vol. 46(3), pp. 124-135, 2005

two L1-leaves of y1 (or y2). However, it will be clear from the following

analysis that we can derive a better bound on the size of the caterpillar if

there is more than one path in P between L1-leaves of y1 (or y2). Therefore,

we assume that none of P2, . . . , Pl−1 is between two L1-leaves of y1 or y2. We

use vli and vri
to denote the left and right backbone endpoints of demand

path Pi with 2 ≤ i ≤ l − 1, respectively. Furthermore, we partition the

I2-nodes together with their L2-leaves into 2l−1 sets and bound from above

the size of each set. These sets are

A1 := { vj | 1 ≤ j ≤ l2 } ∪ { their L2-leaves };

A2 := { vj | l2 < j ≤ r2 } ∪ { their L2-leaves };

A3 := { vj | r2 < j ≤ l3 } ∪ { their L2-leaves };

A4 := { vj | l3 < j ≤ r3 } ∪ { their L2-leaves };

...

A2l−2 := { vj | ll−1 < j ≤ rl−1 } ∪ { their L2-leaves };

A2l−1 := { vj | rl−1 < j ≤ m } ∪ { their L2-leaves }.

Informally, the sets with odd indices contain the I2-nodes which are not

on any demand path in P together with the left backbone endpoints of these

demand paths, while the sets with even indices contain the remaining I2-

nodes. Note that some of these sets can be empty since two consecutive

demand paths can share an endpoint. In particular, if P2 (or Pl−1) starts at

an L1-leaf and ends at v1 (or vm), then A2 = ∅ (or A2l−2 = ∅).

First, consider the nodes in A1. By Lemma 10, each I2-node with no L2-

leaf has a demand path starting at it and going to its left, and each L2-leaf

in A1 has a demand path starting at it and going to the left of the adjacent

I2-node. However, a demand path starting at a node v in A1 and ending

24

Networks, Vol. 46(3), pp. 124-135, 2005

at a node left to it cannot end at a node in A1; otherwise, this demand

path would be edge-disjoint to all demand paths in P, which contradicts the

maximality of P. With the same argument, this demand path cannot end

at y1 or one of x3, . . . , xi. Thus, the other endpoint of the demand path can

only be x1 or x2. Since T is reduced, there can be at most 2k demand paths

starting at x1 and x2 and ending at one of the I2-nodes and the L2-leaves

(due to the Overloaded Caterpillar rule). Thus, there can be at most 2k

I2-nodes without L2-leaf and L2-leaves in A1. Since there are at most as

many I2-nodes with L2-leaves as there are L2-leaves, we can conclude that

|A1| ≤ 4k. (1)

This analysis works analogously for A2, A3, . . . , A2l−1. The demand

paths starting at a node in A2 and going to its left cannot end at an A2-node;

otherwise, we have a demand path P which is edge-disjoint to P1 and P3

and which has either a right backbone endpoint to the left of vr2
or a left

backbone endpoint to the right of vl2 , which contradicts the fact that P

has Property (2) in Lemma 11. Then, the demand paths starting at a node

in A2 and going left can have only the nodes in A1, y1, or x1, . . . , xi as the

other endpoint. For a node v in A1, consider the demand paths starting at v

and going right and ending at some I2-nodes or their L2-leaves. Since all

I2-nodes to the right of v together with their L2-leaves induce a caterpillar

component of T and v is outside this caterpillar component, then, using the

fact that T is reduced with respect to the Overloaded Caterpillar rule, there

can be at most k demand paths starting from v and ending at some nodes

to the right of it. Therefore, with |L1| ≤ 2k2 (Lemma 7), we get

|A2| ≤ k · (|{x1, x2, . . . , xi} ∪ {y1}| + |A1|) ≤ k · (2k2 + 1 + |A1|).

25

Networks, Vol. 46(3), pp. 124-135, 2005

Analogously, we have a bound on |Ar| for an arbitrary r with 3 ≤ r ≤ 2l−1,

|Ar| ≤ k · (2k2 + 1 +

r−1∑

j=1

|Aj |). (2)

Therefore,

2l−1∑

j=1

|Aj | =

2l−2∑

j=1

|Aj | + |A2l−1|

(2)

≤
2l−2∑

j=1

|Aj | + k · (2k2 + 1 +

2l−2∑

j=1

|Aj |)

≤ (k + 1) · (
2l−2∑

j=1

|Aj | + 2k2 + 1)

(2)

≤ (k + 1) · (
2l−3∑

j=1

|Aj | + k · (2k2 + 1 +
2l−3∑

j=1

|Aj |) + 2k2 + 1)

= (k + 1)2 · (
2l−3∑

j=1

|Aj | + 2k2 + 1)

≤ (k + 1)2l−2 · (|A1| + 2k2 + 1)
(1)

≤ (k + 1)2l−2(4k + 2k2 + 1)

= O(k2l).

However, this bound can be improved if we take into account the sym-

metry of the caterpillar structure: Observe that the analysis for |A2l−1| can

be done in the same way as for |A1|, the analysis for |A2l−2| can be done in

the same way as for |A2|, and so on. Therefore, the bound on the number

of I2-nodes and L2-leaves is as follows:

26

Networks, Vol. 46(3), pp. 124-135, 2005

|I2| + |L2| =

2l−1∑

j=1

|Aj |

=

l∑

j=1

|Aj | +
2l−1∑

j=l+1

|Aj |

(2)

≤ (k + 1) · (
l−1∑

j=1

|Aj | + 2k2 + 1) + (k + 1) · (
2l−1∑

j=l+2

|Aj | + 2k2 + 1)

≤ (k + 1)2 · (
l−2∑

j=1

|Aj | + 2k2 + 1) + (k + 1)2 · (
2l−1∑

j=l+3

|Aj | + 2k2 + 1)

≤ (k + 1)l−1 · (|A1| + 2k2 + 1) + (k + 1)l−2 · (|A2l−1| + 2k2 + 1)
(1)

≤ (k + 1)l−1(4k + 2k2 + 1) + (k + 1)l−2(4k + 2k2 + 1)

= O(kl+1).

Since there are at most k edge-disjoint paths in P, that is, l ≤ k, |I2| +

|L2| = O(kk+1). Together with |L1| ≤ 2k2, |I1| = 2, and |I3| = |L3| = 0, we

have the claimed problem kernel size.

4.5 Problem Kernel for Spiders of Caterpillars

The next special case of a tree, a spider of caterpillars T (also see Figure 2),

has exactly one I3-node u which is also the central node of the spider induced

by the inner nodes. There are at most k I1-nodes due to Lemma 8 and

thus the number of maximal caterpillar components is bounded above by k.

Each of these maximal caterpillar components is adjacent to u and to one

I1-node. We call the subgraph of T that consists of a maximal caterpillar

component, its adjacent I1-node, and the L1-leaves of this I1-node a semi-

caterpillar. The backbone of a semi-caterpillar then means the path induced

by the I2-nodes in the maximal caterpillar component.

27

Networks, Vol. 46(3), pp. 124-135, 2005

In the following we adapt the analysis in the proof of Theorem 2 to show

the upper-bound on the size of T . Recall that the proof of Theorem 2 is

heavily based on a special maximum cardinality set of edge-disjoint demand

paths as described in Lemma 11. Therefore, we firstly need to show that, in

a spider of caterpillars T , we can also find such special maximum cardinality

sets of edge-disjoint demand paths.

Lemma 12. For each of the semi-caterpillars of a spider of caterpillars T ,

one can in polynomial time find a maximum cardinality set P := {P1, P2, . . . , Pl}

of edge-disjoint demand paths passing through only edges of this semi-caterpillar

which has the following two properties.

Property (1). Let y denote the only I1-node in this semi-caterpillar. Then,

one demand path in P is between two L1-leaves of y. Let P1 denote

this demand path; then we have P1 ∈ (P \ HI2).

Property (2). If the paths in P ∩ HI2 are ordered in ascending order of

the indices of their left backbone endpoints, i.e., for Pi, Pj ∈ (P ∩HI2)

with i < j, Pi’s left backbone endpoint is to the left of Pj ’s left backbone

endpoint, then, for each Pi ∈ (P ∩ HI2) with 1 < i < l,

• there is no other demand path P ∈ (HI2 \P) passing through only

edges of this semi-caterpillar such that P is edge-disjoint to all

paths in P \ {Pi} and Pi’s right backbone endpoint is to the right

of P ’s right backbone endpoint;

• there is no other demand path P ∈ (HI2 \ P) passing through

only edges of this semi-caterpillar such that P is edge-disjoint to

all paths in P \ {Pi}, P and Pi have the same right backbone

endpoint, and Pi’s left backbone endpoint is to the left of P ’s left

28

Networks, Vol. 46(3), pp. 124-135, 2005

backbone endpoint.

Proof. Observe that a semi-caterpillar is a subgraph of a caterpillar. There-

fore, the proof of Lemma 11 can be easily adapted to prove this lemma.

We can then extend Theorem 2 to spiders of caterpillars.

Theorem 3. Multicut in Spiders of Caterpillars has a problem ker-

nel which consists of a spider of caterpillars containing at most O(k2k+1)

nodes.

Proof. For each semi-caterpillar of a spider of caterpillars T , after computing

a maximum cardinality set P of edge-disjoint demand paths as described

in Lemma 12, we can bound from above the size of this semi-caterpillar

by O(k2l) with l = |P| by using the arguments in the proof of Theorem 2.

Note that, since a semi-caterpillar does not have the symmetrical structure

of a caterpillar, we can only give the bounds for each set A1, A2, . . . , A2l−1

one-by-one from A1 to A2l−1. Therefore, |I2 ∪ L2| = O(k2k).

It remains to give a bound on |L3|. Now, let u denote the only I3-node.

By Lemma 6, the number of L3-leaves that have a demand path of length 2

starting at them is bounded by 2k2. Thus, we omit such L3-leaves from

further consideration. At each of the remaining L3-leaves starts at least one

demand path which ends at one node of the semi-caterpillars of T . From

the Overloaded L3-Leaves rule we know that at an arbitrary node v, there

can start at most k demand paths which end at some L3-leaves of u. Thus,

with |L1| ≤ 2k2, |I1| ≤ k, and |I2 ∪ L2| = O(k2k), we have

|L3| ≤ k · |I1 ∪ I2 ∪ L1 ∪ L2| = O(k2k+1).

Altogether, the size of T is bounded by O(k2k+1) and we have the claimed

problem kernel size.

29

Networks, Vol. 46(3), pp. 124-135, 2005

z1

z2

z3

y1 y2

y3 y4

y5

Figure 4: An example of a general tree: I1 = {y1, . . . , y5} and I3 =

{z1, z2, z3}. The tree is rooted at z3. Node z1 has maximum depth among

I3-nodes.

4.6 Problem Kernel for General Trees

Based on the results of Sections 4.4 and 4.5, we have now all results and

techniques in place to develop a problem kernel for Multicut in Trees.

For general trees T , there can be more than one I3-node. We assume that

there is at least one I3-node in T and root T at an arbitrary I3-node. Con-

sider an I3-node having maximum depth in the now rooted tree among all

I3-nodes. Observe that this I3-node together with all adjacent maximal

caterpillar components which are not adjacent to any other I3-nodes, i.e.,

the subtree of T rooted at this I3-node, induces a structure similar to a

spider of caterpillars. With this observation, we process all I3-nodes in a

bottom-up manner and, for each I3-node, we give a bound on the size of the

subtree rooted at it. See Figure 4 for an example.

Theorem 4. Multicut in Trees has a problem kernel which consists of

a tree containing at most O(k3k) nodes.

Proof. First, consider an I3-node u with maximum depth among all I3-

30

Networks, Vol. 46(3), pp. 124-135, 2005

nodes, for instance, z1 in Figure 4. The subtree of T rooted at u, denoted

by T [u], can be seen as a spider of caterpillars with u as the center node.

Moreover, each L3-leaf of u has at least one path starting at it and ending

at a node of T [u] (Lemma 9). Following from the analysis in Section 4.5,

|T [u]| = O(k2lu+1), (3)

where lu denotes the number of maximum edge-disjoint demand paths using

only edges of T [u].

Then, consider the maximal caterpillar component C between u and its

I3-parent v, the first I3-node on the path from u to the root. In Figure 4, z3

is the I3-parent of both z1 and z2. Recall that, in Section 4.5, we bounded

the size of a maximal caterpillar component of a spider of caterpillars based

on the fact that the caterpillar component is adjacent to an I1-node that

has at most 2k2 L1-leaves, i.e., the maximal caterpillar component is in

a semi-caterpillar. Here, the maximal caterpillar component C between u

and v is not adjacent to any I1-node. However, the analysis in the proof

of Theorem 2 can be easily extended to deal with a caterpillar component

adjacent to an I3-node that is the root of a subtree with bounded size. We

can treat C as a caterpillar component adjacent to an I1-node with as many

L1-leaves as the size of the subtree. Then, we partition the nodes of C as

in the proof of Theorem 2 into A1, A2, . . . , A2lC−1, where lC denotes the

number of maximum edge-disjoint demand paths using only edges of C.

The bound on the size of A1 is then k · |T [u]|, since each node in A1 has

to be the start node of at least one demand path ending at a node of T [u]

(Lemma 10). Then, |A1| ≤ k · |T [u]|, |A2| ≤ k · (|A1| + |T [u]|), and so on.

With the size bound on T [u], we have

|C|
(3)
= O(k2lu+1+2lC). (4)

31

Networks, Vol. 46(3), pp. 124-135, 2005

In the next step, we consider the subtree rooted at u’s I3-parent v,

T [v]. Accordingly, we call all I3-nodes that have v as their I3-parent v’s

I3-children, i.e., u is an I3-child of v. Let u1, . . . , us denote v’s I3-children

with u = u1. Then, subtree T [v] can be divided in the following disjoint

subtrees:

• the subtrees T [u1], . . . , T [us] rooted at v’s I3-children,

• the caterpillar components C1, . . . , Cs between v and its I3-children,

• the caterpillar components C ′

1, . . . , C
′

r between v and the I1-nodes that

have v as their I3-parent,

• and the star induced by v and its L3-leaves.

In Figure 4, the tree T is rooted at z3 which is the I3-parent of z1 and z2.

Here, the disjoint subtrees of T by dividing T at z3 are the subtrees T [z1]

and T [z2], the caterpillar components between z3 and z1 and between z3

and z2, the caterpillar component between z3 and y5, and the star consisting

of z3 and its L3-leaves.

When arriving at v in the course of the bottom-up process, we have

already the size bounds on all T [ui] and Ci for 1 ≤ i ≤ s. In order to show

that T [v] has bounded size, it remains to give size bounds on C ′

1, . . . , C
′

r

and the set of v’s L3-leaves, respectively. Since each of C ′

1, . . . , C
′

r with the

adjacent I1-node forms a semi-caterpillar, we have

|C ′

1 ∪ · · · ∪ C ′

r| = O(k2l
C′) (5)

as shown in Section 4.5, where lC′ denotes the number of edge-disjoint de-

mand paths using only the edges of C ′

1, . . . , C
′

r.

32

Networks, Vol. 46(3), pp. 124-135, 2005

Let Lv
3 denote the set of v’s L3-leaves. By Lemma 9, each Lv

3-leaf has at

least one demand path starting at it and ending at one node in T [v] \ (Lv
3 ∪

{v}). Thus, using the Overloaded L3-Leaves rule, we get

|Lv
3| ≤ k · |T [v] \ (Lv

3 ∪ {v})|. (6)

Furthermore, T [v]\(Lv
3∪{v}) is the union of T [u1], . . . , T [us], C1, . . . , Cs,

and C ′

1, . . . , C
′

r. Let l1 = lu1
+ lu2

+ · · · + lus
denote the number of edge-

disjoint demand paths passing only the edges of T [u1], . . . , T [us], and let l2 =

lC1
+ lC2

+ · · ·+ lCs
denote the number of edge-disjoint demand paths passing

only the edges of C1, . . . , Cs. We have

|T [v]| =

s∑

i=1

|T [ui]| +
s∑

i=1

|Ci| +
r∑

j=1

|C ′

j | + |Lv
3| + 1

(6)

≤ (k + 1) · (
s∑

i=1

|T [ui]| +
s∑

i=1

|Ci| +
r∑

j=1

|C ′

j |) + 1

(3),(4),(5)
= (k + 1) · (O(k2l1+1) + O(k2l1+2l2+1) + O(k2l

C′)) + 1

= O(k2lv+2), (7)

where lv denotes the number of edge-disjoint demand paths in T [v] and lv ≥

l1 + l2 + l′C .

Finally, at the root r of T , we have then lr ≤ k. Starting from an

I3-node with maximum distance to the root r of T during the bottom-up

process, we can encounter at most k I3-nodes. Therefore, at the root r, we

get |T [r]|
(7)
= O(k2lr+k) = O(k3k). This gives the claimed problem kernel

size.

By using the interleaving technique introduced in [20], we get a second

fixed-parameter algorithm for Multicut in Trees.

33

Networks, Vol. 46(3), pp. 124-135, 2005

Theorem 5. Multicut in Trees can be solved in O(k3k + m3n + n3m)

time, where k denotes the maximum number of tree edges that may be re-

moved.

5 Conclusion

We obtained the first fixed-parameter tractability result for (unweighted)

Multicut in Trees with respect to the parameter “solution size,” the

most immediate parameterization of this problem, by giving a bounded

search tree algorithm and a problem kernel. We mention in passing that

if the value of the parameter k is not given in advance (that is, in fact, deal-

ing with the original optimization problem), then by simple binary search

starting with k = 0, 1, 2, 4, 8, . . . and so on we can find the optimal k value

at the cost of an additional factor O(log k) for the running time. Our result

complements previous work [13] mainly dealing with the polynomial-time

approximability of this problem. We claim that our exact algorithm is con-

ceptually simple enough to be worth implementing. In particular, we feel

that our data reduction rules for Multicut in Trees are so natural that

they probably should be combined with every algorithmic approach tackling

this problem, also including approximation algorithms.

Clearly, the immediate challenge is to improve the search tree and prob-

lem kernel size significantly. We felt that the latter will be a particularly

hard task when only using the given set of data reduction rules. Among oth-

ers, it is a long-standing open problem to improve the approximation factor

for Multicut in Trees to a constant smaller than two since it would di-

rectly imply the same improvement for Vertex Cover, a problem that has

been open for more than two decades. In parallel, we can ask whether the

34

Networks, Vol. 46(3), pp. 124-135, 2005

search tree size for Multicut in Trees can be made smaller than 2k, a

perhaps simpler question to answer. Note that the search tree for Vertex

Cover is below 1.3k [6, 21] but Multicut in Trees is the more general

problem. Finally, we aim at implementations of and experiments with our

algorithms. To this end, experiences with problem instances drawn from

practical applications would be of high interest.

Acknowledgment. We thank Falk Hüffner (Friedrich-Schiller-Universität

Jena), Douglas R. Shier (Networks), and two anonymous referees for useful

hints improving the presentation.

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston,

W. H. Suters, and C. T. Symons, Kernelization algorithms for the

vertex cover problem: theory and experiments, Proc of ACM-SIAM

ALENEX’04, 2004, pp. 62–69.

[2] J. Alber, N. Betzler, and R. Niedermeier, Experiments on data reduc-

tion for optimal domination in networks, Proc of International Network

Optimization Conference, 2003, pp. 1–6.

[3] J. Alber, M. R. Fellows, and R. Niedermeier, Polynomial-time data

reduction for dominating set, J ACM 51 (2004), 363–384.

[4] R. S. Anand, T. Erlebach, A. Hall, and S. Stefanakos, Call control with

k rejections, J Comput Syst Sci 67 (2003), 707–722.

[5] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows, Advice classes of

parameterized tractability, Ann Pure Appl Logic 84 (1997), 119–138.

35

Networks, Vol. 46(3), pp. 124-135, 2005

[6] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: further observations

and further improvements, J Algorithms 41 (2001), 280–301.

[7] G. Călinescu, C. G. Fernandes, and B. Reed, Multicuts in unweighted

graphs and digraphs with bounded degree and bounded tree-width, J

Algorithms 48 (2003), 333–359.

[8] M. Costa, L. Létocart, and F. Roupin, Minimal multicut and maximal

integer multiflow: a survey, European Journal of Operational Research

162 (2004), 55–69.

[9] R. G. Downey, Parameterized complexity for the skeptic, Proc 18th

IEEE Annual Conference on Computational Complexity, 2003, pp. 147–

169.

[10] R. G. Downey and M. R. Fellows, Parameterized complexity, Mono-

graphs in Computer Science, Springer-Verlag, New York, 1999.

[11] M. R. Fellows, Blow-ups, win/win’s, and crown rules: some new direc-

tions in FPT, Proc 29th WG, LNCS 2880, 2003, pp. 1–12.

[12] M. R. Fellows, New directions and new challenges in algorithm design

and complexity, parameterized, Proc 8th WADS, LNCS 2748, 2003,

pp. 505–519.

[13] N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approxima-

tion algorithms for integral flow and multicut in trees, Algorithmica 18

(1997), 3–30.

[14] J. Guo and R. Niedermeier, Exact algorithms for tree-like weighted set

cover, Manuscript, April 2005, submitted for publication to Journal of

Discrete Algorithms.

36

Networks, Vol. 46(3), pp. 124-135, 2005

[15] J. Hromkovič, Algorithmics for hard problems, 2nd Edition, Springer-

Verlag, Berlin, 2002.

[16] E. Kenar and J. Uhlmann, Multicut in graphs, Manuscript, WSI für

Informatik, Universität Tübingen, Feb. 2005.

[17] B. Monien, The bandwidth minimization problem for caterpillars with

hair length 3 is NP-complete, SIAM J. Algebraic Discrete Methods 7

(1986), 505–512.

[18] R. Niedermeier, Ubiquitous parameterization—invitation to fixed-

parameter algorithms, Proc 29th MFCS, LNCS 3153, 2004, pp. 84–103.

[19] R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford Uni-

versity Press, forthcoming, 2005.

[20] R. Niedermeier and P. Rossmanith, A general method to speed up

fixed-parameter-tractable algorithms, Inf Process Lett 73 (2000), 125–

129.

[21] R. Niedermeier and P. Rossmanith, On efficient fixed-parameter algo-

rithms for weighted vertex cover, J Algorithms 47 (2003), 63–77.

[22] K. Weihe, Covering trains by stations or the power of data reduction,

Proc 1st Workshop on Algorithms and Experiments, 1998, pp. 1–8.

http://rtm.science.unitn.it/alex98/proceedings.html.

[23] K. Weihe, On the differences between “practical” and “applied” (invited

paper), Proc 4th WAE, LNCS 1982, 2000, pp. 1–10.

37

Networks, Vol. 46(3), pp. 124-135, 2005

[24] G. J. Woeginger, Exact algorithms for NP-hard problems: a sur-

vey, Proc 5th International Workshop on Combinatorial Optimization,

LNCS 2570, 2003, pp. 185–208.

38

