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We derive new fixed-point algorithms for the blind separation of complex-valued mixtures of independent, noncircularly symmet-
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we systematically construct iterative procedures on a kurtosis-based contrast whose evolutionary characteristics are identical to
those of the FastICA algorithm of Hyvarinen and Oja in the real-valued mixture case. Thus, our methods inherit the fast conver-
gence properties, computational simplicity, and ease of use of the FastICA algorithm while at the same time extending this class
of techniques to complex signal mixtures. For extracting multiple sources, symmetric and asymmetric signal deflation procedures
can be employed. Simulations for both noiseless and noisy mixtures indicate that the proposed algorithms have superior finite-
sample performance in data-starved scenarios as compared to existing complex ICA methods while performing about as well as
the best of these techniques for larger data-record lengths.
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1. INTRODUCTION

Both blind source separation (BSS) and independent compo-
nent analysis (ICA) are concerned withm-dimensional linear
signal mixtures of the form

x(k) = As(k), (1)

where A is an unknown (m ×m) mixing matrix and s(k) =
[s1(k) · · · sm(k)]T is a vector-valued signal of sources. In
most treatments of either task in the scientific literature, the
sources {si(k)} are assumed to be statistically independent
and real-valued, and the matrix A is assumed to be full rank.
If certain additional separability conditions are met, it is pos-
sible to compute a demixing matrix B such that

y(k) = Bs(k) (2)

contains independent elements that are possibly scaled and
shuffled with respect to the sources in s(k). Separation
or extraction of the independent components is consid-
ered successful in such cases, as demixing of the mixed
sources has been achieved. Numerous algorithms have
been developed for separating real-valued mixtures, includ-
ing maximum-likelihood information-theoretic approaches

[1–4], contrast-based approaches [5–7], and decorrelation-
based approaches [8–10]. Among these methods, the Fas-
tICA procedure in [7] has a number of nice features, in-
cluding fast convergence, global convergence for kurtosis-
based contrasts, and the lack of any step-size parameter.
For a kurtosis-based measure of negentropy, the FastICA
algorithm employs a separation criterion similar to other
approaches involving cumulant-based contrasts [5, 6], al-
though the optimization method employed by the FastICA
algorithm is quite different from the joint diagonalization
procedures employed in other approaches.

Consider now the case where A and s(k) are complex-
valued, such that A = AR + jAI , s(k) = sR(k) + jsI(k),
and si(k) = sR,i(k) + jsI ,i(k), where j = √−1. Separating
complex (-valued) linear signal mixtures is important for
a number of tasks of practical interest, such as in cochan-
nel interference mitigation for wireless communications and
array processing applications and in the decomposition of
biomedical imagery for medical diagnosis [11–14]. Fewer al-
gorithms for separating complex signal mixtures have been
described in the scientific literature. Examples of such al-
gorithms include JADE [5], a complex-valued extension of
the FastICA algorithm [15], and maximum-likelihood ap-
proaches [11, 13]. In [15], the complex-valued source signals
have been assumed to be circular, such that the probability



2 EURASIP Journal on Advances in Signal Processing

density function (p.d.f.) of si(k) depends only on its modu-

lus |si(k)| =
√
s2R(k) + s2I (k), a restrictive assumption.

Recently, it has been shown that complex ICA has a spe-
cific statistical and mathematical structure that is distinct
from the real-valued case [16–18]. In particular, it is possible
to identify the matrix A up to scaling and permutation fac-
tors in cases where s(k) contains multiple complex noncir-
cular Gaussian-distributed sources, a situation distinct from
the real-valued case. The key concept behind these novel re-
sults is the relaxing of the circularity assumptions of the dis-
tributions of the complex sources {si(k)}, such that each si(k)
has a generic but unstructured p.d.f. pi(si) = pi(sR,i, sI ,i). Al-
gorithms for separating mixtures of such general-form com-
plex sources have appeared only recently [19, 20], and exten-
sions of the most popular algorithms have yet to be consid-
ered.

In this paper, we present a careful study of the complex-
valued ICA and BSS tasks for non-Gaussian signal mixtures.
Both noncircular and circular independent source signals are
considered. The role of decorrelation in complex-valued ICA
is carefully delineated, where the results of [18] are taken
into account.We then present several extensions of the popu-
lar FastICA algorithm for fourth-moment separation criteria
to the noncircular complex-valued case. Unlike the deriva-
tion in [15], our approach to constructing the algorithms ex-
ploits the structure of the fourth-moment symmetric tensor
of the source signal vector to generate an update relation that
preserves the fast and efficient convergence properties of the
fixed-point iteration1 as obtained by the original FastICA al-
gorithm for a kurtosis contrast in the real-valued case [7].
Our various algorithms differ in the way they treat the real
and imaginary portions of the sources {si(k)} depending on
whether or not sR(k) and sI(k) are statistically independent.
Brief convergence proofs of the algorithms are given showing
that they achieve separation in the case where s(k) contains at
least (m− 1) non-Gaussian-distributed sources. Simulations
are then provided to indicate their separating capabilities for
complex-valued BSS tasks.

2. ON COMPLEX-VALUED RANDOMVARIABLES

Because our work focuses on the separation of a general class
of complex-valued signal mixtures, it is important to delin-
eate the statistical structure of these sources. We will later use
the described statistical structure to develop efficient separa-
tion algorithms for noncircular sources.

Let s(k) = sR(k) + jsI(k) denote a scalar complex-valued
random variable with p.d.f. p(sR, sI). The marginal p.d.f.’s of
sR(k) and sI(k) are

pR
(
sR
) =

∫∞
−∞

p
(
sR, sI

)
dsI ,

pI
(
sI
) =

∫∞
−∞

p
(
sR, sI

)
dsR,

(3)

1 Technically, the FastICA algorithm attempts to find coefficient vectors
that point in a fixed direction but may oscillate back in forth in absolute
sign. For historical reasons, we adopt the same terminology in [7] for this
class of algorithms.

respectively. Let g(s(k)) = gR(sR(k), sI(k)) + jgI(sR(k), sI(k))
be an arbitrary complex function of s(k), and define the ex-
pectation operator as

E
{
g
(
s(k)

)} =
∫∫∞
−∞

[
gR
(
sR, sI

)
+ jgI

(
sR, sI

)]
p
(
sR, sI

)
dsR dsI .

(4)

For convenience, we will assume that s(k) is a zero-mean ran-
dom variable, such that E{s(k)} = E{sR(k)} = E{sI(k)} = 0.
The complex conjugate of s(k) is denoted as s∗(k) = sR(k)−
jsI(k).

Let y(k) = cs(k), where c = cR + jcI is a complex scalar.
Clearly, E{y(k)} = E{yR(k)} = E{yI(k)} = 0 for any com-
plex scalar c. Then, the following theorem relates to the dis-
tribution of y(k), the proof of which is in Appendix A.

Theorem 1. For any zero-mean complex r.v. s(k) satisfying
E{s2R(k)} <∞ and E{s2I (k)} <∞, it is always possible to find a
complex scalar c such that y(k) has the following properties:

E
{∣∣y(k)

∣∣2} = 1, (5)

E
{[
y(k)

]2} = λ, (6)

where λ is a real number satisfying 0 ≤ λ ≤ 1.

Corollary 1. Under such scaling, the random variable y(k) has
the following additional properties:

E
{(
yR(k)

)2} = 1 + λ

2
,

E
{(
yI(k)

)2} = 1− λ

2
,

E
{
yR(k)yI(k)

} = 0.

(7)

Corollary 2. The power of yR(k) is greater than or equal to
that of yI(k) with equality if and only if E{[y(k)]2} = 0.

The above theorem and corollaries show that it is always
possible to “scale” a complex-valued random variable so that
(a) its power is unity, (b) the power of its imaginary part
is not greater than that of its real part, and (c) its real and
imaginary parts are uncorrelated. Such signals are said to be
strong-uncorrelated, in deference to the terminology devel-
oped in [18]. For this reason, we will in the sequel assume
that si(k) possesses this statistical structure, as we can al-
ways absorb the complex scaling factor c for each source into
the mixing matrix A within the model in (1). Note that this
structure says nothing about the independence of sR(k) and
sI(k) (e.g., they can be statistically dependent) or about the
distribution of si(k) (e.g., it can be non-Gaussian).

It should also be noted that if s(k) is circular such that
p(s) = p(|s|), then E{sR(k)sI(k)} = 0, such that any com-
plex-valued scalar c satisfying |c|2 = 1/E|s(k)|2 satisfies
the conditions in (7). In such cases, λ = 0. The condition
E{sR(k)sI(k)} = 0 does not guarantee circularity; however,
a good practical example is the family of discrete-valued
constant-modulus sources that includes 4QAM and 8-PSK
whose distributions depend on the angle of s(k).
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This paper will be concerned with algorithms that ex-
ploit the fourth-order moment structure of the vector s(k).
Fourth-order cumulants have been heavily exploited in the
development of ICA, BSS, and blind deconvolution ap-
proaches in the real-valued case, so it is reasonable to con-
sider their structure in developing separation algorithms for
the complex case. The following theorem and associated
corollaries give the fourth-order moment properties of i.i.d.
sources {si(k)} that are strong-uncorrelated. Proofs are again
given in Appendix B.

Theorem 2. Assume that s(k) contains m zero-mean, inde-
pendent, strong-uncorrelated signals si(k), 1 ≤ i ≤ m, where
E{|si(k)|2} = 1 and E{s2i (k)} = λi, 0 ≤ λi ≤ 1. Define the
symmetric fourth-order moment tensor

Kijln = E
{
si(k)s∗j (k)s

∗
l (k)sn(k)

}
. (8)

Then, the values of Kijln are

Kijln =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if i = j �= l = n or i = l �= j = n,

λiλj if i = n �= j = l,

κi + 2 + λ2i if i = j = l = n,

0 otherwise,

(9)

where κi is the symmetric kurtosis defined as

κi = E
{∣∣si(k)

∣∣4}− 2
(
E
{∣∣si(k)

∣∣2})2 − ∣∣E{s2i
}∣∣2 (10)

= E
{∣∣si(k)

∣∣4}− 2− λ2i . (11)

Corollary 3. Let si(k) be a strong-uncorrelated Gaussian r.v.
with distribution

pG
(
sR, sI

) = 1

π
√
1− λ2

exp
(
−
[

s2R
(1 + λ)

+
s2I

(1− λ)

])
,

(12)

where 0 ≤ λ ≤ 1. Then, the symmetric kurtosis of si(k) is zero.

Because of the importance of the kurtosis in our deriva-
tions, we will define the kurtosis operator for a complex ran-
dom variable s(k) as

κ
[
s(k)

] = E
{∣∣s(k)

∣∣4}− 2
(
E
{∣∣si(k)

∣∣2})2 − ∣∣E{s2i
}∣∣2,

(13)

where κ[si(k)] = κi.
The symmetric fourth-order moment tensor Kijln for in-

dependent and strong-uncorrelated complex random vec-
tors is similar in structure to that of independent real-valued
random vectors, in which λ = 1, and independent circu-
larly complex random vectors, in which λ = 0. In particular,
terms that depend on the third-order moments vanish in all
three cases. For independent {si(k)} in the noncircular com-
plex case, however, only independent and strong-uncorrelated
random variables maintain this nice structure. This fact un-
derscores the importance of transformations that impose a
strong-uncorrelated structure to a random vector, a fact that
will play an important role when we develop algorithms for
separating non-Gaussian complex sources in the following
sections.

3. ON THE EXTRACTIONOF A SINGLE
COMPLEX-VALUED SOURCE

Consider an algorithm that adjusts a single row of the sepa-
ration matrix B in an attempt to extract a single source si(k).
Let b = [b1 · · · bm]T denote the transposed version of this
row vector. Define the output signal at time k as

y(k) = bTx(k). (14)

Assuming that A is full rank, we can write the output signal
in terms of the combined coefficient vector c given by

c = ATb, (15)

in which case

y(k) = cTs(k). (16)

Then, the following theorem and corollary relate to the mo-
ments of y(k), the proofs of which are in Appendix C.

Theorem 3. For a source vector that contains independent,
zero-mean, possibly noncircular, and strong-uncorrelated sour-
ces {si(k)}, the output signal y(k) has the following moments:

E
{
y(k)

} = 0, (17)

E
{∣∣y(k)

∣∣2} =
m∑

i=1

∣∣ci
∣∣2, (18)

E
{[
y(k)

]2} =
m∑

i=1
λic

2
i , (19)

E
{∣∣y(k)

∣∣4} =
m∑

i=1
κi
∣∣ci

∣∣4 + 2

( m∑

i=1

∣∣ci
∣∣2
)2

+

( m∑

i=1
λic

2
i

)2

.

(20)

Corollary 4. The kurtosis of y(k) is

κ
[
y(k)

] =
m∑

i=1
κi
∣∣ci

∣∣4. (21)

The result in (21) indicates two important facts in sepa-
rating mixtures of noncircular complex-valued independent
sources.

(i) The kurtosis of y(k) as represented in the combined
coefficient space depends on the circularity coefficients
{λi} of the noncircular sources only through the values
κi in (11) for strong-uncorrelated sources.

(ii) Consider the representation of each ci in complex po-
lar form as

ci = Aie
jθi . (22)

Then, the kurtosis of y(k) only depends on the ampli-
tudes {Ai} of the coefficients in the combined coeffi-
cient space and is independent of the complex phases
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of these coefficients. Moreover, through this polar rep-
resentation, we can represent the kurtosis and power
of y(k) as

κ
[
y(k)

] =
m∑

i=1
κiA

4
i , (23)

E
{∣∣y(k)

∣∣2} =
m∑

i=1
A2
i . (24)

Equations (23)-(24) have appeared before in the contexts
of single-channel blind deconvolution for filtered complex-
valued sequences (cf. [21]) and of blind source separation
for real-valued signal mixtures (cf. [6, 22, 23]). In blind de-
convolution tasks, there is only one kurtosis value κi = κ in
(23), which simplifies the optimization strategy for achieving
a deconvolved sequence. In real-valued blind source separa-
tion, the real-valued combined system coefficients play roles
that are identical to those of the amplitudes of the combined
system coefficients in the complex-valued case. It is this latter
correspondence that allows us to directly state an optimiza-
tion strategy for extracting a single complex-valued source,
as indicated in the following theorem.

Theorem 4. Consider the single-unit extraction criterion

J(b) =
∣∣∣∣∣

κ
[
y(k)

]
(
E
{∣∣y(k)

∣∣2})2
∣∣∣∣∣, (25)

where y(k) = bTx(k). Assume that at least one of the sources
has a nonzero kurtosis κi �= 0. Then, maximization ofJ(b) over
all possible b under the constraint that E{|y(k)|2} = 1 yields
one of the columns of A−1 for which κi �= 0 up to a complex
unit-modulus scaling factor.

Proof. As stated previously, the relations in (23)-(24) are
identical in form to those in the real-valued blind source sep-
aration case, where the roles of the real-valued amplitudes
{Ai} in the complex-valued separation case play identical
roles to those of the real-valued combined system coefficients
{ci} in the real-valued separation case. Thus, we directly bor-
row from existing proofs in the literature, such as [22], where
it has already been shown that maximization of J(b) under
unit-output-power constraints occurs only at points corre-
sponding to an extracted source, such thatAi is nonzero for a
single index i ∈ {1,≤,m}. The constraintAi = 1 then follows
from the unit-power constraint and (24). In practical imple-
mentations, prewhitening is employed to translate this unit-
power constraint to a unit-norm coefficient constraint.

4. FIXED-POINT ALGORITHMS FOR EXTRACTING
A SINGLE ARBITRARY COMPLEX SOURCE

4.1. Preliminaries

Blind source separation requires the extraction of all m
sources in the linear mixture x(k). The FastICA algorithm
with generalized contrast locally maximizes a chosen cost
function to achieve separation. For real-valued signal mix-
tures, the FastICA algorithm that maximizes absolute values

of signal kurtoses is a simple and efficient separation tech-
nique. It is fast, globally convergent, devoid of any step size
parameters, and will extract all sources in the mixture as long
as all but one of their kurtosis values are nonzero. For these
reasons, we now explore extensions of the FastICA algorithm
with kurtosis contrast for separating mixtures of noncircular
complex-valued independent sources.

In [7], the FastICA algorithm for real-valued mixtures
is derived as an approximate Newton procedure for maxi-
mizing a set of continuous-valued generalized contrast func-
tions. When the kurtosis is employed as a contrast, the al-
gorithm has a particularly appealing form when expressed
in the combined system coefficient vector ct at iteration t, as
shown in [7] (see also [24]):

c̃t = KF
(
ct
)
, (26)

ct+1 = c̃t√
c̃Tt c̃t

, (27)

where K is a diagonal matrix of source kurtoses and F(ct) is
a diagonal matrix whose ith diagonal entry is c3it. While the
derivation of the FastICA algorithm in the real-valued case
is theoretically appealing, the real utility of the FastICA pro-
cedure can be inferred from the form of (26)-(27), which
leads to cubic convergence near a separating solution. More-
over, its average performance over a uniform prior of initial
coefficient vector directions as the number of iterations in-
creases becomes exponential with a rate of (1/3); see [24–26]
for more discussion of these issues. For these reasons, in what
follows we attempt to find an algorithmwhose coefficient up-
dates in the combined system coefficient vector ct = ATbt
obey a similar relation as (26)-(27) in the limit as the data-
record length tends to infinity, where the amplitudes of the
elements of ct in the complex-valued case behave as the (ab-
solute values of) the elements of ct in the real-valued case.
This method of derivation is an alternative to that using com-
plex differentiation, which involves different rules depending
on the choice of differentiation operator [18]. It leverages the
main reason why the FastICA algorithm is so popular in ICA
and blind source separation tasks: the underlying structure of
(26)-(27) allows the algorithm to converge quickly, in a way
that is largely independent of the distributions of the sources
being extracted. As will be seen, the derivation of these al-
gorithms for noncircular sources requires the careful expres-
sion and evaluation of the second-order noncircular statis-
tical properties of the source signals in order to obtain con-
vergent behavior similar to that in (26)-(27). Themethod de-
scribed in [15] has unknown convergence performance when
the sources are noncircular.

Our derivation assumes that we have a set of N measure-
ments x(n), 1 ≤ n ≤ N , from a complex mixture model of
the form in (1), where

1
N

N∑

n=1
s(n)sH(n) = I + ΔR,

1
N

N∑

n=1
s(n)sT(n) = Λ + ΔP ,

(28)
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where ΔR and ΔP are matrices of small Frobenius norm
caused by finite-sample effects. The elements of s(n) are real-
izations of m statistically independent complex-valued ran-
dom processes, in which at most one of these random pro-
cesses has a zero kurtosis.

4.2. Algorithm based on the strong-uncorrelating
transform

Our first fixed-point algorithm for noncircular complex-
valued sources will rely on the strong-uncorrelating trans-
form for signal prewhitening. The strong-uncorrelating
transform as defined in [17] is a transformation that diag-
onalizes both the covariance matrix and pseudocovariance
matrix given by

RXX = 1
N

N∑

n=1
x(n)xH(n),

PXX = 1
N

N∑

n=1
x(n)xT(n),

(29)

respectively. For noncircular sources, the pseudocovariance
matrix PXX is nonzero. The strong-uncorrelating transform
is defined by a matrix G such that

GRXXGH = I,

GPXXGT = Λ̂,
(30)

where Λ̂ is a diagonal real-valued matrix of ordered diagonal

entries 1 ≥ λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m ≥ 0. It is always possible
to find a G such that (30) is satisfied. Methods for comput-
ing the strong-uncorrelating transform are given in [17, 18].
With this transformation, define the prewhitened signal vec-
tor

v(k) = Gx(k), (31)

such that

RVV = 1
N

N∑

n=1
v(n)vH(n) = I,

PVV = 1
N

N∑

n=1
v(n)vT(n) = Λ̂.

(32)

Under prewhitening, the relationship between v(k) and s(k)
is

v(k) = Γs(k), (33)

where Γ is Hermitian (ΓΓH = ΓTΓ∗ = I). The matrix Γ also
obeys the property2

Γ

[
1
N

N∑

n=1
s(n)sT(n)

]
ΓT = Λ̂. (34)

2 If the sample pseudocovariance matrix of s(k) is exactly diagonal, then
Λ̂ = Λ. Moreover, if the sample pseudocovariance matrix of s(k) is exactly
diagonal with distinct positive entries, then Λ̂ = I and G = A−1. It should
be noted, however, that Λ̂ is still diagonal even under finite-sample effects.

Consider first a single-source extraction task, in which

y(k) = wTv(k), (35)

where w is an m-dimensional vector of parameters to be ad-
justed. The relationship betweenw and the combined system
coefficient vector is

c = ΓTw. (36)

The second moment of the output signal is

1
N

N∑

n=1

∣∣y(n)
∣∣2 = wTRVVw∗ = ‖w‖2 = ‖c‖2 (37)

and the fourth moment of the output signal can be written
as

1
N

N∑

n=1

∣∣y(n)
∣∣4

= wT

[
1
N

N∑

n=1
v(n)vH(n)w∗wTv(n)vH(n)

]
w∗

= wTΓ

[
1
N

N∑

n=1
s(n)sH(n)ΓHw∗wTΓs(n)sH(n)

]
ΓHw∗

= cTM̂c∗ = cHM̂Tc,
(38)

where we have defined the matrix M̂ as

M̂ = 1
N

N∑

n=1
s(n)sH(n)c∗cTs(n)sH(n). (39)

The following theorem gives the structure of M̂, the proof of
which is in Appendix D.

Theorem 5. In the limit as N →∞, the value of M̂ becomes

lim
N→∞

M̂ =M = c∗cT + IcHc +ΛccHΛ +Kdiag
{
ccH

}
,

(40)

where diag{ccH} is a diagonal matrix whose diagonal entries
are the diagonal elements of the matrix ccH .

Using this result, we can approximate

M̂Tc ≈ Kdiag
{
ccH

}
c + c

[
2cHc

]
+Λc∗

[
cTΛc

]
. (41)

As stated in the discussion after (26)-(27), our goal in de-
signing a separationmethod for complex noncircular sources
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is to create an update whose analytical form follows that
of (26). The first term in (41) is quite similar in form
to (26), implying that the desired coefficient update before
normalization should be defined as

c̃t = Kdiag
{
ctcHt

}
ct

= M̂T
t ct − ct

[
2cHc

]−Λc∗t
[
cTt Λct

]
,

(42)

where M̂t is the expression in (40) with ct replacing c. Ex-
pressing this update in wt coordinates gives

w̃t = Γ∗M̂T
t Γ

Twt −wt
[
2wT

t wt
]− Γ∗ΛΓHwt

[
wT
t ΓΛΓ

Twt
]
.

(43)

Finally, we notice that

ΓΛΓT ≈ PVV = Λ̂, (44)

Γ∗M̂T
t Γ

Twt = 1
N

N∑

n=1
v∗(n)vT(n)wtwH

t v
∗(n)vT(n)wt

= 1
N

N∑

n=1

∣∣y(n)
∣∣2y(n)v∗(n).

(45)

Combining the above results gives the single-unit coefficient
updates as

w̃t =
(
1
N

N∑

n=1

∣∣y(n)
∣∣2y(n)v∗(n)

)
− 2wt − Λ̂w∗t

[
wT
t Λ̂wt

]
,

(46)

wt+1 = w̃t√
w̃H
t w̃t

. (47)

Remark 1. The above algorithm is similar in form to the
FastICA algorithm for circular complex-valued sources in
[15] for the choice G(y) = (1/2)y2. The last term on the
right-hand side of (46), however, is novel, and it is critical
to obtaining good performance of the algorithm for non-
circularly symmetric sources. Simulations in the next-to-last
section verify this claim.

4.3. Algorithm based on ordinary prewhitening

The above algorithm requires the strong-uncorrelating
transform for its implementation. Computing the strong-
uncorrelating transform involves the Takagi factorization of
a symmetric complex matrix. When the circularity coeffi-
cients {λi} of PVV are distinct, this factorization can be com-
puted using the singular-value decomposition. The compu-
tation of the Takagi factorization in more-general scenar-
ios, however, requires specialized numerical code. If the code
for this factorization is not available, we offer an alterna-
tive implementation of our fixed-point algorithm for sep-
arating complex-valued noncircular sources which employs
ordinary prewhitening. In this version, find any prewhitening

matrix Ĝ such that

ĜRXXĜH = I, (48)

and set

v(k) = Ĝ(k)x(k), (49)

where

P̂ = 1
N

N∑

n=1
v(n)vT(n) = ĜPXXĜT . (50)

Note that P̂ will not be diagonal in general.
It is possible to retrace the steps taken to derive the up-

dates in (46)-(47) under the assumption that P̂ is not diag-
onal. These steps are straightforward and are omitted. The
final version of the algorithm is

w̃t =
(
1
N

N∑

n=1

∣∣y(n)
∣∣2y(n)v∗(n)

)
− 2wt − P̂∗w∗t

[
wT
t P̂wt

]
,

(51)

wt+1 = w̃t√
w̃H
t w̃t

. (52)

Remark 2. Comparing the updates in (46) and (51), we see
that the price paid for not computing the Takagi factorization
is an additional matrix-vector multiply within every iteration
of the coefficient vector update. This computational increase
is small relative to that needed to calculate y(n), 1 ≤ n ≤ N ,
and the first term on the right-hand sides of (46) and (51),
however, as these data-dependent terms make up the bulk of
the computational requirements of the procedure.

4.4. Convergence of the single-unit algorithms

The overall goal in our design of fixed-point algorithms for
separating complex-valued noncircular sources was to ob-
tain procedures that exhibit the fast, globally convergent per-
formance reminiscent of the algorithm in the real-valued
case. Do the single-unit approaches in (46)-(47) and (51)-
(52) achieve this end? The following theorem indicates that
the answer is in the affirmative, the proof of which is in
Appendix E.

Theorem 6. As N → ∞, both of the single-unit updates in
(46)-(47) and (51)-(52) can be described in the combined sys-
tem coefficient vector space as ct = Θtat, where Θt is a diago-
nal matrix of complex factors {e jθi[sgn(κi)]t}, at is a positive-
valuedm-dimensional vector obeying the relationships

ãt = KaF
(
at
)
,

at+1 = ãt√
ãTt ãt

, (53)



Scott C. Douglas 7

whereKa is a diagonal matrix of the absolute values of the com-
plex source kurtoses {|κ1|, . . . , |κm|} with κi = E{|si(k)|4} −
2−λ2i , F(at) is a diagonal matrix whose ith diagonal entry is a3it,
and θi = ∠ci(0). Thus, the convergence performance of either
algorithms is mathematically identical to that of the real-valued
FastICA algorithm with kurtosis contrast, where real-valued
complex-source kurtoses replace real-source kurtoses and coeffi-
cient amplitudes replace the coefficient values in the evolution-
ary behavior.

Remark 3. The above result indicates that both of our single-
unit algorithms do not attempt to change the phase of the
separating solution during their operation, except for a trivial
sign flip during odd-valued iterations. This attribute is highly
desirable for practical applications, as it implies that separate
procedures could be employed to extract the real and imag-
inary components of the sources in s(k) if sR,i(k) and sI ,i(k)
are statistically independent. This “phase-blind” behavior is
obtained despite the fact that the underlying sources are po-
tentially noncircular. Moreover, the algorithms also inherit
the nice convergence properties of the FastICA algorithm in
the real-valued mixture case [24–26].

5. FIXED-POINT ALGORITHMS FOR SEPARATING
COMPLEX NONCIRCULAR SOURCEMIXTURES

To extend either of our proposed algorithms to general m-
source extraction, we use similar concepts as in the real-
valued FastICA algorithm extended to the complex realm. In
particular, since v(k) is related to s(k) through the Hermitian
matrix Γ, then all m sources can be extracted by applying m
versions of either algorithms to the sequence v(k) and con-
straining the resulting coefficient vectors to be complex or-
thogonal. This orthogonality could be maintained in one of
two general recommended ways:3

(i) sequentially through a Gram-Schmidt or QR proce-
dure, or

(ii) jointly through a symmetric orthogonalization proce-
dure using an inversematrix square root or an adaptive
constraint method.

Sequential orthogonalization procedures that result in sig-
nal deflation are generally more robust to poor estimation
of the contrast function and are provably convergent given
enough measurements, but they suffer from error accu-
mulation in the separation solutions such that sources ex-
tracted later in the procedure contain greater amounts of er-
ror and noise. Symmetric orthogonalization procedures pro-
vide higher separation performance when the sources can be
well-identified via their non-Gaussian statistics but do not
perform as well in other scenarios and are not guaranteed
to converge for m > 2. To achieve the overall best perfor-
mance, it is suggested that one designs algorithms that al-

3 A third class of methods—adaptive orthogonalization through linear sig-
nal cancellation—is not recommended as it is generally not numerically
robust.

ternate between sequential and symmetric orthogonalization
procedures to obtain both robust and accurate separation.

Algorithm 1 gives a sequential implementation of m ver-
sions of our proposed fixed-point algorithm for complex
sources in (51)-(52), termed CFPA1, with Gram-Schmidt
orthogonalization using the MATLAB technical computing
environment. Algorithm 2 provides a parallel implementa-
tion of m versions of our proposed fixed-point algorithm
for complex sources in (51)-(52), termed CFPA2, in which
symmetric orthogonalization is used. Versions of the algo-
rithm employing the updates in (46)-(47) and the strong-
uncorrelated transform for prewhitening have been omitted
but are simple to construct given the software for the Takagi
factorization.

6. SIMULATIONS

We now explore the behaviors of our two fixed-point algo-
rithms via Monte Carlo simulations. All of our evaluations
are performed on synthetic data generated in the MATLAB
technical computing environment to allow a straightforward
evaluation and performance comparison between differing
methods. In each case, we have used the average interchannel
interference (ICI) tomeasure separation performance, which
for the combined system matrix Ct =WtĜA with (i, j)th el-
ement ci jt is given by

ICIt = 1
m

m∑

i=1

(∑m
l=1

∣∣cilt
∣∣2 −max1≤k≤m

∣∣cikt
∣∣2

max1≤k≤m
∣∣cikt

∣∣2
)
. (54)

This performance measure does not attempt to determine
whether all sources are extracted individually, although the
algorithms being compared enforce strong second-order or-
thogonality between the extracted outputs, making such an
occurance extremely unlikely. An alternative to (54) is the
Amari index [27]. The mixing matrix A has been generated
randomly for each simulation run using an SVD-like combi-
nation of two random Hermitian matrices and a set of com-
plex diagonal elements whose amplitudes were restricted to
the interval [0.2, 1]. The random Hermitian matrices were
generated by orthogonalizing the columns of square matri-
ces with uncorrelated complex circular Gaussian elements.
Both noiseless and noisy mixtures have been used, in which
additive circular uncorrelated Gaussian noises with variances
σ2ν = 0.1 were used as the measurement interference.

We compare the separation performance of our CFPA1
and CFPA2 algorithms to two different versions of two well-
known existing methods for complex ICA: JADE [5], and the
complex FastICA algorithm in [15] that assumes circularly
symmetric source distributions, where an amplitude cost
G(|y|2) = 0.5|y|2 has been used. All of the algorithms are
simple to set up and require little effort in terms of parame-
ter tuning. Even so, we employed two versions of JADE that
involve simultaneous diagonalization ofm andm2 cumulant
matrices, tuning the stopping parameters to obtain the best
performance from each, as well as two versions of the Fas-
tICA algorithm in [15] employing symmetric orthogonal-
ization and asymmetric deflation procedures, respectively.
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function [B,y] = cfpa1(x);

[N,m] = size(x);

Rxx = (x’∗x)/N;
[Q,Lam] = eig(Rxx);

Ghat = Q∗diag(real(diag(Lam)).ˆ (-1/2));

v = x∗Ghat;
Phat = (transpose(v)∗v)/N;
W = eye(m); y = zeros(N,m);

for i = 1:m

k = 0; Wold = zeros(m,1);

Wt =W(:,i);

while (abs(abs(Wold’∗Wt)-1)>1e-4)∗(k<100)
k = k+1;

Wold =Wt;

yt = v∗Wt;

PhatW = Phat∗Wt;

Wt = (v’∗(yt.∗abs(yt). ˆ 2))/N - 2∗Wt - conj(PhatW)∗(transpose(Wt)∗PhatW);

for n = 1:i-1

Wt =Wt - W(:,n)∗(W(:,n)’∗Wt);

end

Wt =Wt/sqrt(Wt’∗Wt);

end

y(:,i) = v∗Wt;

W(:,i) =Wt;

end

B = Ghat∗W;

Algorithm 1: An implementation of our proposed fixed-point algorithm for complex-valued non-Gaussian source mixtures which uses
sequential orthogonalization.

Since all of the algorithms being compared leverage the use
of fourth-order source statistics, our study attempts to illu-
minate the advantages and weaknesses of the optimization
methods used in each approach under finite-sample effects.
One thousand evaluations of each method have been used to
determine the averaged performance statistics shown.

Consider noiseless six-source mixtures of two real-valued
binary-{±1} distributed sources, two 4QAM sources, and
two 16QAM sources. Figure 1 shows the average ICI of the six
algorithms tested as a function of data-block lengthN . As can
be seen, our proposed methods perform better than either
version of JADE and either version of the algorithm in [15]
for small sample sizes, a result that is consistent throughout
all of the results shown. The finite-sample performances of
our proposed methods are quite good, offering separation
of between 12.5 and 15 dB for only a block of 75 snapshots
in this case. Because the mixture contains some real-valued
sources, the complex FastICA procedure in [15] produces a
biased result and is not competitive. The performances of the
two JADE algorithms, and JADE(m2) in particular, approach
and exceed that of CFPA1 with asymmetric deflation, but
CFPA2 with symmetric orthogonalization performs the best
for all block lengths considered. As for repeatability, we eval-

uated the 95% confidence intervals for all six algorithms for
all data points measured and we expressed the minimum and
maximum of the ranges as ratios rmin and rmax of the average
ICI in each case. The observed performance indicates that
these confidence interval ratios do not change very much for
different values of N , and Table 1 lists E{rmin} and E{rmax}
for each algorithm. As can be seen, the repeatability of the
proposed algorithms is similar to JADE(m) in this situation.

Additional experiments with both noiseless and noisy
mixtures indicate that

(a) when a circularly symmetric complex Gaussian source
is present, the roles of Algorithms 1 and 2 reverse, with
the symmetric-orthogonalization-based CFPA2 tech-
nique performing the best;

(b) the proposed algorithms are robust to small amounts
of low-level uncorrelated Gaussian observation noise
(e.g., noise variances of σ2n = 0.001 in the six-source
scenario already considered).

We now consider a different source mixture scenario,
in which we have used three source types—uniform-
[−√3,√3], unit-variance Laplacian, and binary—to gener-
ate nine different sources by (a) taking all possible pairs of the
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function [B,y] = cfpa2(x);

[N,m] = size(x);

Rxx = (x’∗x)/N;
[Q,Lam] = eig(Rxx);

Ghat = Q∗diag(real(diag(Lam)).ˆ (-1/2));

v = x∗Ghat;
Phat = (transpose(v)∗v)/N;
W = eye(m); D =W; y = zeros(N,m); Wold = zeros(m); k = 0;

while (norm(abs(Wold’∗W)-eye(m),’fro’) >(m∗1e-4))∗(k<15∗m)

k = k+1;

Wold =W;

y = v∗W;

PhatW = Phat∗W;

for n = 1:m

D(n,n) = transpose(W(:,n))∗PhatW(:,n);

end

W = (v’∗(y.∗ abs(y). ˆ 2))/N - 2∗W - conj(PhatW)∗D;
[Q,Lam] = eig(W’∗W);

W =W∗(Q∗diag(diag(real(Lam)). ˆ (-1/2))∗Q’);
end

y = v∗W;

B = Ghat∗W;

Algorithm 2: An implementation of our proposed fixed-point algorithm for complex-valued non-Gaussian source mixtures which uses
symmetric orthogonalization.
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Figure 1: Average ICI as a function of data-record length N for the
various algorithms on a noiseless six-source demixing task.

three real-valued distributions to create the real and imagi-
nary parts of six complex sources, (b) including each of the

three distributions as an additional real-valued source in the
mixture, and (c) including a circularly symmetric Gaussian
signal as part of the source signal set. Figure 2 shows the
behaviors of the algorithms in this situation. The proposed
methods are superior to existing ones for block sizes smaller
than N = 600, and both of the proposed methods perform
slightly better than JADE(m) for all block lengths considered.
For larger block lengths, JADE(m2) performs the best in this
scenario.

The final source mixture scenario has complex-valued
mixtures of six independent, identically distributed real-
valued four-level (2B1Q) sources, in which uncorrelated
zero-mean complex-valued jointly Gaussian observation
noise with variance σ2v = 0.1 has been added to each of the
measurements. Due to the varying nature of the singular val-
ues of A within the measurements, the signal-to-noise ra-
tios (SNRs) of the mixtures are simulation-run-dependent,
but the minimum and maximum SNRs across all simulation
runs are −4 dB and 10 dB, respectively, with an average SNR
of 4 dB. Figure 3 shows the behaviors of the algorithms in this
situation. Both of the proposed methods perform better than
JADE(m) when fewer than 300 snapshots are available, and
the performance of the CFPA1 method is only exceeded by
that of JADE(m2) for situations where more than 250 snap-
shots are available in this case.

In cases where the performance of our proposed meth-
ods are competitive with a joint-diagonalization approach
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Table 1: Averaged 95% confidence intervals for the various algorithms as a ratio to the average ICI for the various algorithms in the first
experiment.

Conf. interval ratio JADE(m) JADE(m2) Circ-FICA (asym.) Circ-FICA(sym.) CFPA (asym.) CFPA (sym.)

rmin 0.424 0.490 0.208 0.465 0.399 0.430

rmax 2.58 1.98 2.20 1.87 2.44 2.11
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Figure 2: Average ICI as a function of data-record length N for
the various algorithms on a more-challenging noiseless ten-source
demixing task.

such as JADE, it is important to mention the computational
advantages that the fixed-point approaches often provide.
While both fixed-point algorithms and joint-diagonalization
algorithms are iterative, it has been our observation that the
fixed-point algorithms often complete their separation tasks
more quickly than the joint-diagonalization algorithms when
faced with large numbers of mixtures and/or large numbers
of snapshots. In fact, it is both the slowness of the pair-
wise joint diagonalization procedure and the computational
complexity of forming the cumulant estimates needed for
JADE(m) and JADE(m2) that prevented us from compar-
ing the performance of these algorithms for large numbers
of snapshots (N ≥ 10000) and large numbers of channels
(m ≥ 6) on our computing equipment. On the other hand,
we have successfully and repeatedly separated mixtures of
m = 25 complex-valued sources with both the CFPA1 and
CFPA2 algorithms using only a few seconds of CPU pro-
cessing power on current-day PCs. The programs for these
fixed-point methods generally run faster on modern com-
puter hardware as well due to their use of sums-of-products
calculations that are well supported in digital processors. Of
course, it is possible to build specialized hardware to perform
Givens rotations, so a system designer should select the algo-
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Figure 3: Average ICI as a function of data-record length N for the
various algorithms on a noisy i.i.d. source separation task.

rithmic approach that makes the most sense for her or his
preferred computational platform.

7. CONCLUSIONS

In this paper, we have carefully considered the design of blind
source separation algorithms for mixtures of independent,
noncircularly symmetric, and non-Gaussian sources. Using
the structure of the symmetric fourth-order moment ten-
sor of the source signal vector under strong-uncorrelation,
we have constructed ICA algorithms that inherit all of the
nice properties of the well-known kurtosis-contrast-based
FastICA algorithm while being applicable to complex-valued
signals. The techniques are computationally simple and em-
ploy well-known and well-understood data transformations
such as whitening. Simulations indicate that the proposed
techniques have finite-sample separation performance that
usually meets or exceeds that of existing approaches for
complex-valued blind source separation, especially for small
data-record lengths. Extensions of these algorithmic meth-
ods to more-general and varied separation contrasts is the
subject of current work.
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APPENDICES

A. PROOF OF THEOREM 1

From the definition of y(k), we have

yR(k) = cRsR(k)− cI sI(k),

yI(k) = cI sR(k) + cRsI(k).
(A.1)

Define the quantities

σ2R = E
{
s2R(k)

}
,

σ2I = E
{
s2I (k)

}
,

ρ = E
{
sR(k)sI(k)

}
.

(A.2)

Then, by substitution of (A.1) into (5)-(6) and considering
the real and imaginary parts of (6) separately, we have the
three relations

(
c2R + c2I

)(
σ2R + σ2I

) = 1, (A.3)
(
c2R − c2I

)(
σ2R − σ2I

)− 4cRcIρ = λ, (A.4)
(
c2R − c2I

)
ρ + cRcI

(
σ2R − σ2I

) = 0. (A.5)

Let cR = A cos θ and cI = A sin θ, where A > 0 and 0 ≤ θ < π.
Then, the relation in (A.3) yields a solution for A as

A = 1√
σ2R + σ2I

. (A.6)

Considering the relations in (A.4) and (A.5), we can express
them in terms of θ as

(
cos2 θ − sin2 θ

)
ρ + cos θ sin θ

(
σ2R − σ2I

) = 0, (A.7)

(
cos2 θ − sin2 θ

)σ2R − σ2I
σ2R + σ2I

− 4 cos θ sin θ
ρ

σ2R + σ2I
= λ. (A.8)

We can consider several cases based on the absolute value of
ρ and the relative values of σ2R and σ2I , finding solutions for
θ and λ in the above relationship. For brevity, we only con-
sider two specific cases below; the remaining cases are easily
handled.

Case 1 (most specific case). Assume ρ = 0 and σ2R = σ2I .
Then, (A.7)-(A.8) are satisfied for any value of θ, and λ = 0.

Case 2 (most general case). Assume ρ �= 0 and σ2R �= σ2I .
Then, we can write (A.7) as

cos2 θ
[(
1− tan2 θ

)
ρ + tan θ

(
σ2R − σ2I

)] = 0. (A.9)

For values of θ in the range 0 < θ < π not including θ ∈
{π/2}, the above equation has two solutions given by

tan θ = σ2R − σ2I
2ρ

±
√√√√
(
σ2R − σ2I

2ρ

)2

+ 1. (A.10)

The two solutions come about because of the two roots,
where one root results in tan θ > 0 and the other root results

in tan θ < 0. Thus, it is always possible to find a solution to
A and θ satisfying (A.3) and (A.5) for c = A cos θ + jA sin θ.
Now, considering (A.4) or its equivalent expression (A.8), we
can write this relation in matrix form as

[
cos θ sin θ

]
⎡
⎢⎢⎢⎢⎣

σ2R − σ2I
σ2R + σ2I

− 2ρ

σ2R + σ2I

− 2ρ

σ2R + σ2I
−σ2R − σ2I
σ2R + σ2I

⎤
⎥⎥⎥⎥⎦

[
cos θ
sin θ

]
= λ.

(A.11)

The (2 × 2) matrix in the above relation is symmetric with
real-valued eigenvalues given by

r1,2 = ±
√√√√1− 4

σ2Rσ
2
I − ρ2

(
σ2R + σ2I

)2 . (A.12)

Because ρ2 ≤ σ2Rσ
2
I by the Cauchy-Schwartz inequality, we

have |r1,2| ≤ 1, and because of the quadratic form of (A.11),
this guarantees that

|λ| ≤ 1. (A.13)

Finally, by combining (A.7) and (A.8), we can develop a sec-
ond relation for λ in terms of θ as

[(
σ2R − σ2I

)2
+ 4ρ2

]( cos2 θ
σ2R + σ2I

)[
− tan θ

ρ

]
= λ. (A.14)

By choosing the solution for θ in (A.10) that causes

sgn(tan θ) = − sgn(ρ), (A.15)

we can guarantee that λ > 0. Combining the above results
proves the theorem.

Proof of Corollary 1. Proving the relationships is straightfor-
ward by noting the following relations:

E
{(
yR(k)

)2} = E
{∣∣y(k)

∣∣2} + E
{[
y(k)

]2}

2
,

E
{(
yI(k)

)2} = E
{∣∣y(k)

∣∣2}− E
{[
y(k)

]2}

2
,

E
{
yR(k)yI(k)

} = �m[
E
{[
y(k)

]2}]

2
.

(A.16)

Proof of Corollary 2. The relationship is obvious when con-
sidering the results of Corollary 1.

B. PROOF OF THEOREM 2

Under the assumption that the elements of s(k) are zero-
mean, independent, and strong-uncorrelated, we have that

E
{
si(k)

} = 0,

E
{∣∣si(k)

∣∣2} = 1,

E
{
si(k)s∗j (k)

} =
⎧⎨
⎩
1, i = j,

0, i �= j,

E
{
si(k)s j(k)

} =
⎧⎨
⎩
λi, i = j,

0, i �= j,

(B.1)
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for 1 ≤ {i, j} ≤ m. Under the above conditions, the expecta-
tion E{si(k)s∗j (k)s∗l (k)sn(k)} is nonzero only under the fol-
lowing four conditions.

(i) For i = j �= l = n, E{si(k)s∗j (k)s∗l (k)sn(k)} =
E{|si(k)|2}E{|sl(k)|2} = 1.

(ii) For i = l �= j = n, E{si(k)s∗j (k)s∗l (k)sn(k)} =
E{|si(k)|2}E{|s j(k)|2} = 1.

(iii) For i = n �= j = l, E{si(k)s∗j (k)s∗l (k)sn(k)} =
E{s2i (k)}(E{s2j (k)})∗ = λiλj .

(iv) For i = j = k = n, E{si(k)s∗j (k)s∗l (k)sn(k)} =
E{|si(k)|4}.

Under any other index subset of i, j, k, and l,

E
{
si(k)s∗j (k)s

∗
l (k)sn(k)

} = 0. (B.2)

In particular, situations in which i = j = k �= n, i = j = n �=
k, i = k = n �= j, and j = k = n �= i result in a zero mo-
ment because of the zero means and statistical independence
of the elements of s(k). The theorem then follows by using
the definition of κi in (11).

Proof of Corollary 3. Consider the value of E{|si(k)|4} under
the assumption that si(k) is strong-uncorrelated Gaussian-
distributed. Then,

E
{∣∣si(k)

∣∣4}

=
∫∫∞
−∞

(
s2R + s2I

)2 1

π
√
1− λ2i

× exp
(
−
[

s2R(
1 + λi

) +
s2I(

1− λi
)
])

dsRdsI

=
∫∞
−∞

s4R√
2π

((
1 + λi

)
/2
) exp

(
− s2R(

1 + λi
)
)
dsR

×
∫∞
−∞

1√
2π

((
1− λi

)
/2
) exp

(
− s2I(

1− λi
)
)
dsI

+ 2
∫∞
−∞

s2R√
2π

((
1 + λi

)
/2
) exp

(
− s2R(

1 + λi
)
)
dsR

×
∫∞
−∞

s2I√
2π

((
1− λi

)
/2
) exp

(
− s2I(

1− λi
)
)
dsI

(B.3)

+
∫∞
−∞

1√
2π

((
1 + λi

)
/2
) exp

(
− s2R(

1 + λi
)
)
dsR

×
∫∞
−∞

s4I√
2π

((
1− λi

)
/2
) exp

(
− s2I(

1− λi
)
)
dsI .

(B.4)

Consider first the case that 0 ≤ λ < 1. Then, by the change of
variables

uR =
√

2(
1 + λi

) sR,

uI =
√

2(
1− λi

) sI ,
(B.5)

we can rewrite (B.4) as

E
{∣∣si(k)

∣∣4} =
(
1 + λi
2

)2 ∫∞
−∞

u4R√
2π

exp
(
− u2R

2

)
duR

×
∫∞
−∞

1√
2π

exp
(
− u2I

2

)
duI

+
1− λ2i
2

∫∞
−∞

u2R√
2π

exp
(
− u2R

2

)
duR

×
∫∞
−∞

u2I√
2π

exp
(
− u2I

2

)
duI

+
(
1− λi
2

)2 ∫∞
−∞

1√
2π

exp
(
− u2R

2

)
duR

×
∫∞
−∞

u4I√
2π

exp
(
− u2I

2

)
duI .

(B.6)

From the properties of Gaussian random variables,

∫∞
−∞

1√
2π

exp
(
− u2

2

)
du = 1,

∫∞
−∞

u2√
2π

exp
(
− u2

2

)
du = 1,

∫∞
−∞

u4√
2π

exp
(
− u2

2

)
du = 3,

(B.7)

such that (B.6) becomes

E
{∣∣si(k)

∣∣4} = 3
[(

1 + λi
2

)2

+
(
1− λi
2

)2]
+
1− λ2i
2

= 1
4

[
3
(
1+2λi+λ2i

)
+3

(
1−2λi+λ2i

)
+2

(
1− λ2i

)]

= 2 + λ2i .
(B.8)

Consider now the limiting case that λ → 1. Then it can be
shown that the function

fλ(s) = 1√
2π

((
1− λi

)
/2
) exp

(
− s2I(

1− λi
)
)

(B.9)

is a family of generalized functions with unit area [28], such
that

lim
λ→1

fλ(s) = δ(s),

lim
λ→1

∫∞
−∞

sp fλ(s)ds = 1
(B.10)



Scott C. Douglas 13

for any nonnegative integer p. Thus, when λ = 1, (B.6) re-
duces to

E
{∣∣si(k)

∣∣4} =
∫∞
−∞

s4R√
2π

exp
(
− s2R

2

)
dsR = 3, (B.11)

where 2 + λi = 3 in this case. Considering 0 ≤ λ ≤ 1, the
result follows.

C. PROOF OF THEOREM 3

The proof relies on the following expectations:

E
{
s(k)

} = 0,

E
{
s(k)sH(k)

} = I,

E
{
s(k)sT(k)

} = Λ,

(C.1)

as well as the symmetric fourth-moment tensor expression
in (9). Since y(k) = cTs(k), we can easily see that

E
{
y(k)

} = cTE
{
s(k)

} = 0,

E
{∣∣y(k)

∣∣2} = cTE
{
s(k)sH(k)

}
c∗ = cTc∗ =

m∑

i=1

∣∣ci
∣∣2,

E
{
y2(k)

} = cTE
{
s(k)sT(k)

}
c = cTΛc =

m∑

i=1
λic

2
i .

(C.2)

Considering now the fourth-moment term in (20), we can
write this in matrix form as

E
{∣∣y(k)

∣∣4} = cTMc∗, (C.3)

where the matrixM is

M = E
{
s(k)sH(k)c∗cTs(k)sH(k)

}
. (C.4)

The (i, l)th entry of this matrix is

[M]il =
m∑

p=1

m∑

q=1
E
{
si(k)s∗l (k)s

∗
p (k)sq(k)

}
c∗p cq. (C.5)

Using the properties of the fourth-moment tensor in (9), we
have

[M]il =

⎧⎪⎪⎨
⎪⎪⎩

m∑

p=1,p �=i

∣∣cp
∣∣2 + E

{∣∣si(k)
∣∣4}∣∣ci

∣∣2 if i = l,

c∗i cl + λiλlcic
∗
l if i �= j.

(C.6)

Expressing this answer in matrix form,

M = c∗cT + IcHc +ΛccHΛ +N, (C.7)

where N is a diagonal matrix whose ith diagonal entry is

[N]ii =
∣∣ci

∣∣2(E{
∣∣si(k)

∣∣4}− 2− λ2i
)
. (C.8)

Recognizing the form of the symmetric kurtosis in (11), we
can evaluate the quadratic form cTMc∗ in (C.3), which yields
the expression in (20).

Proof of Corollary 4. Recognizing from the definition of sig-
nal kurtosis that

κ[y(k)] = E
{∣∣y(k)

∣∣4}− 2
(
E
{∣∣y(k)

∣∣2})2 − ∣∣E{y2i (k)
}∣∣2,
(C.9)

the expression in (21) is easily obtained by substituting the
moment relations of (18), (19), and (20) into (C.9).

D. PROOF OF THEOREM 5

By the law of large numbers, as N → ∞, the summation in
(40) converges to the statistical expectation

lim
N→∞

M̂ = E
{
s(k)sH(k)c∗cTs(k)sH(k)

}
. (D.1)

The expression on the right-hand side is identical to that in
(C.4), for which its evaluated value is given by (C.7). Finally,
noting that N = Kdiag{ccH}, the theorem follows.

E. PROOF OF THEOREM 6

Considering both (46)-(47) and (51)-(52) jointly, we pre-
multiply the left- and right-hand sides of all expressions by
ΓT . Taking N → ∞ and making use of the relationships in
(36) and (44), we obtain the common evolutionary equa-
tions

c̃t = Kdiag
[
ccH

]
c,

ct+1 = c̃t√
c̃Ht c̃t

.
(E.1)

Define the combined system coefficient vector using complex
phasor representation as

cit = Aite
jθt . (E.2)

Then, the update relations in (E.1) can be written in scalar
form as

Ai(t+1)e
jθi(t+1) =

∣∣κi
∣∣A3

ite
jθit sgn

[
κi
]

√∑m
p=1 κ

2
i A

6
pt

. (E.3)

Clearly, we have θi(t+1) = θit + π = θi(0) + πt correspond-
ing to a simple sign change of the ith coefficient if κi < 0
and θi(t+1) = θit = θi(0) corresponding to no sign change of
the ith coefficient if κi > 0. Finally, defining the real-valued
vector at = [A1t · · · Amt]T , the evolutionary behavior of at
follows the equations in (53), which are identical in form to
the evolutionary equations defining the behavior of the m-
dimensional real-valued single-unit FastICA procedure with
kurtosis contrast, as derived in [7, 24].
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