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Abstract

We study the following general stabbing problem from a parameterized complexity point
of view: Given a set S of n translates of an object in Rd, find a set of k lines with the
property that every object in S is ”stabbed” (intersected) by at least one line.

We show that when S consists of axis-parallel unit squares in R2 the (decision) prob-
lem of stabbing S with axis-parallel lines is W[1]-hard with respect to k (and thus, not
fixed-parameter tractable unless FPT=W[1]) while it becomes fixed-parameter tractable
when the squares are disjoint. We also show that the problem of stabbing a set of disjoint
unit squares in R2 with lines of arbitrary directions is W[1]–hard with respect to k. Sev-
eral generalizations to other types of objects and lines with arbitrary directions are also
presented. Finally, we show that deciding whether a set of unit balls in Rd can be stabbed
by one line is W[1]–hard with respect to the dimension d.

Key words:
Geometric stabbing, minimum enclosing cylinder, lower bounds, fixed-parameter
tractability.

1. Introduction

We study several instances of the following general geometric stabbing problem: Given
a set S of n translates of an object in Rd, find a set of k lines with the property that every
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object in S is ”stabbed” (intersected) by at least one line. Examples include the problem
of stabbing a set of axis-parallel squares or circles in the plane with k lines (possibly axis-
parallel), stabbing cubes in space with k planes, and stabbing unit balls in Rd with one
line (the decision version of the problem of computing the smallest enclosing cylinder).

Geometric stabbing problems have a wide range of applications, for example, in facility
location [12, 14, 19], statistical analysis [5, 23], and radiotherapy [16]. Most of them are
known to be NP-hard, while only polynomial time constant-factor approximation algo-
rithms are known. We study several such problems from a parameterized complexity point
of view: Our goal is to determine if algorithms that run in O(f(k, d) · nc) time on inputs
of size n (where f is a computable function depending only on k, d, and c is a constant
independent of k, d, n) exist.

Parameterized Complexity. We first review some basic definitions of parameterized com-
plexity theory; see [11, 13] for an introduction. A problem with input size n and a positive
integer parameter k is fixed-parameter tractable if it can be solved by an algorithm that
runs in O(f(k) · nc) time, where f is a computable function depending only on k, and c
is a constant independent of k; such an algorithm is (informally) said to run in fpt-time.
The class of all fixed-parameter tractable problems is denoted by FPT. An infinite hi-
erarchy of classes, the W-hierarchy, has been introduced for establishing fixed-parameter
intractability. Its first level, W[1], can be thought of as the parameterized analog of NP:
a parameterized problem that is hard for W[1] is not in FPT unless FPT=W[1], which is
considered highly unlikely under standard complexity theoretic assumptions. Hardness is
sought via an fpt-reduction, i.e., an fpt-time many-one reduction from a problem Π, pa-
rameterized with k, to a problem Π′, parameterized with k′, such that k′ ≤ g(k) for some
computable function g.

Results. Our results are given by the following theorems listed in the order in which they
are proved in the relevant sections.

Theorem 1. Stabbing a set of axis-parallel unit squares in the plane with k axis-parallel
lines is W[1]–hard with respect to k.

We prove this by an fpt-reduction from the k-Clique problem in directed graphs, which
is known to be W[1]-complete [11]. This main construction is modified to work for the case
when the lines can have arbitrary directions, and by replacing the squares with rectangles
in a proper way, we get the following theorem:

Theorem 2. Stabbing a set of disjoint rectangles in the plane with k lines is W[1]–hard
with respect to k, for both cases where the lines are axis-parallel or have arbitrary directions.

By simply applying a linear transformation, this leads to the following theorem, which
complements the results of Langerman and Morin [20], who showed that the same problem
for points is fixed parameter tractable.

Theorem 3. Stabbing a set of disjoint axis-parallel unit squares in the plane with k lines
of arbitrary directions is W[1]–hard with respect to k.
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These theorems are generalized to a large class of objects (for example, squares, circles,
triangles).

Theorem 4. Let O be a connected object in the plane. (i) If the stabbing lines are to be
parallel to two different directions u, v that are part of the input, the problem of stabbing
a set of disjoint translates of O with k lines is W[1]–hard with respect to k, unless O is
contained in a line parallel to u or v. (ii) The problem of stabbing a set of disjoint translates
of O with k lines in arbitrary directions is W[1]–hard with respect to k.

In contrast to the above, some special cases of the problem become fixed parameter
tractable. Let D be set of directions. A line with a direction from D is called a D-line.
A set of objects with the property that the maximum number of objects that can be
simultaneously intersected by two D-lines with different directions is bounded by c ∈ N is
called c–shallow for D. E.g., if we consider the case of axis-parallel disjoint unit squares
and axis-parallel lines, the resulting sets are 1–shallow.

Theorem 5. (i) Stabbing a set of n axis-parallel disjoint unit squares with k axis-parallel
lines is fixed parameter tractable. (ii) Stabbing a set of n translates of a planar connected
object O with k lines is fixed parameter tractable with respect to the combined parameters
shallowness, number of lines’ directions, and k.

Our algorithm is based on simple data reduction and branching rules that lead to a
problem kernel.

Again on the negative side, we show the following:

Theorem 6. Stabbing n unit balls in Rd with one line is W[1]–hard with respect to d.

Note that since the balls are unit, the above problem is the decision version of the
minimum enclosing cylinder problem. We prove this result by an fpt-reduction from the
k-independent set problem in general graphs, which is known to be W[1]-complete [11].

We note here the following. In all of our hardness reductions, the parameter k′ (number
of lines or dimension) of the problem in question is linear in the size k of the independent
set (or clique). Hence, an no(k

′)-time algorithm for any of these problems implies an no(k)-
time algorithm for the k-independent set (or clique) problem, which in turn implies that
n-variable 3SAT can be solved in 2o(n)-time [8, 7]. The Exponential Time Hypothesis
(ETH) [18] conjectures that no such algorithm exists.

Table 1 summarizes our results in R2. The numbers refer to the theorems that prove
the corresponding case. If no reference is given, the result is trivially implied by the result
on its left side.

Related Results. The parameterized complexity of geometric problems has not been stud-
ied extensively in the past. Some recent examples include work about Klee’s measure
problem [6], clustering [4, 21], and shape-matching [2]. The survey by Giannopoulos et
al. [15] provides an extensive overview of the known results in the area.

The problem of stabbing (or hitting) unit balls in Rd with one line was show to be NP-
hard when d is part of the input by Megiddo [22]; unless P=NP, the paper also rules out
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axis-parallel two dir. fixed two dir. input arbitrary
unit squares W[1]–h (1) W[1]–h W[1]–h W[1]–h (3)
disj. unit sq. FPT(5 (i)) FPT(5 (ii)) W[1]–h (4 (i)) W[1]–h (3)
disj. rect. fixed FPT(5 (ii)) FPT(5 (ii)) W[1]–h (4 (i)) W[1]–h (4 (ii))
disj. rect. input W[1]–h (2) W[1]–h W[1]–h W[1]–h (4 (ii))

Table 1: Our results. Term ‘fixed’ refers to the case where the objects or line directions are not part of
the input.

the existence of a polynomial time approximation scheme for this problem. This problem
is equivalent to the minimum enclosing cylinder problem for points, see Varadarajan et
al. [23]. Exact and approximation algorithms for the latter problem can be found, for
example, in Bădoiu et al. [1].

Langerman and Morin [20] showed that an abstract NP -hard covering problem that
models a number of concrete geometric (as well as purely combinatorial) covering problems
is in FPT. One example is the problem of deciding if a set of n points in the plane can be
covered (stabbed) by k lines.

Hassin and Megiddo [16] showed that stabbing line segments with axis-parallel lines is
NP–hard even when the segments are unit and horizontal. They also developed the first
constant factor approximation algorithms for stabbing sets of translates of a given object in
the plane and in higher dimensions with axis-parallel lines. More recently, Gaur et al. [14],
Kovaleva and Spieksma [19], and Xu [24] gave constant factor approximation algorithms
for special cases of rectangle stabbing problems.

The study of the parameterized complexity of rectangle stabbing problems was initiated
by Dom and Sikdar [10]. They showed that stabbing axis-parallel boxes with axis-parallel
planes in R3 is W[1]-hard, while stabbing axis-parallel rectangles with axis-parallel lines
from a given set of lines is fixed-parameter tractable with respect to the number of lines and
additional parameters, such as the number of horizontal (or vertical) lines that each rect-
angle is intersected by or the number of rectangles that each horizontal line can intersect.
In a follow-up paper, and independently of our work, Dom et al. [9] removed the above
restrictions and obtained (among others) two of the results that we present in this paper.
In particular, they proved that stabbing axis-parallel unit squares with axis-parallel lines
is W[1]-hard by a reduction from the Multicolored-Clique problem, which is different
from ours and less geometric. In this reduction the parameter is quadratic in the size of
the clique, which implies a weaker lower bound of Ω(n

√
k) (conditional to ETH, see dis-

cussion above). Furthermore, they establish membership of this problem in W[1]. They
also showed that stabbing disjoint unit squares with axis-parallel lines is fixed-parameter
tractable with an algorithm that is similar to ours but has a different run-time analysis.
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2. Stabbing with k lines

2.1. Hardness Results

In this section we present the hardness results. The proofs are by a reduction from
the k–Clique problem for directed graphs, which is shown to be W[1]–complete in [11].
First, in Section 2.1.1, we show that the problem of stabbing axis-parallel unit squares with
axis-parallel lines is W[1]–hard. This construction is then modified to work for the case
when the lines can have arbitrary directions. From this, minor modifications are made to
prove that for this case, the problem is even hard when the squares are disjoint. Finally,
we show that the proofs also work for a large class of other objects. In this section, the
objects are assumed to be open, but it is easy to modify the proofs to work for closed
objects, too.

2.1.1. Stabbing axis-parallel unit squares with axis-parallel lines in the plane

From a given graph G we will construct a set S(G, k) of axis-parallel unit squares in
R2 that can be stabbed by k′ := 6k lines if and only if the graph has a k–clique. The set
will be of size O(n2k2) and thus polynomial in both n and k.

General Idea. Let [n] := {1, . . . , n} and G = ([n], E) be a simple directed graph with no
loops. For clarity of presentation, we first create instances S ′(G, k) that consist of squares
of two different sizes, namely some with side length n− 1 and some with side length n. A
minor modification will then make them all have the same size.

As all the squares placed in S ′(G, k) have integer coordinates and are open, we can
simplify our arguments using the following two observations:

Observation 1: All the lines of the form y = i or x = i for i ∈ N can be neglected, as
they can be replaced by any line of the form y = i± ε or x = i± ε, 0 < ε < 1, respectively,
without intersecting fewer squares.
and

Observation 2: Two lines y = c, y′ = c′ with i < c, c′ < i + 1, i ∈ N, intersect the
same squares, and analogously for vertical lines.

The construction will ensure that we have to choose at least 6k lines, half of them
horizontal, in order to intersect all squares. Each of these lines has to lie in a specified
region, called a strip. This is forced by placing 6k gadgets (sets of squares) accordingly.

Among the lines to be chosen, we have to chose k vertical and k horizontal pairs of lines.
By the construction it is forced that each such pair has to lie in a specified region, called
double strip. The double strips will be denoted as S1

h, . . . , S
k
h and S1

v , . . . , S
k
v , respectively.

Around every intersection of two (orthogonal) double strips, we will place another set
of squares which will encode the adjacency matrix of the graph. See Figure 1.

We will ensure that any selection of 4k such lines has the following properties

P0: Each two lines inside the same double strip will correspond to the same vertex.

P1: Two orthogonal line pairs in the strips Sih, S
j
v, i 6= j, will stab all the squares inside

the region Sih ∩ Sjv if and only if they represent vertices that are connected in G.
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vS1

v

≈ k · 3n

≈ k · 3n

width n + n

Figure 1: Two double strips (light gray) and their intersection (dark gray). The squares of the gadgets
are not shown.

P2: Two orthogonal line pairs in the strips Sih, S
i
v will stab all the squares inside the

region Sih ∩ Siv if and only if they correspond to the same vertex.

Such a selection of line pairs will thus correspond to a set C of k vertices and will stab
all the squares if and only if the vertices in C form a k–clique in G.

Besides these 4k lines, we will need 2k more lines to guarantee the consistency of such
a selection (P0). To ensure the properties, several gadgets are constructed, which we will
describe in detail now.

The Gadgets. In the following, let �l(x, y) denote the axis-parallel square with side length
l and lower left corner (x, y). A gadget T will consist of a collection of axis-parallel squares.
Let T (x, y) denote the copy of T whose squares are placed relative to (x, y). We say that
a square is at position (x′, y′) in gadget T (x, y), if the lower left corner of the square has
absolute coordinates (x+x′, y+y′). Unless stated otherwise, the coordinates of axis-parallel
lines are also given relative to the gadget’s offset, i.e., if we refer to lines h : y = c and
v : x = c passing through the gadget T (x′, y′), we speak about the lines h : y = y′ + c and
v : x = x′ + c, respectively.

The F–Gadget (Forcing). The F–gadget will be used to ensure that in any solution of size
6k, a line through a specified strip (of width n) must be chosen. We define them as

Fh := {�n(−in, 0) | 1 ≤ i ≤ 6k + 1}
and

Fv := {�n(0,−in) | 1 ≤ i ≤ 6k + 1}.
See Figure 2 for an example of an Fh–gadget. The fact that they really force lines in the
specified region follows from the very simple
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i
i− 1

any line in here encodes vertex i (”vertex–strip”)

Figure 2: An Fh–Gadget

Proposition 7. In order to stab a gadget Fh(x, y) by 6k lines, at least one line of the form
y = c (relative to the gadget) for some 0 < c < n must be chosen.

For reasons of symmetry, an analogous proposition holds for the vertical case as well.
We now define the correspondence of lines chosen to vertices in G:

Definition 8. A line l : y = c through a horizontal F–gadget is said to represent vertex
rep(l) := dce ∈ V , and analogously for the vertical case.

As the F–gadgets have a width of n, for each vertex in G there exists a line that
represents this vertex. Because of Observation 2, two lines that represent the same vertex
in a gadget F will intersect the same squares. The (open) strips of width 1 where all the
lines represent the same vertex are called vertex strips. Each double strip (of width 2n)
will consist of 2 vertex strips.

The A–Gadget (Adjacency). This gadget represents the adjacency relation of the graph G.
All the squares will be placed inside a region of size 2n × 2n. For each pair of vertices
(i, j) such that (i, j) /∈ E, including the missing loops (i = j), it will contain a square
that forbids the line pairs corresponding to these vertices to be chosen at the same time,
namely �n−1(i, j).
So we set

A := {�n−1(i, j) | (i, j) /∈ E}.
An example is shown in Figure 3. There, the directed edges in both directions are drawn
as a single undirected edge. The four squares added for the missing loops are not shown.
In the final construction, there will be four F–gadgets forcing one line through each of the
strips

• S−h := R× (0, n)

• S+
h := R× (n, 2n)

• S−v := (0, n)× R

• S+
v := (n, 2n)× R

relative to the gadget’s coordinates. S−h and S+
h define a horizontal and S−v and S+

v a
vertical double strip.
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S+
h

S−h

(0, 0)

Figure 3: An A–Gadget with two antipodal pairs, representing 3 and 1, indicated

If a line l lies inside S−h or S−v , it is called negative, otherwise it is called positive. Two
parallel lines are called antipodal if one is negative and the other is positive. In the final
construction, it will be ensured that if a negative line is chosen that represents vertex i,
then, in the same double strip, a parallel positive line must be chosen that also represents
i. Such a line pair is then said to represent vertex i.

The main property of the A–gadget is stated by the next lemma.

Lemma 9. Two antipodal vertical lines through A that both represent i and two antipodal
horizontal lines through A that both represent j intersect all the squares inside A if and
only if (i, j) ∈ E.

Proof. If a square �n−1(i′, j′) is not intersected by these lines, we must have i = i′ and
j = j′ and thus (i, j) = (i′, j′) /∈ E. If, conversely, (i, j) /∈ E, then the square �n−1(i, j) is
in A but is not intersected by any of these four lines.

With this it will be possible to ensure property P1. Observe that, as the graph contains
no loops, also i 6= j is ensured.

The D–Gadget (Diagonal). This gadget is a special A–gadget for the graph with the ad-
jacency defined by the identity matrix I. It thus consists of the squares

D := {�n−1(i, j) | 1 ≤ i 6= j ≤ n}

and will be used to ensure property P2. The regions forced through such a gadget will
be the same as for the A–gadgets. Thus, by applying Lemma 9, all the squares inside
a D–gadget are stabbed if and only if the vertical and the horizontal antipodal line pair
represent the same vertex.
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The C–gadget (Consistency). This type of gadget will guarantee a certain distance between
two antipodal lines of the same direction inside the same double strip.

It ensures that if a size 6k solution contains a negative line l− that represents vertex i,
then, in the same double strip, it also contains a positive parallel line l+ that represents
the same vertex. Thereby it will be possible to identify such a line pair with the vertex i,
which will ensure property P0.

We continue to describe the C–gadgets for the horizontal case. A Ch–gadget consists
of the union of the two sets

{R−i := �n−1(i, i− n+ 1) | 1 ≤ i ≤ n− 1}

and
{R+

i := �n−1(i− n, n+ i− 1) | 2 ≤ i ≤ n}.
In the final construction there will be three F–gadgets that ensure the existence of a line
in each of the strips

• S−h = R× (0, n)

• S+
h = R× (n, 2n)

• SCh
= (0, n)× R

relative to the placement of the gadget. So, in any solution of size 6k, through each C–
gadget there will be three lines. Why two of them are given the same name as the strips
for the A–gadgets will become clear soon.

As for an A–gadget, there are again 2n combinatorially different horizontal strips to
chose lines from. Recall that a line l : y = c through a strip is said to represent vertex dce.
The following lemma states the main property of the Ch–gadgets:

Lemma 10. Let h−, h+ be two antipodal horizontal lines in S−h , S
+
h , respectively. Then

there exists a vertical line that together with h−, h+ intersects all of the squares belonging
to the Ch–gadget if and only if rep(h+) ≥ rep(h−). In particular, all squares in a C–gadget
are intersected if the three lines in S−h , S

+
h , SCh

all represent the same vertex.

Proof. First suppose 1 ≤ rep(h+) < rep(h−) ≤ n. Then the two squares R−rep(h−)−1 and

R+
rep(h+)+1 are defined and are both not stabbed by these two lines. But as

(rep(h−)− 1)︸ ︷︷ ︸
left end of R−

rep(h−)−1

≥ rep(h+) = (rep(h+) + 1)− n+ (n− 1)︸ ︷︷ ︸
right end of R+

rep(h+)+1

they cannot be stabbed by a single vertical line (recall that the squares are open). See
Figure 4.
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h+

h−

rep(h+) = 2

R−rep(h−)−1

R+
rep(h+)+1

rep(h−) = 3

Figure 4: An inconsistent selection

h+

h−

R+
rep(h+)+1

R−rep(h−)−1D

rep(h−) = 2

rep(h+) = 2

Figure 5: A consistent selection

For the converse, assume that n > rep(h+) ≥ rep(h−) > 1 (if either rep(h+) = n or
rep(h−) = 1, it is trivial). Let prx denote the projection onto the x-axis. Then

D :=
⋂

R−i /∈I(h−)

prx(R
−
i ) ∩

⋂
R+

i /∈I(h+)

prx(R
+
i )

= prx(Rrep(h−)−1) ∩ prx(Rrep(h+)+1)

6= ∅
as

rep(h−)− 1 < rep(h+) = rep(h+) + 1− n+ (n− 1),

i. e., the left side of every R−–square that is not stabbed is to the left of the right side of
every R+–square that is not stabbed. Thus, all the squares left can be stabbed by a single
vertical line, namely any line of the form x = c for c ∈ D. See Figure 5.

For the sake of completeness, we give the exact coordinates of the Cv–gadgets:

{�n−1(i− n+ 1, i) | 1 ≤ i ≤ n− 1} ∪ {�n−1(n+ i− 1, i− n) | 2 ≤ i ≤ n}.
The Construction. We now describe the exact placement of the gadgets. The main part,
expressing the adjacency relation of the graph, will be a k × k grid of A– and D–gadgets:

A := {Ai,j := A(i · 3n, j · 3n) | 1 ≤ i 6= j ≤ k}
D := {Di := D(i · 3n, i · 3n) | 1 ≤ i ≤ k}
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Around this grid, we add the C–gadgets to allow only specific solutions:

Ch := {Ci
h := Ch(−i · 3n, i · 3n) | 1 ≤ i ≤ k}

Cv := {Ci
v := Cv(i · 3n,−i · 3n) | 1 ≤ i ≤ k}

Here it becomes clear why we chose the coordinates as multiples of 3n: The C–gadgets
now cannot influence each other, i.e., no square from one such gadget intersects any strip
belonging to another C–gadget.

Finally, we place the F–gadgets to force lines in the desired strips as follows: For the
double strips, the lines are forced by

S−h := {(S−h )i := Fh(−3n · (k + 1), i · 3n) | 1 ≤ i ≤ k},

S+
h := {(S+

h )i := Fh(−3n · (k + 1), i · 3n+ n) | 1 ≤ i ≤ k},
and

S−v := {(S−v )i := Fv(i · 3n,−3n · (k + 1) | 1 ≤ i ≤ k}
S+
v := {(S+

v )i := Fv(i · 3n+ n,−3n · (k + 1)) | 1 ≤ i ≤ k}.
The additional lines for the C–gadgets are forced by

SCh
:= {SiCh

:= Fv(−i · 3n,−3n · (k + 1)) | 1 ≤ i ≤ k}

and
SCv := {SiCv

:= Fh(−3n · (k + 1),−i · 3n) | 1 ≤ i ≤ k}.
The entire construction is shown in Figure 6, where the three regions (S−h )1, (S+

h )1, S1
Ch

belonging to C1
h are indicated. The set

S ′(g, k) = A ∪D ∪ Ch ∪ Cv ∪ S−h ∪ S+
h ∪ S−v ∪ S+

v ∪ SCh
∪ SCv

is of size O(n2k2) and takes time polynomial in both n and k to create.
It has the following property:

Lemma 11. S ′(G, k) can be stabbed by 6k axis-parallel lines if and only if G has a k–clique.

Proof. Observe that the horizontal as well as the vertical F–gadgets are pairwise disjoint,
so by Lemma 7, at least one line in the corresponding direction is needed for each of them.
Thus, in any solution there have to be at least 6k lines.

Let G have a k–clique C = {i1, . . . , ik}. First, we choose 4k lines as follows: For
1 ≤ j ≤ k, we choose the line pairs hj = (h−j , h

+
j ) (horizontal) and vj = (v−j , v

+
j ) (vertical)

in the strips (S−h )j, (S+
h )j and (S−v )j, (S+

v )j, respectively, such that they are antipodal and
correspond to the vertex ij.

Then we have, for parallel lines, that rep(l−j ) = rep(l+j ) (l ∈ {h, v}) and thus we can
apply Lemma 10, i. e., the squares left in the 2k C–gadgets can be intersected by 2k
additional lines. By Lemma 9, all the squares inside Aj,m are intersected, as (ij, im) ∈ E
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Figure 6: The Final Construction
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for all j 6= m. Further, as hj and vj represent the same vertices, all D–gadgets are also
stabbed. Thus, 6k lines suffice.

Now assume that the set can be stabbed by 6k axis-parallel lines. Because of the F–
gadgets, through each A– and D–gadget there must be exactly two antipodal horizontal
and two antipodal vertical lines. Also, through each C–gadget there are exactly three lines,
two of which are parallel.

Further, by Lemma 10 we have for each such antipodal pair l−j , l
+
j of lines in the same

double strip that rep(l+j ) ≥ rep(l−j ), for otherwise the corresponding C–gadget would not
be stabbed.

We can assume that rep(l−j ) = rep(l+j ) for all 1 ≤ j ≤ k: decreasing the gap between the
two antipodal parallel lines can only increase the set of squares that are intersected in the
corresponding A– and D–gadgets. By Lemma 10, the additional line in the C–gadgets can
then be chosen to represent rep(l−j ), too. That shows that whenever there is some solution,
there is also one where the two parallel lines through each single C–gadget represent the
same vertex.

Each such pair of lines thus corresponds to a node in G (P0). Let C = {i1, . . . , ik} be the
nodes represented by the horizontal line pairs and C ′ = {i′1, . . . , i′k} the nodes represented
by the vertical line pairs. By Lemma 9, the gadget Dj ensures that ij = i′j for all 1 ≤ j ≤ k
(P2), and thus we have C = C ′. Further, the gadget Aj,m ensures that (ij, im) ∈ E for all
j 6= m (P1), which also implies ij 6= im for all j 6= m as the graph contains no loops. But
this means that C forms a k–clique in G.

Adaption to Unit Squares. To make all the squares have a side length of n− 1, we simply
shrink the squares inside the F–gadgets by 1/2 from each side, i. e. we redefine the F–
gadgets as

• Fh := {�n−1(−in+ 1/2, 1/2) | 1 ≤ i ≤ 6k + 1} and

• Fv := {�n−1(1/2,−in+ 1/2) | 1 ≤ i ≤ 6k + 1}.
and define S(G, k) accordingly. The only lines influenced by this are the ones that represent
either 1 or n. Because all the lines that represent 1 in a gadget Fh intersect the same squares
in S ′(G, k), we can assume that any such line in a solution is of the form y = 3/4. The
same argument holds for the lines that represent n, i. e., they can assumed to be of the
form y = n − 3/4; again, the same holds analogously for vertical lines. Thus, if there is
a solution of size 6k for S ′(G, k), then there is also one for S(G, k). This completes the
proof of Theorem 1.

2.1.2. Arbitrary directions

So far our results depended on the lines being parallel to the coordinate axis. In this
section, starting with the set S(G, k) of axis-parallel unit squares from section 2.1.1, we
show how to modify this construction to yield a set S∗(G, k) of axis-parallel unit squares
that works for the case where the lines can lie in arbitrary directions. Observe that, while
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intuitively plausible, it is not a priori clear that this problem is also W[1]–hard just because
the problem for axis-parallel lines is hard.

The proof that this problem is hard is more technical than above, even though the idea
remains the same. The main task will be to modify the set S(G, k) in such a way that
the lines in any solution must be “almost” axis–parallel. This will be done by increasing
the number of squares of the F–gadgets and shrinking the squares a little. Then it will
be possible to show that for all almost axis-parallel lines there is an axis-parallel line that
stabs the same set of squares.

To make calculations easier, we first modify S(G, k) by applying the linear function
that scales in x– and y–direction by 1/n. If we now refer to S(G, k), we mean the scaled
set. All the squares in this set have side length u := (n−1)/n = 1−1/n. The vertex–strips
for 2, . . . , n − 1 then have a width of s := 1/n, and the vertex–strips for 1 and n have a
width of s/2.

Shrinking the Squares. To shrink a square by ε means that we replace a square �l(x, y) by
�l−2ε(x+ε, y+ε), i.e., shrink it from each side by a value of ε. We begin with the definition
of δ–robustness which will prove to be very useful in the following argumentation. Let prd
denote the projection onto direction d, and let diam denote its length.

Definition 12. A set S of squares is called δ–robust, if

∀R ⊆ S :
⋂
r∈R

prd(r) 6= ∅ ⇒ diam

(⋂
r∈R

prd(r)

)
≥ 2δ

for d ∈ {x, y}.
A set that is δ–robust can be altered a little without “destroying” any solutions. The

following lemma will be used in its full strength in the next section. During this section,
we will only consider modifications that shrink the squares.

Lemma 13. Let S be a δ–robust set of axis-parallel unit squares that can be stabbed by
k axis-parallel lines. If we translate each square by a value at most τ and shrink each
square by a value σ such that τ + σ < δ, then the resulting set still can be stabbed by k
axis-parallel lines. Further, if all the squares are shrunk by σ < δ (and not translated),
then the resulting set is (δ − σ)–robust.

Proof. For a set R ⊆ S, let R∗ denote the modified set. Obviously, for any set of squares
R we have

⋂
r∈R prd(r) 6= ∅, d ∈ {x, y}, if and only if there exists an axis-parallel line that

stabs all squares from R. We show that the modified set R∗ is still stabbed by a common
axis-parallel line. Let l be horizontal and

ymin := inf
⋂
{pry(r) | r ∈ R}, ymax := sup

⋂
{pry(r) | r ∈ R}.

The line l′ : y = ymin + 1
2

(ymax − ymin) intersects all the squares from R. Further, ymax −
ymin ≥ 2δ, as the set is δ–robust. Thus, after shrinking and translating the squares in R
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by a value of at most τ and σ, respectively, for the corresponding values y∗min, y
∗
max of the

modified set R∗ we still have

y∗max − y∗min ≥ ymax − (τ + σ)− (ymin + (τ + σ)) = 2δ − 2(τ + σ) > 0.

Thus, l′ stabs all the squares from R∗. Again, the same argument works for vertical lines
as well.

To prove the second part, observe that⋂
r∗∈R∗

prd(r
∗) 6= ∅ ⇒

⋂
r∈R

prd(r) 6= ∅

⇒ diam

(⋂
r∈R

prd(r)

)
≥ 2δ

⇒ diam

( ⋂
r∗∈R∗

prd(r
∗)

)
≥ 2δ − 2σ

for d ∈ {x, y}.

See Figure 7. (Observe that in general the reverse is not true.)

2δ

σ
ymax

y′max

y′min
ymin

2δ − 2σ

Figure 7: Shrinking the squares (here, τ = 0)

We will now modify the set S(G, k) to yield a set S∗(G, k) in two steps as follows:

1. The number of squares of the F–gadgets is enlarged. They now consist of N := n2

squares:
Fh := {�u(−i+ s/2, s/2) | 1 ≤ i ≤ N}

and
Fv := {�u(s/2,−i+ s/2) | 1 ≤ i ≤ N}.

(Recall that we have scaled the set S(G, k) by s = 1/n to contain squares of length
u).
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2. In the resulting set, all the squares are shrunk by ε := s/6 = 1/(6n).

The resulting set then consists of unit squares with side length u∗ := 1− 1/n− 2ε. We
will make use of the following observation, which is easy to check:

Observation 1: For any two squares r, r′ from S∗(G, k) and d ∈ {x, y}, we have that

prd(r) ∩ prd(r
′) = ∅ ⇒ dist(prd(r), prd(r

′)) ≥ 2ε.

That means that if two squares cannot be intersected by, e.g., a common vertical line,
then there is a horizontal distance of at least 2ε between them. Lemma 13 is used to prove
the following property of our set S∗(G, k):

Lemma 14. The set S∗(G, k) can be stabbed by 6k axis-parallel lines if and only if S(G, k)
can be stabbed by 6k axis-parallel lines.

Proof. First observe that if we are only considering solutions of size 6k with axis-parallel
lines, then it does not matter whether the F–gadgets consist of 6k + 1 or N squares.
“⇒”: The squares from S(G, k) all contain a square from S∗(G, k), thus any solution to
S∗(G, k) is a solution to S(G, k).
“⇐”: By the construction of S(G, k), it is s/4–robust and ε = s/6 < s/4. Thus, we can
apply Lemma 13.

By T ∗ we denote the modified version of gadget T , e. g., A∗ is the A–gadget with the
squares shrunk as described above. The following proposition is used to show that in any
solution of size 6k the lines have to be almost parallel to the axis.

Proposition 15. A line l : ax+by = c can intersect at most d|b/a|e+1 squares of a single
F ∗h gadget and at most d|a/b|e+ 1 of a single F ∗v –gadget.

Proof. For any two points (x, y) and (x′, y′) where the line stabs a square from an F ∗h–
gadget, we must have |y − y′| < u∗, which means |x − x′| · |(a/b)| < u∗ < 1 and thus
|x − x′| < |b/a|. Thus, as the squares inside the F ∗h–gadget are all disjoint, at most
d|b/a|e+ 1 of them can be stabbed by such a line. Rotation by 90 degrees shows that for
the F ∗v –gadgets at most d|a/b|e+ 1 squares can be stabbed.

To prove the main property of the lines, we first only consider the set of 6k F ∗–gadgets
and do not add the A∗–, D∗–, and C∗–gadgets yet.

As all the squares in S∗(G, k) are placed between xl = − (3(k + 1) +N), xr = 3k + 3,
yb = − (3(k + 1) +N), and yt = 3k + 3, it suffices to consider the behavior of the lines
inside the region (xl, xr)× (yb, yt). Then the following holds:

Lemma 16. In order to stab the 6k F ∗–gadgets with 6k lines in arbitrary directions, each
of the lines has to intersect a single F ∗–gadget entirely.
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Proof. It suffices to show that any line can stab at most N squares and that this is the
case only if it stabs a single F ∗–gadget entirely. As there are 6kN squares to stab, the
claim follows. Without loss of generality, let l : y = mx+ c for some |m| ≤ 1; the vertical
case is symmetric. We call such a line that stabs N squares an h∗–line and show in three
steps:

a. An h∗–line must have a slope |m| ≤ 4k/N .

b. An h∗–line cannot intersect squares from two different F ∗h–gadgets.

c. An h∗–line cannot intersect any squares from an F ∗v –gadget.

from which it follows that an h∗–line must intersect a single entire F ∗h–gadget.

a. If the slope |m| is larger than 4k/N , i. e., 4k/N < |m| ≤ 1, by Proposition 15 the line
can stab at most

3k(dN/(4k)e+ 1) + 3k(d4k/Ne+ 1) ≤ 3k(N/(4k) + 1 + 1 + 2)

=
3

4
N + 12k

< N

squares. So any h∗–line must have a slope |m| ≤ 4k/N .

b. When such a line intersects a square of one F ∗h–gadget at x = t0, it cannot intersect
any square of another F ∗h–gadget at x = t1 unless |(t1 − t0)(4k/N)| ≥ 2ε (the gap between
two y–disjoint squares, see Observation 1) and thus |t1 − t0| ≥ 6k + 3 (as n >> k). In
particular, if such a line intersects the j–th square (from the right) of one F ∗h–gadget, it
cannot intersect the j′–th square from another F ∗h–gadget for j−(6k+1) ≤ j′ ≤ j+(6k+1).

Let C denote the number of different F ∗h–gadgets intersected. Then the total number of
squares stabbed is at most N − (C− 1)(6k+ 1) + 6k, which is less than N for C > 1. Thus
we have C = 1, i. e. any h∗–line can intersect at most one F ∗h–gadget and must stab at least
N − 6k of its squares. Thus it must have a slope of at most |m| ≤ 1/(N − 6k− 1) < 2/N .

c. In order for a line to stab N − 6k squares of a single F ∗h–gadget, it must intersect the
(6k + 1)–th square (from the right) of this gadget. Thus, at x = −3(k + 1)− 6k − 1, any
h∗–line must be above y = −3k, which is below the lowest point where it can stab any
square from an F ∗h–gadget. (Observe that the bounds are even stronger, e.g., any such line
must even be above −3k+ s/2 + ε, but this is not needed here). Then the line cannot stab
any square from an F ∗v –gadget, as

−3k − |xr − (−3(k + 1)− 6k − 1)| · 2/N > −3k,

and any square from an F ∗v –gadget lies below −3(k + 1). So it must lie entirely inside a
single F ∗h–gadget in order to be an h∗–line. Analogous calculations prove the same for the
case |m| > 1 when the line is almost vertical.
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xr−3(k + 1) − 6k − 1

F ∗
h–gadgets

F ∗
v –gadgets

−3k

−3(k + 1)

−3(k + 1) − 1

Figure 8: The coordinates

Figure 8 indicates the coordinates used. Thus, for the F ∗ gadgets only, we know that
in order to stab all the squares with 6k lines, one line must intersect exactly one (entire)
F ∗–gadget. In order to do so, by Proposition 15, it must have a slope of at most 1/(N −1)
(in the horizontal case) or at least N − 1 (in the vertical case). The crucial point is that
if we now add squares to the existing set, these properties remain.

The Final Construction. Now we place the remaining squares from S∗(G, k). Recall that
by Lemma 14 S∗(G, k) can be stabbed by 6k axis-parallel lines if and only if S(G, k) can
be stabbed by 6k axis-parallel lines. By shrinking, we have created a small “fuzzy” region
(see Observation 1) and have thereby achieved that the small change that a line can make
after leaving its F ∗–gadget cannot influence the solution. This is expressed by the next
lemma:

Lemma 17. In any solution to S∗(G, k) with 6k arbitrary lines, without loss of generality
the lines can assumed to be axis–parallel, i. e., if there is a solution with 6k arbitrary lines,
then there is also one with 6k axis-parallel lines.

Proof. Let l be an almost horizontal line with slope |m| < 1/(N − 1). As the line has to
intersect an entire F ∗h–gadget, it suffices to calculate the change it can make between the
minimum x–position where it can leave an F ∗h–gadget, namely −3(k + 1) − 1 + s/2 + ε
(Figure 8), and xr, which is

|xr − (−3(k + 1)− 1 + s/2 + ε) | · |m| < 10k · |1/(N − 1)| < 2ε.

Thus, it cannot intersect any two y–disjoint squares, from which it follows that it can be
replaced by a horizontal line. Again, similar calculations prove the vertical case.

That means if there is a solution with arbitrary lines for the set S∗(G, k), then there is
also one where all the lines are axis–parallel. Using Lemma 14, it follows that S(G, k) can
be stabbed by 6k axis-parallel lines if and only if S∗(G, k) can be stabbed by 6k arbitrary
lines, which proves the following:
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Theorem 18. Stabbing a set of axis-parallel unit squares in the plane with k lines of
arbitrary directions is W[1]–hard with respect to k.

2.1.3. Sets of disjoint objects

In this section we show that some of the problems are even hard for sets of disjoint
objects. First, we show that stabbing disjoint rectangles with axis-parallel lines is W[1]–
hard if the rectangles can be chosen arbitrarily. This goes by a small modification of the
sets in the previous sections. It is important to notice that for this problem, the rectangle
chosen for the reduction, i.e., the ratio of its side lengths, depends on n, in contrast to the
results in the previous section, where (after scaling the construction) only a single base
object was required.

From this we derive, as a main result, that stabbing disjoint axis-parallel unit squares
with lines in arbitrary directions is also W[1]–hard, in contrast to the case where the lines
have to be axis–parallel, which is covered in the next section.

The proof will consists of three steps which we will sketch here first:

1. “Wobble” the squares in S∗(G, k) a little, such that all the (parallel) diagonals of the
squares are disjoint.

2. Replace each diagonal with a very thin rectangle, such that all the resulting rectangles
are disjoint.

3. Transform the set of rectangles to a set of unit squares via a bijective linear trans-
formation.

2.1.4. Disjoint Rectangles

Starting with the set S∗(G, k) from the previous section, we will construct a set of
disjoint rectangles R∗(G, k) that can be stabbed by 6k arbitrary lines if and only if the
S∗(G, k) can be stabbed by arbitrary lines. By Theorem 18, this proves the hardness for
the case when the lines chosen can be arbitrary. Hardness for stabbing disjoint (not axis-
parallel ) rectangles with axis-parallel lines is shown in an intermediate step; see Lemma
19.

Recall that the squares in S∗(G, k) have a side length of u∗ = 1 − 1/n − 2ε for the ε
defined as s/6. By Lemma 17, the set S∗(G, k) can be stabbed by 6k arbitrary lines if and
only if it can be stabbed by 6k axis-parallel lines, and by Lemma 13, the set S∗(G, k) is
(s/12)–robust, as S(G, k) is (s/4)–robust and s/4− s/6 = s/12.

We will modify the set S∗(G, k) such that no two (parallel) diagonals intersect any more
while maintaining the significant combinatorial properties. Recall that right now for A∗–,
D∗–, and C∗–gadgets, the diagonals of some of the squares may intersect, as indicated in
Figure 9.

Let W := n−4 and ϕ(i, j) := i · n + j. The new squares will have a side length of
uw := u∗ − 2Wn2. We define the wobble–function ω, which shrinks and translates the
squares, as follows:

ωi,j (�u∗(x, y)) = �uw(x+Wn2, y +Wn2 + ϕ(i, j) · 2W ).
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Figure 9: Wobble and replace

We now take the set S∗(G, k) and wobble the squares inside the A∗–, D∗, and C∗–gadgets.
For the A∗– and D∗–gadgets, we apply ωi,j to the square that is added for (i, j) /∈ E (which
is �u∗(i/n+ ε, j/n+ ε), relative to the gadget’s offset).

Each C∗–gadget contains 2n− 2 squares. For each such gadget, we apply ωi div n,i mod n

to the i–th square. The other squares, i. e., those contained in the F ∗–gadgets, are simply
shrunk (but not shifted) to be all of size uw × uw. This yields a set of axis-parallel unit
squares W∗(G, k).

Now we want replace the diagonals of the squares in W∗(G, k) by very thin rectangles,
which will be all disjoint. We define the rectangle ρW by its endpoints

ρW (x, y) := {(x+W, y), (x, y +W ), (x+ uw −W, y + uw), (x+ uw, y + uw −W )}

as shown in Figure 10. Instead of each square in W∗(G, k) we now place a rectangle ρW

(x, y)

(x + uw, y + uw)

W

W

√
2 ·W

√
2 · (uw −W )

Figure 10: The rectangle ρW (x, y)

whose bounding box is this square.
Thereby we have achieved that all the rectangles created (which are all copies of ρW )

are disjoint, as the distance of two diagonals is now at least
√

2 ·W = 2 · 1
2

√
2 ·W︸ ︷︷ ︸

width of ρW

. Thus,

the resulting set R∗(G, k) is a set of disjoint translates of ρW .
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Now we can show the main lemma of this section, which, together with Theorem 18,
completes the proof of Theorem 2.

Lemma 19. S∗(G, k) can be stabbed by 6k lines if and only if R∗(G, k) can be stabbed by
6k lines.

Proof. We prove that the following are equivalent

(i) S∗(G, k) can be stabbed by 6k arbitrary lines.

(ii) S∗(G, k) can be stabbed by 6k axis-parallel lines.

(iii) R∗(G, k) can be stabbed by 6k axis-parallel lines.

(iv) R∗(G, k) can be stabbed by 6k arbitrary lines.

(i) ⇒ (ii): By Lemma 17.
(ii) ⇒ (iii): Obviously, an axis-parallel line intersects a square iff and only if it intersects
its inscribed rectangle ρW . As the set S∗(G, k) is s/12–robust and

2Wn2︸ ︷︷ ︸
max. shift

+ 2Wn2︸ ︷︷ ︸
shrink

= 4n−2 < 1/ (12n) = s/12,

we can apply Lemma 13.
(iii) ⇒ (iv): trivial
(iv)⇒ (i): All the wobbled squares are contained in the original squares, as the maximum
shift is Wn2 and they are shrunk by Wn2 from each side. Thus, any solution to the set of
inscribed rectangles R∗(G, k) is also a solution to S∗(G, k).

2.1.5. Disjoint Unit Squares

To prove the case of disjoint unit squares now is an easy task. The matrix

M =
1√
2

(
1/W 0

0 1/ (uw −W )

)
· 1√

2

(
1 −1
1 1

)
=

1

2

(
1/W −1/W

1/(uw −W ) 1/(uw −W )

)
represents a bijective linear transformation and the image of ρW under M is an axis-parallel
unit square. Thus, the set U∗(G, k) := M · R∗(G, k) consists of disjoint unit squares and
is combinatorially equivalent to R∗(G, k). This leads to the proof of Theorem 3. Also,
observe that because of Lemma 19, U∗(G, k) can be stabbed by 6k lines in direction either
M ·e1 or M ·e2, where ei denotes the canonical base vector, if and only if it can be stabbed
by 6k arbitrary lines. This will be used for the proof of Theorem 4 in the next section.
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2.1.6. Other objects

Using the results from the previous sections, we now prove the W[1]–hardness for a
wide range of stabbing problems. The objects we will consider are those which, from two
directions, “look like a square”. This can be formalized as follows:

Definition 20. Let d, d′ be two linearly independent vectors. An object o is said to be
a quasi–square with respect to d and d′, if the projection of o on each of the orthogonal
complements of d and d′ is an open line segment, i. e., is homeomorphic to (0, 1).

For an object o, we define the axis-parallel bounding box BB(o) as

BB(o) := prx(o)× pry(o).

Obviously, if prx(o) and pry(o) are connected, an axis-parallel line intersects the bounding
box of an object if and only if it intersects the object itself.

If we are given a quasi–square with respect to d = (dx, dy) and d′ = (d′x, d
′
y), we can

transform it via the bijective linear transformation

A = λ

(( −dx d′x
dy −d′y

)
·
(

ld
‖d‖ 0

0
ld′
‖d′‖

))−1

to yield an objects that is combinatorially equivalent to a unit square when only axis-
parallel lines are considered (here, ld, ld′ denote the lengths of the projections to the or-
thogonal complements of d and d′, respectively). The bounding box of A ·o then is a square
with side length λ. Also, the image of each line parallel to d or d′ is axis–parallel. As the
transformation is bijective, we have

Proposition 21. If o is a quasi–square with respect to d, d′, for any {d, d′}–line l it holds
that

l intersects o ⇐⇒ A · l intersects A · o ⇐⇒ A · l intersects BB(A · o).
Thus, each instance with translates of o and directions {d, d′} is combinatorially equiv-

alent to an instance with unit squares and axis-parallel lines, and vice versa.
For connected objects that are not a point, the constructions for the disjoint cases can

easily be adapted. We simply scale and rotate o via a bijective linear transformation to
fit inside ρ, the rectangle described in the previous section, such that it is combinatorially
“almost” the same as ρ. Then placing such transforms of o instead of ρ in the set R∗(G, k)
and applying the inverse transformation again gives a set of disjoint translates of o that
can be stabbed by 6k arbitrary lines if and only if R∗(G, k) can be stabbed by 6k arbitrary
lines. We omit the technical details. See Figure 11. Using the remark at the end of the
previous section, this proves Theorem 4 (i) and (ii).

2.2. Fixed Parameter Tractable Cases

In this section, we will consider several restricted versions of the above problems that
are fixed parameter tractable. Here, all the objects are assumed to be closed, but again it
is easy to modify the proofs to handle open objects as well.
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ρ

Figure 11: Transformation of o

2.2.1. Stabbing disjoint axis-parallel unit squares with axis-parallel lines in the plane

To illustrate the idea, we first analyze the simplest case where the objects to be stabbed
are disjoint axis-parallel unit squares and the lines have to be axis–parallel.

Let S be such a set of unit squares. Clearly it suffices to consider only lines that support
the boundary of a square in S, so the total number of these relevant lines is 2n+ 2n. The
following data reduction rule is required for our algorithm to work:

DR: For all κ > k + 1 squares with the same x–coordinates, delete all but k + 1 of them,
and the same for κ > k + 1 squares that have the same y–coordinates.

This rule is correct, i. e., the new set can be stabbed by k lines if and only if the old
one can: If there is a solution of size k for the reduced set, then a solution of size k for this
set must contain a line that intersects all of those squares, for otherwise we would need at
least k + 1 lines. But any such line stabs all the deleted squares, too.

A set on which this data reduction rule is applied will be called a DR–set. Let I(l)
denote the set of squares in S that are stabbed by l. A line l is said to dominate another
line l′, if I(l) ⊇ I(l′). The following lemma states the main idea behind the algorithm:

Lemma 22. Let l be a horizontal line that intersects κ > k unit squares I(l) = {�1(xi, yi) |
1 ≤ i ≤ κ} ⊆ S. Then in order to stab the set S with k lines, there has to be a horizontal
line l∗ that intersects at least two squares from I(l). Further, l∗ can be chosen from the set

B(I(l)) := {ai | ai : y = yi, 1 ≤ i ≤ κ} ∪ {bi | bi : y = yi + 1, 1 ≤ i ≤ κ}.

Proof. There must be a line that intersects at least two of the squares because of the
pigeonhole principle. This line cannot be vertical, as all of the squares are disjoint, i. e.,
no two of them can lie on both a common vertical and horizontal line.

We show that any such line is dominated by a line in B(I(l)). Let I(l) = {s1, . . . , sκ},
ordered from top to bottom, and let l′ be any line that intersects exactly the squares
si, . . . , sj from I(l) (and possibly others that are not in I(l)). Observe that always either
si = s1 or sj = sκ, as all squares have unit size. If both si = s1 and sj = sκ, then l′ stabs
all the squares at once and is thus dominated by either a1 or bκ. If j < κ (the other case is
symmetric) then no square that lies strictly above l, i. e. is not in I(l) but intersected by
l′, can have its upper side between aj and l, as dist(aj, l) ≤ 1. Thus we have I(l′) ⊆ I(aj).
See Figure 12.
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s′

l
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l′

l′′
b3

s′′

Figure 12: Here we have I(l′) ⊆ I(a3) and I(l′′) ⊆ I(b3)

For reasons of symmetry, an analogous lemma holds for the vertical lines as well. To
prove that the algorithm is correct, we need another

Lemma 23. Let S be a DR–set. If there is an axis-parallel line l with |I(l)| > 2k+1, then
there is also a line l∗ parallel to l with k + 1 ≤ |I(l∗)| ≤ 2k + 1.

Proof. Let l be horizontal. Since S is a DR–set, the first relevant line above l intersects at
least |I(l)|− (k+1) squares. In general, for two neighboring relevant lines l, l′ we have that
||I(l)| − |I(l′)|| ≤ k + 1. Further, the topmost relevant line stabs at most k + 1 squares,
thus there must be a line l∗ in between with k + 1 ≤ |I(l∗)| ≤ 2k + 1.

We now describe the algorithm STAB(S, k). In each call, it will find a line that stabs
many (k + 1) but not too many (2k + 2) squares, if such a line exists, and otherwise use
brute force.

Algorithm 1 STAB(S, k)

if S = ∅ then
“ACCEPT”

else if k = 0 then
return

end if
apply DR
if there exists a line l with k + 1 ≤ |I(l)| ≤ 2k + 1 then

for all lines l′ from the set B(I(l)) do
STAB(S − I(l′), k − 1)

end for
else

SOLVE(S, k)
end if

The SOLVE function simply counts if there are more than k2 squares left and rejects in
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this case. Otherwise, it uses brute force by trying all k–subsets of the at most 4k2 relevant
lines.

Lemma 24. The algorithm accepts if and only if the set can be stabbed by 6k axis-parallel
lines.

Proof.
“⇒”: Clearly, if the algorithm accepts, the set can be stabbed by 6k lines.
“⇐”: If there exists a line l that intersects more than k squares, then by Lemma 23 there
is a line l∗ with k + 1 ≤ I(l∗) ≤ 2k + 1. By Lemma 22, in any solution of size k there
must be a line that intersects at least two squares from I(l∗). Further, any such line is
dominated by a line in B(I(l∗)), and thus, if the set can be stabbed by k lines, at least one
of the branches ends up with an instance that can be stabbed by k − 1 lines.

Otherwise, as mentioned above, we end up with an instance with at most k2 squares
left (otherwise we reject), and thus a solution can be found in fpt-time by the brute force
algorithm.

Thus, the algorithm is correct. To roughly determine the running time (a more so-
phisticated analysis will be given in the next section), observe that each call of the STAB
function takes time n2, if we simply calculate all the I(l), and branches on at most 2(2k+1)
lines. Each of the branches ends up with a small instance which can be solved in (4k2)k ·k2

steps, so the total running time is O ((4k + 4)3k+2n2
)
. The algorithm runs in quadratic

time for every fixed k and thus is an fpt-algorithm. This completes the proof of Theorem
5 (i).

2.2.2. Generalization

A closer look on the above algorithm reveals that it really only depends on two prop-
erties of the set to be stabbed:

• The squares are of unit size.

• A “large” set of squares that lie on a line in one direction cannot be intersected by
“few” lines from another direction.

We will formalize these ideas and show how they can be generalized to work for different
objects as well as for more than two directions. Thereto, let D be a fixed set of directions.
A line with a direction from D is called a D–line. For a positive integer c, a set of objects
is called c–shallow with respect to D, if for any two D–lines l, l′ it holds that

|I(l) ∩ I(l′)| ≤ c.

E.g., sets of disjoint unit squares with the property that each point lies in at most c
squares are c–shallow with respect to axis-parallel lines. Also, for a fixed rectangle R, sets
of disjoint translates of R are O(1)–shallow with respect to axis-parallel lines. We show
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that the problem of stabbing c–shallow sets of objects that are translates of a connected
object with k D–lines, |D| = r, is fixed parameter tractable if parameterized by (c, k, r).

Let D = {d1, . . . , dr}, where the di are lines, and o be a connected object. Observe
that it again suffices to consider the 2r · n relevant lines that support the boundary of an
object. Given a c–shallow set of objects with respect to D, we first apply a generalized
version of the above data reduction rule:

DR’: Given κ > ck + 1 objects such that any line in direction di intersects either all of
them or none, delete all but ck + 1 of them.

This data reduction rule is correct, as in the new set there must be a line that intersects
c+ 1 of the squares at the same time, and any such line intersects all the κ objects.

For two parallel lines l : ax+ by = z, l′ : ax+ by = z′, we define

l < l′ : ⇐⇒ z < z′.

As the objects are closed, the functions

max
d

(s) := max{l | l is a {d}–line, s ∈ I(l)}

and
min
d

(s) := min{l | l is a {d}–line, s ∈ I(l)}
are defined. Again, we can bound the number of lines to chose from:

Lemma 25. Let l be a line in direction di that intersects κ > ck objects. Then in any
solution of size k there must be a line l∗ parallel to l intersecting at least c+1 of the objects.
This line can be chosen from the set

B(I(l)) := {maxd(s) | s ∈ I(l)} ∪ {mind(s) | s ∈ I(l)}

Proof. By rotating the entire set we can assume that l is horizontal. Because of the
pigeonhole principle there must be a line intersecting at least c + 1 objects. No line not
parallel to l can intersect more than c of the objects, for otherwise the set would not be
c–shallow, thus in any solution of size k there must be a line parallel to l. As the objects
are all of the same size, by the same arguing as in Lemma 22, any such line is dominated
by a line from B(I(l)).

Also, similar to the above reasoning, if there exists a line for a DR’–set that intersects
more than 2ck + 1 objects, there must also be a parallel line l∗ with ck + 1 ≤ |I(l∗)| ≤
2ck + 1. Thus, we can simply adapt the algorithm to the new bounds. We now apply, in
each call of the STAB function, the new data reduction rule DR’, and find a line l with
ck + 1 ≤ |I(l)| ≤ 2ck + 1, if it exists. Lemma 25 ensures that it suffices to branch on the
lines in B(I(l)). Thus, this algorithm accepts if and only if the set can be stabbed by k
D–lines.
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2.3. Running Time Analysis

To analyze the running time, we split the algorithm into its three main steps and
calculate them independently.

Data Reduction.. The data reduction step can be done in time O (r(n log n)): First, we
pick one of the r directions and sort the objects according to this direction. Then we go
through the array and delete all but ck+1 out of each κ > ck+1 have the same coordinates
according to the direction (this takes only linear time). After that, we proceed with the
next direction.

Call of the STAB–procedure.. To find a line that stabs the desired number of objects, we
again first pick one of the r directions and sort the objects according to this direction. As
they are connected, each of the objects implies two lines in each direction. For all of the r·2n
lines l we then calculate whether |I(l)| > 2ck + 1. This requires O(log n+ (2ck + 2)) time
by using binary search. As we have to do this at most r times, it takes O (r(n log n+ ck))
steps in total.

Solving the Problem Kernel.. Let m be the number of objects left. We reject the kernel if
m > ck2, as no line stabs more than ck of them. Otherwise we can, instead of trying all of
the ≈ mk subsets of size k, use the following observation. Let L(o) be the set of relevant
lines through object o. By double–counting we get that

2r ·m · ck ≥
∑
line l

|I(l)| =
∑

object o

|L(o)| ≥ m ·min
o
|L(o)|

which yields mino |L(o)| ≤ 2rck, and such an objects can be found in time O(2r(ck)2).
Through any object there must be at least one line, so by branching on all the 2rck lines
a solution is found if it exists. Thus, the kernel can be solved in time O((2rck)k+2).

Total Running Time.. The algorithm branches on at most 2ck possibilities at most k times,
each step takes O

(
(2rck)k+2 + r · n log n

)
, thus the total running time is

O
(
(2rck)2k+2 · rn log n)

)
.

Thereby we have shown Theorem 5 (ii).

3. Stabbing balls with one line

We show that the problem of stabbing unit balls in Rd with a line is W[1]-hard with
respect to d by an fpt-reduction from the W[1]-complete k-independent set problem in
general graphs [11].

The reduction is based on the general technique by Cabello et al. [4, 3]. Adjusted to
our problem, its main ideas are the following. Given an undirected graph G([n], E) we
construct a set B of balls of equal radius r in R2k such that B can be stabbed by a line if
and only if G has an independent set of size k. First, we construct of a scaffolding structure

27



consisting of k symmetric subsets of a linear (in n) number of balls, whose centers lie in
2-dimensional orthogonal subspaces. Orthogonality together with the specific geometric
properties of the problem allows the scaffolding structure to restrict the solutions to nk

combinatorially different solutions (by setting the radius r to an appropriate value), which
can be interpreted as potential k-independent sets. Additional constraint balls will then
encode the edges of the input graph. The center of each such ball lies in a 4-dimensional
subspace, and each ball cancels an exponential number of solutions. Again, the exact
placement of the constraint balls is determined by the properties of our problem.

The geometry of the construction will be described as if exact square roots and ex-
pressions of the form sin π

n
were available. To make the reduction suitable for the Turing

machine model, the data must be perturbed using fixed-precision roundings. This can be
done with polynomially many bits in a way similar to the rounding procedure followed
in [4, 3]. (We omit these technical details here).

Preliminaries.. For every ball B ∈ B we will also have −B ∈ B. This allows us to restrict
our attention to lines through the origin: a line that stabs B can be translated so that it
goes through the origin and still stabs B. In this section, by a line we always mean a line
through the origin. For a line l, let ~l be its unit direction vector. The notions of a point
and vector will be used interchangeably.

It will be convenient to view R2k as the product of k orthogonal planes E1, . . . , Ek,
where each Ei has coordinate axes Xi, Yi. The origin is denoted by o. The coordinates of
a point p ∈ R2k are denoted by (x1(p), y1(p), . . . , xk(p), yk(p)). We denote by Ci the unit
circle on Ei centered at o.

3.1. Scaffolding ball set

For each plane Ei, we define 2n 2k-dimensional balls, whose centers ci1, . . . , ci2n are
regularly spaced on the circle Ci. Let ciu ∈ Ei be the center of the ball Biu, u ∈ [2n], with

xi(ciu) = cos(u− 1)π
n
, yi(ciu) = sin(u− 1)π

n
.

We define the scaffolding ball set B0 = {Biu, i = 1, . . . , k and u = 1, . . . , 2n}. We have
|B0| = 2nk. All balls in B0 will have the same radius r < 1, to be defined later.

Two antipodal balls B, −B are stabbed by the same set of lines. A line l stabs a ball
B of radius r and center c if and only if (c ·~l)2 ≥ ‖c‖2 − r2. Thus, l stabs B0 if and only if
it satisfies the following system of nk inequalities:

(ciu ·~l)2 ≥ ‖ciu‖2 − r2 = 1− r2, for i = 1, . . . , k and u = 1, . . . , n.

Consider the inequality asserting that l stabs Biu. Geometrically, it amounts to saying
that the projection ~li of ~l on the plane Ei lies in one of the half-planes

H+
iu = {p ∈ Ei|ciu · p ≥

√
‖ciu‖2 − r2} or H−iu = {p ∈ Ei|ciu · p ≤ −

√
‖ciu‖2 − r2}.

Consider the situation on a plane Ei. Looking at all half-planes H+
i1, H

−
i1, . . . , H

+
in, H

−
in, we

see that l stabs all balls Biu (centered on Ei) if and and only if ~li lies in one of the 2n
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Figure 13: Centers of the balls and their respective half-planes and wedges on a plane Ei, for n = 4.

wedges ±(H−i1 ∩ H+
i2), . . . ,±(H−i(n−1) ∩ H+

in),±(H−i1 ∩ H−in); see Fig. 13. The apices of the

wedges are regularly spaced on a circle of radius λ =
√

2(1− r2)/(1− cos π
n
), and define

the set
Ai = {± (λ cos(2u− 1) π

2n
, λ sin(2u− 1) π

2n

) ∈ Ei, u = 1, . . . , n}.
For l to stab all ballsBiu, we must have that ‖~li‖ ≥ λ. We choose r =

√
1− (1− cos π

n
)/(2k)

in order to obtain λ = 1/
√
k.

Since the above hold for every plane Ei, and since ~l ∈ R2k is a unit vector, we have

1 = ‖l‖2 = ‖l1‖2 + · · ·+ ‖lk‖2 ≥ kλ2 = 1.

Hence, equality holds throughout, which implies that ‖~li‖ = 1/
√
k, for every i ∈ {1, . . . , k}.

Hence, for line l to stab all balls in B0, every projection ~li must be one of the 2n apices in
Ai. Each projection ~li can be chosen independently. There are 2n choices, but since ~l and
−~l correspond to the same line, the total number of lines that stab B0 is nk2k−1.

For a tuple (u1, . . . , uk) ∈ [2n]k, we will denote by l(u1, . . . , uk) the stabbing line with
direction vector

1√
k

(
cos(2u1 − 1) π

2n
, sin(2u1 − 1) π

2n
, . . . , cos(2uk − 1) π

2n
, sin(2uk − 1) π

2n

)
.

Two lines l(u1, u2, ..., uk) and l(v1, v2, ..., vk) are said to be equivalent if ui ≡ vi (mod n),
for all i. This relation defines nk equivalence classes L(u1, . . . , uk), with (u1, . . . , uk) ∈ [n]k,
where each class consists of 2k−1 lines.

From the discussion above, it is clear that there is a bijection between the possible
equivalence classes of lines that stab B0 and [n]k.
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3.2. Constraint balls

We continue the construction of the ball set B by showing how to encode the structure
of G. For each pair of distinct indices i 6= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we define a constraint set Buvij of balls with the property that
(all lines in) all classes L(u1, . . . , uk) stab Buvij except those with ui = u and uj = v. The
centers of the balls in Buvij lie in the 4-space Ei ×Ej. Observe that all lines in a particular
class L(u1, . . . , uk) project onto only two lines on Ei×Ej. We use a ball Buv

ij (to be defined
shortly) of radius r that is stabbed by all lines l(u1, . . . , uk) except those with ui = u and
uj = v. Similarly, we use a ball Buv̄

ij that is stabbed by all lines l(u1, . . . , uk) except those
with ui = u and uj = v̄, where v̄ = v+n. Our constraint set consists then of the four balls

Buvij = {±Buv
ij ,±Buv̄

ij }.
We describe now the placement of a ball Buv

ij . Consider a line l = l(u1, . . . , uk) with
ui = u and uj = v. The center cuvij of Buv

ij will lie on a line z ∈ Ei × Ej that is orthogonal

to ~l, but not orthogonal to any line l(u1, . . . , uk) with ui 6= u or uj 6= v. We choose the
direction ~z of z as follows:

xi(~z) = µ(cos θi − 3n sin θi), yi(~z) = µ(sin θi + 3n cos θi),

xj(~z) = µ(− cos θj − 6n2 sin θj), yj(~z) = µ(− sin θj + 6n2 cos θj),

where θi = (2u− 1) π
2n

, θj = (2u− 1) π
2n

, and µ = 1/(9n2 + 36n4 + 2). It is straightforward

to check that ~l · ~z = 0.
Let ω be the angle between ~l′ and ~z. We have the following lemma:

Lemma 26. For any line l′ = l(u1, . . . , uk), with ui 6= u or uj 6= v the angle ω between ~l′

and ~z satisfies | cosω| > µ√
k
.

Proof. Without loss of generality we consider a fixed direction ~z where θi = θj = π
2n

(i. e.,

u = v = 1). Consider ~l′ with xi(~l′) = cos θ, yi(~l′) = sin θ, xj(~l′) = cosφ, and yj(~l′) = sinφ,
where θ = (2ui−1) π

2n
and φ = (2uj−1) π

2n
, with (ui, uj) 6= (1, 1) and (ui, uj) 6= (n+1, n+1).

After straightforward calculations we have that | cosω| = |~l′ · ~z| = µ√
k
|α|, where

α = cos(ui − 1)π
n

+ 3n sin(ui − 1)π
n
− cos(uj − 1)π

n
+ 6n2 sin(uj − 1)π

n
.

We will show that |α| > 1. We will use the inequality:

| sin(ui − 1)π
n
| ≥ | sin π

n
| > 1

n
,

which holds for all 1 ≤ ui ≤ 2n, with ui 6= 1, ui 6= n + 1, and n ≥ 4. We examine the
following cases:

(i) uj 6= 1 and uj 6= n+ 1. Then ui can take any value. We have

|α| ≥
∣∣∣|6n2 sin(uj − 1)

π

n
| − | cos(uj − 1)

π

n
− cos(ui − 1)

π

n
− 3n sin(ui − 1)

π

n
|
∣∣∣

> |6n2 · 1
n
− |2 + 3n||

= 3n− 2 > 1.
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(ii) uj = 1. Then ui 6= 1. If also ui 6= n+ 1, we have

|α| ≥ |0− 1 + 3n sin(ui − 1)
π

n
+ cos(ui − 1)

π

n
|

> | − 1 + 3n · 1

n
− 1| = 1.

If ui = n+ 1, then |α| = 2.
(iii) uj = n+ 1. Then ui 6= n+ 1. The two cases where ui 6= 1 or ui = 1 are dealt with

similarly to the previous case.

This lower bound on | cosω| helps us place Buv
ij sufficiently close to the origin so that

it is still intersected by l′, i. e., ~l′ lies in one of the half-spaces cuvij · p ≥
√
‖cuvij ‖2 − r2 or

cuvij · p ≤ −
√
‖cuvij ‖2 − r2, p ∈ R2k.

We claim that any point cuvij on z with r < ‖cuvij ‖ <
√

k
k−µ2 r will do. For any position

of cuvij on z with ‖cuvij ‖ > r, we have (cuvij · ~l)2 = 0 < ‖cuvij ‖2 − r2, i. e., l does not stab

Buv
ij . On the other hand, as argued above we need that |cuvij · ~l′| ≥

√
‖cuvij ‖2 − r2. Since

cuvij ·~l′ = cosω · ‖cuvij ‖, we have the condition | cosω| ≥
√

1− r2

‖cuv
ij ‖2 . By Lemma 26 we know

that | cosω| > µ√
k
, hence by choosing ‖cuvij ‖ so that µ√

k
>
√

1− r2

‖cuv
ij ‖2 we are done.

Reduction.. Similarly to [4], the structure of the input graph G([n], E) can now be repre-
sented as follows. We add to B0 the 4n

(
k
2

)
balls in BV =

⋃Buuij , 1 ≤ u ≤ n, 1 ≤ i < j ≤ k,
to ensure that all components ui in a solution (class of lines L(u1, . . . , uk)) are distinct. For
each edge uv ∈ E we also add the balls in k(k−1) sets Buvij , with i 6= j. This ensures that the
remaining classes of lines L(u1, . . . , uk) represent independent sets of size k. In total, the
edges are represented by the 4k(k−1)|E| balls in BE =

⋃Buvij , uv ∈ E, 1 ≤ i, j ≤ k, i 6= j.

The final set B = B0 ∪ BV ∪ BE has 2nk + 4
(
k
2

)
(n+ 2|E|) balls.

As noted in above, there is a bijection between the possible equivalence classes of lines
L(u1, . . . , uk) that stab B and the tuples (u1, . . . , uk) ∈ [n]k. The constraint sets of balls
exclude tuples with two equal indices ui = uj or with indices ui, uj when uiuj ∈ E, thus,
the classes of lines that stab B represent exactly the independent sets of G. Thus, we have
the following:

Lemma 27. Set B can be stabbed by a line if an only if G has an independent set of size
k.

From this lemma and since this is an fpt-reduction, Theorem 6 follows.

4. Concluding remarks

We have studied the parameterized complexity of several geometric stabbing prob-
lems. In particular, we have shown that stabbing axis-parallel unit squares with lines is (i)
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W[1]-hard (with respect to the number of lines) when the lines are axis-parallel, (ii) fixed-
parameter tractable when the squares are disjoint and the lines are axis-parallel, and (iii)
W[1]-hard when the squares are disjoint but the lines have arbitrary directions. These re-
sults leave open the question of whether stabbing disjoint arbitrary axis-parallel rectangles
with axis-parallel lines is fixed-parameter tractable. This was very recently answered affir-
matively by Heggernes et al. [17]. Several other questions remain open. For the tractable
cases above, can we find faster algorithms? Also, is the problem of stabbing d-dimensional
balls with one line in W[1] when parameterized with d?

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
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