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Abstract—Deep Convolutional Neural Network (CNN) 

algorithm has recently gained popularity in many applications 

such as image classification, video analytic and object detection. 

Being compute-intensive and memory expensive, CNN-based 

algorithms are hard to be implemented on the embedded device. 

Although recent studies have explored the hardware 

implementation of CNN-based object classification models such 

as AlexNet and VGG, there is still a rare implementation of 

CNN-based object detection model on Field Programmable Gate 

Array (FPGA). Consequently, this study proposes the fixed-point 

(16-bit) implementation of CNN-based object detection model: 

Tiny-Yolo-v2 on Cyclone V PCIe Development Kit FPGA board 

using High-Level-Synthesis (HLS) tool: OpenCL. Considering 

FPGA resource constraints in term of computational resources, 

memory bandwidth, and on-chip memory, a data pre-processing 

approach is proposed to merge the batch normalization into 

convolution layer. To the best of our knowledge, this is the first 

implementation of Tiny-Yolo-v2 object detection algorithm on 

FPGA using Intel FPGA Software Development Kit (SDK) for 

OpenCL. Finally, the proposed implementation achieves a peak 

performance of 21 GOPs under 100 MHz working frequency. 
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I. INTRODUCTION 

Convolutional Neural Network (CNN) is a well-known 
deep learning architecture inspired by the artificial neural 
network. It has been primarily employed in various 
applications including image classification [1] [2] and object 
detection [3] [4] [5]. Unlike the traditional machine learning 
algorithms, CNN algorithms are extremely computationally 
expensive and memory intensive. The state-of-the-art of CNN 
algorithms usually require millions of parameters and billions 
of operations to process a single image input. This is a great 
challenge to implement CNN algorithms on an embedded 
system due to severe hardware constraints such as 
computational resources, memory bandwidth, and on-chip 
memory. Hence, in recent year, Field Programmable Gate 
Array (FPGA) has become an attractive alternative solution to 
accelerate CNN-based algorithms due to its relatively high 
performance, flexibility, energy efficient and fast development 
cycle, especially with the new release of High-Level-Synthesis 
(HLS) tool: OpenCL. It greatly reduces the complexity of 
programming by enabling the auto-compilation from a high-
level program (C/C++) to register-transfer-level (RTL). 

Prior works [6] [7] have shown the effort of accelerating 
CNN classification model: AlexNet and VGG through the 

implementation of 3-Dimension (3D) convolution as General 
Matrix-Matrix Multiplication (GEMM). Data rearrangement 
on-the-fly technique is proposed to reduce the memory 
footprint. In this work, the idea of mapping 3D convolution as 
GEMM and data rearrangement on-fly are borrowed and these 
techniques are further applied to perform object detection 
algorithm: Tiny-Yolo-v2 on both Pascal VOC [8] and COCO 
[9] object detection datasets. Prior work [10] takes a different 
approach to accelerate the CNN classification in a deeply 
pipelined manner. In addition, they proposed the insight of 
“performance density” as an alternative performance 
evaluation metric for the fair comparison between their work 
and prior research work. However, their design implemented 
floating-point arithmetic which it is unfriendly to the hardware 
computation. Hence, in this work, the fixed-point arithmetic 
instead of floating-point arithmetic is implemented to better 
improve the bandwidth and resources utilization. In addition, a 
technique to merge the batch normalization into convolution is 
proposed to reduce the data redundancy. The key contributions 
are summarized as follows: 

 A CNN-based object detection algorithm: Tiny-Yolo-v2 
with 16-bit fixed-point arithmetic running on FPGA 

 A systematic in-depth analysis on the impact of the 
precision of the weights on the two detection datasets: 
Pascal VOC 2007 and COCO. 

 A novel approach of merging batch normalization 
layers and convolutional layer to reduce data 
redundancy during the inference process. 

The rest of the paper is presented as follows. Section 2 
briefly describes the background of the research work. In this 
section, the overview of OpenCL development flow, the 
architecture of Tiny-Yolo-v2 and performance evaluation 
metrics are presented in detail. Section 3 briefly discuss the 
proposed design and the case studies on the impact of precision 
of the weights for Tiny-Yolo-v2 on the two detection datasets: 
VOC [10] and COCO [11]. It also studies the mathematical 
approach to merge the batch normalization operation into the 
convolutional layer. Section 4 briefly presents the experimental 
results. Section 5 concludes the paper. 

II. BACKGROUND 

In this section, a detail description of the overview of 
OpenCL based FPGA development flow, the architecture of 
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Tiny-Yolo-v2 and the performance evaluation metrics used in 
this work is presented. 

A. Overview of OpenCL 

Intel FPGA Software Development Kit (SDK) for OpenCL 
[12] [13] allows the user to avoid the traditional hardware 
FPGA development flow by using HLS tools. It is an 
alternative approach to traditional RTL design concepts such as 
Verilog or VHDL with C or C++ synthesis. Fig. 1 illustrates 
the OpenCL-based FPGA accelerator development flow. In the 
OpenCL framework, the Central Processing Unit (CPU) acts as 
the host and it has bridges interconnect the Cyclone V PCIe 
FPGA board which it serves as an OpenCL device, forming a 
heterogeneous computing system. An OpenCL code is 
translated into hardware image, supported by OpenCL runtime 
driver. Furthermore, on the host side, C/C++ code runs on the 
CPU, providing vendor specific Application Programming 
Interface (API) to communicate with the implemented kernels 
on the Cyclone V PCIe FPGA board. 

 
Fig. 1. OpenCL based FPGA Development Flow. 

B. Architecture of Tiny-Yolo-v2 

In this section, a detail exploration of the Yolo object 
detection framework is briefly discussed. Unlike prior object 
detection algorithm [6] which repurpose classifiers to perform 
detection, Yolo [7][8] uses a different approach to apply a 
single convolutional network to the full image and predict 
multiple bounding boxes and class probability for those boxes. 
Fig. 2 shows the architecture of Tiny-Yolo-v2, which consists 
of 9 convolutional layers, each with a leaky rectified linear unit 
(ReLU) based activation function and batch normalization 
operation interspersed with 6 max-pooling layers and a region 
layer. Tiny-Yolo-v2 takes input image size 416 x 416 to 20 
output classes in VOC datasets whereas 80 output classes in 
COCO datasets. 

C. Convolutional Layer 

Tiny-Yolo-v2 employs feedforward process for object 
detection. A previous study [14] has proved that the 
convolutional layer will occupy over 90 % of the feed-forward 
computation period. Hence, in this work, the optimization of 
the convolutional layer will be the main focus to improve the 
performance of accelerator. Convolution layers involve billions 
of multiplication and addition operations between the filters 
and local regions of input for a single input image. The 
operations can be represented in (1) as followed: 

b)wx(X )k(
n

1i

)n()i( ∑ 
              (1)

 

 
Fig. 2. Tiny-Yolo-v2 Achitecture. 

Where: 

X(i) = Pixel of output feature0 

x(j) = Pixel of input feature 

w(k) = Convolution weights 

b = Convolution bias 

The total amount of operations in the convolution layer can 
be approximately calculated as shown in (2). Noted that, this 
equation ignores the number of operations for the batch 
normalization and leaky activation for each layer. 

outoutoutin WHNKKN2Operations#            (2)
 

Where: 

Nin = Number of channels of input feature 

K = Filter size 

Nout = Number of filters 

Hout = Height of output feature 

Wou0t = Width of output feature 

The memory requirement is described as space complexity. 
The main parameter in the Tiny-Yolo-v2 is the weight which is 
used in the convolutional layer. The number of weights in the 
convolutional layer can be expressed as (3): 

outin NKKNWeights#              (3)
 

Where: 

Nin = Number of channels of input feature 

K = Filter size 

Nout = Number of filters 

Tiny-Yolo-v2 takes approximately 7 billion operations with 
15 million weights just for one image input in Pascal VOC. On 
the other hand, Tiny-Yolo-v2 takes approximately 5.7 billion 
operations with 12 million weights just for one image input in 
COCO dataset. 
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D. Activation Function 

Activation function in a CNN architecture is used to 
transform the input before the pooling layer. Sigmoidal 
activation functions were most often used in CNN. However, 
sigmoidal activations are bounded by a maximum and 
minimum value and thereby causing the saturated neuron in 
higher layers of the neural network. Alternatively, Leaky 
ReLU has recently been proposed as an activation function as 
it can cause the weight update which makes it never activate on 
any data point again. Leaky ReLU along with respective 
equation is shown in Fig. 3. 

 
Fig. 3. Leaky Rectified Linear Unit(Leaky ReLU). 

E. Pooling Layer 

Pooling layer, in general, is a form of dimensional 
reduction used in CNN. Its goal is to throw away unnecessary 
information and only preserve the most critical information. 
Typical pooling functions are maximum pooling and average 
pooling layer. Max pooling returns the maximum value from 
the input, where average pooling returns the average value. The 
formula of max-pooling and average-pooling are illustrated as 
follows: 

}pj'jj,i'ii:]'j,;i[Smax{]j,i[S 

           (4) 

}pj'jj,i'ii:]'j,;i[S{average]j,i[S 

          (5)

 

F. Batch Normalization Layer 

Batch normalization layer is implemented after the 
convolutional layer to provide any layer in Tiny-Yolo-v2 with 
inputs that are zero mean or unit variance. The equation of 
batch normalization is shown in (6). The normalization is 
performed to previous output of the convolutional layer by 
subtracting the batch mean and dividing by the batch variance. 
After batch normalization operation, the output will be shifted 
and scaled by the bias and scale. The value for these variables: 
means, bias, scale, and variance are generated in CNN training 
stage. These values allow each layer to learn in a more 
independent way and reduce the overfitting because it has a 
slight regularization effect. 

ξσ
)μX(

X
2

)i(
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              (6)

 

Where: 

X(j) = Output Pixel after batch normalization 

X(i) = Output Pixel after convolution 

µ = Mean 

σ2    = Variance 

     = Constant 

G. Evaluation Metric 

This section presents the detail description of the evaluation 
metric used to measure the performance of the proposed 
accelerator for Tiny-Yolo-v2 implemented on Cyclone V PCIe 
Development Kit FPGA board.  Prior works [6] [7] [8] 
measure their accelerator design in term of accuracy and 
throughput. However, these two metrics are invalid in this 
case. This work is running object detection model instead of 
object classification. In contrast to classification task, object 
detection must localize and classify a variable number of 
objects on an image which indicates that the output of object 
detection may change from image to image. Hence, the 
accuracy of proposed accelerator is measured in term of mean 
average precision (mAP). Besides, to make a fair comparison 
on the throughput of proposed accelerator running on Cyclone 
V PCIe Development Kit to previous accelerator design that 
running on other FPGA such as Stratix V and Aria 10 GX, 
performance density is used as the main factor to evaluate the 
performance of proposed design. To make a fair comparison 
between the performances achieved in different hardware, the 
normalized performance of throughput is introduced in work 
[8]. The equation to calculate performance density is listed as 
follow: 

Consumed_DSP

Throughput
Density.Perf 

            (7)

 

III. RESEARCH METHODOLOGY 

This section presents a detail description on how to 
implement of 3D convolution as GeMM in the accelerator. In 
addition, the approach of merging the batch normalization 
layer into the convolutional layer to reduce the data 
redundancy is described. Lastly, an in-depth analysis of the 
precision study of the weights of Tiny-Yolo-v2 on two 
different object detection datasets: Pascal VOC and COCO 
object detection datasets is provided. 

A. Implementation of 3-Dimension (3D) Convolution as 

General Matrix-Matrix Multiplication (GeMM) 

CNN employs a feedforward process for object detection, 
involving billions of multiplication and addition operations. 
Noted that the convolution operation essentially performs 
multiplication and accumulate operations between the filters 
and local region of inputs. To take advantage of this, the 
similar GeMM based convolution with data rearrangement on-
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fly is used to accelerate the algorithm. Fig. 4 shows that how 
the first layer of convolution layer of Tiny-Yolo-v2 is 
flattening and rearranged vertically into a 2-Dimension (2D) 
matrix through data rearrangement process. For example, the 
dimension of the input layer for Tiny-Yolo-v2 is 416 × 416 × 3 
(Hin × Win × Nin) and the size of the kernel is 3 × 3 (K × K). 
The input image is flattened and rearranged into matrix B with 
a dimension of 416 × 416 × 3 × 3× 3. After that, a vector from 
matrix B is multiplied with a vector from matrix A. The result 
will be accumulated to be one output in matrix C. 

 
Fig. 4. Convert 3D Convolution into GeMM. 

Notice that previous operation comes at the cost. It causes 
the expansion in memory size if the stride is smaller than the 
kernel size as pixels are overlapping and duplicated in the 
matrix. The expansion of memory increases the memory 
requirement to store the rearranged input feature matrix. To get 
rid of this, pseudo below is used to perform the similar 
operation on-the-fly by storing the corresponding pixels into 
FPGA’s local memory before the matrix multiplication. 

1) Get current work-item id (global_x, global_y, local_y, 
local_x, block_x, block_y) 

2) Compute current output pixel (channel_out, height_out, 
width_out) based on current work-item id 

3) Compute the actual input feature image (channel_in, 
height_in, width_in) based on computed output pixel 
coordinate.  

4) Read the actual pixel value 
5) Value = 0 < id ≤ input_dimension? Input[id] : 0 

 
Fig. 5. Block Tiling of GeMM. 

Fig. 5 illustrates that the way of how the tiled multiplication is 
implemented in the design. Instead of fetching the data and 
performing multiplication one value by one value, the 
performance is further improved by performing the 
multiplication in block. Two scalable design parameters 
BLOCK_SIZE and SIMD vectorization factor are introduced 
to determine the scale of the block. The BLOCK_SIZE 
determines how many data is fetched and perform 
multiplication at one time. In contrast, SIMD determines the 
factor by which data are vectorized and executed in Single 
Instruction Multiple Data (SIMD) manner. These parameters 
are scalable depends on the resources available in FPGA. The 
performance of the object detection is determined by choosing 
an appropriate of SIMD and BLOCK_SIZE factor. 

B. Data Pre-Processing by Merging Batch Normalization 

into Convolutional Layer 

Batch normalization is implemented after the convolution 
process in Tiny-Yolo-v2 to improve the stability of the neural 
network. The formula of convolution is shown in (1) and batch 
normalization is shown in (6). Taking advantage of the fact that 
the input of batch normalization operation is exactly the output 
of previous convolutional layer. Hence, the input, x(i) in (6) 
could be substituted with (1) and it will form the equation as 
shown in (8). 
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where:  

X(j) = batch normalization output 

x(n) = convolution input 

w(k) = convolution weights 

b = convolution bias 

µ = batch normalization mean 

σ2 = batch normalization variance 

  = Constant 

To further simplify (8), the complicated equation is further 
rearranged to become (9). 
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Now, it is worth noting that all the output of convolution 

must be divided by value = √     . By obeying the 
mathematic Distributive Law; that is, a(b+c) = ab+bc, the 
equation in (9) could be simplified to become (10). 
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TABLE II.  PRECISION STUDY FOR TINY-YOLO-V2 WEIGHTS ON PASCAL VOC 2007 AND COCO DATASETS 

Layer 

Pascal VOC 2007 COCO 

min max 
8-bit precision 
loss (%) 

16-bit 
precision loss 

min max 
8-bit precision 
loss 

16-bit 
precision loss 

1 -25.43982 26.42148 9.6% 0.0% -18.71754 28.54190 6.3% 0.0% 

2 -0.66461 0.47238 19.5% 0.2% -0.65677 0.51022 17.8% 0.1% 

3 -1.00267 1.31331 24.9% 0.1% -0.96951 1.56696 26.1% 0.1% 

4 -0.61135 0.79291 20.5% 0.1% -0.64109 0.76376 19.1% 0.1% 

5 -0.44413 0.73024 24.3% 0.1% -0.41294 0384003 25.2% 0.1% 

6 -0.51432 0.63433 29.9% 0.1% -0.30638 0.63954 34.2% 0.1% 

7 -1.39691 1.47183 15.7% 0.1% -1.58541 1.85696 20.4% 0.1% 

8 -0.02337 0.02339 3.6% 0.0% -0.07274 0.05593 19.0% 0.1% 

9 -0.23489 0.19417 6.1% 0.0% -0.80548 0.54988 18.0% 0.1%      ∑ (         √    )          √             (10) 

Finally, since the value of batch mean, batch standard 
deviation, weights and constant are pre-trained offline, and all 
these values will only be loaded one time during the inference 
process. Hence, to reduce the number of operations and data 
redundancy, the equation in (10) is transformed to become 
equation in (11), which is similar to (1) with fine-tuned weights 
and biases: bnew and wnew. This bnew and wnew can be pre-
processed before the inference which helps to reduce the 
number of operations and improve the hardware utilization. 

newnew b∑
n

1n=

)(κ
×ω(n)

x=
(j)

X 






          (11)

 

Where: 

+ξ2σ

)(κω
=wnew

  

+ξ2σ

μb
=bnew

  

C. Precision Study for Object Detection Datasets 

Tiny-Yolo-v2 is trained using Graphic Processing Unit 
(GPU) in a 32-bit environment. Hence, the trained weights and 
bias are usually stored in 32-bit floating point format. 
However, such high precision is not necessarily in an inference 
machine. To reduce data redundancy, the best precision 
required for model Tiny-Yolo-v2 is explored using both COCO 
and Pascal VOC pre-trained weight from darknet framework.  
The analysis is done using the MATLAB Fixed-Point Designer 
Toolbox. Table I shows the range [min, max] of the fine-tuned 
weight wnew (as discussed in the previous section) for all 9 
layers in Tiny-Yolo-v2 running on Pascal VOC and COCO 
object detection datasets. The table also explains the 
comprehensive precision loss of weights in: 8-bit and 16-bit 
fixed point representation. Based on the report generated by the 
toolbox, the 8-bit precision can contribute up to 29.9% of 

precision loss in Pascal VOC datasets and 34.2% precision loss 
in COCO datasets. According to this report, the performance of 
the accelerator is expected to be significantly degraded if the 
data is represented in 8-bit precision. Hence, 16-bit precision 
for the convolution weights and 32-bit precision is proposed 
for the intermediate inner product of weights and input in this 
work. 

IV. RESULTS AND DISCUSSION 

This section first briefly reports the hardware resource 
utilization. Then, the proposed design is compared to software 
implementation (CPU) with the two scalable design parameters 
BLOCK_SIZE=32 and SIMD=4. Finally, the comparison 
between the implementation and prior work. The resource 
utilization report on the Cyclone V PCIe FPGA board is shown 
in Table II. The proposed design with floating point is unable 
to fit into the board, as it consumes 161% of logic, 140% of 
RAM and 64% of DSP blocks which exceed the board 
hardware limitation. With the proposed data pre-processing 
technique presented in section 3.2, the design manages to 
reduce approximately 21% of logic usage, 8% of RAM usage 
and 6% of DSP usage. To further enhance the optimization, 16-
bit of fixed-point arithmetic is implemented as discussed in 
section 3.3. The hardware resources are significantly reduced 
compared to floating point arithmetic. Finally, this design 
achieves 97% improvement in logic consumption, 30% 
improvement in RAM consumption and 18% in DSP 
consumption. 

TABLE III.  SUMMARY OF HARDWARE RESOURCE UTILIZATION 

 Logic RAM DSP 

Floating point 161 % 70 % 59 % 

Floating point (with 
data pre-processing) 

140 % 62 % 53% 

Fixed-point (16-bit 
arithmetic with data 
pre-processing) 

64% 40% 41% 
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TABLE IV.  SUMMARY OF THE COMPARISON OF THE PERFORMANCE BETWEEN SOFTWARE IMPLEMENTATION AND FPGA IMPLEMENTATION 

Layer 
CPU (Intel R Core TM i7-7700) FPGA 

Pascal VOC COCO Pascal VOC COCO 

1 0.083 0.082 0.047 0.050 

2 0.123 0.117 0.028 0.027 

3 0.112 0.110 0.020 0.020 

4 0.094 0.096 0.018 0.018 

5 0.096 0.095 0.017 0.017 

6 0.098 0.096 0.018 0.018 

7 0.372 0.369 0.063 0.064 

8 0.381 0.382 0.128 0.064 

9 0.019 0.018 0.004 0.005 

Total Execution Time (s) 1.378 1.365 0.339 0.278 

The performance comparison between the proposed 
accelerator for Tiny-Yolo-v2 on VOC dataset and COCO 
dataset and CPU (Intel® Core™ i7-7700) is depicted in Table 
III.  In overall, the proposed accelerator achieves 21.57 GOPs 
which is approximately 4 times speedup over software 
implementation. 

In Table IV, the work is compared to other prior HSL-
based designs. In this work, the board used: Cyclone V PCIe 
FPGA which is different from the hardware used in the 
previous study. To make a fair comparison, the performance 
density of the proposed design is measured. It clearly indicates 
that the proposed design implementation achieves comparable 
performance compared to previous work. 

Pictures tested by the design are shown in Fig. 6(a) and Fig. 
7. In this work, despite the computation is carried out at lower 
precision (16-bit) than original Tiny-Yolo-v2 (32-bit), all 
objects in images can be detected and tagged correctly. Finally, 
the design achieves the mAP similar with original Tiny-Yolo-
v2 running in floating point, and the difference is no more than 
1%. 

TABLE V.  COMPARISON TO PREVIOUS WORK 

 [8] [6] This work 

Device 
Stratix-V 
GXA7 

Stratix-VGXA7 
Cyclone V 
PCIe 

FPGA Capacity 622K LUTs 622K LUTs 113K LUTs 

Model AlexNet, VGG AlexNet, VGG Tiny-Yolo-v2 

Design Scheme OpenCL OpenCL OpenCL 

Frequency 181MHz 120MHz 117MHz 

Precision float Fixed(8-16bit) Fixed(16bit) 

Throughput 33.9 GOPs 117.8GOPs 21.6 GOPs 

DSP Consumed 162 246 122 

Performance Density 0.21GOPS/DSP 0.29GOPS/DSP 0.18OPS/DSP 

 
Fig. 6. Tested Image of Car. 

 
Fig. 7. Tested Image of Bus, Person, and Car. 

V. CONCLUSION 

In this work, a scalable CNN-based object detection 
algorithm is implemented on FPGA with fixed-point 
implementation using OpenCL approach. Further, a way of 
merging batch normalization layer in the convolutional layer is 
proposed to improve the performance and reduce the hardware 
resource. Finally, Tiny-Yolo-v2 is implemented on Cyclone V 
PCIe FPGA and achieved comparable performance density of 
0.18 GOPs/DSP compared to previous work. The proposed 
implementation can achieve a peak throughput of 21 GOPs 
under 100 MHz working frequency. 
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