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ABSTRACT. Let X be a uniformly convex Banach space which satisfies Opial’s
condition or has a Fréchet differentiable norm, C a bounded closed convex
subset of X ,and T: C — C an asymptotically nonexpansive mapping. It is
then shown that the modified Mann and Ishikawa iteration processes defined by
Xn41 = T xn+(1—tn)xn and Xppy = th T (SnT"Xn+ (1 =5$n)Xn)+(1=tn)Xn ,
respectively, converge weakly to a fixed point of T .

1. INTRODUCTION

Let C be a nonempty subset of a Banach space X. A mapping T: C — C
is said to be asymptotically nonexpansive if there exists a sequence {k,} of
positive numbers with lim,_ . k, = 1 such that

IT%x = T"y|| < knllx - |

forall x, y in C and n =1,2,.... This class of mappings, as a natural
extension to that of nonexpansive mappings, was introduced by Goebel and
Kirk [4] in 1972. They proved that if C is a bounded closed convex subset of
a uniformly convex Banach space X, then every asymptotically nonexpansive
self-mapping T of C has a fixed point. This existence result was recently
generalized in [14] to a nearly uniformly convex (NUC) Banach space setting
(see [5] for definition).

The study of iterative construction for fixed points of asymptotically nonex-
pansive mappings began in 1978. Bose [1] first proved that if C is a bounded
closed convex subset of a uniformly convex Banach space X which satisfies
Opial’s condition [7] and if T: C — C is an asymptotically nonexpansive
mapping, then {T"x} converges weakly to a fixed point of T provided T is
asymptotically regular at x, i.e., lim,_,, ||7"x — T"*!x|| = 0. This conclusion
is still valid [8, 14] if Opial’s condition of X is replaced by the condition that
X has a Fréchet differentiable norm. Furthermore, in both cases, asymptotic
regularity of T at x can be weakened to weak asymptotic regularity of T at
X, ie., w-lim,_(T"x — T"!x) =0 (see [12, 13]).
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Recently, Schu [10] considered the following modified Mann iteration pro-
cess:

(M) Xntt =t T"xn + (1 = t5)Xn, n>1,

where {¢,} is a sequence of real numbersin (0, 1) which is bounded away from
bothOand 1,ie., a<t,<b forall n and some 0 <a < b < 1. He verified
that if C is a bounded closed convex subset of a Banach space X satisfying
Opial’s condition and if T: C — C is an asymptotically nonexpansive mapping
such that Y 72 (k, — 1) converges, then the modified Mann iteration process
(M) converges weakly to a fixed point of 7. Unfortunately, Schu’s theorem
does not apply to the L? spaces if p # 2 since none of these spaces satisfy
Opial’s condition (cf. [7]).

In this paper we first show that Schu’s theorem remains true if the assumption
that X satisfies Opial’s condition is replaced by the one that Y has a Fréchet
differentiable norm. This result (Theorem 3.1) applies to the L? spaces for
1 < p < oo since each of these spaces is uniformly convex and uniformly
smooth. We then prove the weak convergence of the modified Ishikawa iteration
process (cf. Ishikawa [6]):

D Xns1 = T (Sn T X0 + (1 — 55)Xn) + (1 = t0)Xn, n>1,

in a uniformly convex Banach space which either satisfies Opial’s condition or
has a Fréchet differentiable norm.

2. PRELIMINARIES AND LEMMAS

Let X be a Banach space. Recall that X is said to satisfy Opial’s condition
[7] if for each sequence {x,} in X the condition x, — x weakly implies
iMoo ||Xn — X|| < lim,_oo ||X» — y|| for all y € X different from x. It is
known [7] that each /? (I < p < o) enjoys this property, while L? does not
unless p = 2. It is also known [3] that any separable Banach space can be
equivalently renormed so that it satisfies Opial’s condition. Recall also that X
is said to have a Fréchet differentiable norm if, for each x in S(X), the unit
sphere of X, the limit

i 12+ 71 = ]
t—0 t
exists and is attained uniformly in y € S(X). In this case, we have

(2.1) $lxl? + (b, J(x)) < 3l + Al < glixl? + (h, T (x)) + b(lIRI)

for all x, h € X, where J is the normalized duality map from X to X*
defined by
J(x)={x"eX*: (x, x") =|Ix|* = |x*|*},

(+, ) is the duality pairing between X and X*, and b is a function defined
on [0, co) such that lim, o b(¢)/t=0.

Suppose now that C is a bounded closed convex subset of a Banach space
X and {T,} is a sequence of Lipschitzian self-mappings of C such that the set
F of common fixed points of {7,} is nonempty. Denote by L, the Lipschitz
constant of T, . In the sequel, we always assume L, > 1 forall n > 1 and use

the notations lim = limsup, lim = liminf, — for weak convergence, — for
strong convergence, and F(T) for the set of fixed points of T .
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For a given x; € C, we recurrently define the sequence {x,} by
Xnt1 = TpXn, n>1.
Lemma 2.1. Suppose that 3 ,(L, — 1) converges. Then for each f € F,
lim, ||x, — f|| exists.
Proof. Forall n, m > 1, we have

1Xn+m+1 = Fl = 1 TnsmXnsm — Nl < LosmllXnem — £l
n+m
< (ITLi) a1
j=n

Since 3°,(Ln — 1) converges, it follows that

J=n

mﬁ_—{i "xn+m+1 = f" < (H Lf) "x" - f" .

Consequently, s )
lim |lx, — f1| < lim [lx, — f1].

n

This proves the lemma. O

Lemma 2.2. Suppose that X is uniformly convex and Y ,(L, — 1) converges.
Then lim,_, ||tx, + (1 = t) f; — f2|| exists for every fi, L €F and 0<t<1.

Proof. We follow an idea of Reich [9]. Set

an = an(t) = ||txn + (1 = ) fi = Lo, Sn,m = Tnem—1Tnym—2-Tn,
and
bu,m = [1Sn, m(txn + (1 = 1) f1) = (Xnsm + (1 = ) S)||.-
Then, observing S, mXn = Xp+m , We get
anim = [[Xnem + (1 = 0 /1 = Lol
< bn,m+ ISn, m(txn + (1 =) 1) = Lol

n+m—1
<bym+ H L; an < by, m + Hpa,,

J=n

where H, = H;‘:n L;. By a result of Bruck [2], we have

bn,m < Hng—l(“xn - fl" - Hn—l"Sn,mxn - fl”)
< Hag7 ' (I%n = fill = 1Xnem — fill + (1 = H;HYd),

where g: [0, oo) — [0, o0), g(0) =0, is a strictly increasing continuous func-
tion depending only on d, the diameter of C . Since lim,_,,, H, = 1, it follows
from Lemma 2.1 that lim, ,;—c by, m = 0. Therefore,

lim a, < lim b, n+ lim H,a, = lim a,.
n,m<oco — —

m—oo n—oo n—oo

This completes the proof. O
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Lemma 2.3. Suppose that X is a uniformly convex Banach space with a Fréchet
differentiable norm and that Y, (L, — 1) converges. Then for every fi, f, € F,
lim,—.oo(Xn , J(fi — f2)) exists; in particular,

p-q,J(/i-f))=0

forall p, q € wy(x,). Here, wy(x,) denotes the weak w-limit set of {xn},
ie, Wy(xy) ={y € X:y=w-limy_,, X, for some ny 1 oo}.
Proof. Taking x = f; — f, and h =t(x, — f1) in (2.1), we get

WA - AP+ txn = fi, J(h = £) < 3l + (1 =0 /i = £
< 3A - AP+t = fi, J(fi = ) + b(tlxn = fill) -
It follows from Lemma 2.2 that
$fi = AP+t Bm (= fi, J(fi = )
< lim jlexn + (1= 0fi - £l

<3A = AP +1- lim (x, — fi, T(fi = f2)) +o(0).

This yields
”@om - h, J(fi = h) L lim (x, - fi, J(/i = f2)) +0(1).

Letting ¢t — 0, we see that lim,_,.o (X, — f1, J(fi — f2)) exists. O
We also need the following known lemmas.

Lemma 2.4 (cf. Schu [10]). Let X be a uniformly convex Banach space, {tn}
a sequence of real numbers in (0, 1) bounded away from 0 and 1, and {x,}
and {y,} sequences of X such that Tim,_,c || Xn|| < @, liMp—co [|¥nll < @, and
limy,— oo |EXn + (1 = tn)ynll = a for some a > 0. Then lim,_ .o ||Xn — Yull = 0.

Lemma 2.5 [11]. Let X be a normed space, C a convex subset of X, and
T: C — C a uniformly L-Lipschitzian mapping, i.e., |T"x — T"y|| < L|lx —y||

forall x, y in C and n=1,2,.... For any given x, in C and sequences
{tn} and {s,} in [0, 1], define {x,} by
xn+1 =tnTn(SnTnxn+(l _Sn)xn)+(l _tn)xn, n 2 1.

Then we have
I%s = Txnll < n + a1 L(1 4+ 3L + 2L)?
forall n>2, where cp = ||xn — T"Xx|| .
Lemma 2.6 [14]). Suppose that C is a bounded closed convex subset of a uni-
formly convex Banach space and T: C — C is an asymptotically nonexpansive

mapping. Then I — T is demiclosed at the origin, i.e., for any sequence {xn} in
C, the conditions x, — xo and xp — Txn — 0 imply xo— Txo=0.

3. WEAK CONVERGENCE

In this section we prove the weak convergence of the modified Mann and
the modified Ishikawa iteration processes in a uniformly convex Banach space
which satisfies Opial’s condition or has a Fréchet differentiable norm.
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Theorem 3.1. Let X be a uniformly convex Banach space with a Fréchet differ-
entiable norm, C a bounded closed convex subset of X, and T: C — C an
asymptotically nonexpansive mapping such that Y, (k, — 1) converges. Then for
each x, € C, the sequence {x,} defined by the modified Mann iteration process
(M) with {t,} a sequence of real numbers bounded away from 0 and 1 converges
weakly to a fixed point of T .

Proof. Set T, =t,T"+(1—t,)I. (Here I is the identity operator of X .) Then
it is easily seen that x,,; = T,,x,, F(T,) 2 F(T), and T, is Lipschitzian with
constant L, = t,k, + (1 —1¢t,) > 1. Since L, -1 = t,(k, — 1) < k, — 1 and
> n(kn—1) converges, 3, (L,—1) also converges. It thus follows from Lemma
2.3 that

(3.1) (v~ J(fi-f)) =0
forall p, g € wy(x,) and f;, f, € F(T). Moreover, for f € F(T), we have

lim ||77x, — fI| < im kllxs = f]| = lim |lx, = f]|
n—oo n—oo n—oo

and
nlim Ntn(T"xn = )4+ (1 = t)(xn = f)ll = lim ||x541 — f].
00 n—oo

It follows from Lemma 2.4 that lim,_ ||7"x, — X,|| = 0, which implies by
Lemma 2.5 that lim,_, ||X, — Tx,|| = 0, which in turn implies by Lemma 2.6
that wy(x,) is contained in F(T). So to show that {x,} converges weakly to
a fixed point of T, it suffices to show that w,(x,) consists of just one point.
To this end, let p, g be in w,(x,). Then since p, g belong to F(T), it
follows from (3.1) that

lp-ql*=(-q,J(0-4q)=0.
Therefore, p = g and the proof is complete. 0O

Remark. We do not know whether Theorem 3.1 remains valid if &, is allowed
to approach 1 slowly enough so that -, (k, — 1) diverges.
Next, we consider the modified Ishikawa iteration process (I) described in §1.

Theorem 3.2. Let X be a uniformly convex Banach space which satisfies Opial’s
condition or has a Fréchet differentiable norm, C a bounded closed convex sub-
setof X, and T: C — C an asymptotically nonexpansive mapping such that
Y n(kn—1) converges. Suppose that x, is a given point in C and {t,} and {s,}
are real sequences such that {t,} is bounded away from 0 and 1 and {s,} is
bounded away from 1. Then the sequence {x,} defined by the modified Ishikawa
iteration process (1) converges weakly to a fixed point of T .

Proof. Define a mapping 7,,: C — C by
Tox =ty T"(spT"x + (1 — 5p)X) + (1 — ty)x, xeC.
Then it is easily seen that x,,; = Tyx,, F(T,) 2 F(T), and T, is Lipschitzian
with constant L, = 1+ t,k,(1 +S,kpn—Sn)—t, > 1 for k, > 1. Since L,—1 =
tn(1 + Snkn)(kn — 1) < (1 + L)(kn — 1), where L = sup,>; k,, we see that
> n(Ln — 1) converges. Now repeating the arguments in the proof of Theorem
3.1, we arrive at the following conclusions:
(i) lim||x, — f]| exists for every f € F(T).

(i) (p—q, J(fi — f2)) =0 forevery p, q € wy(x,) and f;, f, € F(T).
(iii) limn_.m "xn - T'lyn" = 0 With yn = SnTan + (l - Sn)xn .
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Since
IT"xn = Xnll < NT"Xn = T"yull + |T"yn — x|l
< Kullxn = ynll + 1T"yn — Xal|
= knSull T"xn — Xl + 1 T"Yn — Xall,
we have

1
n _ < n —
IT"xn — Xall < l—k,,s,,"T Yn = Xall,

from which, together with the facts that {s,} is bounded away from 1 and {k,}
converges to 1, we conclude that lim,_, ||7"x, — X,|| = 0. By Lemma 2.5, we
have the following result:

(iv) limp—oo ||Xn — Txp|| = 0.

It follows from (iv) and Lemma 2.6 that wy(x,) C F(T). So to show the
theorem, it suffices to show that w,,(x,) is a singleton. To this end, we suppose
first that X satisfies Opial’s condition. Let p, ¢ be in wy(x,) and {x,} and
{xm;} be subsequences of {x,} chosen so that x,, — p and xpn, — ¢. If
D # q, then Opial’s condition of X implies that

fim [lx, — pll = lim %, — pll < im [lxs, — gl = im }xm, — q]
n—oo 1—00 I—00 ]j—00
< him ||xpm; - p|| = lim ||x, —p||.
Jj—oo n—oo

This contradiction proves the theorem in case X satisfies Opial’s condition.
Next, we assume that X has a Fréchet differentiable norm. Then since w,,(x;)
C F(T), as in the proof of Theorem 3.1, we derive from (ii) that for every p,
q in wy(xn)

lp-gl*=(-4q,J(p-9q)=0.

This completes the proof. O
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