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Fixed-Point Error Analysis and Word Length
Optimization of 8x 8 IDCT Architectures
Seehyun Kim and Wonyong Sung

Abstract—Complete fixed-point error models that include the algorithm level. But the quantization effects are very much
coefficient quantization are derived for two popular 8 x 8 two-  dependent on the implementation architecture. Second, the
dimensional (2-D) IDCT architectures; one is based on distributed fixed-point error models are not complete. For example, those

arithmetic, and the other is the multiplier—adder chain. The tudies did not ider th tizati ffects of fficient
error models are evaluated in the integer domain to accurately studies did not consider the quantization etfiects or coetlicients.

measure the effects of rounding. The analysis results show that Finally, the IEEE Standard specifications are described in
the overall mean-square error performance (OMSE) is the most terms of rounded values instead of original unquantized error
critical condition for meeting the IEEE specification (IEEE Std.  sjgnals. This means that not only are the mean and the variance
1180-1990) when the rounding scheme is employed. On the otherg¢ the error important, but the distribution as well. In this

hand, the mean error effects (OME and PME) are dominant for lete fixed-point del derived for tw
truncation. Finally, the analysis results are compared with those paper, complete fixe -pOIF? €rror modeis are derivea tor two
of bit-accurate simulation. of the most popular architectures of 2-D IDCT. Then, we
o . N : evaluate the integer domain fixed-point error, and determine
Index Terms—Distributed arithmetic, fixed-point error analy- th t ti d | th f . to the IEEE
sis, IDCT, IEEE Standard 1180-1990, word length optimization. € COost Op m_“_lm _Wor engths _con orming 1o the
Standard specification. The analytical results are also proved
by experiment with the aid of théixed-point optimization

. INTRODUCTION utility that was developed by the authors [4].

HE two-dimensional (2-D) discrete cosine transform has Although a few fast 2-D IDCT algorithms have been pro-
been widely used for various image and video processiRgsed, the row—column decomposition technique is preferred
standards, such as JPEG, H.261 for videotelephony, MPE®, VLSI implementations due to its numerical characteristics
and HDTV. Efficient implementation of the transform requiregnd structural regularity. In order to reduce the number of
fixed-point arithmetic, which may result in a noticeable misarithmetic operations without sacrificing the regularity, the
match between the encoder and decoder. In particular, tARe-step decomposed Chen’s algorithm [5] has been widely
problem can be magnified when the IDCT (inverse discre@nployed. For the matrix-vector product operator, the dis-
cosine transform) is used in a reconstruction loop for motidfbuted arithmetic (DA)- and the multiplier—adder-based ar-
compensation purposes because the quantization error is agfifectures are usually considered. Although some implemen-
mulated. To solve this problem, IEEE specifies the fixed-poittions using the systolic array have been reported recently [6],
performance of the&s x 8 IDCT for use in visual telephony [7], most actual VLSI implementations of the88 IDCT have
and similar applications using the IEEE Std. 1180-1990 [1jeen based on the DA or multiplier—adder-based architecture,
They require that the peak error (PPE), the peak mean-squa$eshown in the survey by Pirset al. [8].
error (PMSE), the overall mean-square error (OMSE), the This paper is organized as follows. A technique for ana-
peak mean error (PME), and the overall mean error (OM#Ing the fixed-point error in the integer domain is explained
should not exceed certain values, and the all-zero input HBsSection II. In Section IlI, the fixed-point error model and
to produce the all-zero output. The test bed for measuriffge optimum word lengths of a DA-based>88 2-D-IDCT
the accuracy of a proposed IDCT is shown in Fig. 1. Tharchitecture is discussed. Section IV presents the error model
“reference” IDCT output is generated by the double-precisié @ multiplier—adder-chain-based architecture and the opti-
floating-point arithmetic, while the “test” output is the resulfnized internal word lengths. Concluding remarks are given in
of the fixed-point arithmetic. Random integers of nine bits afection V.
used for the input. Details of the test procedure are described
in [1]. Il. INTEGER DOMAIN FIXED-POINT ERROR ANALYSIS
There have been a few studies on the fixed-point error mod-

. . The IEEE specifications are based on integer domain quan-
eling of several fast DCT/IDCT algorithms [2], [3]. Howevert'hzation errors that are measured after rounding the output of

thoge_ quels are not directly applicable to the word Ieng{ e fixed-point implementation as illustrated in Fig. 1. In order
optimization of actual hardware because of the followin analyze the fixed-point error in the integer domain, it is

reasons. First, the previous works were conducted on gcessary to redefine the specifications in a stochastic manner.
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Fig. 1. Testbed for measuring the accuracy of a proposed IDCT.
point error, respectively. We also assume thatand N are Row-wise 1D IDCT Unit
; . AP , Limit
independent of each other. Then the integer domain fixed-point Accumulator Butterfly (Round & Clip)

error &£ can be defined as follows: 12 Coeffl —
: ROM I
E=|X| —[X]z 2 ‘ D D
|: :|R [ ]R ( ) ! 1D_Ou

Note that[X]g refers to the rounded value of, i.e., the
largestn - A which is smaller than or equal t& + (A/2),

. . . . . . 9 Coeff2
where n is an integer andA is the quantization step size. ‘ l | I ) ROM
The probability that the integer domain fixed-point error is an
integeri, P;, can be shown to be [9] ‘

Limiter | Butterfly " Accumulator ‘

yuun esodsues)

Column-wise 1D IDCT Unit

0.5
Pi= [ fse) Byt de 3)
—0.5

Fig. 2. Block diagram of a distributed arithmetic based 2-D IDCT.

wherefx () is the probability density function (pdf) of and
arithmetic is shown in Fig. 2. As shown in the figure, there

i4+0.5 o . - )
Fy.i(z) A / Fnle — &) di. (4) are three quantization error sources: coefficients for the first
’ i—0.5 and the second transford).1, Q.2), and the output of the

o . limiter for the first transforn{();), which can be assumed to be
Now, we can reformulate the IEEE criteria in the mtegelF\de endent of each other. Note that the limiter at the output of
domain. For example, the OMSE and the PME criteria ¢ P ) P

be comouted as follows: e second transform is modeled separately by considering the
P ' probability of the integer domain output error after rounding.

A T T fu ) The word lengths of input and output signals are specified in
OMSE = & YD & frale) (5) the IEEE Standard as 12 and 9 bits, respectively.
1=0 j=0 e=e;
/ Cu A. Fixed-Point Error Model
PMEéamax Z@'fE;j(@)u i,7=0,---, N—1 ]
2 P The 1-D IDCT matrix? can be decomposed as follows [9]:

© D = 5,B,C,5, (®)
Yggg{;f EJL ﬁpfﬁg r:;s dt:f(ienérétefser fixed-point error at plxevlvhereS;L and S, simply shuffle the data, anB, performs a
(e butterfly operationC, is a block diagonal matrix, and its two
E;; = [j(”} — [Xij]r. (7) 4 x 4 matrices can be obtained by decomposing the 8
IDCT coefficient matrix according to Chen’s method.
Note thate; ande, are the lower and the upper bounds of the In order to construct a DA hardware, the partial sum of
fixed-point error, respectively, anfk; . (e) is the correspond- coefficientsC,, should be computed in advance. It can be easily
ing probability density function ofz;;. The “amax” operator shown that the maximum value of partial sums is 2.7208.
selects the element whose absolute value is the maximum. Allis means that at least two integer bits are needed for the

other criteria, such as PPE, PMSE, and OME, can be defif@égresentation of the coefficient ROM [4]. Since this format
in the same fashion [10]. can represent all numbers less than 4, the upper 0.56=bit

log, (4/2.7208)) is a waste. Thus, by scaling up coefficients as
much asy/2, we can reduce the waste of the integer bits in the
o ] o ~ coefficient ROM. The scaling effect can easily be compensated
Distributed arithmetic is one of the most popular VLSI imy, the |ast stage by a 1 bit right shift because the overall effect
plementation methods for computing a matrix—vector produgt the 2-D transform is a magnification by 2. Now, let us

because multiplications are not needed, and as a result, theoduce a scaled IDCT matri€; which is defined as
hardware cost can be greatly reduced. An architecture for

computing the transformation by employing the distributed Ty = S1BCyS5, (9)

I1l. OPTIMIZATION OF A DA-BASED ARCHITECTURE
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where B = 2B,, C; = v/2C,. Then, by the row—column Theorem 1:Let A be a constant matrix, anft a matrix

decomposition, the 2-D IDCT matriX becomes whose components are independent random variables. Then
the variance matrix ofAQ} is
Z=1T,X1}. (10)
, , 2 (AQ) = APs?(Q) (14)
Note that the scale factor of 1/8 corresponds to just a 3-bit
right shift. whereA® = Ao A. Ao B is the Schur product oft and B,
By elaborating the equation for the 2-D IDCT, we can obtaiwhere the(i, j)th component is defined dslo B);; £ a;jbij.
the following'- 2: Theorem 2:Let A and B be constant matrices, arfd a

matrix whose components are independent random variables.

Z=Z+TIq (11) Then the variance matrix ofiQ2B is

wherel'y 2 T + ', +T'5 andl’; 2 (1/2v/2){D(S1BA,)T}7, 0?(AQB) = AP 2(Q)B®, (15)
Ty 2 (1/2v2)(DUT)T, and T3 2 1(5,BA.)T. Note that
'y, 'y, and I's describe the fixed-point errors caused b
Q.1,Qy, and Q.o, respectively.A,. and A, denote the fixed-
point error occurring in the DA hardware of the rowwise an
the columnwise transforms, respectively. Thith element of w(Ty) = LSIBN(AT)DT

;/I'he proofs of theorems are given in the Appendix.
By applying Theorems 1 and 2 for the definitionslgfs,
H1e mean and the variance matrices can be obtained as follows:

Ay, X7, is defined &% 2v2
1
Ni—1 o)) = g(5119)<2>a2 (A,)DD)
r A 7 —n+1I
XSS al (—1)te (12) , 1,
n=0 () =0sxs,  07(I'2) = 20 (¥)
where ¢!, is the quantization error of _the I_:)A coefficient, 1(Ts) = = p(ATY(S1B)T
and §,, denotes the discrete delta function, i.&,= 1 and 8
6; =0 if ¢ # 0. Ny andI; represent the word length and the o2(I'3) = iOQ(AT)(SlB)(QT). (16)
integer word length of the input data to the rowwise transform, 64 ¢

respectively, andn is a discrete random variable that depends Now, consider the distribution of, which is the restored
on the index;j and the input data. Similarly, thgth element image by floating-point arithmetic. Since the IEEE Standard

of A., Af;, is defined as specifies that the transformed imageis rounded to 12 bit
N1 integers before the inverse transform, the rounded im&ge
X5 A Z B (—1)Pno—nts (13) can be expressed as f?llows:
n=0 X=X+0 (17)

whereﬁjn. is the rounding noise of the DA coefficient in the,heree denotes the rounding error. We can assumef)as
columnwise transform, anf¥z and I3 denote the word length ;,qependent and identically distributed (i.i.d.) with zero mean

and the integer word length of the input data, respectively. 54 the variance Oi% The image restored h§ can be written
represents the rounding error generated at the limiter in front

of the transpose unit. Z=17,+E (18)

s o 1
3From_the def|n|t|_ons_ of; S'i It can t)e shown _tha% ar_ld where Z, and = are defined a9 XD? and DOD?, respec-
7i; are linear combinations af,,, and/,,, respectively, which tively. Each element of is a linear combination of,;’s.

m?
are independent of each other. Alsﬁj is a weighted sum According to the central limit theorem, we can also assume

of ;;, which are independent. Therefore, according to ﬂfﬁat the distribution of

-k tral limit th imate th ;; IS Gaussian. Since the mean &f
Web' Efl)_vvndcen ra f|m| . eorenl"l, WQQ car:j a??proxgma € fs zero, that of¢;; is zero too. The variance is equal to that
probability density functions ofy;;, v;;, an iy 1o Gauss- 6:;;, 5 because the IDCT is a similarity transform, i.e.,
ian distributions. The means and vananceSfybjfs will be  prp 7 Sincez;, is assumed to be uniformly distributed

presented in the following section. from — L to H, the probability density function of the floating-
point resultz; for a given[z;]z can be modeled as a sum

B. Word Length Determination Conforming of shifted probability density functions af;;. For notational

to the IEEE Specifications convenience, let? and @ be the random variables whose
In order to develop the mean and the variance matrices\sflues arez;; and¢;;, respectively. Then,

I';’s, consider the following theorems. Let us assume that for a "

matrix {2 whose components are random variablgs o2($2) Z fola—1), [Plr—05<p<[Plr+05

denotes a matrix whose components are the varianceg 'sf Jr(p) = ’ T

lin this paper,a represents a result by fixed-point arithmetic while 0, elsewhere
indicates that of floating-point arithmetic. (19)

2Greek letters denote quantization error signals.

3Note that capital letters denote matrices, and small characters repreS¥Rere fQ(q)l IS a Gagssmn distribution function with = 0
their elements. For examplej; is theijth element of. and o2 = 15 as derived above. Now, we can evaluate the
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Fig. 3. (a) OMSE and (b) PMSE criteria for the first IDCT blodKpef f1.
020 : TABLE |
E ———"TEEE Specficatic OpPTIMIZED WORD LENGHTS FOR THE
Eﬁfﬁiii{,’"em 7j DISTRIBUTED ARITHMETIC-BASED ARCHITECTURE

‘.“ WL Min WL Opt WL

l‘,t Sim. | Anal. | Sim. } Anal.
» Cocffl 2 14 14 15 | 15(16)
1D_Out 11 14 14 14 | 14(16)

OMSE
°
s

Cocf2 | 2 | 14 | 14 | 14 |14(16)
HW Cost 11287(12378) gates
0.02 o —
0.00 o T Row-wise 10 IDCT Unit
10 " 12 13 14 15 16
Wordlsngth ot 1D !'BCT Output e e e — )
| Add Round
Fig. 4. OMSE criterion for the output of the limitet,D_Out. 12 ; e:\ccumulam?”“e"f'y &clip .
Mutiplier HLJ\ " - Ti
fixed-point error performance in terms of IEEE criteria by = ﬁ’] ‘ f e
. . . 0€] i
using the results developed in Section II. # ; |
In order to carry out bit-accurate fixed-point simulation of ROM —— ID_Out
given IDCT hardware, we take advantage of thed-point —

optimization utility[4]. The set of cost-optimum word lengths T e
that requires the minimum hardware cost while satisfying the B“ﬁe"'vAccumulator“dde’
system performance can be determined by using the procedure

WvY esodsuel]

ﬂ Mutlpller -

proposed in [11]. - ° N Addarz

From both analytic and simulation results, it was found that oeﬁ‘2

the overall mean-square error effects are dominant. The OMSE - " Coeff |
ROM

and PMSE criteria for the first coefficient are compared in
Fig. 3, which shows that the OMSE condition requires at least
14 bits for the coefficients while the PMSE performance is met
with 12 bits. Fig. 4 shows the OMSE criterion for the output dfig. 5. Block diagram of a multiplier-added based 2-D IDCT.
the limiter. The cost optimum word lengths appear in Table I.
As shown in the table, analytic results are consistent witgrm (Qc1,Q.2), word length reduction for the outputs of the
the experimental results. The numbers inside the parenthefes and the second multiplie ®),1, Q,2), and the output of
show the word lengths of the previous implementation [12fne limiter for the first transforni@;), which are independent
As for modeling the hardware cost, the cell libraries of VLSbf each other. Note that the limiter at the output of the second
Technologies, Inc. are used [13]. transform is modeled separately by considering the probability
of the output error after rounding.

Column-wise 1D IDCT Unit

IV. OPTIMIZATION OF A MULTIPLIER-

AND ADDER-BASED ARCHITECTURE . )
) ] ) A. Fixed-Point Error Model
The matrix—vector product in the IDCT can be implemented

in a straightforward way by using multiplier and adder chains
as shown in Fig. 5. There are five quantization error sourc&§fined as
guantization of coefficients for the first and the second trans- Tn = 51BC,, S (20)

Let us introduce a scaled transform mattlk, which is



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 8, DECEMBER 1998

OMSE
°
B

IEEE Specification)

Experiment

AAAAAAAA Theory

©.00
8

Fig. 6.
first 1-D IDCT unit, Adderl.

where B = 2B, C,, = C,. Then, the 2-D IDCT outpuZ

9 10 11 12 13 14 15 15
Wordlength of Coetficients

@

PME

Experiment

IEEE Specification

17 s 19

Wordlength of Adder in the First 1D IDCT

(b)

20

TABLE 11

939

(a) OMSE criterion for the coefficients of the first 1-D IDCT unitpef f1, and (b) PME criterion for the word length of the adder in the

becomes OPTIMIZED WORD LENGHTS FOR THEMULTIPLIER—
ADDER-BASED ARCHITECTURE
1 T =
Z =31,XT,. Min WL Opt WL
L. . . . . WL >Sim. ’ Anal. | Sim. ‘ Anarlr.*
Similarly to Section Ill, we can obtain the fixed-point error ' ‘ —
model by elaborating (21), the equation for the 2-D IDCT. Cocfil | O(1) | 12 | 12 ] 13 | 15(L4)
The 2-D transformed data using fixed-point arithmefican Adderl | 10(15) | 19 | 19 | 19 | 19(28)
be represented as follows: ID-Out | 11(11) | 14 | 14 | 16 | 15(16)
Coeff2 | 0(1) | 12 | 12 | 12 |12(14)
Z=7Z+1, (22) Adder2 | 11(15) | 20 20 20 | 20(33)
L . . . HW Cost 19866(21374) gates
where I',,, indicates the fixed-point error, and it can
be written asT,, 2 I'n +Ts + T3 +T4 + 5 and
r, 2 ${D(51BO,5: X))}, Iy 2 ${D(S1BA,)T}T, evaluated using the probability density function-gf, which
T3 E %(D\I/T)T, Ty 2 %{SlB@cSQ(DX)T}T’ has been developeq in Section .III-B. .
T, A i(SlBAc)T- Iy, i = 1,---.5 represent the overall From both analytic and experimental results, it was found

fixed-point error caused byQu1,Qu1, Ot Quzr and Qua, that the most crucial condition fo®.;, Q.o, anq Q, is the '

. ) ! overall mean-square error OMSE. However, since the multi-

respectively.A,. and A. denote the truncation error matrices .
. o . lier outputs are usually truncated to reduce the word length of
occurring after the multipliers of the rowwise and th :
. . i he following adders, the means €f,; and@,> are not zero.
columnwise transforms, respectively. The quantization errofs
- nd as a result, the peak mean error PME and the overall mean
of transform coefficients are expressed @& and ©., L -

. ) . error OME play the key role for determining the minimum
respectively. Finally® represents the rounding error at the :
N . word length for Adderl and Adder2 respectively. Although
limiter in front of the transpose unit. . . X .

we can reduce the size of the adders by inserting rounding
circuits after the multipliers, it may not be a more efficient
solution. The OMSE criterion for the first coefficient and the
PME criterion for the adder in the 1-D IDCT unit are compared
Similarly to Section IlI-B, we can evaluate the integen Fig. 6. The cost optimum word lengths appear in Table II.
domain error criteria. For example, the mean and the variants shown in the table, analytic results are quite consistent with
of I'1, which is the error component caused by the quantizatitine experimental results. The numbers inside the parentheses

of coefficients, can be represented as follows: show the word lengths of the previous implementation [14].

B. Word Length Determination Conforming
to the IEEE Specifications

o?(['1) = 1(51B6.5:)Po?(X)DED),

u(l“l) - 08><8- (23)

V. CONCLUDING REMARKS

It can be also shown thazt/}j’s are linear combinations The finite word length effects of 8 8 2-D IDCT algorithms

of z;;, which are independent random numbers. Thus, weere analyzed on the architectural level, and the optimum
can approximate the probability density functions @g internal word lengths for the distributed arithmetic and the
where ¢,7 = 0,--.,7, to Gaussian distributions with themultiplier—adder-based architectures have been determined to
corresponding variances and means according to the censatisfy the IEEE specifications while requiring the minimum
limit theorem. Now, the integer domain error criteria can beardware cost.
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First, in order to analytically evaluate the IEEE specifica-  Proof of Theorem 2Let”’ 2 AQ andA = I'B = AQB.
tions, which are defined in the integer domain by the ensemipliecording to Theorem 1

sense, a simple method for analyzing the integer domain

error has been presented. Also, the IEEE criteria have been 2 (A7) = BED 21Ty = BED2(QT)ACD),
reformulated in a stochastic sense. Second, the complete fixed-

point error models for both the distributed arithmetic amiiherefore
the multiplier—adder-chain-based 8 8 2-D IDCT architec-

tures were derived. Finally, the optimum set of word lengths
conforming to all of the IEEE specified criteria including

PPE, PMSE, OMSE, PME, and OME was determined using

the analytical results. The analytical results were compared u
with that of the bit-accurate simulation. The hardware costs

using these optimized word lengths are about 9.7 and 7.6% REFERENCES
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