
FIXED POINT FREE INVOLUTIONS AND 

EQUIVARIANT MAPS1 

P. E. CONNER AND E. E. FLOYD 

1. Preliminaries. We are concerned with involutions without fixed 
points, together with equivariant maps connecting such involutions. 
An involution T is a homeomorphism of period 2 of a Hausdorff 
space X onto itself; that is, T2(x) = x for all x £ X . 

There is associated with an involution T on X the orbit space X/T, 
obtained by identifying x with T(x) for all x G Z . Denote by 
v\ X—+X/T the decomposition map. If T is fixed point free, then 
v\ X—*X/Tis a local homeomorphism. The map v is always both open 
and closed. 

In addition to fixed point free involutions we also study equivariant 
maps. If spaces X, Xf carry involutions T, V respectively, then a 
map m-.X—^X' is equivariant provided that m(T(x)) — Tf(m(x)) for 
all xÇzX. An equivariant map m: X-+X' induces a map M: X/T 
-*X'/T'. 

The most fundamental involution without fixed points is the antip-
odal involution A on the ^-sphere 5W, given by A(xi> • • • , xn+i) 
= ( — #i, • • * , — Xn+i). When we speak of Sn as carrying a fixed point 
free involution, it is to be understood that we refer to A. For 5 n , 
we have the classical body of results of Lyusternik-Schnirelmann and 
Borsuk-Ulam. Some of these well-known results are summarized in 
the following. 

(1.1) The following are true for every n: 
(i) there is no equivariant map of 5 n + 1 into Sn; 
(ii) every equivariant map of Sn into itself is of odd degree; in par-

ticular, it is essential] 
(iii) the Lyusternik-Schnirelmann category of Sn/A =P W is n; 
(iv) for every covering of Sn by n + 1 closed sets Ai, • • • , An+i9 

some set Ai contains an antipodal pair; 
(v) for every map ƒ : Sn—>Rn there is a point x £ S n for which f(x) 

=f{A{x)). 
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(vi) the cohomology ring H*(Pn; Z2) is isomorphic to the truncated 
polynomial ring Z2(x)/[xn + 1] . 

Here cat X is one less than the least number of closed sets required 
to cover X so that each set is contractible to a point in X. By 
Z2(x)/[xn+1] we mean the polynomial ring Z2(x) factored by the ideal 
which xn + 1 generates. 

The following two questions are suggested by (1.1) for a given fixed 
point free involution T: X—+X. 

(1) For which integer n is there an equivariant map of Sn into X, 
but no equivariant map of Sn+1 into X? 

(2) For which integer n is there an equivariant map of X into Sn, 
but not of X into Sn~l? 

In view of (1.1), the answer to both questions for X = Sn is n. It 
appears to us that the above are the most fundamental questions 
for a fixed point free involution; we have first realized the importance 
of (2) from the work of Yang [17] on mappings of spheres. We do not 
try for a really general answer to either question, but are able to 
make a computation in several classes of examples. 

The results (1.1) also suggest a related problem; namely for which 
fixed point free involutions T: X-+X are each of the following pairs 
of statements equivalent. 

I. (a) There is an equivariant map Sn—»X, but no equivariant 
map 5n + 1-»X. 

(a') There is an equivariant map Sn—>Xf and every such equi-
variant map is essential. 

II . (b) There is an equivariant map X—»SW, but no equivariant 
map X->5W~X. 

(b') There is an equivariant map X—»5n, and every such equi-
variant map is essential. 

Some thought reveals that in fact the statements (a) and (a') are 
always equivalent. Furthermore, it is true that (b') implies (b) for 
all X. However, the question of whether (b) implies (b') is much more 
interesting. We shall see that (b) does not always imply (b'). We 
obtain conditions under which (b) implies (b') (for example, if 
dim X S 2n — 3), and also give examples where the implication is false 
(in fact, one with dim X = 2n — 2). 

We have by no means exhausted the list of questions suggested by 
(1.1). If we examine statements (iv) and (vi) we might guess that 
for a general fixed point free involution the answers to questions (1) 
and (2) are related to cat X/T and to the cohomology ring 
H*(X/T\ Z2). We shall make these relations clear in later sections. 

Our interest in these matters was stimulated by the classical re-
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suits of Lyusternik-Schnirelmann and Borsuk-Ulam, together with 
the more recent works of Yang [17; 18; 19] and of Bourgin [3]. The 
results of §5 on stability of equivariant homotopy classes were in-
spired by the Spanier-Whitehead S-category [12; 13]. 

2. Equivariant maps. In this section, A will denote a fixed point 
free involution on a finite cell complex K, with A also cellular. Con-
sider also an involution T: X—>X, not necessarily fixed point free 
in this section. Denote by v.K—^K/A the cellular map of K onto 
the orbit space K/A. Denote by E(K, X) the collection of all equi-
variant maps m: K—+X. If T has fixed points, E(K> X) is nonempty, 
since we may map all of K into a fixed point of X ; however if T has 
no fixed points, E(K, X) may of course be empty. We give E(K, X) 
the compact-open topology. Two maps mo, mi£E( i£ , X) are equi-
variantly homotopic if and only if there is a continuous 1-parameter 
family of maps mTE:E(K, X) joining w0 to m\. Equivariant homotopy 
is an equivalence relation, and the collection of equivariant homotopy 
classes in E(K, X) is denoted by E*(i£, X). We understand that 
E*(K, X) =0 if and only if E(K, X) = 0 . 

The study of E(K, X) and E*(K, X) is greatly simplified by the 
important observation of Heller [7] that the equivariant maps of K 
into X may be identified with the cross-sections of an appropriate 
fibre bundle. This bundle is constructed by first forming the product 
KXX and introducing a diagonal involution T' = A XT on KXX by 
T'(k, x) = (A(k), T(x)). The projection map p: KXX-+K is an equi-
variant map, thus it defines a map a: (KXX)/T'-*K/A. Since A has 
no fixed points, a is a locally trivial fibre map over K/A with fibre 
X and structural group Z2. Consider the commutative diagram 

K< KX X 
p 

K/T^-(KX X)/T'. 

For each m in E(K, X), define a cross-section s: K/A—>(KXX)/Tf 

by 
s(v(k)) = vx(k, m{k)) 

for all kEK. Note that 

s(p(A(k))) = Pi(A(k),m(A(k))) = vi(A(k), Tm(k)) 

= *! ( r (* , «(*))) = vi(k,m(k)) = s(v(k)). 

Thus the cross-section s is well defined. Conversely let s:K/A 
—*(KXX)/T' be a cross-section. Since A has no fixed points, there 
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is for each kÇzK a unique point m(k) £ X such that s(v(k)) = vi(k, m(k)). 
To see that m is equivariant we write 

s(v(A(k))) = Vl(A{k),m{A{k))) = s(v{k)) = v1{k,m{k)) 

which implies 

r ( * , i»(*)) = U(&), 7to(*)) = (i4(*),m(4(*))). 

This correspondence between E(K, X) and the cross-sections of 
a: (KXX)/T'—*K/A carries equivariant homotopies into homotopies 
of cross-sections. This observation of Heller's means that in studying 
E(Ky X) and E*(K, X) we may use the well known methods of ob-
struction theory for the study of cross-sections of a fibre bundle. For 
example, in view of 37.5 in Steenrod [14], we have an equivariant 
Hopf classification theorem. 

(2.1) Let A be a fixed point free involution on a finite cell complex K 
of dimension n, and let T be an involution on an (n — 1) -connected space 
X, n*zl. Then there is a one-to-one correspondence between E*(K, X) 
andHn(K/A;B(Tn(X))). 

If n = l, we must assume TTI(X) abelian. In addition to (2.1), we 
also have an important deformation theorem. If Y(ZX is a closed 
subset of X, then 7r;(X, F ) = 0 , O^i^n, will signify that X and Y 
are pathwise connected, that wi(X) = 7Ti(F) = 0, and that the group 
TTi(X, Y) is trivial for 2^i^n. 

(2.2) Let A be a fixed point free involution on a finite cell complex K. 
Let T be an involution on a space X, and let Y be a closed invariant sub-
set of X such that irt(X, F) = 0 , Q^i^n. If dim K<n, the natural cor-
respondence j * : £*(X, F)—>£*(X, X) is one-to-one and onto. If dim K 
= n, j * is onto. 

A brief but clear discussion of the necessary deformation theorems 
is found in Hu [9]. In particular, note that under the hypothesis 
dim K = n in (2.2), E(K, F) = 0 if and only if E(K, X) = 0. 

Consider now the suspension S(K) of K. That is, S(K) is formed 
from KXI by collapsing KXO and Z X l each to a point; the point 
coming from KXO we call the lower vertex of S(K). We may consider 
K as embedded in S(K) by identifying K with X X (1/2). If A is an 
involution on K, there is a suspended involution on S(K) generated 
by (k, t)—^(A(k)1 1—/). This involution is an extension of A to an 
involution on S(K) ; we denote the extension by A also. 

Select now a base point x 0 £ X . There is the collection E(S(K), X\ XQ) 
of equivariant maps S(K)—>X which map the lower vertex of S(K) 
into Xo, and the collection E(S(K), X; Xo) of equivariant homotopy 
classes of E(S(K), X; xo). There is a natural correspondence 
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j * : £ * ( S ( K ) , X\ xo) -»E*(S(K), X) induced by the inclusion 
E(S(K),X;xo)CE(S(K),X). 

(2.3) If T is an involution on a pathwise connected space X, then 
for any x 0 £ X , i*: E*(S(K), X; xo)—>E*(S(K), X) is onto. If in addi-
tion Ti(X) = 0 then j * is also one-to-one. 

We now introduce the space PXo = PXQ(X)t the space of all paths 
in X joining x0 to T(x0)t with the compact-open topology. Note that 
possibly PXo~0 if X is not arc wise connected. We place an involu-
tion T on PXo by 

T(p)(f) = np(i - o), P e P*Q. 

(2.4) For any point XQÇLX, there is a natural one-to-one correspond-
ence between E*(K, PXo) and E*(S(K), X; XQ). 

This is easily seen; in fact, the correspondence is actually a homeo-
morphism. With these facts, we can now prove an equivariant sus-
pension theorem. The object is to relate E*(Kf X) to E*(S(K), S(X)), 
for X compact. It will be noted that the usual suspension of a map 
in E(K, X) is still an equivariant map, thus there is a suspension cor-
respondence s*: E(K, X)-*E(S(K), S(X)). 

(2.5) THEOREM. Let A be a fixed point free involution on a finite cell 
complex K, and let T be an involution on a compact (« —1) -connected 
space X, n^2. If dim K<2n-\, then s*: E*(K, X)~>E*(S(K), S(X)) 
is a one-to-one correspondence. If dim K = 2n— 1, then s* is onto. 

The suspension S(X) is ^-connected. Choose x 0 G5(Z) to be the 
lower vertex; then j * : E*(S(K), S(X)\ xo)—^E^(S(K)f S(X)) is a one-
to-one correspondence between the two. By (2.4) we may replace 
E*(S(K), S(X); xo) by £*(i£, PXQ(S(X))). There is the equivariant 
embedding I C P * 0 ( 5 ( I ) ) for which, as is well-known [13], Ti(PXQt X) 
= 0 for 0^i^2n — l. We complete the argument by applying (2.2). 

We note that under the hypotheses of (2.5) if dim K^ln — 1, then 
E*(S(K), S(X)) = 0 if and only if E*(K, X) = 0 . 

§2 has consisted of general results needed for our principal lines of 
inquiry. We would like to know additional general facts about the 
space E(K> X) and the set E*(K, X), but turn instead to the special 
cases E(Sn, X) and E(X, Sn) under the assumption that X is fixed 
point free. 

3. The index and the co-index. In this section we shall deal only 
with fixed point free involutions. Our discussion suggests the defini-
tion of two functions on the class of fixed point free involutions. 

(3.1) DEFINITION. Let T denote a fixed point free involution on a 
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space X, The index of (JT, X) is the largest integer n for which there 
is an equivariant map of Sn into X. The co-index of (T, X) is the 
least integer n for which there is an equivariant map of X into Sn. 

We abbreviate index and co-index by ind X and co-ind X respec-
tively. Write i n d X = — 1 , or co-ind X = — 1 , if and only if X = 0. 
Observe that if X^0 then S° can always be equivariantly mapped 
into X. I t may happen for a particular X that there is no upper bound 
on the dimension of the sphere which can be equivariantly mapped 
into X] then we write ind X = oo. Also if X cannot be equivariantly 
mapped into Sn no matter how large ft, write co-ind X= <*>. The co-
index function is precisely Yang's J3-index [17]. The following remark 
is an immediate corollary of the definition. 

(3.2) Let T and V be fixed point free involutions on spaces X, Y re-
spectively, and let m: X—^Y be equivariant. Then 

ind X ^ ind F, co-ind X ^ co-ind F. 

Thus, an equivariant map decreases neither index nor co-index. It 
follows from (1.1) that ind Sn — co-ind Sn = n. From this we derive 

(3.3) For any fixed point free involution T on a space X, ind X 
^ co-ind X. 

We now begin some remarks about co-index. An invariant subset 
A C.X admits a cross-section if and only if there is a set B QA which 
is closed in A and such that A~B\JT(B), BC\T{B) = 0. If v:X 
—>X/T denotes the orbit map, then BC.X/T admits a cross-section 
if and only if there is a map s: B-+X with vs the identity. The two 
definitions are easily seen to be equivalent in the sense that B C.X/T 
admits a cross-section if and only if the invariant set v~l(B) —A C.X 
admits a cross-section. There are the following characterizations of 
co-index, suggested by Yang's results [17] on 5-index. 

(3.4) THEOREM. If T is a fixed point free involution on a normal 
space X, then the following are equivalent: 

(1) X can be covered by n-\-l closed sets Ai, • • • , An+i such that 
each Ai is invariant and admits a cross-section; 

(2) X admits a finite covering of order ^n by closed invariant sets 
each of which admits a cross-section; 

(3) X admits a covering by n + \ open invariant sets W\, • • • , Wn+u 
each of which admits a cross-section ; 

(4) co-ind X^n; 
(5) there is a fixed point free involution V on a paracompact space 

F, with cat Y/T''^n, and an equivariant map m: X~-*Y. 

As a corollary of (3.3) and (3.4) we have: 
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(3.5) If T is a fixed point free involution on a paracompact space X, 
then 

ind X é co-ind X ^ cat X/T. 

The next lemma, used in proving (3.4) and (3.7), is purely set-
theoretic in nature. 

(3.6) If U is a locally finite open covering of order ^n on a normal 
space X, then X can be covered by n + 1 open sets Wi, • • • , Wn+i, each 
of which can be written as the disjoint union of open sets each contained 
in some element of U. 

If the elements of U are invariant under an involution on X, then 
the Wi may be assumed invariant, and furthermore Wi may be repre-
sented as the disjoint union of open invariant sets each of which be-
long to some element of U. A point to be observed here is that if 
each of a collection of disjoint open invariant sets admits a cross-
section, then so does the union. I t should also be noted that through-
out we agree that dimension refers to covering dimension defined in 
terms of arbitrary open coverings. 

(3.7) If T is a fixed point free involution on a paracompact space X, 
then 

ind X g co-ind X g dim X/T. 

In the proof, we may as well assume dim X/T~n< oo. Since v is 
a local homeomorphism, there is an open covering F of X/T each 
element of which admits a cross-section. We may as well assume F 
locally finite. Since dim X/T = n there is an open covering V' of 
order :g n refining F. Let {a}, {j3} respectively denote the indexing 
sets of V' and F and let h: \a}—*{t3} be a function chosen so that 
VI CVHa) for all a G { a } . Let E^ = UM«>-* Vi. Then U=* { Up} is a 
locally finite open covering of order ^ n each element of which admits 
a cross-section. We apply (3.6) to U to conclude that X/T is covered 
by n + 1 open sets TFi, • • • , Wn+i each of which admits a cross-section. 
The open invariant sets v~~1(Wi) cover X and each admits a cross-
section, so from (3.3) we have co-ind X^n = dim X/T. 

If X is a separable metric space, then it is well-known that dim X/T 
= dim X. Actually (3.7) can be strengthened considerably. 

(3.8) THEOREM. If T is an involution on a finite dimensional separa-
ble metric space X, and if IIl{X\ Z)~0for all i^k, then co-ind X^k. 

The cohomology groups are here the Alexander-Spanier cohomol-
ogy groups with integral coeincients. The proof is too long to be in-
cluded in this outline. 

Now we shall turn to the index. We may think of the computation 
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of index as a problem in obstruction theory of the following type. Let 
W==Dn^o Sn denote the union of the ascending chain of spheres 
• S ^ C ^ C • • • (Z$nC • • • ; there is an obvious antipodal map A on 
W. If W is given the CW-topology, A is a fixed point free involution 
on an acyclic complex W. The ^-skeleton of W is Sn. Let P00 = W/A 
denote the quotient space; as usual, we refer to P00 as the infinite 
dimensional real projective space. The ^-skeleton of P00 is Pw . Con-
sider the fibre bundle a: (WXX)/Tf->W/A = P°°. An equivariant 
map mÇzE(Sn, X) corresponds to a partial cross-section defined over 
the ^-skeleton of P00. If X is ^-simple then we may associate with m 
an obstruction class k(m) e.Hn+l{P^\B{irn{X))). Note that £ ( 5 n + 1 , X) 
9^0 if and only if for some map m G E(Sn

y X), k(m) = 0 in 
Hn+l(P°°; B(irn(X))). Of course k(m) depends only on the equivariant 
homotopy class of m, so that we have a natural correspondence 

**: £*(5», X) -> ff»+i(P«; B(irn(X))). 

The reader may have noted that if X is (n — 1)-connected, then the 
image of k*: £*(SW, X)-^Hn+1(P^; B(irn(X))) consists of exactly one 
element [14], The element is called the Eilenberg-MacLane ^-invari-
ant of X [4, p. 361]. 

The group iJw+1(P°°; B(wn(X))) may be thought of as the cohomol-
ogy groups of the discrete group Z2 with coefficients in the Z(Z2)-
module irn(X) [4]. The involution T defines an automorphism 
7*: Tn(X)—>Tn(X) of period 2 since X is ^-simple. Thus Z2 acts as a 
group of automorphisms on irn(X). In this way, Hn+1(Z2\ irn(X)) is 
defined; hereafter we use it to replace Hn+l(P™\ B(irn(X))). The 
computation for ü n + 1 (Z 2 ; irn(X)) is as follows: 
Let 

In = {<?: CT G Tn(X), 2*(cr) = ( ~ 1 ) » + V } , 

Nn = {cr + ( - l)»+ir*(cr) : (7 G ir»(X)} ; 

then H^(Z2) wn(X))=In/Nn [4, p. 250]. 
(3.9) Let T be a fixed point free involution on an n-simple space X. 

The following are equivalent if ind X^n: 
(1) E(S^\X)^0; 
(2) some map in E(Sn, X) is null-homotopic\ 
(3) for some map wGE*(5w , X) , k*(m) = 0 râ i J n + 1 ( ^ ; x»(X)); 
(4) 'mdX^n + 1. 
In particular if X is (n — 1)-connected, then indX^n. Moreover 

ind X^n + 1 if and only if the è-invariant kn+1 is zero. 

(3.10) THEOREM. Let f: X—>Y be an equivariant map, where X and 
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Y carry fixed point free involutions and ind X = ind Y=n< oo. If X 
and Y are n-simple} then 

ƒ*: H»+\Zf, irn(X)) -> H«+\Zf, x»(F)) 

is nontrivial. 

An immediate corollary follows if we apply (3.10) to the identity 
map of X. 

(3.11) Let T be a fixed point free involution on Xy and suppose 
ind X = n < oo. If X is n-simple, then Hn+1(Z2) TT«(X)) ^ 0 . 

Referring to the pair of statements labelled I in the first section, 
it will be noted that (3.9), (3.10), and (3.11) are all based on the fact 
that the pair of statements are equivalent. We mentioned, however, 
that the pair labelled II are not generally equivalent. Thus we cannot 
expect to have such strong results for co-index. We now give our 
best result parallel to (3.11). 

(3.12) THEOREM. Let A be a cellular involution without fixed points 
on a finite cell complex Ky where w = co-ind K. If dim K^2n — 3 then 
7rn(i£)7^0. In fact, every equivariant map f:K-*Sn is essential. If 
n = l, 2 the conclusions are true without dimensional restrictions on K. 

PROOF. We prove the assertions f o r w ^ 3 , leaving the assertions 
n= 1, 2 to a later section. We may apply (2.5), using X = Sn~1. Since 

dim K S 2n - 3 = 2{n - 1) - 1 

it follows that 5*:£*(i£, S*-X)-*E*{S(K) > Sn) is onto. However, 
E*(K, S«~1) = 0 by hypothesis, so that E*(5(X), Sn~*) = 0 also. If 
some map in E(K, Sn) were inessential, it could be extended to an 
equivariant S(K)->Sn, so that E(S(K), 5 n ) ^ 0 . The conclusion fol-
lows. 

I t is reasonable to suppose that under the hypotheses of (3.12) 
that Hn(Z2; 7rn(K))^0y but we do not know if this is true. 

Under certain circumstances, then, the pair of statements labelled 
II are equivalent. Naturally we now seek examples when the pair 
are not equivalent. Recall the space PXQ(X) of §2, with its involution 
T. We consider now PXo(S

n), where x0ÇzSn. 

(3.13) THEOREM. Let T be a fixed point free involution on a space X. 
There exists an inessential equivariant map m : X—>Sn if and only if 
there exists an equivariant map m' \ X—*PXo(S

n). 

Consider the map o): PXo—>Sn mapping a path p into ü)(p)=p(l/2). 
Now o) is equivariant. I t is also inessential with the contracting 
homotopy o)t(p)=p(t/2). If there exists an equivariant map mf:X 
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—>PXQ(Sn), then the equivariant map com': X-*Sn is inessential. We 
omit the proof of the converse. 

We shall now show that for n odd and ^ 3 , co-ind PXo(S
n) = n. In 

the following observation, call an element yÇzHn(X; Z) a spherical 
cohomology class if there is a map ƒ : X—>Sn with y in the image of 

(3.14) If T: X—>X is an involution without fixed points for which 
ind X = co-ind X — n, then Hn(X; Z) contains a spherical homology 
class, of infinite order, not divisible by two, and Hn(X; Z) contains a 
spherical cohomology class of infinite order and not divisible by two. 

To see the remark concerning homology, suppose ƒ : 5W—>X and 
g: X—>Sn are equivariant. Then gf: Sn—>Sn is equivariant and hence 
of odd degree. Then f*(y)f y a generator of Hn(S

n; Z) is the desired 
element. Note that homology and cohomology in (3.14) refers to the 
singular groups. 

We now prove that for n odd and ^ 3, co-ind PXo(S
n) = n. We found 

an equivariant map PXQ-^Sn; hence co-ind PXQ^n. There is an equi-
variant embedding Sn~1C.Px0* Hence 

n — 1 S ind PXQ tè co-ind P*0 â n. 

Suppose that 
n —• 1 = ind PXQ = co-ind PXo. 

According to (3.14), jffn~1(P;C()(5
n); Z) then contains a nontrivial 

spherical class. Of course PXQ(Sn) has the homotopy type of the loop 
space fl(5n); for n odd, Serre has shown that for every 
ftGfl"n""1(Q(*Sn); Z) with h^O we have h25*0. Hence there exist no 
nontrivial spherical classes in Hn~l(PXQ\ Z). We conclude, then, that 
for n odd and ^ 3 , 

n - 1 = ind P*0(S
n) < co-ind P*0(S

W) = n. 

Thus co-ind PXo = n, but there is an inessential equivariant map 
PXo—*Sn. This example shows that the pair of statements labelled II 
are not always equivalent. Incidentally we also have a fixed point 
free involution for which index and co-index differ. If the integer n 
is even and > 2 we do not know whether co-ind Px^n or n — 1. 

We make now a few remarks concerning the Stiefel manifold Vn,2, 
the set of all orthogonal 2-frames in Rn. There are several fixed point 
free involutions on Fn ,2; for example we may send a 2-frame fa, v2) 
into fa, — v2), or into ( —fli, — v2), or into fa, Vi). 

(3.15) Let T be a fixed point free involution on Vn,2. If n is odd, then 

n — 2 S ind Vn,2 < co-ind Fn,2. 
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For n odd the integral homology groups of Fw,2 are i7n_2(Fn,2) 
«Z 2 , H2n-z{Vn,^)^Z and Hi = 0 for other i > 0 . In view of (3.9), 
n — 2 ^ ind Fw,2. Suppose ind Vn,2 — co-ind Vn,2. By (3.14), ind Vn,2 
would be either n — 2 or 2^ — 3 and (3.14) also rules out n — 2. Thus 
ind Vn,2 = 2n — 3 = dim Vn,2- Then the fundamental class in 
-^2^-3(^,2; Z2) would be a mod 2 spherical homology class. But for 
manifolds this can only be true for mod 2 homology spheres. Thus 

n — 2 :g ind Vn,2 < co-ind Vn,2. 

The involution (vi, 1*2)—»(*>i, — 2̂) can be mapped equivariantly into 
Sn~l by projection on the second factor. For this involution co-ind Vn,2 
Sn — 1. For n odd we then have 

n — 2 = ind Fw,2 < co-ind Vn,2 = n — 1. 

The same result is true, for n odd, for the involutions (pi, v2) 
—>( — Vi, —V2) and (vi, V2) —>(̂ 2, ^1). Definitive results for Fw,2, w even, 
appear very difficult. 

To conclude the section, consider the much more general case of a 
compact Lie group G operating on a Hausdorff space X; of course, 
an involution corresponds precisely to the case G = Z2. Suppose also 
that G operates freely on X\ that is, if g^e then g: X—>X has no fixed 
points. In particular, there is the (w + l)-fold join G(n) = G o G 0 • • • 
o G; G operates in the usual diagonal fashion on G(w). Note that for 

G — Z2 that GM = Sn. This suggests the following definition for ind X 
and co-ind X. Namely, ind X is the largest n for which there exists 
an equivariant map G(n)-—>X and co-ind X is the largest n for which 
there exists an equivariant X—»G(w). With these definitions, several 
of the theorems of this section can be extended to this more general 
setting. 

4. Cohomology co-index. We have raised the question of when 
there exist equivariant maps K-+X. I t is natural to consider the 
purely homological criteria that must be satisfied for this to be the 
case. In particular we come to characteristic classes. 

The best known and most easily managed such class comes from 
cohomology with coefficients Z2. If T is a fixed point free involution 
on a paracompact space X, there is the fundamental class c — c(X) 
Ç:Hl{X/T\ Z2) of the involution. For example, c can be considered 
as the Whitney class W\ of the 0-sphere bundle v\X—>X/T. If 
m : X - > F is equivariant then M*: Hl(Y/T)->m(X/t) maps c(Y) 
onto c(X). In particular if the mth power cm{X) is non-zero, so also 
is cm(Y). Thus we have a strong necessary condition which equivari-
ant images Y of X must satisfy. 
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For later purposes, we define c in terms of the Smith-Gysin sequence 
(coefficients Z2) : 

• • • H\X/T) -> Hl(X/T) V-+ Hl(X) *U E\X/T) - » . • • . 

Here the cohomology is taken to be AWS-cohomology. If e denotes 
the unit class of H°(X/T), thenc = 5*(e). More generally, Ô*:Hn(X/T) 
-^Hn+1(X/T) is given by ô*(a)=a-c . There are the powers cm 

&Hm(X/T), and of course cm • cn = cm+n. 
The above is, of course, very well known. For involutions, such 

methods have been used very successfully by Bourgin [3 ] and Yang 
[18]. We shall need a similar technique with coefficients Z. While we 
are about it, we define fundamental classes for any finite group G 
and any principal ideal domain L. 

First, we use the equivariant cohomology theory [5; 6] , Let a 
finite group G operate freely on a paracompact space X, and let J* 
be a L(G)-module. An equivariant cochain is then an Alexander-
Spanier cochain </>, assigning to each (^ + 1)-tuple Of 
points of X an element <f>(xo, • • • , xn)ÇzJ, such that <Kgx0, ' * * » Z00*) 
~g'<t>{x^i ' ' ' > xn) for all g £ G . The resulting cohomology group we 
denote by Hn(X/G; J). This notation can be motivated by showing 
that it is a cohomology group of X/G with coefficients in a certain 
sheaf each stalk of which is J. 

Fix now 

W:0<-L<r-W0<r-Wi< <- Wn < , 

a free acyclic resolution of the group G. Since W is acyclic, for each 
n è 0 there is the exact sequence 

(4.1) 0 -> Zn -> Wn -> Zn_x -> 0 (Zn = Zn(W)), 

and the corresponding exact sequence 

(4.2) >H»(X/T; Wn) -> ff»(X/2\ Zw_i) -> H^X/T; Z„) • • •. 

In the above we interpret Z_i = L. In particular there is the sequence 
of coboundaries 

#°(x/r; i) >̂ flWr; z0) -> • • • ^ 
-> H"~\X/G, Zw_2) -> #»(X/G; Zw_i). 

Now H°(X/T; L) is the ordinary cohomology group; let e denote its 
unit class. Let cn — cn(X; L) denote the image of e under the above 
composition ; note that it is also a function of the particular resolution 
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W. If m:X—->F is equivariant, the induced map Hn(Y/T\ Z„_i) 
-*Hn(X/T\ Z„_i) maps cn(Y; L) into cn(X; L). 

If now W' is another free acyclic resolution of G, there is an equi-
variant chain map \p: W—>W' [S]; in particular there is the homo-
morphism Z 

n—1 *Zn—\ of cycle groups. The induced homomorphism 
Hn(X/G\ Zn-i)->Hn(X/G; Z„'_i) maps the class cn defined by means 
of W into the class c'n defined by means of W'. Hence cn = 0 if and 
only if c'n = 0, since there is also an equivariant chain map W'—*W. 

We seek now the generalization of the equation cm-cn~cm+n for 
the mod 2 classes of involutions. In so doing we need a homomorphism 
Zm_i®Zn_i—»ZOT+n-i. We may get a family of such by considering the 
join W o W given by 

(WoW)n= E Wp®Wq 
p+q—n—\ 

where W-i = L. Then Wo Wf with its customary boundary, is an-
other free acyclic resolution of G. Moreover, Zm~\(W)®Zn-i(W) 
(ZZm+n-i(Wo W). There exist, now, equivariant chain maps Wo W 
—ïW, inducing Zm+n-\(Wo W)—>Zw+n_i(TF). For each such choice, 
we get a homomorphism Zw_i®Zw_i—»Zm+n-i, and also 

H»(X/G; Zm_x) O H»(X/G; Zn^) -> H™+"(X/G; Zm+n^). 

We now state without proof the following fact. 
(4.3) The above homomorphism maps cm(X; L)®cn(X; L) into 

cm+n(X;L). 
Return now to involutions without fixed points. That is, in the 

above let G = Z2. There is the resolution W with each Wi the group 
ring L(Z2) with elements 1+hT and d: Wn—^Wn-\ multiplication by 
1 + T or 1 — T according as n is even or odd. There are now only two 
sequences (4.1). These can be seen to give rise to the two Smith se-
quences for the involution T without fixed points [15]. Of course if 
the coefficient ring is in fact L = Z2, then Zn~i(W) —Zi for all n. Then 

cm e H"(X/T; Zm^(W)) = H"(X/T', Z2) 

is the classical mth power of the fundamental class, already referred 
to. 

We are now in a position to define a homological co-index. Ours 
is a generalized version of Yang's index [18]. 

(4.4) DEFINITION. If a finite group G operates freely on a para-
compact space X, and if L is a principal ideal domain, define 
co-indL X to be the largest integer n for which the class cn(X; L) is 
not zero. We write co-indi, X= — 1 if and only if X = 0. 
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Note that it follows from (4.3) that if cn = 0 then cm = 0 for all 
rn*zn. 

For consistency we shall now return to fixed point free involutions. 
(4.5) We have 

ind X S co-indz, X :g co-ind X 

for any coefficient group L which has co-ind L Sn = n. 
This follows from the fact that if there exists an equivariant map 

X—»F then co-indz, F ^ co-ind z, X. We come now to a result, sug-
gested by a theorem of Eilenberg (Duke Math. J. vol. 6 (1940) pp. 
428-437), very reminiscent of the result for index in (3.10). 

(4.6) THEOREM. Suppose that T and V are fixed point free involu-
tions on paracompact spaces X and Y respectively, and that co-ind L X 
= co-indL Y—n< oo. If m: X—+Y is equivariant, then m*\ Hn(Y; L) 
—^Hn{X\ L) is nontrivial. 

For consider a free acyclic resolution W oi Z2 with each Wn finitely 
generated. The equivariant cohomology group Hn(X/G\ L(G)) may 
be naturally identified with IIn(X, L). Hence, Hn(X/G\ Wn) is iso-
morphic with a finite number of copies of Hn(X; L). From (4.2) we 
get a commutative diagram 

X) # n ( F ; L) « H«(Y/G; Wn) -^ H-(Y/G;Zn^) -> H*+l(Y/G, Zn) 
lrri\ \m% ^ 

E H"(X; L) ~ H"(X/G) Wn) -> H»(X/G; Zn^) -+ H^(X/G, Zn). 

The element cn(Y; L) of Hn) Y/G; Zn~i) is killed by 5*. Hence there 
exists a bGHn(X/G; Wn) with r*(6)=cw . Now ra2* does not kill cn, 
and hence mf does not kill b. However, if w*: Hn{Y\ L)—>Hn(X; L) 
were trivial, so also would m* be trivial. The theorem follows, so does 
the following corollary. 

(4.7) If T is a fixed point free involution on a paracompact space X, 
and if n = co-ind L X, then Hn(X; L)^0. 

It can be seen that co-indL X, for a connected X is ^ 1 if L contains 
no element / with 2 / = l . In particular, it follows from (4.7) that 
co-ind z, Sn = n for such L. In particular, such is the case for Z2 and Z. 

Consider now the case where L — Z. Now the class cn~^^ÇX\ Z) is 
an element of the equivariant cohomology group Hn+1(X/T; Zn(W)), 
which for the "standard" resolution of Z2 is 

H"+l(X/T; Hn(S
n)) « H"+l(X/T; Tn(S

n)). 

This may be considered as the cohomology of X/T with coefficients 
in a certain sheaf with stalks 7rM(5n). On the other hand, we have con-
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sidered already in §3 the primary obstruction to an equivariant map-
ping. The primary obstruction to an equivariant mapping X—>Sn is 
an element of Hn+1(X/T; £(TTW(SW))) , for X cellular. Now for X and 
T cellular, these coincide, so that we may consider cn+1(X] Z) as the 
primary obstruction to an equivariant mapping X—>Sn. 

We can now finish the proof of (3.12) for the cases w = l , 2. In 
particular, suppose for example that J is a finite complex, that 
T: X—>X is cellular, and that co-ind X = 2. We show that co-indz X 
= 2. If co-ind^ X ^ l , then the 2-skeleton X (2) of X would have 
co-indzX (2 ) = l. I t follows from the above paragraph that there is 
then an equivariant mapX(2)—>5X. But there are then no obstructions 
to extending this to an equivariant map X—>Sl. Hence co-indz X = 2. 
But then every equivariant F: X-+S2 has ƒ*: H2(S2)-*H2(X) non-
trivial by (4.6). Then ƒ is essential. 

Note also that it follows gracefully from (4.6) that co-ind PX9(S
n) 

= n for n odd and ^ 3. For by (4.7), co-ind z, Sn = n — 1. If also 
co-ind PXQ(Sn) =w — 1 , then every equivariant / : Px^S^-^S"1"1 would 
have f+iH^iS"-1; Z)-*Hn-i(PXQ(Sn)', Z) nontrivial by (4.6). But 
every nonzero element of iJw~1(Pa;o(5w); Z) has a nonzero square, so 
we get a contradiction. 

We shall next examine common features of the various co-index 
functions. In so doing, it is convenient to introduce an abstract co-
index. Say that a collection J of fixed point free involutions is heredi-
tary if and only if 

(a) whenever T: X-^X is in J and A is a closed invariant subset 
of X then the restriction T: A-+A is in J ; 

(b) the antipodal map A on S° is in ƒ. 
(4.8) DEFINITION. A Co-index function on a hereditary collection 

of fixed point free involutions assigns to each (T, X) in J with XT£0 
a non-negative integer or <*>, and satisfies : 

(i) if m: X—*Y is an equivariant map between two involutions of 
J then Co-ind X S Co-ind F; 

(ii) if X = A \JB where A and B are closed invariant sets in X and 
(T,X)eJ, then 

Co-ind X ^ Co-ind A + Co-ind B + 1; 

(iii) Co-ind 5 ° - 0 . 
We can now characterize co-index among all the Co-index func-

tions. 
(4.9) The co-index function is a Co-index function on the class of 

fixed point free involutions on normal spaces. For any hereditary collec-
tion J of involutions T on normal spaces X> and any Co-index f unction 
on J, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i960] FIXED POINT FREE INVOLUTIONS AND EQUIVARIANT MAPS 431 

Co-ind X ^ co-ind X, all (T, X) £ / . 

The first part of (4.9) follows easily from (3.4). In proving the 
second part, we may assume co-ind X < oo. We proceed by induction 
on co-ind X, assuming that Co-ind X S co-ind X if co-ind X^n — 1. 
Now let co-ind X = n. By (3.4), express X as the union of n + 1 closed 
invariant subsets Ai, • • • , An+\ each of which admits a cross-section. 
LetA^AAJ • • • \JAn, B= i4 n + i . Then 

Co-ind X S Co-ind A + Co-ind B + 1. 

Since B admits a cross-section there is an equivariant map B—>S°; 
hence 

0 ^ Co-ind B < Co-ind S° = 0. 

Since Co-ind A ^n — 1 by the induction, we have Co-ind X ^n. Hence 
(4.9) follows. 

Our next point is that co-indz, is a Co-index function on the class of 
fixed point free involutions on paracompact spaces. The only com-
ment needed concerns 

co-indz, X ^ co-indi, A + co-indi, B + 1, 

where X is the union of closed invariant sets A and B. Let n\ 
= co-ind L A and n% = co-ind L B. Then 

H"+\X/T\ Zni) -> H"+\A/T\ Zni) 

kills c^+^X) L); similarly for c**+*(X\ L). Since X/T = A/TUB/T 
it follows from a well known principle of products, and the relation 
c^+HX; L)<g>^+1pf; L)->c^+n>+2(X; L) of (4.3), that ^ + ^ + 2 = 0. 
Hence co-ind z, X 5 ^ i + w 2 + l, and 

(4.10) The f unction co-ind z, X is a Co-index function. 
Both co-ind and co-indi, share the following property, which we 

call the continuity property: 
Say that Co-ind is continuous on J if whenever ( T> X)<E:J and A 

is a closed invariant subset of X, then there exists a closed invariant 
neighborhood C of A with Co-ind A = Co-ind C. 

(4.11) Both co-ind and co-indL are continuous on the class of fixed 
point free involutions on paracompact spaces. 

Note first that if A and C are invariant and A C C, then the inclu-
sion map is equivariant so that Co-ind A ^ Co-ind C. We prove the 
opposite inequalities. We may as well assume co-ind A [or co-indL A ] 
finite. The inequality for co-indL is an application of the continuity of 
AWS-cohomology. Suppose now co-ind X < oo. Cover A by closed 
invariant sets Ai> • • • , An+i each admitting a cross-section. Write 
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Ai = BiKJT(Bi), Bi closed and BiC\T{Bi)=0. By normality there 
are open sets UOBi such that UiC\ T( U%) = 0 . Let U - U UiKJli T( Ux). 
Any closed neighborhood CoîA with A C CQ U then satisfies co-ind C 
i£ co-ind A. 

We can now give Yang's generalization of the Borsuk-Ulam map-
ping theorem [18]. 

(4.12) Let T be a fixed point free involution on a paracompact space 
X, and let p. X—ïR? be any map of X into Euclidean r-space. Let A C.X 
denote all x G I with f(x) =f(Tx). Then A is a closed invariant sub-
set of X, and 

Co-ind A ^ Co-ind X - r 

for any continuous Co-index with Co-ind Sn = n, all n. 
In particular, A is nonempty for all ƒ if and only if co-ind X ^ r . 
We have seen that appropriate coefficient groups for an involution 

are Z and Z2. I t is not surprising that Z2, being a field, should yield 
more striking general properties than does Z. For example, denoting 
co-ind#2 by co-ind2, we have the following theorem of Yang [17]: 

if Xi and X2 are closed invariant subsets of Sn
1 then 

co-ind2 X\ + co-ind2 X2 — co-ind2 X\ C\ X2 S n. 

It can be seen that this is actually equivalent to the following duality 
result : if X is a closed invariant subset of Sn and if V is an invariant 
neighborhood of X with co-ind2 F = co-ind2 X = r, then 

co-ind2 (Sn — V) = n — r — 1. 

These results are no doubt false for Z. One could hazard a guess at 
the distinction by saying that there should be in some sense a func-
tion indz, X, that always 

co-indz, (Sn - V) = n - indz, X - 1, 

but that for L — Z2 we actually have ind2 X — co-ind2 X, all X. 

5. The suspension of an involution. If T is a fixed point free in-
volution on a space X, there is the suspended involution T on the 
suspension S(X) of X (see §2). There is also the equivariant embed-
ding XC.S(X). I t is easily seen that 

indS(X) ^ i n d X + 1, 

co-ind S(X) ^ co-ind X + 1. 

Unfortunately the inequalities in the above can occur. 
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(5.1) Let T be a fixed point free involution on a compact space X. 
Then 

co-indz, S(X) — co-indz, X + 1 

for L = Z, Z2. 
For, in the first place, it is true for every L that 

co-indz, S(X) ^ co-indz, X + 1. 

For there is an invariant neighborhood V of X in S(X) with co-indz, V 
— co-indz, X. Moreover, 5(X) — V admits a cross-section, so that 
co-mdL(S(X) - V) = 0. Then 

co-indL£(X) g co-indL F + co-indz, (S(X) - F) + 1 

g co-indz, X + 1. 

Suppose now that w = co-ind z, £(X) = co-ind L X< oo. By (4.6), the 
equivariant inclusion i: X—»5(X) induces a non trivial i* : Hn(S(X) ; L) 
-~>iJn(X; L). But X is contractible to a point in 5(X), so that n = 0. 
However, always 1 ^ i n d S(X) ^co-indz, S(X) for L = Z2, Z. Thus we 
see 

co-indz, S(X) = co-indz, X + 1. 

It is reasonable to summarize the above by saying that co-indz and 
co-indz2 are stable under suspension. 

Let ( r , Sk(X)) denote the Mold suspension of X with its suspended 
involution T. 

(5.2) DEFINITION. If T is a fixed point free involution on a space 
X, then ind X [co-ind X ] is stable if and only if for every fe^O, 
ind Sk(X) = ind X+k [co-ind Sk(X) = co-ind X+k]. 

It follows from our preceding results that there are several cases in 
which index and co-index are stable. 

(5.3) Suppose that T is a fixed point free involution on a compact 
(n — 1)-connected space, n^2. If ind X ^ 2 n — 2, then ind X is stable. 

Suppose by way of induction that we have shown ind Sk(X) 
= ind X + k. Consider now Sk+l(X). The suspension Sk(X) is 
(n+k — i)-connected, and ind Sk(X) S2n+k — 2. We wish to prove 
that ind Sk+1(X) < 2n + k. Consider then the (empty) set 
£*(52n+Aî~1, Sk(X)) of equivariant homotopy classes. Theorem 2.5 
shows that s* maps E*(S2n+k~\ Sk(X)) onto £*(S2»+fc, Sk+1(X)). Hence 
£*(S2»+*, S*+i(X)) = 0 , and ind Sk+1(X) £2n+k-l. Similar use of 
(2.5) proves the following. 

(5.4) Let A be a simplicial fixed point free involution on a finite 
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simplicial complex. If dim K^2 co-ind K — 3, then co-ind K is stable. 
Let us note finally one more case in which stability holds. If 

ind X = co-indL X (L — Zz or Z) then ind X is stable. If co-indL X 
— co-ind X, then co-ind X is stable. 

The space PXQ(Sn), n odd and à 3, furnishes an example of a space 
for which co-index is unstable. We shall now briefly sketch an exam-
ple which is a finite simplicial complex. It is natural to seek such an 
example in PXQ(Sn). So, having fixed x 0 6 5 w , let VCSnXSnXSn con-
sist of all triples (xi, x^ Xz) such that in 

#0, %1, %2, Xz, A(Xo)j 

no adjacent pair is antipodal. Vis then an open subset of SnXSnXSn. 
There is the involution T: SnXSnXSn->SnXSnXSn given by 
T(xi, X2, Xz) = (A(xz), A(x2), A(xi)); V is invariant under T. Now we 
may embed Vequivariantly in PXQ(Sn) in a standard fashion. Namely, 
assign to (xi, x%} x3) the path from xo to A (XQ) which follows the unique 
shortest geodesic from xo to #i, then the shortest geodesic from xi to 
x2, then from X2 to xz, and finally from Xz to A(xo). By a direct com-
putation using Morse's methods it can be seen that j * : Hl(PXQ; Z) 
« H * ( F ; Z) for i^Zn — Z. Now we can show that, since V has the 
cohomology of PXo(S

n) in dimensions ^ 2 ^ — 2, co-ind V=n, just as 
was done for PXo(S

n). However, we wish to obtain an example of a 
finite simplicial complex so we seek further refinements. 

Let B = SnXSnXSn- V. Now B is a finite subcomplex of SnXSn 

XSn, invariant under the involution T. Instead of removing B from 
SnXSnXSn

1 remove instead the second regular neighborhood N2(B). 
Let K = SnXSnXSn~N2(B). Now K is a deformation retract of V. 
Hence with the above identification of F as a subset of PXQ(Sn)y we 
have i*:H\PXQ\ Z )~f l%K; Z) for i^3n~3. Moreover, KQV is 
invariant under T; considered as embedded in Pa;o(5n), K is then 
invariant under T. Consider finally the (2n — 2)-skeleton K' = K(2n~~2) 

of K. Then K' is invariant under I \ Moreover, j*:Hi(PXo; Z) 
-*Hl(Kr', Z) is an isomorphism for i<2n — 2 and a monomorphism 
for i = 2n — 2. In particular every nonzero element of Hn~l(Kf \ Z) has 
a nonzero square in H2n~2(K''; Z) for n odd. That is, we can prove 
tha t co-ind K' >n — 1, for n odd and ^ 3 , just as was done for PXo(S

n). 
Since K! C ^ o C T ' xt follows that co-ind K'=n, and that there exists 
an inessential equivariant map K'—>Sn (this is the map xu %2, rjc3—>x2). 
Hence also co-ind S(Kf)~n, and co-ind K' is unstable. This is also 
the example mentioned in the introduction. In particular, it is of the 
lowest possible dimension in order to possess inessential equivariant 
maps into Sn and also have co-index n. 
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A direction is now clear; namely stabilize index and co-index. 
(5.5) DEFINITION. Let T be a fixed point free involution on a com-

pact space X. Define the stable index and stable co-index by 

ind8 X = l.u.b. |ind5*(X) - k: k ^ 0}, 

co-inds X = g.l.b. {co-indS*(X) - *; * à 0}. 

We have immediately that 

ind X ^ inds X ^ co-ind^ X S co-inds X 

^ co-ind X for either L = Z or Z2. 

Following Spanier's notation [12] let ]T]W (X) denote the stable 
homotopy group of X and ]T / (X) the stable cohomotopy group. 
The following should be compared with (3.11), (3.12), and (4.7). 

(5.6) Let T be a fixed point free involution on a compact space X. If 
inds X = n then ]TW (X) 5*0. If co-inds X = m then ]>> (X) ^ 0 . 

An equivariant suspension category for fixed point free involutions 
and equivariant maps exactly analogous to the Spanier-Whitehead 
S-category can be introduced [12], An equivariant duality theorem 
can be proved by methods entirely analogous to those in [12]. 

Let KQSn be an invariant subcomplex of (4 , Sn) in some fixed 
triangulation of Sn. An equivariant n-dual Dn(K) is an invariant 
subcomplex of Sn — K which is an equivariant deformation retract of 
Sn-K. 

(5.7) With notation as abovet we have 

co-inds Dn{K) = n — inds K — 1, 

ind8 Dn(K) — n — co-ind8 K — 1. 

I t is easily seen that the complement of the second regular neigh-
borhood of K in Sn may be taken as a Dn(K) [12]. The above prop-
erty shows a close correspondence between the stable index and co-
index, and the homological co-index of §4. 

Of necessity, this section contains only brief statements and 
sketches. For one thing, it is not at all clear what the future holds 
for stable index and co-index. But it is plausible that the problem of 
computing and studying these stabilized functions is easier than the 
original questions (1) and (2) pointed out in the introduction. 

6. The involution of a sphere bundle. The primary example of a 
fixed point free involution being the antipodal map of a sphere, it is 
natural to consider in some detail the antipodal map of a bundle of 
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spheres. We consider then in this section an ^-sphere bundle p: B-+X, 
where X is paracompact and the structural group is 0(^ + 1). 

Always in a fibre bundle the center of the structural group acts as 
a transformation group on the bundle space. The center of 0(n + l) 
containing as its nontrivial element the antipodal map of Sn, we 
obtain a fixed point free involution T: B—>B, the antipodal map on 
each fibre Sn = Bx. Denote the orbit space B/T of (T, B) by J5*. 
There is the natural map q: 23*—>Xy a bundle of projective ^-spaces 
Pn> Note that the concept of a 0-sphere bundle coincides with the 
concept of a fixed point free involution. In particular if p: B—+X is 
a 0-sphere bundle then q: B*—>X is a homeomorphism; in this case 
we identify B* and X. 

Since we prefer to use sphere bundles instead of vector space bun-
dles, the concept of Whitney join replaces that of Whitney sum. We 
use the following notation. If pi'. Bl-*X, i = 1, 2, are sphere bundles, 
there is the sphere bundle pi o p2: B\ o B2—>X whose fibres (Bi o B2)x 

are the ordinary joins B\x o B2x of the fibres of B\ and B2. Denote a 
typical element of (B\ o B2)x by (1 — t)b±+tb2 where 0 ^tS 1, bi(E.Bix. 
The involution T: B\ o B2—*B\ o B2 has Bi and B2 as invariant closed 
subspaces; the orbit space ( f t o B 2 ) * has Bf and B2 as subspaces. 

Let us apologize in advance for giving an outline of Whitney classes; 
the reader will see that our treatment is inspired by those of Borel 
[ l ] and Hirzebruch [8]. However, since our primary interest is in 
involutions, it is necessary that we define the Whitney classes in 
terms of the involution T. 

For a sphere bundle p: B-^Xt the additive cohomology of B* is 
completely determined; here and throughout the section it is to be 
assumed that all cohomology has coefficients Z2. The fibre Pn of 
g:J3*—>X is totally nonhomologous to 0 in B*. For the classes 
c*eHKPn) of ( r , 5>) are the images of the classes c*£JÏ*(J5*) of 
(7", B). In particular, then, g*: Hk(X)—>Hk(B*) is a monomorphism. 
Also every fikÇiHh(B*) can be uniquely expressed as 

(6.1) ft = q*ah + q*ak-i-c + • • • + q*ak-n'C
n 

where ai^H^X) and c is the fundamental class of (T, B). 
Having obtained the additive structure of H(B*), consider now 

the product structure and in particular the powers c\ i>n. We have 
from (6.1) that 

(6.2) cn+1 = q*wn+i + q*wn-c + • • • + q*Wi-c» 

for unique classes z^»£iI*(.X), i = l , • • • , w + 1. For a given space F, 
denote by H*(Y) the strong direct sum X)̂ ° H^Y); consider an ele-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i960] FIXED POINT FREE INVOLUTIONS AND EQUIVARIANT MAPS 437 

ment of H*(Y) as a formal power series X/**^» a ; £ U * ( F ) . In par-
ticular, let w = w(B) denote ^ o + 1 Wit*Ç:H*(X) for a sphere bundle 
p: B—*X, where w0 = l. 

(6.3) The function assigning to each sphere bundle p: B—>X the 
class w£zH*(X) is characterized by the following properties; 

(a) for a 0-sphere bundle, w— 1+ct where c is the fundamental class 
of(T,B); 

(b) if pi'. Bi—>Xi are sphere bundles and f: Bi—>B2 is a bundle map, 
then the induced map ƒ : Xy->X2 has f*w(B2) = w(Bi) ; 

(c) if piiBi—*X, i=l, 2, are sphere bundles then w(BioB2) 
= WIB1)'W(B2). 

We shall prove that (c) holds. In B% o B2, let C\ denote all points of 
fibres ( f t o % of the form (l-t)bi+tb2 with t£l/2, and let C2 be 
all such with t^l/2. Then B\ o B2 = CyJC2, C O ^ i and Bi is an 
equivariant deformation retract of Ci. Passing to orbit spaces, 
(JSi o f t ) * = &*UC2*, CtDB? and B? is a deformation retract of Cf. 
Hence Hk(Cf) ~Hk(Bf). Also if ftG2ï((Bi o Ba)*) and H( (£ i o B%)*) 
->H(Bf) kills ft, * = 1, 2, then ft-ft = 0. 

Suppose then that $1 is an ra-sphere bundle and 5 2 an ^-sphere 
bundle. Then by (6.2) 

cm+i + q*Wl(Bd-(?* + • • • + q*wm+1(B!) G Hm+l((B1 o £2)*) 

is killed under restriction to 5i*, and 

C-+1 + q*Wi(B2)-c
n + • • • + q*wn+1(B2)eH-+1((B1 o B*)*) 

is killed by restriction to f>2*. Hence their product is 0 in (Bi o B2)*. 
If one computes the product and compares with 

m-fn+2 

cm+n+2 = ^ g*w <(5i o 52) • cm+n+2~l 

1 

from (6.2), one obtains the result. 
Since the Whitney classes Wi of a bundle also satisfy (a), (b), and 

(c) we see that our classes Wi are the Whitney classes. 
We need the notation of the proof of uniqueness. One considers 

three sphere bundles over J3*. There is the 0-sphere bundle v. B—>B*. 
Thinking of J3* as the collection of all antipodal pairs of B, there is 
the induced bundle J5i—»J3*, which assigns to each element &* (an 
antipodal pair) of B* the fibre of B which contains 6*. There is also 
the sphere bundle B2—>B* assigning as fibre to each &* the orthogonal 
(n — 1)-sphere to &* in the w-sphere Bx which contains &*. Now, as 
sphere bundles over JB*, Bt = B o B2. The class of By-»5* is q*w, 
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where w is the original class of p: B—>Xt and the class of the 0-sphere 
bundle B—*B* is 1+ct. Hence by (c), 

1 + fwi-t + • • • + fw^i-P*-1 

« (l + ct)(l + a1t + • • -+anP) 

where ]T/xrf* is the class of B2—>B*. 
In the ring H*(X), w has a unique inverse w= ]T)ïë> \̂ In H*(B*)t 

1+ct has inverse l+ct+cH2+ • • . Hence we get 

(6.5) 1 + ait + • • • + aj« = (1 + q*wvt + • • • + q*wn+vtn+1) 

•(l + ct + cH*+ • • • ) , 

(6.5)' 1 + rt + cV + • • • = (1 + ait + • • • + ant») 

-(l + fwi>t + f&ft*+ • • • ) • 

We shall use co-ind2 J5 to denote the mod 2 co-index of T: B—*B, as 
in §4. 

(6.6) THEOREM. For every n-sphere bundle p: B—>X, it is true that 

co-ind2 B = n + k, 

where k is the largest integer with the dual Whitney class Wk nonzero. 

PROOF. Observe that co-ind2 B is the degree of the polynomial 
l+ct+cH2+ • • • , while k is the degree of w. Hence it follows from 
(6.5)' that 

co-ind2 B ^ n + k. 
Now from (6.5), 

an = cn + terms of lower degree in c 

while cei, • • • , an~i all consist of terms of degree <n in c. Hence 
from (6.5)' 

cm -_ q*Wm_n. cn - j . terms of lower degree in c. 

Hence by (6.1), Wm-n^O implies c m ^ 0 . That is, co-ind2 B = n+k. 
The following corollary, of a type due originally to Thorn [ l5] , 

suggests the convenience of considering the involution of a sphere 
bundle. 

(6.7) COROLLARY. If a differentiable n-manifold X can be immersed 
in a differentiable m-manifold Y then 

n + k ^ m + I 

where k, I are the largest integers with the dual Stief el-Whitney classes 
Wk(X), wi(Y) nonzero. 
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For if X can be immersed in F, there is an equivariant map of the 
bundle V\(X) of unit tangent vectors to X into the bundle F2(F) 
of unit tangent vectors to F. Then co-ind2 V\{X) ^co-ind2 V\(Y) by 
(4.5). 

We see by (6.6) that if p: B—*X is an ^-sphere bundle, it might 
not be possible to map B equivariantly into, say, Sn. We shall con-
sider an equivariant map ƒ of B into Rm, m^n + 1, and try to measure 
the set/~x(0)« Note that B—f~l(0) is mapped equivariantly into 
S"1"1 and hence has co- ind2^w~ 1. We are particularly interested in 
seeing how many fibres/_1(0) must intersect. 

(6.8) DEFINITION. If A is a closed subset of the compact subset of 
the compact space X and if y(EHn(X), then we say that A is a sup-
port of y if for every neighborhood U of A> the natural map H%(U) 
—>Hn(X) has y in its image. Similarly in Cech homology, A is a sup-
port of cÇzHn(X) if c is in the image of Hn(A)—*Hn(X). 

In compact w-manifold Xt A supports yE.Hk(X) iff A supports the 
dual class c(EzHn-k(X) of y. 

(6.9) THEOREM. Suppose that p:B—>X is an n-sphere bundle over 
the compact space X and that A is a closed subset of B, invariant under 
the antipodal map T: B-*B. If co-ind2(X—A) ^m — l> then p(A) C.X 
is a support for every dual Whitney class wPf p^m — n. 

PROOF. Suppose that U is a neighborhood of p(A). Let V=p~1(U) ; 
then VZ)A. Hence co-ind2(£ - V) £m-l, and cm = 0 in Hm(B*~ V*). 
But in J3*, 

cm = q*wm_n • c
n + terms of lower degree in c, 

by the proof of (6.6). Considering the diagram 

i $* _ y* __> g* 

lqf lq 

X -U - i l 

we see that i*q*wm-n = 0 by (6.1), hence #'*j*?Dw_w = 0 and.; *$,»_» = 0. 
By exactness in 

H7\U) -> Hm~\x) £ Hm-\X - U), 

wm-n is in the image of H?~l(U)->Hm~n(X). That is, A supports 
wm-n. Of course the same argument also works for wp, p>m — n. 

(6.10) COROLLARY. Suppose that p: B—>X is a bundle of n-spheres 
over a compact space X, and that f : B—>Rm is equivariant with respect 
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to the antipodal maps. The set SdX of points x such that f'(b) = 0 for 
some bÇzBx supports every wp, p^m — n. 

If the base space X is a compact connected manifold, then the set 
5 described in (6.10) has dimension at least aimX — p provided 
Wpy^O and p^m — n. Since S contains the support of wp it follows 
from the Poincaré duality theorem that dim 5 ^ dim X~p. 

We turn now to the index of T: B—+B. Our preceding results sug-
gest that the co-index of a sphere bundle is a delicate invariant of the 
bundle. In contrast, the index of the bundle of unit tangent vectors 
to an ^-manifold turns out to be n — 1. 

(6.11) THEOREM. Suppose that X is a compact differentiate n-
manifold and that p: B—+X is the bundle of unit tangent vectors to X. 
Then ind(T, B)=n — 1. 

PROOF. Since Sn~1C.B1 we know that ind B^n — 1. Suppose now 
ind B^n; that is, suppose there exists an equivariant m a p / : Sn—*B. 
Then ƒ: Pn-*B* induces ƒ*: Hn(B*)->Hn(Pn) which maps the class 
cn(B) of ( r , B) onto cn(Sn). From (6.2) 

cn(B) = q*wvcn"1 + • • • + q*wn, 

where the «\- are the Stiefel-Whitney classes of X. Then 

cn($n) = J Y ' w i - c n - 1 + • • • +J*q*wn. 

We need now the Wu formulas for Wi [16]. That is, there exist 
classes UiEH^X), l^i^n/2, with 

«V = Z) Sq^Ui. 

Hence cn(Sn) = 52<+y+*-n Sq*Vrc
k, Vj=]*q*Uj. Fix now j in the 

above term. If Vj = 0 then all the terms SqiVj-ck = 0 for that j . If 
Fy^O, then V^cK Then 

where < > is the mod 2 binomial coefficient. 

But ]£ i {{} = 0 (mod 2). It follows then that cn(Sn)=0. But this is 
false, and the theorem is proved. 

In particular, it follows from (3.9) that every equivariant map 
Sn~1—>B is essential. In particular, the fibre Sn~l is not contractible 
to a point in B. There is also the following restatement of (6.11). 

(6.12) Suppose that f is a continuous map of Sn into a compact Rie-
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mannian n-manifold X. Then for some x either f (x) =ƒ( — x) or for some 
xy f(x) and f( — x) are not joined by a unique geodesic arc of shortest 
length. 

For suppose the theorem false. For each x £ 5 w , let F(x) denote the 
unit tangent vector to the unique geodesic of shortest length joining 
ƒ(x) to ƒ( — x), at the midpoint of the geodesic and pointing toward 
f{ — x). Then F maps Sn equivariantly into Vi(X). But we have seen 
by (6.11) that this is impossible. 
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