
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

506 | P a g e
www.ijacsa.thesai.org

Fixed Point Implementation of Tiny-Yolo-v2 using
OpenCL on FPGA

Yap June Wai1, Zulkalnain bin Mohd Yussof2, Sani Irwan bin Salim3, Lim Kim Chuan4
Center for Telecommunication Research and Innovation

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

Melaka, Malaysia

Abstract—Deep Convolutional Neural Network (CNN)

algorithm has recently gained popularity in many applications

such as image classification, video analytic and object detection.

Being compute-intensive and memory expensive, CNN-based

algorithms are hard to be implemented on the embedded device.

Although recent studies have explored the hardware

implementation of CNN-based object classification models such

as AlexNet and VGG, there is still a rare implementation of

CNN-based object detection model on Field Programmable Gate

Array (FPGA). Consequently, this study proposes the fixed-point

(16-bit) implementation of CNN-based object detection model:

Tiny-Yolo-v2 on Cyclone V PCIe Development Kit FPGA board

using High-Level-Synthesis (HLS) tool: OpenCL. Considering

FPGA resource constraints in term of computational resources,

memory bandwidth, and on-chip memory, a data pre-processing

approach is proposed to merge the batch normalization into

convolution layer. To the best of our knowledge, this is the first

implementation of Tiny-Yolo-v2 object detection algorithm on

FPGA using Intel FPGA Software Development Kit (SDK) for

OpenCL. Finally, the proposed implementation achieves a peak

performance of 21 GOPs under 100 MHz working frequency.

Keywords—FPGA; CNN; Tiny-Yolo-v2; OpenCL; detection

I. INTRODUCTION

Convolutional Neural Network (CNN) is a well-known
deep learning architecture inspired by the artificial neural
network. It has been primarily employed in various
applications including image classification [1] [2] and object
detection [3] [4] [5]. Unlike the traditional machine learning
algorithms, CNN algorithms are extremely computationally
expensive and memory intensive. The state-of-the-art of CNN
algorithms usually require millions of parameters and billions
of operations to process a single image input. This is a great
challenge to implement CNN algorithms on an embedded
system due to severe hardware constraints such as
computational resources, memory bandwidth, and on-chip
memory. Hence, in recent year, Field Programmable Gate
Array (FPGA) has become an attractive alternative solution to
accelerate CNN-based algorithms due to its relatively high
performance, flexibility, energy efficient and fast development
cycle, especially with the new release of High-Level-Synthesis
(HLS) tool: OpenCL. It greatly reduces the complexity of
programming by enabling the auto-compilation from a high-
level program (C/C++) to register-transfer-level (RTL).

Prior works [6] [7] have shown the effort of accelerating
CNN classification model: AlexNet and VGG through the

implementation of 3-Dimension (3D) convolution as General
Matrix-Matrix Multiplication (GEMM). Data rearrangement
on-the-fly technique is proposed to reduce the memory
footprint. In this work, the idea of mapping 3D convolution as
GEMM and data rearrangement on-fly are borrowed and these
techniques are further applied to perform object detection
algorithm: Tiny-Yolo-v2 on both Pascal VOC [8] and COCO
[9] object detection datasets. Prior work [10] takes a different
approach to accelerate the CNN classification in a deeply
pipelined manner. In addition, they proposed the insight of
“performance density” as an alternative performance
evaluation metric for the fair comparison between their work
and prior research work. However, their design implemented
floating-point arithmetic which it is unfriendly to the hardware
computation. Hence, in this work, the fixed-point arithmetic
instead of floating-point arithmetic is implemented to better
improve the bandwidth and resources utilization. In addition, a
technique to merge the batch normalization into convolution is
proposed to reduce the data redundancy. The key contributions
are summarized as follows:

 A CNN-based object detection algorithm: Tiny-Yolo-v2
with 16-bit fixed-point arithmetic running on FPGA

 A systematic in-depth analysis on the impact of the
precision of the weights on the two detection datasets:
Pascal VOC 2007 and COCO.

 A novel approach of merging batch normalization
layers and convolutional layer to reduce data
redundancy during the inference process.

The rest of the paper is presented as follows. Section 2
briefly describes the background of the research work. In this
section, the overview of OpenCL development flow, the
architecture of Tiny-Yolo-v2 and performance evaluation
metrics are presented in detail. Section 3 briefly discuss the
proposed design and the case studies on the impact of precision
of the weights for Tiny-Yolo-v2 on the two detection datasets:
VOC [10] and COCO [11]. It also studies the mathematical
approach to merge the batch normalization operation into the
convolutional layer. Section 4 briefly presents the experimental
results. Section 5 concludes the paper.

II. BACKGROUND

In this section, a detail description of the overview of
OpenCL based FPGA development flow, the architecture of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

507 | P a g e
www.ijacsa.thesai.org

Tiny-Yolo-v2 and the performance evaluation metrics used in
this work is presented.

A. Overview of OpenCL

Intel FPGA Software Development Kit (SDK) for OpenCL
[12] [13] allows the user to avoid the traditional hardware
FPGA development flow by using HLS tools. It is an
alternative approach to traditional RTL design concepts such as
Verilog or VHDL with C or C++ synthesis. Fig. 1 illustrates
the OpenCL-based FPGA accelerator development flow. In the
OpenCL framework, the Central Processing Unit (CPU) acts as
the host and it has bridges interconnect the Cyclone V PCIe
FPGA board which it serves as an OpenCL device, forming a
heterogeneous computing system. An OpenCL code is
translated into hardware image, supported by OpenCL runtime
driver. Furthermore, on the host side, C/C++ code runs on the
CPU, providing vendor specific Application Programming
Interface (API) to communicate with the implemented kernels
on the Cyclone V PCIe FPGA board.

Fig. 1. OpenCL based FPGA Development Flow.

B. Architecture of Tiny-Yolo-v2

In this section, a detail exploration of the Yolo object
detection framework is briefly discussed. Unlike prior object
detection algorithm [6] which repurpose classifiers to perform
detection, Yolo [7][8] uses a different approach to apply a
single convolutional network to the full image and predict
multiple bounding boxes and class probability for those boxes.
Fig. 2 shows the architecture of Tiny-Yolo-v2, which consists
of 9 convolutional layers, each with a leaky rectified linear unit
(ReLU) based activation function and batch normalization
operation interspersed with 6 max-pooling layers and a region
layer. Tiny-Yolo-v2 takes input image size 416 x 416 to 20
output classes in VOC datasets whereas 80 output classes in
COCO datasets.

C. Convolutional Layer

Tiny-Yolo-v2 employs feedforward process for object
detection. A previous study [14] has proved that the
convolutional layer will occupy over 90 % of the feed-forward
computation period. Hence, in this work, the optimization of
the convolutional layer will be the main focus to improve the
performance of accelerator. Convolution layers involve billions
of multiplication and addition operations between the filters
and local regions of input for a single input image. The
operations can be represented in (1) as followed:

b)wx(X)k(
n

1i

)n()i(∑
 (1)

Fig. 2. Tiny-Yolo-v2 Achitecture.

Where:

X(i) = Pixel of output feature0

x(j) = Pixel of input feature

w(k) = Convolution weights

b = Convolution bias

The total amount of operations in the convolution layer can
be approximately calculated as shown in (2). Noted that, this
equation ignores the number of operations for the batch
normalization and leaky activation for each layer.

outoutoutin WHNKKN2Operations# (2)

Where:

Nin = Number of channels of input feature

K = Filter size

Nout = Number of filters

Hout = Height of output feature

Wou0t = Width of output feature

The memory requirement is described as space complexity.
The main parameter in the Tiny-Yolo-v2 is the weight which is
used in the convolutional layer. The number of weights in the
convolutional layer can be expressed as (3):

outin NKKNWeights# (3)

Where:

Nin = Number of channels of input feature

K = Filter size

Nout = Number of filters

Tiny-Yolo-v2 takes approximately 7 billion operations with
15 million weights just for one image input in Pascal VOC. On
the other hand, Tiny-Yolo-v2 takes approximately 5.7 billion
operations with 12 million weights just for one image input in
COCO dataset.

OpenCL
Code

FPGA

HLS
Compiler

C/C++

C/C++
Compiler

Host

416

416
208 104

104
208

52
52

26
26

13
13

13
13

13
13

13
13

3 16 32 64 128 256 512 1024 125
Maxpool

Layer
Batchnorm

Layer

Maxpool
Layer

Batchnorm
Layer

Maxpool
Layer

Batchnorm
Layer

Maxpool
Layer

Batchnorm
Layer

Maxpool
Layer

Batchnorm
Layer

Maxpool
Layer

Batchnorm
Layer

Batchnorm
Layer

Batchnorm
Layer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

508 | P a g e
www.ijacsa.thesai.org

D. Activation Function

Activation function in a CNN architecture is used to
transform the input before the pooling layer. Sigmoidal
activation functions were most often used in CNN. However,
sigmoidal activations are bounded by a maximum and
minimum value and thereby causing the saturated neuron in
higher layers of the neural network. Alternatively, Leaky
ReLU has recently been proposed as an activation function as
it can cause the weight update which makes it never activate on
any data point again. Leaky ReLU along with respective
equation is shown in Fig. 3.

Fig. 3. Leaky Rectified Linear Unit(Leaky ReLU).

E. Pooling Layer

Pooling layer, in general, is a form of dimensional
reduction used in CNN. Its goal is to throw away unnecessary
information and only preserve the most critical information.
Typical pooling functions are maximum pooling and average
pooling layer. Max pooling returns the maximum value from
the input, where average pooling returns the average value. The
formula of max-pooling and average-pooling are illustrated as
follows:

}pj'jj,i'ii:]'j,;i[Smax{]j,i[S

 (4)

}pj'jj,i'ii:]'j,;i[S{average]j,i[S

 (5)

F. Batch Normalization Layer

Batch normalization layer is implemented after the
convolutional layer to provide any layer in Tiny-Yolo-v2 with
inputs that are zero mean or unit variance. The equation of
batch normalization is shown in (6). The normalization is
performed to previous output of the convolutional layer by
subtracting the batch mean and dividing by the batch variance.
After batch normalization operation, the output will be shifted
and scaled by the bias and scale. The value for these variables:
means, bias, scale, and variance are generated in CNN training
stage. These values allow each layer to learn in a more
independent way and reduce the overfitting because it has a
slight regularization effect.

ξσ
)μX(

X
2

)i(
)j(

 (6)

Where:

X(j) = Output Pixel after batch normalization

X(i) = Output Pixel after convolution

µ = Mean

σ2 = Variance

 = Constant

G. Evaluation Metric

This section presents the detail description of the evaluation
metric used to measure the performance of the proposed
accelerator for Tiny-Yolo-v2 implemented on Cyclone V PCIe
Development Kit FPGA board. Prior works [6] [7] [8]
measure their accelerator design in term of accuracy and
throughput. However, these two metrics are invalid in this
case. This work is running object detection model instead of
object classification. In contrast to classification task, object
detection must localize and classify a variable number of
objects on an image which indicates that the output of object
detection may change from image to image. Hence, the
accuracy of proposed accelerator is measured in term of mean
average precision (mAP). Besides, to make a fair comparison
on the throughput of proposed accelerator running on Cyclone
V PCIe Development Kit to previous accelerator design that
running on other FPGA such as Stratix V and Aria 10 GX,
performance density is used as the main factor to evaluate the
performance of proposed design. To make a fair comparison
between the performances achieved in different hardware, the
normalized performance of throughput is introduced in work
[8]. The equation to calculate performance density is listed as
follow:

Consumed_DSP

Throughput
Density.Perf

 (7)

III. RESEARCH METHODOLOGY

This section presents a detail description on how to
implement of 3D convolution as GeMM in the accelerator. In
addition, the approach of merging the batch normalization
layer into the convolutional layer to reduce the data
redundancy is described. Lastly, an in-depth analysis of the
precision study of the weights of Tiny-Yolo-v2 on two
different object detection datasets: Pascal VOC and COCO
object detection datasets is provided.

A. Implementation of 3-Dimension (3D) Convolution as

General Matrix-Matrix Multiplication (GeMM)

CNN employs a feedforward process for object detection,
involving billions of multiplication and addition operations.
Noted that the convolution operation essentially performs
multiplication and accumulate operations between the filters
and local region of inputs. To take advantage of this, the
similar GeMM based convolution with data rearrangement on-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

509 | P a g e
www.ijacsa.thesai.org

fly is used to accelerate the algorithm. Fig. 4 shows that how
the first layer of convolution layer of Tiny-Yolo-v2 is
flattening and rearranged vertically into a 2-Dimension (2D)
matrix through data rearrangement process. For example, the
dimension of the input layer for Tiny-Yolo-v2 is 416 × 416 × 3
(Hin × Win × Nin) and the size of the kernel is 3 × 3 (K × K).
The input image is flattened and rearranged into matrix B with
a dimension of 416 × 416 × 3 × 3× 3. After that, a vector from
matrix B is multiplied with a vector from matrix A. The result
will be accumulated to be one output in matrix C.

Fig. 4. Convert 3D Convolution into GeMM.

Notice that previous operation comes at the cost. It causes
the expansion in memory size if the stride is smaller than the
kernel size as pixels are overlapping and duplicated in the
matrix. The expansion of memory increases the memory
requirement to store the rearranged input feature matrix. To get
rid of this, pseudo below is used to perform the similar
operation on-the-fly by storing the corresponding pixels into
FPGA’s local memory before the matrix multiplication.

1) Get current work-item id (global_x, global_y, local_y,
local_x, block_x, block_y)

2) Compute current output pixel (channel_out, height_out,
width_out) based on current work-item id

3) Compute the actual input feature image (channel_in,
height_in, width_in) based on computed output pixel
coordinate.

4) Read the actual pixel value
5) Value = 0 < id ≤ input_dimension? Input[id] : 0

Fig. 5. Block Tiling of GeMM.

Fig. 5 illustrates that the way of how the tiled multiplication is
implemented in the design. Instead of fetching the data and
performing multiplication one value by one value, the
performance is further improved by performing the
multiplication in block. Two scalable design parameters
BLOCK_SIZE and SIMD vectorization factor are introduced
to determine the scale of the block. The BLOCK_SIZE
determines how many data is fetched and perform
multiplication at one time. In contrast, SIMD determines the
factor by which data are vectorized and executed in Single
Instruction Multiple Data (SIMD) manner. These parameters
are scalable depends on the resources available in FPGA. The
performance of the object detection is determined by choosing
an appropriate of SIMD and BLOCK_SIZE factor.

B. Data Pre-Processing by Merging Batch Normalization

into Convolutional Layer

Batch normalization is implemented after the convolution
process in Tiny-Yolo-v2 to improve the stability of the neural
network. The formula of convolution is shown in (1) and batch
normalization is shown in (6). Taking advantage of the fact that
the input of batch normalization operation is exactly the output
of previous convolutional layer. Hence, the input, x(i) in (6)
could be substituted with (1) and it will form the equation as
shown in (8).

+ξ2σ

μb)
)(κ

×ω∑
n

1n=

(n)
(x

=
(j)

X

 (8)

where:

X(j) = batch normalization output

x(n) = convolution input

w(k) = convolution weights

b = convolution bias

µ = batch normalization mean

σ2 = batch normalization variance

 = Constant

To further simplify (8), the complicated equation is further
rearranged to become (9).

+ξ2σ

)μb(

+ξ2σ

)
)(κ

×ω∑
n

1n=

(n)
(x

=
(j)

X

 (9)

Now, it is worth noting that all the output of convolution

must be divided by value = √ . By obeying the
mathematic Distributive Law; that is, a(b+c) = ab+bc, the
equation in (9) could be simplified to become (10).

G

R

3

3

416
B

416 × 416
Rearrange

3×3×3

Matrix A ∑(x*w)

Matrix B

Matrix C

Weight
Feature × = Output

BLOCK_SIZE

BLOCK_SIZE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

510 | P a g e
www.ijacsa.thesai.org

TABLE II. PRECISION STUDY FOR TINY-YOLO-V2 WEIGHTS ON PASCAL VOC 2007 AND COCO DATASETS

Layer

Pascal VOC 2007 COCO

min max
8-bit precision
loss (%)

16-bit
precision loss

min max
8-bit precision
loss

16-bit
precision loss

1 -25.43982 26.42148 9.6% 0.0% -18.71754 28.54190 6.3% 0.0%

2 -0.66461 0.47238 19.5% 0.2% -0.65677 0.51022 17.8% 0.1%

3 -1.00267 1.31331 24.9% 0.1% -0.96951 1.56696 26.1% 0.1%

4 -0.61135 0.79291 20.5% 0.1% -0.64109 0.76376 19.1% 0.1%

5 -0.44413 0.73024 24.3% 0.1% -0.41294 0384003 25.2% 0.1%

6 -0.51432 0.63433 29.9% 0.1% -0.30638 0.63954 34.2% 0.1%

7 -1.39691 1.47183 15.7% 0.1% -1.58541 1.85696 20.4% 0.1%

8 -0.02337 0.02339 3.6% 0.0% -0.07274 0.05593 19.0% 0.1%

9 -0.23489 0.19417 6.1% 0.0% -0.80548 0.54988 18.0% 0.1% ∑ (√) √ (10)

Finally, since the value of batch mean, batch standard
deviation, weights and constant are pre-trained offline, and all
these values will only be loaded one time during the inference
process. Hence, to reduce the number of operations and data
redundancy, the equation in (10) is transformed to become
equation in (11), which is similar to (1) with fine-tuned weights
and biases: bnew and wnew. This bnew and wnew can be pre-
processed before the inference which helps to reduce the
number of operations and improve the hardware utilization.

newnew b∑
n

1n=

)(κ
×ω(n)

x=
(j)

X

 (11)

Where:

+ξ2σ

)(κω
=wnew

+ξ2σ

μb
=bnew

C. Precision Study for Object Detection Datasets

Tiny-Yolo-v2 is trained using Graphic Processing Unit
(GPU) in a 32-bit environment. Hence, the trained weights and
bias are usually stored in 32-bit floating point format.
However, such high precision is not necessarily in an inference
machine. To reduce data redundancy, the best precision
required for model Tiny-Yolo-v2 is explored using both COCO
and Pascal VOC pre-trained weight from darknet framework.
The analysis is done using the MATLAB Fixed-Point Designer
Toolbox. Table I shows the range [min, max] of the fine-tuned
weight wnew (as discussed in the previous section) for all 9
layers in Tiny-Yolo-v2 running on Pascal VOC and COCO
object detection datasets. The table also explains the
comprehensive precision loss of weights in: 8-bit and 16-bit
fixed point representation. Based on the report generated by the
toolbox, the 8-bit precision can contribute up to 29.9% of

precision loss in Pascal VOC datasets and 34.2% precision loss
in COCO datasets. According to this report, the performance of
the accelerator is expected to be significantly degraded if the
data is represented in 8-bit precision. Hence, 16-bit precision
for the convolution weights and 32-bit precision is proposed
for the intermediate inner product of weights and input in this
work.

IV. RESULTS AND DISCUSSION

This section first briefly reports the hardware resource
utilization. Then, the proposed design is compared to software
implementation (CPU) with the two scalable design parameters
BLOCK_SIZE=32 and SIMD=4. Finally, the comparison
between the implementation and prior work. The resource
utilization report on the Cyclone V PCIe FPGA board is shown
in Table II. The proposed design with floating point is unable
to fit into the board, as it consumes 161% of logic, 140% of
RAM and 64% of DSP blocks which exceed the board
hardware limitation. With the proposed data pre-processing
technique presented in section 3.2, the design manages to
reduce approximately 21% of logic usage, 8% of RAM usage
and 6% of DSP usage. To further enhance the optimization, 16-
bit of fixed-point arithmetic is implemented as discussed in
section 3.3. The hardware resources are significantly reduced
compared to floating point arithmetic. Finally, this design
achieves 97% improvement in logic consumption, 30%
improvement in RAM consumption and 18% in DSP
consumption.

TABLE III. SUMMARY OF HARDWARE RESOURCE UTILIZATION

 Logic RAM DSP

Floating point 161 % 70 % 59 %

Floating point (with
data pre-processing)

140 % 62 % 53%

Fixed-point (16-bit
arithmetic with data
pre-processing)

64% 40% 41%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

511 | P a g e
www.ijacsa.thesai.org

TABLE IV. SUMMARY OF THE COMPARISON OF THE PERFORMANCE BETWEEN SOFTWARE IMPLEMENTATION AND FPGA IMPLEMENTATION

Layer
CPU (Intel R Core TM i7-7700) FPGA

Pascal VOC COCO Pascal VOC COCO

1 0.083 0.082 0.047 0.050

2 0.123 0.117 0.028 0.027

3 0.112 0.110 0.020 0.020

4 0.094 0.096 0.018 0.018

5 0.096 0.095 0.017 0.017

6 0.098 0.096 0.018 0.018

7 0.372 0.369 0.063 0.064

8 0.381 0.382 0.128 0.064

9 0.019 0.018 0.004 0.005

Total Execution Time (s) 1.378 1.365 0.339 0.278

The performance comparison between the proposed
accelerator for Tiny-Yolo-v2 on VOC dataset and COCO
dataset and CPU (Intel® Core™ i7-7700) is depicted in Table
III. In overall, the proposed accelerator achieves 21.57 GOPs
which is approximately 4 times speedup over software
implementation.

In Table IV, the work is compared to other prior HSL-
based designs. In this work, the board used: Cyclone V PCIe
FPGA which is different from the hardware used in the
previous study. To make a fair comparison, the performance
density of the proposed design is measured. It clearly indicates
that the proposed design implementation achieves comparable
performance compared to previous work.

Pictures tested by the design are shown in Fig. 6(a) and Fig.
7. In this work, despite the computation is carried out at lower
precision (16-bit) than original Tiny-Yolo-v2 (32-bit), all
objects in images can be detected and tagged correctly. Finally,
the design achieves the mAP similar with original Tiny-Yolo-
v2 running in floating point, and the difference is no more than
1%.

TABLE V. COMPARISON TO PREVIOUS WORK

 [8] [6] This work

Device
Stratix-V
GXA7

Stratix-VGXA7
Cyclone V
PCIe

FPGA Capacity 622K LUTs 622K LUTs 113K LUTs

Model AlexNet, VGG AlexNet, VGG Tiny-Yolo-v2

Design Scheme OpenCL OpenCL OpenCL

Frequency 181MHz 120MHz 117MHz

Precision float Fixed(8-16bit) Fixed(16bit)

Throughput 33.9 GOPs 117.8GOPs 21.6 GOPs

DSP Consumed 162 246 122

Performance Density 0.21GOPS/DSP 0.29GOPS/DSP 0.18OPS/DSP

Fig. 6. Tested Image of Car.

Fig. 7. Tested Image of Bus, Person, and Car.

V. CONCLUSION

In this work, a scalable CNN-based object detection
algorithm is implemented on FPGA with fixed-point
implementation using OpenCL approach. Further, a way of
merging batch normalization layer in the convolutional layer is
proposed to improve the performance and reduce the hardware
resource. Finally, Tiny-Yolo-v2 is implemented on Cyclone V
PCIe FPGA and achieved comparable performance density of
0.18 GOPs/DSP compared to previous work. The proposed
implementation can achieve a peak throughput of 21 GOPs
under 100 MHz working frequency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 10, 2018

512 | P a g e
www.ijacsa.thesai.org

ACKNOWLEDGMENT

Authors would like to thank the support of UTeM Zamalah
Scheme to support this work. In addition, authors also thank to
the support of Center for Telecommunication Research and
Innovation (CeTRI), Faculty of Electronic and Computer
(FKEKK), Universiti Teknikal Malaysia Melaka (UTeM).

REFERENCES

[1] A. Krizhevsky, I. Sutskever and GE. Hinton, “Imagenet classification
with deep convolutional neural networks”, Advances In Neural
Information Processing Systems, 2012, pp. 1097-1105,

[2] K. Simonyan, and A.Zisserman, “Very deep convolutional networks for
large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks”, Advances In Neural
Information Processing systems, 2015, pp. 91-99.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection”, Proceedings of IEEE
Conference on Computer Vision and Pattern recognition, 2016, pp. 779-
788.

[5] J. Redmon, and Farhadi, “A. YOLO9000: better, faster, stronger”,
arXiv, 2017.

[6] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.S.
Seo, and Y. Cao, “Throughput-optimized OpenCL-based FPGA

accelerator for large-scale convolutional neural networks,” in
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2016, pp. 16-25.

[7] J. Zhang, and J. Li, “Improving the performance of OpenCL-based fpga
accelerator for convolutional neural network”, Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2017, pp. 25-34.

[8] D. Wang, J. An, and K. Xu, “PipeCNN: An OpenCL-Based FPGA
Accelerator for Large-Scale Convolution Neuron Networks”, arXiv, vol.
1611.02450, 2016.

[9] J. Ma, L. Chen, Gao, “Hardware Implementation and Optimization of
Tiny-YOLO Network”, International Forum on Digital TV and Wireless
Multimedia Communications, Springer, Singapore, 2017, pp. 224-234.

[10] M. Everingham, L. Van Gool, C.K. Williams, J. Winn and A.
Zisserman, “The pascal visual object classes (voc) challenge”,
International journal of computer vision, 2010, 88(2), pp.303-338.

[11] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollár, and C.L. Zitnick, “Microsoft coco: Common objects in context”,
European conference on computer vision, Springer, 2017, pp. 740-755.

[12] FPGA SDK for OpenCL Programming Guide., Intel, 2017, pp. 70-80.

[13] FPGA SDK for OpenCL Best Practice Guide, Intel, 2017, pp. 17-20.

[14] J. Cong, and B. Xiao, “Minimizing computation in convolutional neural
networks”, International Conference on Artificial Neural Networks,
2014, pp. 281-290.

