FIXED POINT FREE INVOLUTIONS ON HOMOTOPY SPHERES

BY W. BROWDER AND G. R. LIVESAY¹

Communicated by J. Milnor, November 9, 1966

1. Introduction and statements of theorems. Let $T: \Sigma^{n+1} \to \Sigma^{n+1}$ be a smooth² (C^{∞}) fixed point free involution on a smooth manifold, Σ^{n+1} , homeomorphic to the (n+1)-sphere, S^{n+1} . We wish to consider the following problem: does there exist an *n*-sphere, S^n , smoothly imbedded in Σ^{n+1} such that $TS^n = S^n$? If such an S^n exists, we will say that (T, Σ^{n+1}) desuspends to $(T | S^n, S^n)$ and that $(T | S^n, S^n)$ suspends to (T, Σ^{n+1}) . We claim (proofs are to appear later):

THEOREM 1. If $n \ge 5$ is odd, then (T, Σ^{n+1}) desuspends to $(T \mid S^n, S^n)$ for some T-invariant $S^n \subset \Sigma^{n+1}$.

If *n* is even, there are obstructions to desuspending (T, Σ^{n+1}) . There is a bilinear form, B(x, y) defined on a certain subgroup of $H_{\bullet}(M)$, where $\Sigma^{n+1} = A \cup TA$, *A* and *TA* are compact submanifolds of Σ^{n+1} with smooth boundary, and $\partial A = \partial TA = A \cap TA = M$. If $n \equiv 2 \pmod{4}$, then *B* is symmetric, and its signature, $\sigma(T, \Sigma^{n+1})$ is determined by (T, Σ^{n+1}) . If $n \equiv 0 \pmod{4}$, then *B* is skew-symmetric. Furthermore, if n = 4k, there is a map $\psi_0: H_{2k}(M; Z_2) \rightarrow Z_2$ such that $\psi_0(x+y) = \psi_0(x) + \psi_0(y) + B_2(x, y)$, where B_2 , defined on a subgroup of $H_{2k}(M)$. The Arf invariant, $c(T, \Sigma^{n+1})$, [1], [4], corresponding to ψ_0 and B_2 , depends only on (T, Σ^{n+1}) . Regarding these invariants, we have

THEOREM 2. If $n \equiv 2 \pmod{4}$ and n > 5, then (T, Σ^{n+1}) can be desuspended to $(T \mid S^n, S^n)$ if and only if $\sigma(T, \Sigma^{n+1}) = 0$.

THEOREM 3. If $n \equiv 0 \pmod{4}$ and n > 4, then (T, Σ^{n+1}) can be desuspended to $(T \mid S^n, S^n)$ if and only if $c(T, \Sigma^{n+1}) = 0$.

At present, we have no example of (T, Σ^{n+1}) for which either $c(T, \Sigma^{n+1}) \neq 0$ for $n \equiv 0 \pmod{4}$, or $\sigma(T, \Sigma^{n+1}) \neq 0$ for $n \equiv 2 \pmod{4}$. An interesting example to study in connection with the possibility of

¹ The authors were partially supported by contracts GP 2425 and GP 3685, respectively, with the National Science Foundation.

² The results hold equally in the piecewise linear category with little change in the proofs.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

a nonzero Arf invariant is the nonstandard involution of Hirsch and Milnor on S^5 , [3]. However, even if the Arf invariant is zero, our methods do not give a desuspension of this involution to the 4-sphere, because of the usual difficulties of finding a basis for $H_2(M^4)$ represented by imbedded spheres.

Regarding the uniqueness of the desuspension, we have

THEOREM 4. If $n \ge 4$ is even, and (T, Σ^{n+1}) desuspends to $(T | S_0^n, S_0^n)$ and to $(T | S_1^n, S_1^n)$, then $(T | S_0^n, S_0^n)$ and $(T | S_1^n, S_1^n)$ are equivariantly concordant in $\Sigma^{n+1} \times I$.

We say that (T_0, S_0^n) and (T_1, S_1^n) are concordant if there exists a fixed point free involution $T: S^n \times I \to S^n \times I$, where I = [0, 1], such that $T(S^n \times 0) = S^n \times 0$, and equivariant diffeomorphisms $i_0: (T_0, S_0^n) \to (T | S^n \times 0, S^n \times 0)$ and $i_1: (T_1, S_1^n) \to (T | S^n \times 1, S^n \times 1)$. If $\overline{T}: \Sigma^{n+1} \to \Sigma^{n+1}$ is a smooth, fixed point free involution, then (T_0, S_0^n) and (T_1, S_1^n) are concordant in $\Sigma^{n+1} \times I$ if they are concordant, and $(T, S^n \times I)$ is equivariantly imbedded in $(\overline{T} \times 1, \Sigma^{n+1} \times I)$ with $S^n \times 0 \subset \Sigma^{n+1} \times 0, S^n \times 1 \subset \Sigma^{n+1} \times 1$. If n > 4 is odd, the signature and Arf invariant, which appeared as obstructions to desuspending (T, Σ^k) , now appear as obstructions to obtaining a concordance in $(T \times 1, \Sigma^{n+1} \times I)$ between two given desuspensions, $(T | S_0^n, S_0^n)$ and $(T | S_1^n, S_1^n)$. If S_0^{4k-1} and S_1^{4k-1} are two invariant spheres in (T, Σ^{4k}) , then $\sigma(T, \Sigma^{4k}, S_0^{4k-1}, S_1^{4k-1})$, the signature of a certain bilinear form, is defined. We then have

THEOREM 5. S_0^{4k-1} and S_1^{4k-1} are concordant in $(T \times 1, \Sigma^{4k} \times I)$ if and only if $\sigma(T, \Sigma^{4k}, S_0^{4k-1}, S_1^{4k-1}) = 0$. In particular, if $\sigma = 0$, then $(T \mid S_0^{4k-1}, S_0^{4k-1})$ and $(T \mid S_1^{4k-1}, S_1^{4k-1})$ are equivariantly diffeomorphic.

Now suppose S_0^{4k+1} and S_1^{4k+1} are invariant spheres in (T, Σ^{4k+2}) . Then $c(T, \Sigma^{4k+2}, S_0^{4k+1}, S_1^{4k+1})$, an Arf invariant, is defined.

THEOREM 6. S_0^{4k+1} and S_1^{4k+1} are concordant in $(T \times 1, \Sigma^{4k+2} \times I)$ if and only if $c(T, \Sigma^{4k+2}, S_0^{4k+1}, S_1^{4k+1}) = 0$.

COROLLARY. If $n \equiv 1 \pmod{4}$, there are at most two invariant n spheres in Σ^{n+1} , up to equivariant diffeomorphism.

It is planned to present detailed proofs later. We will, however, indicate briefly some of the ideas involved.

2. Characteristic submanifolds. Let $T: \Sigma^{n+1} \to \Sigma^{n+1}$ be a fixed point free smooth involution. A characteristic submanifold $M^n \subset \Sigma^{n+1}$ is an *n*-manifold smoothly imbedded in Σ^{n+1} such that $\Sigma^{n+1} = A \cup TA$ with $A \cap TA = M^n$. We have a commutative square

243

$$\begin{array}{ccc} \Sigma^{n+1} & \longrightarrow & S^N \\ \downarrow \pi & \downarrow \\ \Sigma^{n+1}/T \xrightarrow{f} & P^N \end{array}$$

where N is large, P^N is a real projective N-space, and f classifies the principal \mathbb{Z}_2 -bundle $\Sigma^{n+1} \xrightarrow{\pi} \Sigma^{n+1}/T$. By making f transverse-regular [5] on P^{N-1} , $\pi^{-1}f^{-1}P^{N-1}$ will be a characteristic submanifold. It is easy to see that all characteristic submanifolds arise in this way. Any two characteristic submanifolds are equivariantly cobordant in $(T \times 1, \Sigma^{n+1} \times I)$. (The definition is analogous to that of concordance in $\Sigma^{n+1} \times I$.) It is this fact that makes the signature and Arf invariant independent of the choice of characteristic submanifold.

3. The signature and Arf invariant. Let M be a characteristic submanifold in Σ^{n+1} . Then $\Sigma^{n+1} = A \cup TA$ with $A \cap TA = M$. We have the Mayer-Vietoris sequence

$$\cdots \to H_{p+1}(\Sigma^{n+1}) \to H_p(M) \xrightarrow{(i_A, i_{TA})} H_p(A) \oplus H_p(TA) \to H_p(\Sigma^{n+1}) \to \cdots$$

If n=2k, k>0, and p=k, this becomes

 $0 \to H_k(M^{2k}) \xrightarrow{(i_A, i_{TA})} H_k(A) \oplus H_k(TA) \to 0$

and so $H_k(M^{2k}) = \ker i_A \oplus \ker i_{TA}$, and $T \cdot \ker i_A = \ker i_{TA}$. Since $M^{2k} \subset \Sigma^{2k+1}$, M is orientable, and a bilinear form $B(x, y) = x \cdot T \cdot y$ is defined, for x and y in ker i_A . Since T preserves orientation in Σ^{2k+1} , it reverses orientation in M^{2k} , and the bilinear form B is symmetric (skew-symmetric) when the intersection form $x \cdot y$ is is skew-symmetric (symmetric). Therefore, given (T, Σ^{n+1}) and a characteristic submanifold M^n , if $n \equiv 2 \pmod{4}$, the signature of the form B(x, y) is determined, and turns out to be independent of the choice of characteristic submanifold. The reason for considering the signature of B is the following. If $x \in \ker i_A \subset H_k(M^{2k})$, and M^{2k} is (k-1)-connected, (which we achieve by exchanging handles between A and TA) then x is represented by an imbedded $S^{k} \subset M^{2k}$, which bounds a cell $D^{k+1} \subset A$. (This statement may be false for k=3, [2], but a different argument applies in this case.) Supposing M^{2k} is totally geodesic near D^{k+1} , we take a tubular neighborhood N of D^{k+1} , replace A by A - N, and replace TA by $TA \cup \overline{N}$. This will reduce the rank of $H_k(M)$. However, $(A-N) \cap (TA \cup \overline{N}) = M'$ is no longer T-invariant. We may obtain an invariant M' if we replace A by $(A - N) \cup T\overline{N}$, and replace TA by $(TA \cup \overline{N}) - TN$. However, to do this we need $S^k \cap TS^k = \phi$. It is to accomplish this that we need $\sigma = 0$

when k is odd and c=0 when k is even. The distinction between the two cases arises since if S^k and TS^k intersect transversally in M^{2k} at a point p with intersection number 1, then they intersect at Tp with intersection number $(-1)^{k+1}$.

The cohomology operation, $\psi(x)$, used to define the Arf invariant, merely serves to count, mod 2, the number of pairs (q, Tq) of points in $S^{p} \cap TS^{p}$, where S^{p} represents the Poincaré dual of x, and the intersection is transverse.

References

1. C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2, J. Reine Angew. Math. 183 (1941), 148-167.

2. A. Haefliger, Knotted (4k-1)-spheres in 6k-space, Ann. of Math. 75 (1962), 452-466.

3. M. W. Hirsch and J. W. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372-377.

4. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. 77 (1963), 504-537.

5. R. Thom, Quelques propriétés global des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86.

Institute for Advanced Study, Princeton University and Cornell University