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Fixed-Point Error Analysis and Word Length
Optimization of 8 8 IDCT Architectures

Seehyun Kim and Wonyong Sung

Abstract—Complete fixed-point error models that include the
coefficient quantization are derived for two popular 8� 8 two-
dimensional (2-D) IDCT architectures; one is based on distributed
arithmetic, and the other is the multiplier–adder chain. The
error models are evaluated in the integer domain to accurately
measure the effects of rounding. The analysis results show that
the overall mean-square error performance (OMSE) is the most
critical condition for meeting the IEEE specification (IEEE Std.
1180-1990) when the rounding scheme is employed. On the other
hand, the mean error effects (OME and PME) are dominant for
truncation. Finally, the analysis results are compared with those
of bit-accurate simulation.

Index Terms—Distributed arithmetic, fixed-point error analy-
sis, IDCT, IEEE Standard 1180-1990, word length optimization.

I. INTRODUCTION

T HE two-dimensional (2-D) discrete cosine transform has
been widely used for various image and video processing

standards, such as JPEG, H.261 for videotelephony, MPEG,
and HDTV. Efficient implementation of the transform requires
fixed-point arithmetic, which may result in a noticeable mis-
match between the encoder and decoder. In particular, this
problem can be magnified when the IDCT (inverse discrete
cosine transform) is used in a reconstruction loop for motion
compensation purposes because the quantization error is accu-
mulated. To solve this problem, IEEE specifies the fixed-point
performance of the IDCT for use in visual telephony
and similar applications using the IEEE Std. 1180–1990 [1].
They require that the peak error (PPE), the peak mean-square
error (PMSE), the overall mean-square error (OMSE), the
peak mean error (PME), and the overall mean error (OME)
should not exceed certain values, and the all-zero input has
to produce the all-zero output. The test bed for measuring
the accuracy of a proposed IDCT is shown in Fig. 1. The
“reference” IDCT output is generated by the double-precision
floating-point arithmetic, while the “test” output is the result
of the fixed-point arithmetic. Random integers of nine bits are
used for the input. Details of the test procedure are described
in [1].

There have been a few studies on the fixed-point error mod-
eling of several fast DCT/IDCT algorithms [2], [3]. However,
those models are not directly applicable to the word length
optimization of actual hardware because of the following
reasons. First, the previous works were conducted on the
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algorithm level. But the quantization effects are very much
dependent on the implementation architecture. Second, the
fixed-point error models are not complete. For example, those
studies did not consider the quantization effects of coefficients.
Finally, the IEEE Standard specifications are described in
terms of rounded values instead of original unquantized error
signals. This means that not only are the mean and the variance
of the error important, but the distribution as well. In this
paper, complete fixed-point error models are derived for two
of the most popular architectures of 2-D IDCT. Then, we
evaluate the integer domain fixed-point error, and determine
the cost optimum word lengths conforming to the IEEE
Standard specification. The analytical results are also proved
by experiment with the aid of thefixed-point optimization
utility that was developed by the authors [4].

Although a few fast 2-D IDCT algorithms have been pro-
posed, the row–column decomposition technique is preferred
for VLSI implementations due to its numerical characteristics
and structural regularity. In order to reduce the number of
arithmetic operations without sacrificing the regularity, the
one-step decomposed Chen’s algorithm [5] has been widely
employed. For the matrix–vector product operator, the dis-
tributed arithmetic (DA)- and the multiplier–adder-based ar-
chitectures are usually considered. Although some implemen-
tations using the systolic array have been reported recently [6],
[7], most actual VLSI implementations of the 88 IDCT have
been based on the DA or multiplier–adder-based architecture,
as shown in the survey by Pirschet al. [8].

This paper is organized as follows. A technique for ana-
lyzing the fixed-point error in the integer domain is explained
in Section II. In Section III, the fixed-point error model and
the optimum word lengths of a DA-based 8 8 2-D-IDCT
architecture is discussed. Section IV presents the error model
of a multiplier–adder-chain-based architecture and the opti-
mized internal word lengths. Concluding remarks are given in
Section V.

II. I NTEGER DOMAIN FIXED-POINT ERROR ANALYSIS

The IEEE specifications are based on integer domain quan-
tization errors that are measured after rounding the output of
the fixed-point implementation as illustrated in Fig. 1. In order
to analyze the fixed-point error in the integer domain, it is
necessary to redefine the specifications in a stochastic manner.

Consider a general additive noise model

(1)

where , and are all random variables representing
a floating-point result, a fixed-point result, and the fixed-
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Fig. 1. Testbed for measuring the accuracy of a proposed IDCT.

point error, respectively. We also assume thatand are
independent of each other. Then the integer domain fixed-point
error can be defined as follows:

(2)

Note that refers to the rounded value of , i.e., the
largest which is smaller than or equal to ,
where is an integer and is the quantization step size.
The probability that the integer domain fixed-point error is an
integer , can be shown to be [9]

(3)

where is the probability density function (pdf) of and

(4)

Now, we can reformulate the IEEE criteria in the integer
domain. For example, the OMSE and the PME criteria can
be computed as follows:

(5)

(6)

where represents the integer fixed-point error at pixel
location , and is defined as

(7)

Note that and are the lower and the upper bounds of the
fixed-point error, respectively, and is the correspond-
ing probability density function of . The “amax” operator
selects the element whose absolute value is the maximum. All
other criteria, such as PPE, PMSE, and OME, can be defined
in the same fashion [10].

III. OPTIMIZATION OF A DA-BASED ARCHITECTURE

Distributed arithmetic is one of the most popular VLSI im-
plementation methods for computing a matrix–vector product
because multiplications are not needed, and as a result, the
hardware cost can be greatly reduced. An architecture for
computing the transformation by employing the distributed

Fig. 2. Block diagram of a distributed arithmetic based 2-D IDCT.

arithmetic is shown in Fig. 2. As shown in the figure, there
are three quantization error sources: coefficients for the first
and the second transform , and the output of the
limiter for the first transform , which can be assumed to be
independent of each other. Note that the limiter at the output of
the second transform is modeled separately by considering the
probability of the integer domain output error after rounding.
The word lengths of input and output signals are specified in
the IEEE Standard as 12 and 9 bits, respectively.

A. Fixed-Point Error Model

The 1-D IDCT matrix can be decomposed as follows [9]:

(8)

where and simply shuffle the data, and performs a
butterfly operation. is a block diagonal matrix, and its two
4 4 matrices can be obtained by decomposing the 88
IDCT coefficient matrix according to Chen’s method.

In order to construct a DA hardware, the partial sum of
coefficients should be computed in advance. It can be easily
shown that the maximum value of partial sums is 2.7208.
This means that at least two integer bits are needed for the
representation of the coefficient ROM [4]. Since this format
can represent all numbers less than 4, the upper 0.56 bit

is a waste. Thus, by scaling up coefficients as
much as , we can reduce the waste of the integer bits in the
coefficient ROM. The scaling effect can easily be compensated
in the last stage by a 1 bit right shift because the overall effect
of the 2-D transform is a magnification by 2. Now, let us
introduce a scaled IDCT matrix which is defined as

(9)
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where . Then, by the row–column
decomposition, the 2-D IDCT matrix becomes

(10)

Note that the scale factor of 1/8 corresponds to just a 3-bit
right shift.

By elaborating the equation for the 2-D IDCT, we can obtain
the following :

(11)

where and ,

, and . Note that
, and describe the fixed-point errors caused by
, and , respectively. and denote the fixed-

point error occurring in the DA hardware of the rowwise and
the columnwise transforms, respectively. Theth element of

, , is defined as3

(12)

where is the quantization error of the DA coefficient,
and denotes the discrete delta function, i.e., and

if . and represent the word length and the
integer word length of the input data to the rowwise transform,
respectively, and is a discrete random variable that depends
on the index and the input data. Similarly, theth element
of , , is defined as

(13)

where is the rounding noise of the DA coefficient in the
columnwise transform, and and denote the word length
and the integer word length of the input data, respectively.
represents the rounding error generated at the limiter in front
of the transpose unit.

From the definitions of ’s, it can be shown that and
are linear combinations of and , respectively, which

are independent of each other. Also, is a weighted sum
of , which are independent. Therefore, according to the
well-known central limit theorem, we can approximate the
probability density functions of , and to Gauss-
ian distributions. The means and variances of’s will be
presented in the following section.

B. Word Length Determination Conforming
to the IEEE Specifications

In order to develop the mean and the variance matrices of
’s, consider the following theorems. Let us assume that for a

matrix whose components are random variables
denotes a matrix whose components are the variances of’s.

1In this paper,~a represents a result by fixed-point arithmetic whilea
indicates that of floating-point arithmetic.

2Greek letters denote quantization error signals.
3Note that capital letters denote matrices, and small characters represent

their elements. For example,
kij is the ijth element of�k.

Theorem 1: Let be a constant matrix, and a matrix
whose components are independent random variables. Then
the variance matrix of is

(14)

where . is the Schur product of and ,

where the th component is defined as .
Theorem 2: Let and be constant matrices, and a

matrix whose components are independent random variables.
Then the variance matrix of is

(15)

The proofs of theorems are given in the Appendix.
By applying Theorems 1 and 2 for the definitions of’s,

the mean and the variance matrices can be obtained as follows:

(16)

Now, consider the distribution of , which is the restored
image by floating-point arithmetic. Since the IEEE Standard
specifies that the transformed image is rounded to 12 bit
integers before the inverse transform, the rounded image
can be expressed as follows:

(17)

where denotes the rounding error. We can assume thatis
independent and identically distributed (i.i.d.) with zero mean
and the variance of . The image restored by can be written

(18)

where and are defined as and , respec-
tively. Each element of is a linear combination of ’s.
According to the central limit theorem, we can also assume
that the distribution of is Gaussian. Since the mean of
is zero, that of is zero too. The variance is equal to that
of , because the IDCT is a similarity transform, i.e.,

. Since is assumed to be uniformly distributed
from to , the probability density function of the floating-
point result for a given can be modeled as a sum
of shifted probability density functions of . For notational
convenience, let and be the random variables whose
values are and , respectively. Then,

elsewhere
(19)

where is a Gaussian distribution function with
and as derived above. Now, we can evaluate the
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(a) (b)

Fig. 3. (a) OMSE and (b) PMSE criteria for the first IDCT block,Coeff1.

Fig. 4. OMSE criterion for the output of the limiter,1D Out.

fixed-point error performance in terms of IEEE criteria by
using the results developed in Section II.

In order to carry out bit-accurate fixed-point simulation of
given IDCT hardware, we take advantage of thefixed-point
optimization utility[4]. The set of cost-optimum word lengths
that requires the minimum hardware cost while satisfying the
system performance can be determined by using the procedure
proposed in [11].

From both analytic and simulation results, it was found that
the overall mean-square error effects are dominant. The OMSE
and PMSE criteria for the first coefficient are compared in
Fig. 3, which shows that the OMSE condition requires at least
14 bits for the coefficients while the PMSE performance is met
with 12 bits. Fig. 4 shows the OMSE criterion for the output of
the limiter. The cost optimum word lengths appear in Table I.
As shown in the table, analytic results are consistent with
the experimental results. The numbers inside the parentheses
show the word lengths of the previous implementation [12].
As for modeling the hardware cost, the cell libraries of VLSI
Technologies, Inc. are used [13].

IV. OPTIMIZATION OF A MULTIPLIER-
AND ADDER-BASED ARCHITECTURE

The matrix–vector product in the IDCT can be implemented
in a straightforward way by using multiplier and adder chains
as shown in Fig. 5. There are five quantization error sources:
quantization of coefficients for the first and the second trans-

TABLE I
OPTIMIZED WORD LENGHTS FOR THE

DISTRIBUTED ARITHMETIC-BASED ARCHITECTURE

Fig. 5. Block diagram of a multiplier-added based 2-D IDCT.

form , word length reduction for the outputs of the
first and the second multipliers , and the output of
the limiter for the first transform , which are independent
of each other. Note that the limiter at the output of the second
transform is modeled separately by considering the probability
of the output error after rounding.

A. Fixed-Point Error Model

Let us introduce a scaled transform matrix which is
defined as

(20)
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(a) (b)

Fig. 6. (a) OMSE criterion for the coefficients of the first 1-D IDCT unit,Coeff1, and (b) PME criterion for the word length of the adder in the
first 1-D IDCT unit, Adder1.

where . Then, the 2-D IDCT output
becomes

(21)

Similarly to Section III, we can obtain the fixed-point error
model by elaborating (21), the equation for the 2-D IDCT.
The 2-D transformed data using fixed-point arithmeticcan
be represented as follows:

(22)

where indicates the fixed-point error, and it can

be written as and
, ,

, ,

. represent the overall
fixed-point error caused by , and ,
respectively. and denote the truncation error matrices
occurring after the multipliers of the rowwise and the
columnwise transforms, respectively. The quantization errors
of transform coefficients are expressed as and ,
respectively. Finally, represents the rounding error at the
limiter in front of the transpose unit.

B. Word Length Determination Conforming
to the IEEE Specifications

Similarly to Section III-B, we can evaluate the integer
domain error criteria. For example, the mean and the variance
of , which is the error component caused by the quantization
of coefficients, can be represented as follows:

(23)

It can be also shown that ’s are linear combinations
of , which are independent random numbers. Thus, we
can approximate the probability density functions of ,
where , to Gaussian distributions with the
corresponding variances and means according to the central
limit theorem. Now, the integer domain error criteria can be

TABLE II
OPTIMIZED WORD LENGHTS FOR THEMULTIPLIER–

ADDER-BASED ARCHITECTURE

evaluated using the probability density function of, which
has been developed in Section III-B.

From both analytic and experimental results, it was found
that the most crucial condition for and is the
overall mean-square error OMSE. However, since the multi-
plier outputs are usually truncated to reduce the word length of
the following adders, the means of and are not zero.
And as a result, the peak mean error PME and the overall mean
error OME play the key role for determining the minimum
word length forAdder1 and Adder2, respectively. Although
we can reduce the size of the adders by inserting rounding
circuits after the multipliers, it may not be a more efficient
solution. The OMSE criterion for the first coefficient and the
PME criterion for the adder in the 1-D IDCT unit are compared
in Fig. 6. The cost optimum word lengths appear in Table II.
As shown in the table, analytic results are quite consistent with
the experimental results. The numbers inside the parentheses
show the word lengths of the previous implementation [14].

V. CONCLUDING REMARKS

The finite word length effects of 8 8 2-D IDCT algorithms
were analyzed on the architectural level, and the optimum
internal word lengths for the distributed arithmetic and the
multiplier–adder-based architectures have been determined to
satisfy the IEEE specifications while requiring the minimum
hardware cost.
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First, in order to analytically evaluate the IEEE specifica-
tions, which are defined in the integer domain by the ensemble
sense, a simple method for analyzing the integer domain
error has been presented. Also, the IEEE criteria have been
reformulated in a stochastic sense. Second, the complete fixed-
point error models for both the distributed arithmetic and
the multiplier–adder-chain-based 8 8 2-D IDCT architec-
tures were derived. Finally, the optimum set of word lengths
conforming to all of the IEEE specified criteria including
PPE, PMSE, OMSE, PME, and OME was determined using
the analytical results. The analytical results were compared
with that of the bit-accurate simulation. The hardware costs
using these optimized word lengths are about 9.7 and 7.6%
lower than those of the previous implementations. This study
can be used for the VLSI implementation of the video rate
DCT and IDCT because the distributed arithmetic and the
multiplier–adder-chain-based architectures are quite regular
and adequate for high throughput processing.

APPENDIX

Proof of Theorem 1Let then
. The square of the first moment of is

and the second moment of is

where are either 0 or 1, and . Thus,
the variance of becomes

Therefore

Proof of Theorem 2Let and .
According to Theorem 1

Therefore
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