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Abstract We show that for various classes C of sparse graphs, and several measures of
distance to such classes (such as edit distance and elimination distance), the problem
of determining the distance of a given graph G to C is fixed-parameter tractable. The
results are based on two general techniques. The first of these, building on recent work
of Grohe et al. establishes that any class of graphs that is slicewise nowhere dense
and slicewise first-order definable is FPT. The second shows that determining the
elimination distance of a graph G to a minor-closed class C is FPT. We demonstrate
that several prior results (of Golovach, Moser and Thilikos and Mathieson) on the
fixed-parameter tractability of distance measures are special cases of our first method.

Keywords Fixed-parameter tractable - Parameterized complexity - Graph theory -
Sparse graphs - Nowhere dense - Excluded minor - Minor-closed - Deletion distance -
Elimination distance - Distance

1 Introduction

The study of parameterized algorithmics for graph problems has thrown up a large
variety of structural parameters of graphs. Among these are parameters that measure
the distance of a graph G to a class C in some way. The simplest such measures are
those that count the number of vertices or edges that one must delete (or add) to G to
obtain a graph in C. A common motivation for studying such parameters is that if a
problem one wishes to solve is tractable on the class C, then the distance to C provides
an interesting parameterization of that problem (called distance to triviality by Guo et
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al. [19]). Other examples of this include the study of modulators to graphs of bounded
tree-width in the context of kernelization (see [13,15]) or the parameterizations of
colouring problems (see [22]). On the other hand, determining the distance of an input
graph G to a class C is, in general, a computationally challenging problem in its own
right. Such problems have also been extensively studied with a view to establishing
their complexity when parameterized by the distance. A canonical example is the
problem of determining the size of a minimum vertex cover in a graph G, which is
just the vertex-deletion distance of G to the class of edge-less graphs. More generally,
Cai [4] studies the parameterized complexity of distance measures defined in terms of
addition and deletion of vertices and edges to hereditary classes C. Counting deletions
of vertices and edges gives a rather simple notion of distance, and many more involved
notions have also been studied. Classic examples include the crossing number of a
graph which provides one notion of distance to the class of planar graphs or the
treewidth of a graph which can be seen as a measure of distance to the class of trees, as
argued in [19]. Another recently introduced measure is elimination distance, defined
in [3] where it was shown that graph isomorphism is FPT when parameterized by
elimination distance to a class of graphs of bounded degree.

In this paper we consider the fixed-parameter tractability of a variety of different
notions of distance to various different classes C of sparse graphs. We establish two
quite general techniques for establishing that such a distance measure is FPT. The
first builds on the recent result of Grohe et al. [18] which shows that the problem of
evaluating first-order formulas on any nowhere dense class of graphs is FPT with the
formula as parameter. We extract from their proof of this result a general statement
about the fixed-parameter tractability of definable sparse classes. To be precise, we
show that parameterized problems that are both slicewise nowhere dense and slicewise
first-order definable (these terms are defined precisely below) are FPT. As an appli-
cation of this, it follows that if C is a nowhere dense class of graphs that is definable
by a first-order formula, then the parameterized problem of determining the distance
of a graph G to C is FPT, for various notions of distance that can be themselves so
defined. In particular, we get that various forms of edit distance to classes of degree-
constrained graphs are FPT. We illustrate the power of this method by showing that it
includes as special cases prior results by Golovach [16], Moser and Thilikos [26] and
Mathieson [23,24] obtained by more specific methods. Another interesting application
is obtained by considering elimination distance of a graph G to the class C of empty
graphs. This is nothing other than the free-depth of G. While elimination distance to
a class C may not, in general, be first-order definable, it is in the particular case where
C is the class of empty graphs. Thus, we obtain as an application of our method the
result that tree-depth is FPT, a result previously known from other algorithmic meta
theorems (see [27, Theorem 17.2]). The method of establishing that a parameterized
problem is FPT by establishing that it is slicewise nowhere dense and slicewise first-
order definable appears to be a powerful method of some generality which should find
application beyond these examples.

Our second general method specifically concerns elimination distance to a minor-
closed class C. We show that this measure is fixed-parameter tractable for any such
C, answering an open question posed in [3]. Note that while a proper minor-closed
class is always nowhere dense, it is not generally first-order definable (for instance,
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neither the class of acyclic graphs nor the class of planar graphs is), and elimination
distance to such a class is also not known to be first-order definable. Thus, our results
on the tractability of slicewise first-order definable classes do not apply here. Instead,
we build on work of Adler et al. [1] to show that from a finite list of the forbidden
minors characterising C, we can compute the set of forbidden minors characterising
the graphs at elimination distance k to C. Adler et al. show how to do this for apex
graphs, from which one immediately obtains the result for graphs that are k deletions
away from C. To extend this to elimination distance k, we show how we can construct
the forbidden minors for the closure of a minor-closed class under disjoint unions.

In Sect.2 we present the definitions necessary for the rest of the paper. Section 3
establishes our result for slicewise first-order definable and slicewise nowhere dense
problems and Sect. 4 gives some applications of the general method. Section 5 estab-
lishes that the problem of determining elimination distance to any minor-closed class
is FPT. Some open questions are discussed in Sect. 6.

2 Preliminaries

First-Order Logic We assume some familiarity with first-order logic for Sect.3. A
(relational) signature o is a finite set of relation symbols, each with an associated
arity. A o-structure A consists of a set V(A) and for each k-ary relation symbol
R € o arelation R(A) C V (A)X. Our structures will mostly be (coloured) graphs, so
o ={E}oro ={E, Cy,C3,...,C,} where E is binary and the C; are unary relation
symbols. A graph G is then a o-structure with vertex set V (G), edge relation E(G),
and colours C;(G).
A first-order formula ¢ is recursively defined by the following rules:

p:=R(x1,....,x) | x=y|-¢|pVelire,

where k is the arity of the relation symbol R.
We also use the following abbreviations:

O AY =—(—m@VY), Vx.p:i=-—d-e.

The quantifier rank of a formula ¢ is the nesting depth of quantifiers in ¢. For a more
detailed presentation we refer to Hodges [20].

We sometimes need to define formulas of first-order logic by relativisation, and we
define the notion here.

Definition 1 Let ¢ and ¥ (x) be first-order formulas, where v has a distinguished
free variable x which does not appear in ¢. The relativisation of ¢ by ¥ (x), denoted
@*¥1 is defined recursively by the rules:

— for atomic ¢, V1 is the same as ¢;
= (o1 V)T is o Ty btV
- (~@) s =(p)FV]; and
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- Qv ¥ is Ju([v/x] A (@)F¥1). Here ¥ [v/x] denotes the result of replacing
the free occurrences of x in ¥ with v in a suitable way avoiding capture.

The key idea here is that ¢*-¥1 is true in a graph G if, and only if, ¢ is true in the
subgraph of G induced by the vertices that satisfy 1 (x). In particular the relatvisation
of Yv ¢ is Vo(Y[v/x] — ()X ¥1).

Note that the variable x that is free in ¥ is bound in ¢*-¥1. Other variables that
appear free in v remain free in ¢/*¥]. We stress this as it is needed in Proposition 2
where nested relativisations are used.

Parameterized Complexity Parameterized complexity theory is a two-dimensional
approach to the study of the complexity of computational problems. We find it con-
venient to define problems as classes of structures rather than strings, following the
textbook of Flum and Grohe [12]. A problem Q C str(o) is an (isomorphism-closed)
class of o-structures given some signature o. A parameterization is a computable
function « : str(o) — N. We say that Q is fixed-parameter tractable with respect to
k if we can decide whether an input A € str(o) is in Q in time O (f(k(A)) - |A[°),
where c is a constant and f is some computable function. For a thorough discussion
of the subject we refer to the books by Downey and Fellows [9], Flum and Grohe [12]
and Niedermeier [29].

A parameterized problem (Q, k) is slicewise first-order definable if there is a com-
putable function f : N — FO[o] such that a o-structure A with ¥ (A) < i isin Q if,
and only if, A = f(i). Slicewise definability of problems in a logic was introduced
by Flum and Grohe [11].

Graph Theory A graph G is a set of vertices V(G) and a set of edges E(G) <
V(G) x V(G). We assume that graphs are loop-free and undirected, i.e. that E is
irreflexive and symmetric. We mostly follow the notation in Diestel [8]. For a set
S C V(G) of vertices, we write G\ S to denote the subgraph of G induced by V (G)\S.

Let » € N. An r-independent set in a graph G is a set of vertices of G such that
their pairwise distance is at least r.

A graph H is a minor of a graph G, written H < G, if there is a map, called the
minor map, that takes each vertex v € V(H) to a tree T, that is a subgraph of G such
that for any u # v the trees are disjoint, i.e. 7, N 7, = ¥, and such that for every edge
uv € E(H) there are vertices u’ € T,,v' € T, with u’v’ € E(G). A class of graphs
C is minor-closed if H < G and G € C implies H € C.

The set of minimal excluded minors M (C) is the set of graphs in the complement
of C such that for each G € M (C) all proper minors of G are in C. By the Robertson—
Seymour Theorem [30] the set M (C) is finite for every minor-closed class C. It is a
consequence of this theorem that membership in a minor-closed class can be tested in
O (n?) time. For a set M of graphs, we write Forb(M) for the class of graphs which
forbid M as minors, i.e. Forb(M) = {G | H ﬁ G forall H € M}.

Letr € N. A minor H of G is a depth-r minor of G, written H <, G, if there is a
minor map that takes vertices in H to trees that have radius at most 7. A class of graphs
C is nowhere dense if for every r € N there is a graph H, such that for no G € C we
have H, <, G. A nowhere-dense class of graphs C is called effectively nowhere dense
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if there is a computable function 4 from integers to graphs such that if G € C then for
all r we have h(r) A, G. We are only interested in effectively nowhere-dense classes
so we simply use the term nowhere dense to mean effectively nowhere dense.

We say that a parameterized graph problem (Q, «) is slicewise nowhere dense if
there is a computable function / from pairs of integers to graphs such that foralli € N,
we have if G € Q and x(G) < i then for all r we have h(i, r) ;ﬁ, G. We call h the
parameter function of Q.

For a class of graphs C we denote the closure of C under taking disjoint unions
by C. We say that a graph G is an apex graph over a class C of graphs if there is a
vertex v € V(G) such that the graph G\{v} € C. The class of all apex graphs over C
is denoted CP°*.

A graph G has deletion distance k to a class C if there are k vertices vy, ..., v €
V(G) such that G\{vy, ..., v} € C.

A richer notion of distance to a graph class C, inspired by the definition of tree-depth,
is introduced in [3], and we define it next.

The elimination distance of a graph G to a class C is defined as follows:

0, if G € C;
edc(G) := {1+ minfedc(G\v) | v € V(G)}, if G ¢ C and G is connected;
max{edc(H) | H a connected component of G}, otherwise.

3 A General Method for Editing Distances

In this section we establish a general technique for showing that certain definable
parameterized problems on graphs are FPT. As an application, we show that certain
natural distance measures to sparse graph classes are FPT. To be precise, we show
that if a parameterized problem is both slicewise first-order definable and slicewise
nowhere dense, then it is FPT. In particular, this implies that if we have a class C that
is first-order definable and nowhere dense and the distance measure we are interested
in is also first-order definable (that is to say, for each k there is a formula that defines
the graphs of distance k from C), then the problem of determining the distance is FPT.
More generally, if we have a parameterized problem (Q, k) that is slicewise nowhere
dense and slicewise first-order definable, and a measure of distance to it is definable
in the sense that for any values of k and d, there is a first-order formula defining the
graphs of distance d to the class {G | G € Q and k(G) < k}, then the problem of
deciding whether a graph has distance at most d to this class is FPT parameterized by
d + k. In Sect. 4 we show that this provides a unifying account of a number of existing
results in the literature by giving a single method of proof for them.

The method is an adaptation of the main algorithm in Grohe et al. [18]. Since the
proof of our results is essentially a modification of the central construction in [18],
rather than give a full account, we state the main results they prove and explain briefly
how the proofs can be adapted for our purposes. For a full proof, this section is best read
in conjunction with the paper [18]. In Sect. 3.1 we give an overview of the key elements
of the construction from [18] and state all the definitions we require to formulate our
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results. Section 3.2 then gives our main result and Sect. 4 derives some consequences
for distance measures.

3.1 Evaluating Formulas on Nowhere Dense Classes

The key result of [18] is:

Theorem 1 [18, Theorem 1.1] For every nowhere dense class C and every € > 0,
every property of graphs definable in first-order logic can be decided in time O (n'*€)
onC.

The proof of this theorem rests, in turn, on two others, stated as Theorems 2 and 3
below. In order to formally state those results and explain how they can be adapted to
our purposes, we need to formulate some definitions.

The algorithm developed in the proof of Theorem 1 uses a locality-based approach,
similar to that used by Frick and Grohe [14] to show that first-order evaluation is FPT
on graphs of locally bounded treewidth and developed in [7] for application to graph
classes with locally excluded minors. The key to these is an application of Gaifman’s
locality theorem [10, Thm. 2.5.1]. Let disty («, v) denote the first-order formula with
free variables u and v that is satisfied by a pair of vertices in a graph G if, and only if,
they have distance at most d in G. A basic local sentence of radius d is a first-order
formula of the form:

Bopcdne N\ distag G x) A f\ oG] (1)

I<i<j<k 1<i<k

where 6 is some first-order sentence. Essentially, this basic local sentence asserts
the existence of k disjoint neighbourhoods of radius r, each of which satisfies the
sentence 0. Gaifman’s locality theorem then asserts that every first-order sentence
@ is equivalent to a Boolean combination of basic local sentences. Moreover, this
equivalent Gaifiman normal form can be computed from ¢. Thus, in considering the
parameterized complexity of evaluating ¢ in a graph G it suffices to consider just basic
local sentences.

To evaluate a basic local sentence such as (1) in a graph G, it suffices to determine
for each vertex v whether the neighbourhood of radius d around it satisfies 6 and
then check whether in set of vertices for which this is true there is a 2d-independent
set. If the neighbourhoods in G are structurally simpler than G, this may provide
an efficient means of evaluating a first-order sentence. For instance, in a class C of
bounded local treewidth, the d-neighbourhoods of vertices have bounded treewidth,
and if C has locally excluded minors then for every d, the d-neighbourhoods exclude
some graph as a minor. If C is a nowhere-dense class, we do not have a structurally
simpler characterisation of the d-neighbourhoods occurring in graphs in C. Instead we
rely on the property that such classes are quasi-wide. This is a notion of sparseness for
graphs introduced in [5,6] (for the connection to nowhere-dense classes, see [27]). A
graph class C is said to be quasi-wide if there is a function s such that for any d and
N and any graph G € C, if A is a sufficiently large set of more vertices in G, then
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G contains a bottleneck set S of at most s(d) vertices such that in G\ S, A contains a
d-independent set of size N.

This suggests strategy for evaluating a formula ¢ in a graph G that comes from
a class C that is nowhere dense and closed under taking subgraphs. We identify a
bottleneck set S and remove these vertices from the graph, colouring each remaining
vertex v according to which elements of S are neighbours of v. It is easy to translate
the formula ¢ into a formula ¢’ in a vocabulary expanded with these colours such that
¢’ is true in the coloured graph G\S if, and only if, ¢ is true in G. The existence of
a large set of vertices in G\S that are pairwise far apart means that we can evaluate
local sentences in neighbourhoods around these vertices in (total) amortized time
dependent on the size of the graph. This evaluation is done recursively, since the
neighbourhood of a vertex v is also in the class C (by the assumption of closure under
taking subgraphs). The difficulty with this approach is that, if all we know about the d-
neighbourhood of a vertex is that it is also in C, we cannot bound the depth of recursion
by a constant. Thus the vocabulary of the formulas ¢’ we construct, and hence also
their size, is no longer dependent solely on parameters. Grohe et al. circumvent this
difficulty through two innovative methods. The first is to define a colouring based
on sparse neighbourhood covers and show that such covers exist in nowhere-dense
classes of graphs. The second is an alternative way of amortizing the quantifier rank of
the recursively defined formulas in the expanded vocabularies, defining a discounted
measure of rank. We expand on these notions next.

Forr € N,anr-neighbourhood cover of agraph G is aset X of connected subgraphs
of G suchthatforevery v € V(G) thereisan X € X that contains the r-neighbourhood
of v. The elements of X" are called clusters. The radius of X is the maximum radius
of any of its clusters. The degree of a vertex v is the number of clusters that contain v
an the maximum degree of X is the maximum over all v € V(G) of the degree of v.
These definitions allow us to state the following theorem.

Theorem 2 [18, Theorem 6.2] Let C be a nowhere dense class of graphs. There is a
function f such that for all r € N and € > 0 and all graphs G € C withn > f(r, €)
vertices, there exists an r-neighbourhood cover of radius at most 2r and maximum
degree at most n€ and this cover can be computed in time f (r, €) - n't€. Furthermore,
if C is effectively nowhere dense, then f is computable.

In this theorem, f is a function of r and € and depends on the class C in the sense
that it is determined, for an effectively nowhere dense C by its parameter function.
While the algorithm of [18] assumes that the input graph G comes from the class C,
we can say something more. For a fixed nowhere dense class C, where we know the
parameter function A, we can, given G, r and €, compute a bound on the running time
of the algorithm from Theorem 2. By running the algorithm to this bound, we have
the following as a direct consequence of the proof of Theorem 2.

Lemma 1 Let C be a nowhere dense class of graphs. There is a function f such that
forallr € N and € > 0 and all graphs G € C with n > f(r, €) vertices, there
exists an r-neighbourhood cover of radius at most 2r and maximum degree at most
n€. There is an algorithm that given an arbitrary graph G runs in time f(r, €) -n'*t€
and that computes this cover or determines that G ¢ C. Furthermore, if C is effectively
nowhere dense, then f is computable.
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The logic FO™ is defined by extending FO with an atomic formula disty (x, y) for
each d € N and each pair of variables x, y. The idea is that in this expanded logic,
the assertion that x and y are at distance at least d does not require any quantifiers.
However, we lose a key feature of first-order logic that is essential to parameterized
algorithms and that is that, for each g, there are, up to equivalence, only finitely many
distinct sentences of FO of quantifier-rank ¢. To recover this property for FO™, Grohe
et al. define a discounted quantifier rank measure as follows. We say that ¢ of FO™ has
q-rank m if it has quantifier-rank at most m and for any atomic subformula disty (x, y)
which occurs within the scope of i quantifiers we have d < (4¢)7+" . It can then be
shown that there are for each k,g and m, up to equivalence, only finitely many distinct
formulas of FO' with g-rank m in the free variables x1, . . ., x¢. Fix ¢ (0, k, g, m) a
finite set of representative formulas in the vocabulary o, including one of each class
up to logical equivalence. We then define the vocabulary o x ¢ as the expansion of o
with a unary relation P, for each ¢ € ¢™ (0, 1, q, q).

Given a o -structure A and X an r-neighbourhood cover of A, fix foreach v € V (A)
aneighbourhood X (v) € X such that the r-neighbourhood of v is contained in X (v).
Let A xx g be the 0 x ¢ expansion of A in which Py is interpreted by the set of v in
which the substructure of A induced by X (v) satisfies ¢[v]. We now inductively define
the vocabularies o+’ ¢ by: 0 +%¢g is o andoxi + 1q is (o * q)xq. Similarly, we define
the structure A *g( gtobe Aand A *’;1 g tobe (A *i)( q)*q. A (q, r)-independence
sentence is a sentence of FO™ of the form:

dxqg - - - dxg /\ _‘diStZr(xi»xj)/\ /\ 0(xi),

1<i<j<k 1<i<k

where 6 is quantifier-free. Note that such a sentence is a basic local sentence (as in (1))
with the stronger requirement that 6 is quantifier-free. We are now ready to state the
Rank-Preserving Locality Theorem.

Theorem 3 (Rank-preserving locality theorem [18, Theorem 7.5]) Foreveryq € N
there is an r such that for every FO-formula ¢ (x) of quantifier rank q there is an FO™ -
Sformula ¢(x), which is a Boolean combination of (q + 1, r)-independence sentences
and atomic formulas, such that for any graph G every r-neighbourhood cover X of
G, and every v € V(G),

1 ~
GEop) <= G4 g o).
Furthermore, ¢ is computable from @, and r is computable from q.

An important tool for constructing G *?YH q is a game characterisation of nowhere
dense classes. The game has three parameters: £, m, r. In the (£, m, r) Splitter game
two players Connector and Splitter play against each other. In each round Connector
chooses a vertex u, and Splitter has to respond with a set A of vertices of size at most
m in the r-neighbourhood of u. In the next round the graph is the neighbourhood of u
with the vertices from A removed. If the graph is empty, Splitter wins. If Connector
survives for more than ¢ rounds, she wins. Grohe et al. [18, Theorem 4.2] prove that if
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C is anowhere dense class, then there are £, m such that Splitter has a winning strategy
on the (£, m, 2r) Splitter game on every graph in C.

The Splitter’s strategy on a graph G (which can be efficiently computed) is the
essential tool in the construction of G*?\jl q. The inductive procedure used to compute

G*g;'l g from G is outlined in [ 18, Proof of Theorem 8.1]. We note that the termination
of the algorithm depends on the length of the game—which is bounded by a constant
since C is nowhere dense. The strategy to compute Splitter’s moves is described in [18,
Remark 4.3]. Since the run time of the algorithm to compute G aﬁjl q only depends
on g and the length of the Splitter game and we can compute this in advance, we can
once again extract the fact that if we start with an arbitrary graph G, we can efficiently
either transform it into G *g;r] q or determine that it is not in the class C. This is
summed up in the following lemma.

Lemma 2 Let C be a nowhere dense class of graphs. For every € > 0 there is an
algorithm that runs in time O(f(q) - n'7) for some function f, and which given a
graph G returns G *g(H q or determines that G ¢ C.

Theorem 3 reduces the problem of evaluating a formula of first-order logic to
deciding a series of distance-r-independent set problems. So, the final ingredient is to
show that this is tractable. Formally, the problem is defined as follows:

DISTANCE INDEPENDENT SET

Input: A graph G and k,r € N.

Parameter: k + r

Problem: Does G contain an r-independent set of size k?

The problem is shown to be FPT on nowhere dense classes of graphs [18, The-
orem 5.1]. Since the runtime of the algorithm depends on the length of the Splitter
game and Splitter’s strategy, and this can be bounded in advance, [18, Theorem 5.1]
can be restated as follows:

Lemma 3 Let C be a nowhere dense class of graphs. Then there is an algorithm and
a function f such that for every € > 0 the algorithm runs in time f(e,r, k) and
either solves the DISTANCE INDEPENDENT SET problem or determines that G ¢ C.
Furthermore, if C is effectively nowhere dense, then f is computable.

This is all we need to evaluate q3 on G *‘/IYH q, which is equivalent to evaluating ¢
on G by Theorem 3.

3.2 Deciding Definable Nowhere Dense Problems
The main result of [18] establishes that checking whether G |= ¢ is FPT when

parameterized by ¢ provided that G comes from a known nowhere dense class C.
Thus, the formula is arbitrary, but the graphs come from a restricted class. In Sect. 3.1

@ Springer



148 Algorithmica (2017) 79:139-158

above we give an account of this proof from which we can extract the observation
that the algorithm can be modified to work for an arbitrary input graph G with the
requirement that the algorithm may simply reject the input if G is not in C. This
suggests a tractable way of deciding G = ¢ provided that ¢ defines a nowhere dense
class. Now the graph is arbitrary, but the formula comes from a restricted class. We
formalise the result in the following theorem:

Theorem 4 Let (Q, k) be a problem that is slicewise first-order definable and slice-
wise nowhere dense. Then (Q, k) is fixed-parameter tractable.

Proof In the following, for ease of exposition, we assume that an instance of the
problem consists of a graph G and « (G) = i for some positive integer i.

Step 1: Compute ¢ and the parameter function. Since (Q, k) is slicewise first-order
definable, we can compute from i a first-order formula ¢ which defines the
class of graphs C; = {H | H € Qand«(H) < i}. Moreover, since
(0Q, k) is slicewise nowhere dense, we can compute from i an algorithm
that computes the parameter function /4 for C;.

Step 2: Obtain ¢ from ¢. By the Rank-Preserving Locality Theorem (Theorem 3),
we can compute from ¢ the formula ¢ and a radius .

Step 3: Find a small cover X for G. By Lemma 1, we can either find a cover X for
G, or reject if the algorithm determine that G ¢ C;.

Step 4: Simulate Splitter game to compute G’. By Lemma 2 we obtain G’ or reject
if the algorithm determines that G ¢ C;.

Step 5: Evaluate ¢ on G’. Finally to evaluate ¢ on G’, we need to solve the distance
independent set problem. We can do this by Lemma 3. Since evaluating ¢
on G’ is equivalent to evaluating ¢ on G this allows us to decide whether
G e Q.

4 Applications

In this section we illustrate the power of Theorem 4 by showing that a number of
known fixed-parameter tractability results can be obtained as direct consequences of
the theorem. In Sect. 4.1, we start with the simple observation that if a parameterized
problem is slicewise first-order definable than so is deletion distance to the problem
(suitably parameterized). Examples of this include previous results of Moser and
Thilikos [26]. We consider more general edit distances in Sect.4.2 and show that of
Mathieson [23,25] can be obtained as special cases of our result. Finally, in Sect. 4.3,
we consider the problem of computing the tree-depth of a graph. Again, this problem
is known to be FPT, and the novelty here is in constructing the first-order definitions
that show it is slicewise first-order definable. The consideration of tree-depth also
leads naturally to considering, more generally, elimination distance to sparse classes
and this topic is taken up in Sect.5.
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4.1 Deletion Distance

A graph G has deletion distance k to a class C if there exists a set S of k vertices in
G so that G\S € C. Suppose (Q, k) is a parameterized graph problem. We define the
problem of deletion distance to Q as follows:

DELETION DISTANCE TO Q

Input: A graph G and k,d € N.

Parameter: k + d

Problem: Does G contain a set S of k vertices so that « (G\S) < d and G\S € Q?

Proposition 1 If(Q, «) is slicewise nowhere dense and slicewise first-order definable
then DELETION DISTANCE TO Q is FPT.

Proof 1Tt suffices to show that DELETION DISTANCE TO Q is also slicewise nowhere
dense and slicewise first-order definable. For the latter, note that if ¢; is the first-order
formula that defines the class of graphs C; = {G | k(G) < i and G € Q}, then the
class of graphs at deletion distance k to C; is given by:

Jwy, ..., wkgoi[x'ek]

where 6y (x) is the formula /| _; ., x # w;.

To see that DELETION DISTANCE TO Q is also slicewise nowhere dense, let & be
the parameter function for Q. If the graph A (i, r) has m vertices, then K,, is not a
depth-r-minor of any graph in C;. Then a graph which has deletion distance k to C;
cannot have K, as a depth-r-minor. Indeed, suppose K,,+x <, G and G\S € (;
where S is a set of k vertices. Vertices from § can appear in the images of at most k
vertices from K, 4 under the minor map. Thus, this minor map also witnesses that
K, <, G\S, a contradiction. O

Consider as an example deletion distance k to maximum degree d.

Example 1 We can express that a vertex has no more than d different neighbours using
the following formula:

@q(v) == —3Jvy, ..., Vg1 /\vi;ﬁvj A(/\E(v,vﬂ)
i<j i

So a graph G has maximum degree bounded by d if and only if G = Yvg,(v). Let
Cq be the class of graphs with maximum degree bounded by d. Then the following
formula captures deletion distance k to maximum degree d:
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Elwl,...,wk‘v’v</\v75wi)—>
i
—Jvg, ..., Va4l /\vi;:éu)j A /\v,-;évj A(/\E(v,vi))
i,j i

i<j

Thus the technique introduced in this section is sufficient to show that deletion
distance k to maximum degree d is fixed-parameter tractable parameterized by k + d.

Moser and Thilikos [26] showed that deleting k vertices to obtain a d-regular graph
is fixed-parameter tractable parameterized by k + d. Since the class of d-regular
graphs is also first-order definable and nowhere dense for any d, their result is also a
consequence of Theorem 4.

4.2 Edit Distances to Graph Classes Defined by Degree Constraints

Instead of deletion distance (defined by deleting vertices), we can also consider more
general graph editing distances (defined through more general edit operations on the
graph), e.g. modifying the graph by adding or deleting edges.

For example, to obtain a formula that defines the graphs that are one edge addition
away from a class of graphs C defined by the formula ¢, we construct ¢ from ¢ by
replacing all occurrences of E (w1, wy) in ¢ by:

(wi=unrwy=v)V(w =vAwr=u)V E(w, wp).

Then the formula 3u3v¢@ defines the class of graphs with edge addition distance 1 to
C,ie. G = JuIvg if, and only if, G with an additional edge satisfies ¢. This can
easily be generalised to k edge additions: From a formula ¢ we can obtain a formula
@1 such that for any graph G we have that G = ¢ if, and only if, there are pairs of
vertices u1, vy, ..., Ui, vx € V(G) such that G, with additional edges uvy, .. . ugvg,
satisfies ¢.

Similarly, given a formula v that defines a graph class C, we can define a formula
v by replacing all occurrences of E (w1, wy) in ¥ by:

(w1 FuVwy #v)A(w) #ZvVwy #u) A E(w, wr).

Then HMHUI/AI defines the class of graphs with edge deletion distance 1 to C. It should
be clear that this can also be generalised to k edge deletions.

Thus, an analogue of Proposition 1 can be obtained for any edit distance where the
allowed edit operations are a combination of vertex and edge deletions and additions.
In the following we discuss this in more detail, where the class we are editing to is
defined by degree constraints.

In his doctoral thesis Mathieson [23] studies the parameterized complexity of such
graph editing problems with the aim to satisfy a variety of degree constraints. He
defines the general template of WEIGHTED DEGREE CONSTRAINED EDITING (or just
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WDCE). In the following we explore one instance (that he refers to as WDCEY) of a
number of more general templates that also allow for weight functions of vertices and
edges, as well as a different degree target for each vertex and a target for the sum of
edge weights. This is just for the sake of simplicity here, the more general operations
are also definable in first-order logic and give rise to nowhere dense graph classes. In
the following we abbreviate the editing operations vertex deletion, edge deletion and
edge addition as v, e and a respectively. Then for each non-empty S C {v, e, a} define
WDCE(S) as:

WEIGHTED DEGREE CONSTRAINED EDITING(S) (WDCE (S))

Input: A graph G, two integers k and d

Parameter: k + d

Problem: Can we obtain from G a graph G’ using k editing operations from S only, such that all
vertices of G’ have degree d?

Mathieson [25] shows that the problem is fixed-parameter tractable for any S and
parameter k + d. Inspired by Stewart [31], Mathieson shows that the problem is first-
order definable (with the size of the formula depending on k and d), by considering
the incidence graph as a relational structure. (For the weighted version of the problem,
he adds a unary relation for every possible weight.) Since a graph that can be edited to
be regular must its degree bounded by k + d it is therefore also nowhere dense. Thus
the result also follows directly from Theorem 4.

Building on this, Golovach [16] gives a concrete algorithm that edits a graph so that
every vertex has a given degree at most d using at most k edge additions/deletions.

More recently, Mathieson [24] looks at more general versions of degree constraint
problems. He considers three notions of regularity: edge-degree-regular, edge-regular
and strongly-regular. He studies the problems of editing to these three notions of
regularity.

The edge-degree of an edge uv is the sum of the degrees of the endpoints of
d(u) + d(v) and a graph is edge-degree-regular if all edges uv have the same edge-
degree.

The two other notions combine the degrees of vertices and common neighbourhoods
of endpoints of edges (and non-edges). A graph is (r, A)-edge-regular if every vertex
has degree r and every edge uv has |N(u) N N (v)| = A. A graphis (r, A, u)-strongly-
regular if it is (r, 1)-edge-regular and for every pair u, v of non-adjacent vertices we
have |N(u) N N(v)| = . This is the standard notion of a strongly regular graph as
introduced by Bose [2].

Just as above we abbreviate the editing operations vertex deletion, edge deletion
and edge addition as v, e and a respectively. We also abbreviate the three notions of
regularity edge-degree regular, edge-regular and strongly regular as ry, r, r3 respec-
tively. Then for each non-empty S C {v, e, a} and each r € {rq, r2, r3} define RCE(S)
as:

Mathieson [24] shows that editing to these three notions of regularity is FPT param-
eterized by k+d, where d is the degree we are editing to and k is the number of allowed
edits. This also follows from our meta-theorem: Just as in Example 1, it is easy to show
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REGULARITY CONSTRAINED EDITING (S, r) (RCE (S, r))

Input: A graph G, integers k, d (and additionally an integer A if » = r; or r3, and an integer p if
r=r3)

Parameter: k + d

Problem: Can we obtain from G a graph G’ using editing operations from S only, such that G’ is
r-regular (with the given parameters)?

that the class of graphs with edit distance & to an d-regular graph is first-order definable
and has bounded degree, and is thus also nowhere dense. The additional constraints
are also first-order definable, for example |N () N N(v)| = A can be expressed as
follows:

Jxgp ... 3xy. (/\ Xi # X /\(E(xi,u)AE(xi,v)) A =3y (/\(xi #Y)N(E(u, y) /\E(v,y))))

i<j i i

So each of these problems is first-order definable and nowhere-dense, so it follows
directly from Theorem 4 that these problems are fixed-parameter tractable with the
combined parameter k + d.

4.3 Tree-Depth

Recall that tree-depth is a graph parameter that lies between the widely studied param-
eters vertex cover number and tree width. It has interesting connections to nowhere
dense graph classes, and can itself be interpreted as a distance measure (elimination
distance to the empty graph). For convenience we give the usual definition here:

Definition 2 The tree-depth of a graph G, written td(G), is defined as follows:

0, if v(G) =0,
td(G) == {1 + min{td(G\v) | v € V(G)}, if G is connected;
max{td(H) | H acomponent of G},  otherwise.

Note that a graph has tree-depth k if and only if it has elimination distance k
to the class of empty graphs. So one can think of elimination distance as a natural
generalisation of tree-depth.

It is known that the problem of determining the tree-depth of graph is FPT, with
tree-depth as the parameter (see [28, Theorem 7.2]). We now give an alternative proof
of this, using Theorem 4. It is clear that for any &, the class of graphs of tree-depth at
most k is nowhere dense. We show below that it is also first-order definable.

Proposition 2 For each k € N there is a first-order formula ¢y such that a graph G
has tree-depth k if and only if G = ¢.

Proof We use the fact that in a graph of tree-depth less than k, there are no paths of
length greater than 2k [28, Section 6.2]. This allows us, in the inductive definition of
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tree-depth above, to replace the condition of connectedness (which is not first-order
definable) with a first-order definable condition on vertices at distance at most 2k,

Recall that disty(u, v) is the first-order formula with free variables u and v that is
satisfied by a pair of vertices in a graph G if, and only if, they have distance at most d
in G. Note that the formula distgx 71, v) is then a formula with three free variables
u, v, w which defines those #, v which have a path of length d in the graph obtained
by deleting the vertex w.

We can now define the formula ¢y by induction. Only the empty graph has tree-
depth 0, so ¢p := =Fv(v = v).

Suppose that ¢ defines the graphs of tree-depth at most k, let

O = (Vu, v distyr+1 (i, v)) A Jw ((p]Ex.x#w]) .

The formula 6 defines the connected graphs of tree depth at most k + 1. Indeed, the
first conjunct ensures that the graph is connected as no pair of vertices has distance
greater than 25*! and the second conjunct ensures we can find a vertex w whose
removal yields a graph of tree-depth at most k.

We can now define the formula ¢, as follows.

. . Jdist ,
Q41 = (Vu, v distyr+141 (1, v) — disty+1 (u, v)) A Vwek[x IStk (0 x)].

The formula asserts that there are no pairs of vertices whose distance is strictly greater
than 2! and that for every vertex w, the formula 6y holds in its connected component,
namely those vertices which are at distance at most 25! from w. O

While the proof of Proposition 1 shows that deletion distance to any slicewise first-
order definable class is also slicewise first-order definable, Proposition 2 shows that
elimination distance to the particular class of empty graphs is slicewise first-order
definable. It does not establish this more generally for elimination distance to any
slicewise nowhere dense class—that remains an open question. We conjecture that
elimination distance to a slicewise nowhere dense class is not first-order definable.

5 Elimination Distance to Classes Characterised by Excluded Minors

In this section we show that determining the elimination distance of a graph to a minor-
closed class C is FPT when parameterized by the elimination distance. More generally,
we formulate the following parameterized problem where the forbidden minors of C
are also part of the parameter.

ELIMINATION DISTANCE TO EXCLUDED MINORS

Input: A graph G, a natural number k € N and a set of graphs M
Parameter: k + Y ;<5 |Gl

Problem: Does G have elimination distance k to the class Forb(M)?
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It is not difficult to show that the class of graphs which have elimination distance k
to a minor-closed class C is also a minor-closed class. Indeed, this can be seen directly
from an alternative characterisation of elimination distance that we establish below.
The characterisation is in terms of the iterated closure of C under the operation of
disjoint unions and taking the class of apex graphs.We introduce a piece of notation
for this in the next definition. Recall that we write C*P®* for the class of all the apex
graphs over C, and that we write C for the closure of C under disjoint unions.

Definition 3 For a class of graphs C, let Cp := C, and C;+ := C;*P%.

We show next that the class Cy is exactly the class of graphs at elimination distance
k from C.

Proposition 3 Let C be a class of graphs and k > 0. Then Cy is the class of all graphs
with elimination distance at most k to C.

Proof We prove this by induction. Only the graphs in C have elimination distance 0
to C, so the statement holds for k£ = 0.

Suppose the statement holds for k. If G € Ci+1, then G is a disjoint union of graphs
Gi, ..., Gy from C,?P®*, so we can remove at most one vertex from each of the G; and
obtain a graph in Ci. Thus the elimination distance of G to Cy is 1, and by induction
the elimination distance to C is k + 1. Conversely, if G has elimination distance k + 1
to C, then we can remove a vertex from each component of G to obtain a graph G’
with elimination distance k to C. Using the induction hypothesis each component of
G’ isin Cy, and thus G € Ciy . O

It is easy to see that if C is a minor-closed class of graphs then so is Cy for any k.
Indeed, it is well-known that C#P®* is minor-closed for any minor-closed C, so we just
need to note that C is also minor-closed. But it is clear that if H is a minor of a graph
G that is the disjoint union of graphs Gy, ..., Gy, then H itself is the disjoint union
of minors of G, ..., Gy. Thus, the class of graphs of elimination distance at most k
to a minor-closed class C is itself minor-closed. We next show that we can construct
the set of its minimal excluded minors from the corresponding set for C.

To obtain M (Cy), we need to iteratively compute M (C****) and M (C) from M (C).
Adler et al. [1] show that from the set of minimal excluded minors M (C) of a class C,
we can compute M (C*P%):

Theorem 5 [1, Theorem 5.1] There is a computable function that takes the set of
graphs M (C) characterising a minor-closed class C to the set M (CP%).

We next aim to show that from M (C) we can also compute M ©). Together with
Theorem 5 this implies that from M (C) we can compute M (Cy).

We begin by characterising minor-closed classes that are closed under disjoint
unions in terms of the connectedness of their excluded minors.

Lemma 4 Let C be a class of graphs closed under taking minors. Then C is closed
under taking disjoint unions iff each graph in M (C) is connected.
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Proof Let C be a minor-closed class of graphs, and let M(C) = {Hy, ..., Hy} be its
set of minimal excluded minors.

Suppose each of the graphs in M (C) is connected. Let H € M(C) and let G =
G 1D - -®G, bethedisjointunion of graphs G1, . .., G, € C.Because H is connected,
we have that H < G ifandonly if H < G; forone 1 <i < r.So,sinceall the G; € C,
we have H A G and thus G € C. This shows that C is closed under taking disjoint
unions.

Conversely, assume one of the graphs H € M(C) is not connected, and let
Aq, ..., A; be its connected components. Then Ay, ..., A, € C, since each A; is
a proper minor of H, and H is minor-minimal in the complement of C. However,
Al®---dA =H¢C. O

Definition 4 For a graph G with connected components G, ..., G,, let H denote
the set of connected graphs H with V(H) = V(G) and such that the subgraph of H
induced by V (G;) is exactly G;. We define the connection closure of G to be the set
of all minimal (under the subgraph relation) graphs in . The connection closure of
a set of graphs is the union of the connection closures of the graphs in the set.

Note that if G has e edges and m components, then any graph in the connection closure
of G has exactly e4+m — 1 edges. This is because it has G as a subgraph and in addition
m — 1 edges corresponding to a tree on m vertices connecting the m components.

Lemma 5 Let C be a minor-closed class of graphs. Then M(C) is the set of minor-
minimal graphs in the connection closure of M (C).

Proof Let C be a minor-closed class of graphs, with M (C) its set of minimal excluded
minors, and let M be the connection closure of M ©).

Let G be a graph such that H £ G for all He M. Suppose for contradiction that
G is not a disjoint union of graphs from C. Then there is a component G’ of G that is
not in C and therefore there is a graph H € M(C) such that H < G’. We show that
one of the graphs in the connection closure of H is a minor of G'.

Let {wy, ..., ws} be the vertex set of H and consider the image T1, ..., T; of the
minor map from H to G’. Let T be a minimal subtree of G’ that contains all of the 7;.
Such a tree must exist since G’ is connected. Let H be the graph with the same vertex
set as H, and an edge between two vertices w;, w; whenever either w;w; € E(H)
or when there is a path between 7y, and Ty, in T that is disjoint from any T, with
w; # wr # w;. We claim that H is in the connection closure of H. By construction,
H is connected and contains all components of H as disjoint subgraphs, so we only
need to argue minimality. H has no vertices besides those in H so no graph obtained
by deleting a vertex would contain all components of H as subgraphs. To see that no
edge of H is superfluous, we note it has exactly e + m — 1 edges and thus no proper
subgraph could be connected and have all components of H as disjoint subgraphs. By
the construction H =< G’ < G, so by the transitivity of the minor relation we have
that H < G.

Conversely let G be an arbitrary graph and assume that H € M and H < G.
Because H is connected, there is a connected component G’ of G such that H < G'.
Now there must be a graph H € M (C) such that H is in the connection closure of
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H, and since H is a subgraph of A JH < a. Then, by the transitivity of the minor
relation, H < G’ and thus G" ¢ C. Therefore G is not a disjoint union of graphs from
C. o

Now our main theorem is established by a simple induction:

Theorem 6 There is a computable function which takes a set M of excluded minors
characterising a minor-closed class C and k > 0 to the set M (Cy).

Proof The proof is by induction. For £ = 0, the set of minimal excluded minors
of Cy is M(Cyp) = M(C), which is given. For k > 0, we have that C; = Cj_*P%.
By the induction hypothesis we can compute M (Cy_1), by Theorem 5 we can com-
pute M (Cr—1*P**) and using Lemma 5 we can compute the connection closure of
M (Ci—1%P%%) to obtain M (Cr_1P%*) = M(Cy). O

So by the Robertson—Seymour Theorem we have the following:

Corollary 1 Let C be a minor-closed graph class. Then the problem ELIMINATION
DISTANCE TO EXCLUDED MINORS is FPT.

6 Conclusion

We are motivated by the study of the fixed-parameter tractability of edit distances in
graphs. Specifically, we are interested in edit distances such as the number of vertex or
edge deletions, as well as more involved measures like elimination distance. Aiming at
studying general techniques for establishing tractability, we establish an algorithmic
meta-theorem showing that any slicewise first-order definable and slicewise nowhere
dense problem is FPT. This yields, for instance, the tractability of counting the num-
ber of vertex and edge deletions to a class of bounded degree. As a second result,
we establish that determining elimination distance to any minor-closed class is FPT,
answering an open question of [3].

A natural open question raised by these two results is whether elimination distance
to the class of graphs of degree d is FPT. When d is 0, this is just the tree-depth of a
graph, and this case is covered by our first result. For positive values of d, it is not clear
whether elimination distance is first-order definable. Indeed, a more general version of
the question is whether for any nowhere dense and first-order definable C, elimination
distance to C is FPT.

Another interesting case that seems closely related to our methods, but is not an
immediate consequence is that of classes that are given by first-order interpretations
from nowhere dense classes of graphs. For instance, consider the problem of deter-
mining the deletion distance of a graph to a disjoint union of complete graphs. This
problem, known as the cluster vertex deletion problem is known to be FPT (see [21]).
The class of graphs that are disjoint unions of cliques is first-order definable but cer-
tainly not nowhere dense and so the method of Sect. 3 does not directly apply. However,
this class is easily shown to be interpretable in the nowhere dense class of forests of
height 1. Can this fact be used to adapt the methods of Sect.3 to this class?
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