
Fixed Point Languages, Equality Languages, and 

Representation of Recursively Enumerable Languages 

J. ENGELFRIET 

Twente University of Technology, Enschede, The Netherlands 

AND 

G. ROZENBERG 

University of Antwerp UIA. Wilrijk, Belgium 

ABSTRACT. Fixed point languages and equality languages of homomorphisms and dgsm mappings are consid- 
ered. Some basic properties of these classes of languages are proved, and it is shown how to use them to represent 
recursively enumerable sets. In particular, very simple languages are introduced which play the same role for the 
class of recursively enumerable languages that the Dyck languages play for the class of context-free languages. 
Finally, a new type of acceptor for defining equality languages is introduced. 

KEY WOADS A N D  PHRASES: equality language, fLxed point language, recursively enumerable language, determin- 
istic sequential machine, Turing machine, Post correspondence problem, shuffle, AFL generator, representation 
of languages 

CR CATEGORIES; 5.22, 5.23, 5.26, 5.27 

1. Introduction 

A considerable part o f  formal language theory deals with mappings  on free monoids.  

Given  two mappings  a, fl on the free monoid  Z* generated by an  alphabet  Z, the equali ty 

language of  ct and  fl denoted by Eq(a , /3)  consists o f  all words x from 2:* such that a(x)  

-- fl(x). Thus  equali ty languages of  mappings  measure the degree of  their similarity (for 

example, if  Eq(a, fl) = Y.*, then a and  fl are identical; if Eq(a, fl) = ~ ,  then they are 

"totally different;" and  if  Eq(a, fl) # ~ ,  then they "have something in common") .  If  we 

consider homomorphisms  of  free monoids,  then their equali ty sets represent sets of  

solutions of  instances of  the Post correspondence problem; in this sense equali ty sets o f  

homomorphisms  constitute a classical topic in formal language theory. 

A revival of  interest in these languages was st imulated recently by research concerning 

some basic decision problems in the theory of  L systems (see, e.g., [8, 10]). It became 

apparent  that equali ty languages of  homomorph i sms  play a vital role in solutions of  some 

of  these decision problems. In fact, as opposed to the usual  applications of  the Post 

correspondence problem, one could prove (using the regularity of  the equali ty languages 

involved) that these problems are decidable. Hence  equali ty languages of  mappings  form 

not only a very na tura l  subject to investigate from the mathemat ical  point  o f  view, but also 
a quite well-motivated topic within formal language theory. 
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Investigating the set of fixed points of a mapping (or a relation) is also very natural from 
the mathematical point of view. This set measures the degree of similarity of a given 
mapping with the identity mapping on the same domain. Also, because there exist rather 
simple relationships between fixed point languages and equality languages, various prop- 
erties of the former are quite often closely connected to the latter, and vice versa. 
Furthermore, investigation of the fixed point languages of mappings and relations has a 
very special (biological) motivation in the theory of L systems [26]. In addition, it turns out 
that using fixed point languages allows one to characterize various traditional families of 
languages in the framework of L systems (see, e.g., [25]). 

This paper is a sequel to [9, 12, 3 I] in that it concentrates on the systematic investigation 
of fixed point languages and equality languages for some very basic mappings encountered 
in formal language theory, namely, homomorphisms and mappings realized by determin- 
istic generalized sequential machines (dgsm's). This time, however, we focus on represen- 
tations of recursively enumerable languages. Related, independent work appears in [6, 7]. 

Representing the class of recursively enumerable languages (RE) through operations on 
its subclasses is a traditional topic within formal language theory (see, e.g., [3, 14-16, 22- 
24]). Whenever one finds a representation of the class RE through one of its subclasses X, 

• such a result sheds light on both RE and X. In this paper we discuss several representations 
of RE sets, in particular through fixed point languages of dgsm mappings, equality 
languages of homomorphisms, and fixed point languages of finite substitutions. We 
introduce a type of language (for each alphabet X one concrete language Lx, in the same 
way as for each X there is one Dyck language over X) of a very simple form, which plays 
an important role. These languages characterize the class of equality languages of homo- 
morphisms (for X with two elements, Lx is the hardest language in the sense of [20] for this 
class). They also characterize the class of equality languages of dgsm mappings, and 
moreover they play for the class RE the same role as Dyck languages play for the class of 
context-free languages (e.g., we get an analog of the Chomsky-Schutzenberger theorem 
for the class RE). In particular, for X with two elements, Lz is a (very simple) full semi- 
AFL generator of RE. These results concerning Lx can also be explained in the framework 
of machine theory (in the sense of [15]). With this aim we introduce a machine type for 
which Lx equals the set of all instruction sequences which lead from initial to final storage. 
It turns out that these machines accept the class of recursively enumerable languages. 

The emphasis of this paper is on showing how several (known or unknown) represen- 
tation results can easily be derived using simple constructions only. At the same time we 
stress the role which the concept of equality (as formalized through equality languages and 

fixed point languages) plays in characterizations of RE. The paper is organized as follows. 
After providing preliminaries (concerning notation and terminology) in Section 2, in 
Section 3 we acquaint the reader with the topic of equality languages and fixed point 
languages of homomorphisms and dgsm mappings. We provide several examples of these 
and establish relationships between the corresponding classes, as well as position them 
within the classical Chomsky hierarchy. To this end we prove several structural theorems 
on equality languages. Section 3 may be skipped by the reader who is primarily interested 
in representation theorems. 

In Section 4 we provide (effective) representations oI[RE through fixed point languages 
of dgsm mappings, equality languages of homomorphisms, fixed point languages of finite 
substitutions, and intersections of context-free languages. 

Section 5 introduces complete twin sbuffles--these are the aforementioned languages 
Lx. We use them to provide characterizations of each of the following classes: equality 
languages of homomorphisms, equality languages of dgsm mappings, and RE. 

In Section 6 we consider several basic decision problems concerning fixed point 
languages of dgsm mappings. As an application of the results obtained we are able to 
locate "concrete" languages between the class of context-sensitive languages and some of 
its subclasses (e.g., IO macro languages and indexed languages). 



Fixed Point Languages and Equality Languages 501 

In Section 7 we take a "machine point of  view." We define a new type of  acceptor 

(called an equality machine) and show how various versions of  it accept the following 

classes: equality languages of  homomorphisms, equality languages of  dgsm mappings, and 

RE. We also demonstrate how various notions and results considered in the paper can be 

understood within the framework of  this machine model. 

We assume the reader to be familiar with the basics of  computability theory and formal 

language theory. 

2. Preliminaries 

Mostly we will use standard formal language-theoretic notation and terminology. However, 

the following perhaps deserve special mention. 

(1) For a finite set Z, # Z  denotes its cardinality. 2~ denotes the empty word. For a word 

x, Ixl denotes its length and x R the mirror image o f x .  For a letter a, #ax  denotes the 

number of  occurrences of  a in x. A language K is called a star event if K = K*, i.e., K is 

closed under concatenation and contains )~. 

(2) Given alphabets 7. and A, HOM(~,  A) denotes the set of all homomorphisms from 

Y~* into A*. The union of  all HOM(~g, A) is denoted by HOM. If  a is a homomorphism 

that maps each letter into a letter, then we call it a coding; if it maps each letter into a letter 

or into the empty word, then we call it a weak coding; and if it maps each letter into itself 

or into the empty word, then we call it a weak identity. Given an alphabet V and a subset 

of  V we use Presv. ~, or simply Pres,. if V is understood, to denote the weak identity 

preserving all letters of  7. and erasing letters from V -  Y.. 

(3) We will often identify a singleton set with its element; hence, for example, we write 

x* rather than {x}*. Also, as usual in formal language theory, we identify languages that 

differ at most by h. Throughout the paper we will use the following "barring convention": 

Given an alphabet Y., we reserve ~; to denote {d I a ~ Y.), "2 ('1 Y. = 9 .  Then for every word 

x in Y.*, .~ denotes the word resulting from x by barring each occurrence o f  each letter 

inx .  

(4) Let A = (Q, Z, A, 8, qi~, F) be a dgsm (deterministic generalized sequential machine 

with accepting states), so that 8 maps Q x ~ to Q x Y~*. Then 

(i) & and 80 denote the state and the output component of  8, respectively; 

(ii) the translation of A is defined by Tr(A) = {(x, ~o(qin, x) ) lx  ~ y.* and ~s( qin, x) 

F}; and 

(iii) DGSM denotes the class of  all dgsm mappings (all translations of  dgsm's). 

(5) We use FINSUB to denote the class of  all finite substitutions. We use FIN, REG, 

CF, CS, and RE to denote the classes of  finite, regular, context-free, context-sensitive, and 

recursively enumerable languages, respectively. 

Now we define two notions that are basic for this paper. 

(6) Let a be a (possibly partial) mapping, a : Y.* ~ A*. A word x in Z* is called afixed 
point of a if a(x) -- x. The fixed point language of a, denoted as Fp(a), is defined by 

Fp(a) -- {x E Y.* J a(x) = x}. Analogously for a dgsm A, a word x is a fixed point of A if 

x is a fixed point of  Tr(A). The fixed point language of A, denoted as Fp(4), is defined by 

Fp(A) = Fp(Tr(A)). For a relation a C ~* X A* the fixed point language is defined by 
Fp(a) = {x ~ X* Ix ~ a(x)). 

For a class X of  mappings or relations, FP(X) denotes the family of  all languages of  the 
form Fp(a) for a in X. 

(7) Let a, fl be (possibly partial) mappings on Y~*. The equality language of  a, fl, denoted 

as Eq(a, fl), is defined by Eq(a, fl) -- {x E Y.* Ja(x) = fl(x)). For relations a and fl we 

define Eq(a, fl) = {x E Y~*la(x) A fl(x) # O). For  dgsm's A and B, Eq(A, B) denotes 
Eq(Tr(A), Tr(B)). For a class X of  mappings or relations, EQ(X) is the family of  all 

languages of  the form Eq(a, fl) with a, fl ~ X. 
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(8) The following basic property of  concatenation of  words will be used in the sequel. 

LEMMA !. Let  x~, x2, y~, y2, u~, u2, va, v2 be arbitrary words, l f  xaya = x2y2, uayl = u2y2, 

and XlVl ~ X2V2~ then UlVl ~ /g2P2. 

PROOF. Without loss of  generality we may assume that I x~ I - I x2 [. Since x~ya = x2y2, 

xl is a prefix of  x2, i.e., there exists a word w such that x2 = xaw. 

Then x~yl = x2y2 implies xlya = xawy2 and so yl = wy2. Now Ulyl = u2y2 implies 

uawy2 = uzy2 and so u~w = us; and xlva = x2v2 implies x~v~ = XlWV2 and so v~ = wv2. Hence 

Ul~I  ~ UlWP2 ~ U2V2. [ ]  

3. Fixed Point Languages and Equality Languages 

In this section the fixed point languages and equality languages of  homomorphisms and 

dgsm mappings are illustrated by examples and some of  their basic properties are studied. 

This section may be skipped by the reader who is primarily interested in representation 

theorems. 

We start by noticing the following basic and useful relationship between fixed point 

languages and equality languages of  mappings (see also [7]). Since this result is obvious, it 
is given without proof. 

LEMMA 2. Let  a, fl be mappings or relations on Z* and let idz be the identity mapping on 

Y~*. Then Eq(a, fl) = Fp(fl- la) and Fp(a) = Eq(a, idz). [] 

Next we give examples of  equality languages of  homomorphisms and dgsm mappings. 

Example  1. Let a,/3 in HOM({a, b, c}, {a, b, c, d}) be defined by a(a) = a, a(b) = bc, 

a(c) = bd, fl(a) = ab, fl(b) = cb, and/3(c) = d. Then clearly Eq(a, fl) is the regular language 
(ab*c)*. 

Example  2. Let a, fl in HOM((a,  b}, {a)) be defined by a(a) = a, a(b) = ~, B(a) = 

~, and/3(b) = a. Then clearly Eq(a, fl) is the context-free language {x E {a, b}* I#~x = 
#bx}. 

Example  3. Let a, /3 in HOM({a, b, e}, {a, b}) be defined by a(a) = a, 

a(b) = b, a(c) = ~, /3(a) = ~, /3(b) = a, and/3(c) = b. Then Eq(a,/3)/'3 a*b*c* = {a"b"c" [ n 

_> 0} and so Eq(a,/3) is a non-context-free language. 

Note that all languages in EQ(HOM) are star events (in particular they contain the 

empty word). They have a more complicated structural property which is expressed in the 
following theorem. 

THEOREM 1. Let  K E E Q ( H O M )  and let x, y ,  u, v be words over the alphabet o f  K. I f  

xy, uy, xv  E K, then uv E K. 

PROOF. Let K = Eq(a~, a2). Define xi = ai(x) for i = 1, 2, and similarly fory, u, and v. 
Use Lemma 1. []  

The next result [12, 31] is an easy consequence of  this theorem. 

THEOREM 2. Let  K E E Q ( H O M )  over the alphabet ~, and let x,  y ~ Y~*. 

(i) l f  x y  ~ K, then (w E Y.* I xwy  E K }  is a star event. 

(ii) I f  x ~ K, then { v ~ Y~* I xv  E K} = K and { w E Z* l wx ~ K }  = K. 

PROOF 

(i) To show that i f xw , y ,  xw2y ~ K,  then xw~w2y E K,  let u = xw~ and v = w2y, and apply 
Theorem I. 

(ii) Takingy = ~, = u in Theorem l shows that if x, xv  E K, then v E K. This and the fact 
that K is a star event proves the first equation; the proof of  the second is symmetric. [] 
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Languages in EQ(DGSM) need not be star events. One can easily see that every regular 

language is in EQ(DGSM):  Simply consider all dgsm's which perform only identity 

translations on words in their domain, and then consider equality languages of  the form 

Eq(a, a) where a is such a dgsm mapping. It should also be clear that EQ(DGSM) is 

closed under intersection with regular languages (modify both dgsm's in such a way that 

words which are not in the given regular language are rejected). Consequently, if we 

intersect the language from Example 2 with a ' b *  we get the result that the context-free 

language { a n b " [ n  >- 0} is in EQ(DGSM); note that this language is not a star event. 

Similarly, Example 3 implies that the context-sensitive language {a"bnc  n In -> 0) is in 

EQ(DGSM).  Our next example provides a context-free star event which is in EQ(DGSM) 

but not in EQ(HOM). 

E x a m p l e  4. Let A be a dgsm with domain (a+b+) * which translates each word w -- 

am'bn'am2b ~ . . .  am*b ~ into bam'ba ~ . . .  ba ~k. Let B be a dgsm with the same domain 

which translates w into ba~'ba ~ . . .  ba ~*. A formal definition of  A and B is left to the 

reader. Obviously w E Eq(A, B) if and only if  mi = ni for 1 <_ i __ k. Hence Eq(A, B) is the 

context-free star event K = { a n b n l n  >- 1}*. Note that K ~ EQ(HOM) by Theorem 1: take, 

e.g., x = a, y = b, u = aab,  and v = abb. 

Languages in EQ(DGSM) have a structural property which generalizes the one of  

Theorem 1 concerning EQ(HOM). It says that if  K is in EQ(DGSM) and words wly,  w2y, 

. . . .  why are in K (with n sufficiently large), then there exist wi and wj which play the role 

of  x and u in Theorem 1. Formally this is stated in the next theorem. 

THEOREM 3. L e t  K E E Q ( D G S M ) .  There exis ts  an integer N such that  f o r  all n > N and  

f o r  all words  y ,  wl,  w2 . . . . .  wn, i f  wly,  wzy . . . . .  w~y E K ,  then there exist  i, j ,  1 <_ i < j <_ n, 

with the proper ty  that f o r  all words v, wiv E K i f  a n d  only i f  wjv E K.  

PROOF. Let K = Eq(A~, A2) with Ak = (Q~, 1~, A, 6*,q~, F k) for k = 1, 2. Let N = 

# Q ~ .  # Q Z .  Then there exist i and j such that Ak reaches the same state, say q~, after 

reading wi and wy (for both k = 1 and k = 2); i.e., 8~(qiln, Wi) = t~(q~n, Wi) = q~ and 
2 2 W 2 2 8~( qi~, i) = 8~( qi~, wi) = q2. Renaming wi as x and wj as u (or vice versa), the result now 

k easily follows from an application of Lemma 1 to the words Xk ---- 80( qi~, X), us = 

8ko(q~, u ) , y k  = 6ko(qk, y ) ,  and vk = 8oh(q~, v), for k = 1, 2. []  

As a consequence we obtain the following "pumping theorem" for EQ(DGSM).  

THEOREM 4. Le t  K E E Q ( D G S M ) .  There exis ts  an integer N such that f o r  all n > N a n d  

f o r  all words y ,  zl  . . . . .  z~, i f  z l y ,  zlz2y, z~z2zay . . . . .  zlz2 . . .  zny  ~ K ,  then there exist  i, j ,  

1 <_ i < j  <- n, such that, f o r  all m >__ 0, zl  . . .  zi(zi+l . . .  zj)mz~+a " "  z~y ~ K.  

PROOF. Let wk = z~ •. • zk. By Theorem 3 there exist i, j such that w,v E K if and only 

if wjv E K .  Taking v = zj÷~ • • • z~y, wjv E K implies w~v E K,  i.e., zl • • • z~zj+l • • • z~y ~ K.  

This proves the result for m = 0. Now let v = (zi+~ . . .  zi)mz~+~ . ' .  z~y  and assume by 

induction that wiv ~ K.  Then wjv ~ K,  i.e., w,zi+~ . .  • z~v = zl • . .  zi(z~+~ • • • zy)~+~z~÷~ • • • 

z~y ~ K.  [] 

E x a m p l e  5. Consider the language K = { $a~¢a~a2¢a~a2a3¢ . . .  Ca~a2 . . .  a~$ I ai ~ ~, for 

1 <-- i<_ n}, where ~ is an alphabet with ¢, $ ~ X. Application of  Theorem 4 with z~ = $al, 

zi = ¢ai . . .  ai for 2 ~ i ~ n and y = $ shows that K ~ EQ(DGSM).  

Now we turn to fLxed point languages. 

The fixed point languages of  homomorphisms are rather simple objects, as is shown by 

the following (effective) result from [25]. 

THEOREM 5. For every h o m o m o r p h i s m  a there exists a f i n i t e  language K such that  

Fp(a)  = K * .  
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However, the fixed point languages of  dgsm mappings form a more interesting class. 

Clearly this class contains all regular languages (consider all languages of  the form Fp(a)  

where a is a dgsm which performs the identity translation on its domain). Furthermore,  

our next example provides a non-context-free language in FP(DGSM).  

Example  6. Let Z be an alphabet with ¢, $ ~ Z. Let A be a dgsm with domain 

$Y~*(¢Ig*)*$ which translates each word w = $wlew2¢w3 . . .  ¢wn$ into $aiw2¢a2w3 . . .  

ean-lwnea,$, where ai is the first letter of  wi. Clearly w is a fixed point of  A if  and only if  

w,, = an and wi --- a,wg+i for 1 < i _< n - I. Hence Fp(A) = {$w~¢w2¢ . .  • ¢wn$ [ there exist 

al . . . .  , an ~ ~,  n _> 1, such that w, = ai - .  • an for 1 _< i _.< n}, which is not a context-free 

language. 

The language K of  Example 5 (K ~ EQ(DGSM))  is the mirror image of  the language 

Fp(A) of  Example 6. This shows that FP(DGSM)  and EQ(DGSM) are not closed under 

mirror image, or, in other words, the class of  fixed point languages of  "reversed" dgsm's 

(which move from right to left on the input word; cf. [12]) is incomparable to FP(DGSM).  

The following is another instructive example of  a non-context-free language in 

FP(DGSM).  

Example  7. Let A be a dgsm with domain (a*b*)*c which translates each word 
an°bn'an2b n3 . . .  bn~c into a2n'b2n~a 2~ . . .  a2n~bc. It is easy to see that Fp(A) = 

{a2*b2k-'a2*-2 . . .  b4a2bclk ~ I and k is odd}. Note that the mirror image of  Fp(A) is not 

in EQ(DGSM) by Theorem 4. 

Unfortunately we have not been able to find a structural property specific for languages 

in FP(DGSM).  The following combinatorial  lemma allows us to provide a few examples 

of  languages not in FP(DGSM).  

LEmMA 3. Let  K C_ ~* and let a, b be two different elements o f  Z.  I f  K contains an 

infinite subset o f  {a nb n [ n >_ 1 } and K C. {w ~ X* [¢~w = #bw},  then K ~ F P ( D G S M ) .  

PROOF. We will prove this result by contradiction. 

Let us assume that K satisfies the assumptions of  the lemma and that A = 

(Q, Z, A, 8, qt,, F )  is a dgsm such that K = Fp(A). 

Let n > # Q  be such that a"b n ~ K. Let i, j b e  integers, i < j ,  such tha tA reads both the 

ith and the f lh  occurrence of  a in the same state. Let x be the word produced by A on 

reading occurrences of  a from the ith one to the ( j  - l)st one. Clearly x = a ~ for some 

positive integer r (otherwise A would translate arab m into a word with prefix anb for each 

m ~ n ) .  

Note that when reading a "  for some m > n, A gets into a loop which translates each a j-~ 

into a ~. I f r  > j  - i, then there exists an mo such that for every m > mo, arab m is translated 

into a word with a prefix a ~ for k > m, which contradicts the fact that K contains an 

infinite subset of  {a"b" ln  > I}. On the other hand i f r  < j  - i, then for m "much larger" 

than n, a m is translated into a k with m - k large enough so that in reading b 's  following 

a's,  A will get into a loop and will translate almost all b 's  into a*, leaving at most # Q  - 

1 of  them to be translated into b's. This again implies that K contains only a finite subset 

of  {a"b " [ n > 1 }, a contradiction. 

Thus it must be that r = j  - i. Then, however, we get the result that a~+~b ~ ~ Fp(A), 

which contradicts the fact that Fp(A) _C {w U Z* ]#~w = #bw}. [ ]  

As a direct corollary of  the above lemma we get the result that, e.g., the language {x 

{a, b } * ] # , x  = #bx} from Example 2 is not in FP(DGSM)  and that Dyck languages are 
not in FP(DGSM).  

In the foregoing we have seen various examples of  languages that are and are not in the 

classes EQ(HOM), FP(HOM),  EQ(DGSM),  and FP(DGSM),  To broaden this picture, we 

now establish the interrelationships between these classes of  languages and furthermore 

we locate them within the classical Chomsky hierarchy. 
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THEOREM 6. The diagrams & Figure 1 hold, where U and I denote the union and 

intersection of EQ(HOM) and FP(DGSM), respectively. 

(In these diagrams a directed solid line leading from class X to class Y stands for the 

strict inclusion of  X in Y. The absence of  a line between classes X and Y stands for the fact 

that X and Y are incomparable but not disjoint classes.) 

PROOF. The weak inclusions in Figure la and b follow directly from Lemma 2, 

Theorem 5, and the obvious weak inclusions HOM _ DGSM, REG _ FP(DGSM), and 

EQ(DGSM) _ CS. 

The strict inclusions and incomparability results are proved as follows. 

Figure la 

(l) Example 2 provides a language in EQ(HOM) which, by Lemma 3, is not in 

FP(DGSM). 

(2) (ab U acb)* is a (regular) language in FP(DGSM) which, by Theorem 2(i), is not in 

EQ(HOM). 

(3) Example l provides a language in I which, by Theorem 5, is not in FP(HOM). 

(4) Example 4 provides a language in EQ(DGSM) - EQ(HOM). By Lemma 3 the same 

language is not in FP(DGSM). 

Note that all languages used above to prove (1) through (4) are star events. 

Figure lb. Now it suffices to prove the following. 

(5) Incomparability of  EQ(HOM) and FP(HOM) with FIN follows from the fact that 

a* E FP(HOM) and from Theorem 2(i), which implies that A is the only finite language 

in EQ(HOM). 

(6) Example 3 provides a non-context-free language in EQ(HOM), while Example 6 (as 

well as Example 7) provides a non-context-free language in FP(DGSM). 

(7) The context-free language {arab" I l <_ m <_ n} is not in EQ(DGSM) by Theorem 4 

( t a k e y = b " a n d z i = a ,  for l _ < i _ n ) .  []  

To get a still clearer picture of  the situation, we note that it was proved in [12] that there 

are no context-free languages in FP(DGSM) which are not regular. 

It is also easy to see (cf. [12]) that EQ(DGSM) _ DSPACE(Iog n). In fact, every language 

Eq(AI, A2) E EQ(DGSM) can be simulated by a one-way deterministic two-head finite 
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state automaton which uses its ith head to simulate Ai, alternates the simulation of A~ and 
Az in such a way that the difference between the output words of A~ and A2 stays bounded, 
and checks at each moment that one of the output words is a prefix of the other. 

We end this section by a brief consideration of the case of the a-transducer (nondeter- 
ministic finite state transducer with h-input and accepting states). Let A-TR denote the 
class of all a-transducer mappings. 

THEOREM 7. EQ(A-TR)  = FP(A-TR), and this class is equal to the class of  languages 
accepted by one-way nondeterministic two-head finite state automata. 

PROOF. The first equality follows from Lemma 2 and the fact that A-TR is closed 
under composition and inverse (and contains all identities). 

It is easy to see that the fixed point language of an a-transducer A can be recognized by 
a two-head automaton which simulates A with one head and keeps track of the output (on 
the input word, if possible) with the other head. 

Now let M be a one-way nondeterministic two-head automaton. We define two a- 
transducers A~ and A2 as follows, using a technique from [21]: A1 simulates the first head 
(and the finite control) of M by choosing and executing any instruction of M which is 
consistent with these, disregarding the behavior of the second head. The output ofd~ is the 
string of chosen instructions. A2 is defined similarly, simulating the second head of M. 

Clearly a word w is accepted by M if and only if there is a sequence of instructions (of M) 
which is "executable" by both A1 and A2, i.e., A~(w) N A2(w) ~ ~, i.e., w E Eq(A1, A2). 
Hence Eq(A~, A2) is the language accepted by M. [] 

4. Representations o f  Recursivelfl Enumerable Languages 

Representing the class RE of recursively enumerable languages through "simple" opera- 
tions on a "small" subclass of RE is a traditional topic within formal language theory. 

Such representation theorems can be used to show that certain problems are undecidable 
for languages in the subclass [23, 24], to show that the subclass is not closed under the 

operations [16], or to show the existence of simple AFL generators of RE [3, 15]. Since 
each RE language is the homomorphic image of the set of computations, suitably coded as 
strings, of a Turing machine (accepting or generating the language), these results are 
usually obtained by representing the class of"computation languages" of Turing machines. 

Example 8. It is well known [30] and easy to see that each computation language of a 
Turing machine can be recognized by a (deterministic) one-way two-head finite state 
automaton. Hence, by Theorem 7, each RE language is the homomorphic image of the 
fixed point language of an a-transducer. 

In this section we show the slightly stronger result that each RE language is the 

homomorphic image of the fixed point language of a dgsm mapping. We then demonstrate 
in this and the next section how (versions of) several other (known or unknown) 
representation theorems easily follow from this basic result together with some obvious 
properties of dgsm's. 

Note that the idea behind the proof of the next result is a simple variation on the 
classical construction used to prove the undecidability of the Post correspondence problem. 

THEOREM 8. For each recursivelfl enumerable language K over an alphabet ~. there exists 
a dgsm mapping ct such that K = Pres~(Fp(a)). 

PROOf. We prove this theorem by demonstrating how the fixed point language of a 
dgsm simulates the set of computations of a deterministic Turing machine. For this purpose 
the formalism for Turing machines as in [5] will be especially useful. In particular, we 
assume that a Turing machine has a finite, but extendible, tape, as well as instructions 
(q, a, q', erase, move left) applicable only at the right end of its tape and instructions 
(q, a, q', erase, move right) applicable only at the left end of its tape; these instructions 
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cause the tape to contract (shrink). Moreover, it accepts by producing the empty tape (not 

to be confused with the blank tape!) in its (unique) final state. 

Given a deterministic Turing machine A accepting the language K over ~,  we define a 

computation string of  A to be a string of  the form $w~¢ff2¢ff3 • • • ¢ffn$ such that 

(i) n >- 2; 
(ii) ¢ and $ are two new symbols not in the alphabet of  A; 

(iii) w~, w2 . . . . .  wn are configurations of  A, i.e., words uqv where u, v are words over the 

alphabet of  A and q is a state of  A (and as usual ffi is the barred version of  wi); 

(iv) wl = qi~w is an initial configuration of  A, where q~ is the initial state of  A and w is 

an input word over ~; 
(v) w~ = qf is the final configuration of  A, where qf is the final state of  A. 

We now define a successful computation string of  A to be a computation string $w~¢ff2¢ffa 

• . .  ¢ ~ $  such that w~+l is the successor of  w~ (due to the execution of  one instruction of  A) 

for 1 <_ i _< n - 1. The successful computation language of  A, denoted as Scomp(A), is the 

set of  all successful computation strings of  A. 
Clearly K = Presz(Scomp(A)). Hence to prove the theorem it suffices to show that there 

exists a dgsm B such that Fp(B) = Scomp(A). To this aim we construct B as follows (note 

the resemblance to Example 6). Using its finite control, B rejects all words which are not 

computation strings of  A (note that the set of  computation strings is regular). The 

translation of  a computation string Sw~¢ff2¢ • . .  ¢~n$ is done by B as follows: 

(i) It erases $wl, paying attention to the "local situation" in w~, that is, the state of  A 

and the symbol read by A, and storing in its finite control the instruction J~ of  A 

corresponding to this situation in A. 
2 is (ii) On the basis of  the information in (i) it rewrites ¢ff2 into the word Sw~ where w' 

the (unique) predecessor of  w2 (if it exists) by instruction J~; otherwise the string is 

rejected (note that w[ can be obtained from wz by a local change only; note also 

that w[ is unique because the change involves the unique state occurring in w2). In 

performing this step B stores in its finite control the instruction J2 corresponding to 

configuration w2 in A. 
(iii) Then, for 3 --< i _< n, it rewrites ¢ff~ into ¢ff~, where  w~ is the predecessor of  w~ (if it 

exists) by instruction Ji-~; otherwise it rejects the string. In performing this step B 

stores the instruction Jz corresponding to configuration w~ in A. 

(iv) Finally, it rewrites $ into ¢ffn$, where wn = qr. 

As an example, if  Ji-, = (q, a, q' ,  print b, move right), then B rewrites bq'd by qad 
(for d ~ ¢) and bq'¢ by q¢ (if a is the blank symbol) in ¢w,¢, where bars should of  course 

be added. As another example, if&_~ = (q, a, q', erase, move right), then B rewrites cq '  by 

Cqa in ¢w~¢. 
Thus B translates a computation string x = $w~¢~.~¢ff3 . . .  ¢ffn$ into $w~¢~ . . .  

¢ff'¢ff~$. Hence x is a fixed point of  B if  and only ifwi = w~+~ for 1 _< i___ n - 1 (i.e., w~ is 

the predecessor of  w~+~ according to the instruction corresponding to w~; i.e., w~+~ is the 

successor of  wi). In other words, x E Fp(B) if and only if x is a successful computation 

string. So Fp(B) = Scomp(A) and K = Pres~-(Scomp(A)). [] 

We would like to make the following remarks concerning the above proof. When the 

dgsm B simulates the Turing machine A, it translates prefixes (of the input) of  the form 

$w~¢ff~ • • • ¢~,+~ into prefixes (of the output) of  the form $w~ ¢ff~ • • • ¢ff~. Since, in general, 

the length of  w~+~ can get arbitrarily long, we obtain in this way examples of  dgsm's which 

when translating strings into themselves get into situations in which the length of  the input 

already translated can become arbitrarily larger than the length of  the output already 

obtained. This is a remarkable and very essential property of  dgsm's. As a matter of  fact, 

we show in [12] that if this property does not hold, the fixed point language of  a dgsm is 

regular. 



5 0 8  J. ENGELFRIET AND G.  ROZENBERG 

We will now investigate several representations of  the fixed point languages of  dgsm 

mappings. These results will then be used to provide various representations of  the RE 

languages. One should notice that all representation results mentioned in this paper are 

effective. 

Our first result in this line is based on the well-known representation of  a-transducer 

mappings by a pair of  homomorphisms and a regular language (see, e.g., [11, 29]). 

LEMMA 4. Let a be a dgsm mapping on ~,*. There exist a coding fl, a homomorphism 

y, and a regular language M such that Fp(a) = Presx(Eq(fl, y) O M). 

PROOF. L e t A  = (Q,Y~,A, 8, q~,,F) b e a d g s m s u c h  that Tr(A) = a. Let O = Y~U 

{(q, a) l q E Q and a E Y-} and ,8, y E HOM(O, Y,) be defined by fl(q, a) = a = ,8(a), and 

y(a) = A, y(q, a) - d(do(q, a)) where d is the homomorphism which doubles each letter b, 

i.e., d(b) = bb. Let M be the regular language over O consisting of  all words of  the form 

(qo, ao)ao(q, al)al " ' "  ( q i ,  a i ) a i ( q i + l ,  a i + l ) a i + l  . . .  (q,, am)an such that qo = qin, 8s(q~, an) 
F and 8s(qi, ai) = qi+l for 0 ~ i _< n - 1. 

Since obviously {(d(y), d(z))l(y,  z) ~ a} = {(#(x), "r(x))lx ~ M}, we get Fp(a) = 

Presx(Eq(fl, y) N M)  and the result holds. []  

By a slight modification of  the proof of  the above lemma we get a representation of  the 

fixed point languages ofdgsm mappings by the fixed point languages of  finite substitutions. 

LEMMA 5. Let a be a dgsm mapping on Y~*. There exist a finite substitution ,8 and a 

regular language M such that Fp(a) = Presx(Fp([3) N M). 

PROOF. Let A = (Q, Y., A, 8, qi,, F)  be a dgsm such that Tr(A) = a. Let O = Y. U 

((q, a)[q ~ Q and a E E} and l e t / / U  FINSUB be defined by ,8(a) --- A and fl(q, a) = 

{(q0, ao)ao(q, al)al . . .  (q,, a,)a, lSo(q, a) -- aoa~ . . .  an). Let M be the same regular 

language as in the proof  of  Lemma 4. Then obviously Fp(a) -- Presx(Fp(fl) n M). [] 

Finally we will use linear (context-free) languages to represent fixed point languages of  

dgsm mappings. The proof is based on a well-known simulation of  dgsm mappings by 

linear grammars [18]. For the notion of  a simple deterministic (context-free) language we 

refer the reader to [27]. 

LEMMA 6. Let a be a dgsm mapping on Y.*. There exists a simple deterministic linear 

language M C. ~ * # 4 ~ *  such that Fp(a) = Presx({x##£r~lx E ~} O M), where # ~ Y.. 

PROOF. Let A = (Q, ~, A, 8, qin, F)  be a dgsm such that Tr(A) = a, and let G = 

(Q, E o z~ t.J (#,  ¢~}, P, q~,) be the context-free grammar defined by 

(i) for every q in F, q ~ #¢7 is in P, and 

(ii) for every q in Q and a E Y-, if 8(q, a) = (q', w), then q---> aq'~, R is in P. 

Note that G is linear and, moreover, because A is a deterministic gsm, G is simple 

deterministic. Since L(G) = {x#C~fRl(x, y) E Tr(A)}, if we set M = L(G), then indeed 

Fp(a) = Presz({x#~7;RIx ~ X*) n M) and the lemma holds. []  

We note that # is not needed but is added for symmetry. 

Theorem 8 together with these representation results for fixed point languages of  dgsm's 

(Lemmas 4--6) now yield various representations of  RE languages (note that weak identities 
are closed under composition). 

The first result concerns equality languages of  homomorphisms, i.e., sets of  solutions of  

instances of  the Post correspondence problem; see also [6, 12, 31]. 

THEOREM 9. For each recursively enumerable language K there exist a coding fl, a 

homomorphism y, a weak identity a, and a regular language M such that K = 

o~(Eq(]3, V) n M). 

PROOF. Direct from Theorem 8 and Lemma 4. []  
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It is easy to see that Lemma 4 also holds for a-transducers if one allows fl to be an 

arbitrary homomorphism. Therefore the corresponding weaker version of  Theorem 9 

already follows easily from Theorem 7 and Example 8. Other versions of  this result are 

shown in [6, 12, 31] and in the next section; see the discussion at the end of  the next section 
for a comparison. 

The next result concerns fixed point languages of  finite substitutions. 

THEOREM 10. For each recursively enumerable language K there exist a finite substitution 
fl, a weak identity a, and a regular language M such that K = ct(Fp(fl) A M).  

PROOf. Direct from Theorem 8 and Lemma 5. []  

It is instructive to compare the above result with Theorem 5; it certainly sheds some 

light on the question of  how much stronger is the language generating power of  finite 
substitutions than that of  homomorphisms. 

The last result concerns the well-known representation of  RE languages by the intersec- 

tion of  two context-free languages, originally appearing in [16, 23] and the less well-known 
[22]. 

THEOREM 1 1. For each recursively enumerable language K there exist an alphabet A, a 

simple deterministic linear language M C__ A÷.~ ÷, and a weak identity c~ such that K = 
a({w~nl w E a +} ci M). 

PROOF. Direct from Theorem 8 and Lemma 6 (let A -- ~.. U {#}). []  

Note that {w~,R[w ~ A ÷} is also a simple deterministic linear language. 

Let us compare Theorem 11 with several similar results in the literature (without 

claiming completeness[) (see also [32]). The general format of  such results is that each RE 

language is of  the form a(Ml N M2), where M~ and 3'/2 are context-free languages and c~ 

is a weak identity. Two goals can be distinguished in the competition to obtain the simplest 

result of  this kind: (1) M~ and M2 are taken from a small subclass of  CF, and (2) one of  M~ 
and M2 is of  a "fixed form" (such as a Dyck language). 

With respect to (1), Theorem 11 strengthens the results from [16, 23] and [3], where M~ 

and 3'/2 are both deterministic and both linear, respectively. A result strengthening that of  

[16, 23] but not of  [3] is the one of  [24], also discussed in [15], where M~ and M2 are taken 

from the smallest family containing REG and {a~bn[n > 1} and closed under inverse 
dgsm mappings and marked Kleene +. 

With respect to (2), note that (in Theorem 11) since M C A+,~ +, the language 

{w~R]w E A +} may be replaced without trouble by the Dyck language over A. Thus 

Theorem 7 strengthens the result of  [22], where M, is a Dyck language (see also [33] where 

a weaker version is stated), and similarly a result of  [34], where M~ is a "Dyck-like" 
language and M2 is deterministic. 

Strongly related representation results are those using pushdown transductions. In [17] 

it is shown that each RE language is of  the form a(M),  where M is a context-free language 

and a is a nondeterministic pushdown transduction; this result is clearly an easy conse- 

quence of  that of[16, 23]. It is easy to see from Theorem 11 that each RE language is the 

image of  {W~:R]W E {0, 1} +} under a deterministic one-turn pushdown transducer. 

Similarly one obtains from Theorem I i the result that each RE language is of  the form 

a(~8-~({w~R[ w E {0, 1}+})), where a is a weak identity and/~ a deterministic one-turn 
pushdown transduction (cf. [34]). Note finally that each RE language is accepted by a 

nondeterministic automaton with two one-turn pushdown tapes [3] and (by Theorem 11) 

is the range of  a deterministic transducer with two one-turn pushdown tapes (see also 
Section 7). 

We end this section with a few additional remarks on Theorems 8-11. First, we hope to 

have made it clear that these results are strongly interrelated. As another example, suppose 

one has a proof of  a weaker version of  Theorem 9 where/~ is only known to be a h-free 
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homomorphism. From this one can then easily derive Theorems 9 and 10 as follows: (i) 
Eq(fl, ~) = Fp(/~-~'r) -- Fp(a)  for some (nondeterministic) gsm mapping; (ii) Lemmas 4 
and 5 also hold for gsm mappings, by a slight modification of the proofs; (iii) the set- 

theoretic equal i tyf(A)  N B = f ( A  n f - ~ ( B ) )  can be used to "get M inside." In the same 
way one can prove Theorem 11 without the simple determinism (which seems to be a 

specific application of Theorem 8). 
Second, Theorems 8-11 implicitly involve an alphabet V which is the domain of the 

weak identity a = Presv.x, where ~ is the alphabet of  K. In Theorem 8 the usual trick of 
coding all symbols in V - ~ over {0, 1 ) can be used to show that one can always take 
V--  E U {0, 1}: the dgsm can easily read and produce coded symbols. This implies that 

A = 2 U {0, 1, #} in Theorem 11 (with V = A U A), i.e., V only depends on the alphabet 

of  K. It is not clear whether a similar statement holds for Theorems 9 and 10. 
Third, Theorems 8-10 imply that the class RE can be generated (in the sense of AFL 

theory) by each of  the classes FP(DGSM),  EQ(HOM),  and FP(FINSUB).  That means 

that RE -- Ca(K) Ict is an a-transduction and K ~ FP(DGSM)} and similarly for EQ(HOM) 
and FP(FINSUB).  Since RE is a full principal semi-AFL [12], there exists a language 

K0 E RE which is a full generator of  RE; i.e., RE -- {a(Ko) la  is an a-transduction}. 

'Consequently there is also a full generator of  RE in FP(DGSM); i,e., there exists K~ E 
FP(DGSM) such that RE = {a(K~)[a is an a-transduction}. Similarly, full generators of  
RE can be found in EQ(HOM) and FP(FINSUB).  In the next section we show the 

existence in EQ(HOM) of a very simple generator of  RE. 

5. Complete Twin Shuffles 

In this section we demonstrate the existence of  a class of  languages of  a fixed form (the 
complete twin shuffles) which can be used to characterize each of the following classes of  
languages: EQ(HOM), EQ(DGSM),  and RE. These languages play the same role for the 

class RE as the Dyck languages play for the class of  context-free languages. By the usual 
"coding into two letters" argument this will imply the existence of a single language 
characterizing the classes EQ(HOM), EQ(DGSM),  and RE: They are the smallest classes 
which contain this particular language and are closed under inverse homomorphisms, 
inverse dgsm mappings, and dgsm mappings, respectively. Thus this particular language 
(complete twin shuffle over {0, 1}) is the hardest language (in the sense of [20]) for 

EQ(HOM) and is a full AFL generator of  RE. 
It is well known from AFL theory [15] that simple generators of  RE (or any other AFL) 

can be obtained from simple representation theorems of  the kind of Theorem 11: Roughly 
speaking, it suffices to take a generator of  the involved subclass of  RE and shuffle it with 
itself (cf. [3, Cor. 4]). As usual, for strings x and y we denote by shuffle(x, y) the finite 

language {xl ylx2 f2 " ' "  X n f n  I X  = X I X 2  " ' "  X a  and y = yl y2 " "  y,}.  For languages L1 and 

L2, shuffle(L~, L~) = U {shuffle(x, y) lx e Lh y e L2}. To shuffle a language L with itself, 
one considers shuffle(L,/5). We will show that an alternative way of shuffling a language 

with itself gives rise to a very simple generator of  RE (by an application of Theorem 8): 
Each word of the language is shuffled only with (a barred version of) itself. 

Definition 1. The complete twin shuffle over an alphabet ~ is the language Lx = 

tJ Cshuffle(w, ff)l w E 2*}. 

Note that Lx = {w E (2 U ~)* [Presx(w) = Pres2(w)}. Note that the simplest Lx (with 

a singleton) is isomorphic to the context-free equality language {x E {a, b}* l#ax  = 

#bx} (see Example 2). In fact, each Lz is a (very simple) equality language. 

LEMMA 7. For every 2, Lz ~ EQ(HOM)  - FP(DGSM). 

PRoof. Let a, fl in HOM(Z U ~, ~) be defined as follows: For every a in Z U ,%, 

{~  if o E I ~ ,  {X a if aEY~, 
a ( a ) =  if a E ~ . ,  and f l(a)= if a E l ~ .  
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Then obviously Eq(a, B) = Lz. Hence Lz E EQ(HOM). The fact that Lz ~ FP(DGSM) 

follows as a straightforward application of  Lemma 3. []  

Next we show how to use Ltoa~ to represent an arbitrary language in EQ(HOM) and an 

arbitrary language in EQ(DGSM); this will provide the basis for a characterization of  

EQ(HOM) and EQ(DGSM). 

LEMMA 8 

(0 Let K ~ EQ(HOM).  There exists a homomorphism y such that K = y-l(Lio.l~). 
-1 Z (iO Let K ~ EQ(DGSM).  There exists a dgsm mapping ~ such that K = "y (co.1~). 

PROOF 

(i) Let K = Eq(a, fl) with a, fl in HOM(Z, A). Let A = {a~ . . . . .  a,}. Let ~ in 

HOM(A, {0, 1)) be defined by q~(ai) = 0il for 1 <: i _< n and let ~ in HOM(Z, {0, 1}) be 

defined by y(b) = ep(a(b))ep(fl(b)) for every b in Z. Clearly, for every w in Z, a(w) = fl(w) 

if and only if 7(w) ~ Lto,1 ~. Consequently K = ~,-l(L(oaj), and the result holds. 

(ii) Let K = Eq(a, fl) with a = Tr(A ) and fl = Tr(B) where A_--_(Q, Y., A, 8, qi., F) and 

B = (Q', ~, A, 8', q~, F ')  are dgsm's. Let D = (Q x Q', Z, {0, 1,0,1 ), p, (qi~, q ' ) ,  F x F')  

be the dgsm with P defined as follows: 0((p, q), a) = ((pl, ql), q~(x)0-'('~ ) where 8(p, a) = 

(p~, x), 8'(q, a) = (q ,  y), and q~ is defined as in (i) above. Then clearly K = y-l(Ltonl), 

where y = Tr(D). [] 

The above result yields the following theorem characterizing EQ(HOM) and 

EQ(DGSM). 

THEOREM 12 

(0 E Q ( H O M )  = {~,-~(L~o,,~)13, ~ H O M ) ,  and it is the smallest class containing L~o, al 

and closed under inverse homomorphisms. 

(iO EQ(DGSM)  = (3,-a(L~o.l~) I ' / ~  DGSM},  and it is the smallest class containing Lio.l ) 
and closed under inverse dgsm mappings. 

PROOF. We start by observing that if X is a class of  mappings which is closed under 

composition, then EQ(X) is closed under inverses of  mappings from X. This follows 

because y-~(Eq(a, fl)) = Eq(ay, fl'/). In particular it means that EQ(HOM) is closed under 

inverse homomorphisms and EQ(DGSM) is closed under inverse dgsm mappings. Now 

(i) follows from Lemma 7 and Lemma 8(i), and (ii) follows from Lemma 7 and Lemma 

8(ii). [] 

Next we show how to represent fixed point languages of dgsm mappings by using 

languages Lz. 

LEMMA 9. Let a be a dgsm mapping on Z*. There exists a regular language M such that 

Fp(a) = Presz(Lz N M). 

PROOF. Let A = (Q, Z, A, 8, qi., F)  be a dgsm such that Tr(A) = a. Let B = 

(Q, Z, Z to A. 8', qi,, F)  be the dgsm where 8' is defined by 6(q, a) = (p, w) if and only if 

6'(q, a) = (p, a~). Let Tr(B) =/3. Since M --/3(Z*) is a regular language and obviously 

Fp(a) = Pres,_.(Lz N M), the result holds. []  

Now we proceed to demonstrate how complete twin shuffles can be used to represent 

recursively enumerable languages. 

THEOREM 13. Let K be a recursively enumerable language. 

(i) There exist an alphabet Z, a weak identity a, and a regular language M such that 

K = c~(Lz fq M). 

(ii) There exist a weak identity a, a homomorphism fl, and a regular language M such 

that K = c~(/3-1(Lio.~) Iq M). 

(iii) There exists a dgsm mapping y such that K = y(L~onl). 
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PROOF 

(i) This follows directly from Theorem 8 and Lemma 9. 

(ii) By_(i), K = a(Lz n M). Let Z  ̀ = {a~ . . . . .  an} and let fl in HOM(Z U ~, 

{0, 1, 0, 1 }) be defined by fl(a3 = 0q, fl(&) = 0 ~  for 1 ~ i _< n. Then clearly L~ = 

fl-l(L{0.1)), and consequently K = a(fl-l(L(o,1)) n M). 
(iii) Let a and fl be as above. Then we get K = a(fl-J(L(oj)) n M) = afl-l(Lio.l) n 

fl(M)). Since fl(M) is regular and fl-~ is obviously a dgsm mapping, there exists a dgsm 

mapping 1, such that K = "t(L~o,~0. []  

We end this section with several comments concerning Theorem 13. 

It is easy to see that the alphabet ~ in Theorem 13(i) may be taken equal to 

A U (0, 1 }, where A is the alphabet o f  K (cf. the second remark at the end of  Section 4). 

Note that Lemma 9 also holds for a-transducers. Therefore Theorem 130) would also 
follow from Example 8. 

It is interesting to note that Theorem 13(i) is an analog of  the Chomsky-Schutzenberger 

theorem for context-free languages, which says that every context-free language K is of  the 

form K = a(Dx n M), where Z  ̀is an alphabet, Dz is the Dyck language over Y., M is a 

regular language, and a is a weak identity. But then if we define fl similarly to the way it 

was defined in the proof of  Theorem 13(ii) so that it codes elements of  X into bytes over 

(0, 1}, then indeed we get K = a(fl-l(D~o,l)) n M) and so K = y(Dio.1)) for a dgsm 3,. 

Hence Lx (or Lto.1)) plays the same role for recursively enumerable languages as Dz (or 
Dto,1)) for context-free languages. 

Exactly the same theorem holds with L~ instead of  Lx, where L~: is the shuffle o f P z  = 

{w_walw U Z`*} with itself (where _w means w with a bar under each symbol), i.e., L~: = 

shuffle(Pz, Pz). In fact it is eas), to see that Lz = Preszu~(L~ n M), where M is the regular 

language (~ U X)*.{a#la E Z`}*; from this the result can be shown using Theorem 13. 
Note that L:~ is the intersection of  two deterministic context-free languages (cf. Theorem 

11); L~ is not in EQ(HOM) by Theorem 2(i). Similar shuffle results have been shown in 
[3, 14, 15]. 

Actually, in Theorem 2 of  [14] it is shown that representations of  the form K = 

ct(K~ n M), where Kz is a "tLxed" language, are valid for each full principal AFL. Roughly, 

Kz from [14] is shuffle(Z,*, shuffle(Z*, P)) where P is a specific generator of  the AFL C 
under consideration; P is obtained from the machine ("network") representation of  C 
(cf. [15, 19] and Section 7). 

It was shown in [31] that RE = {a(K)[a  E DGSM and K ~ EQ(HOM)}. Since, by 

Lemma 7, Lto, l) E EQ(HOM), Theorem 13(iii) is a stronger version of  this result. 

Another interesting consequence o f  Theorem 13(iii) is that if X is a class of  languages 

properly included in RE and closed under dgsm mappings, then L~ow ~ X and even 

Lx ~ Xfo r  every Z  ̀with # ~  _> 2 (because L~oal is a homomorphic image of  such an L,9. 

In this way we get, for example, the following application of  Theorem 13(iii): I f  #Y. _> 2, 

then Lz is a (context-sensitive) language which is neither in the class of  indexed languages 
(see [ 1 ]) nor in the class of tree-transformation languages. 

Theorem 9, Theorem 13(i), and Theorem 6 from [12] provide three versions of  the fact, 

obtained independently in [31], that for each RE language K there exist homomorphisms 

fl and y, a weak identity a, and a regular language M such that K = a(Eq(fl, y) n M). In 

Theorem 9 we have demonstrated that fl can be taken as a coding, and in Theorem 13(i) 

we have shown that Eq(fl, 1') can be replaced by an equality language of  fixed form (L~ for 

some Z`), whereas in [12, 31] it is shown that M can be taken in a fixed form (Y~*A* for 

some alphabets Z  ̀and A). It has recently been shown in [6] that one can even omit M 

in case K is a star event; the main result in [6] is that each RE language K is of  

the form a(Pref(Eq(fl, V))), where Pref(L) = (x ~ L Ix # ~ and no proper prefix y of  x, 
except A, is in L}. 
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6. Some Decision Problems 

In this section we consider some basic decision problems relevant to the material that we 

have presented so far. We consider those results that are implied by representation 

theorems for recursively enumerable sets that were given before. 
Our first result answers three of  the most natural decision problems concerning fixed 

point languages of  dgsm's. 

THEOREM 14 

(0 It is decidable whether or not Fp(A ) = Y.* f o r  an arbitrary dgsm A: 

(it) I t  is undecidable whether or not Fp(A ) = f~ f o r  an arbitrary dgsm mapping A. 

(iii) I t  is undecidable whether or not Fp(A ) is f inite f o r  an arbitrary dgsm mapping A. 

PROOF 

(i) Let A = (Q, ~, A, 6, q~, F)  be a dgsm and let Qr be the set of  all states reachable 

from qt,. It is easy to see that Fp(A ) = Z* if and only if Qr __. F and 6o(q, a) -- a for all 

a E Z and all q ~ Qr. 
(ii) This follows from Theorem 8: A language 3(Fp(a)), where 13 is a homomorphism, 

is empty if and only if Fp(a) is empty. Therefore the decidability of  the emptiness problem 

for the fixed point languages of  dgsm's would imply the decidability of  the emptiness 

problem for recursively enumerable languages, but this problem is undecidable. 

(iii) This follows similarly from (the proof of) Theorem 8. Notice that 3, as constructed 

in that proof, is an injective mapping on Fp(ct) (due to the determinism of the simulated 

Turing machines). []  

Theorem 14(i) can be strengthened quite considerably. It was shown in [9] that it is 

decidable whether or not K _ Eq(A, B) for an arbitrary context-free language K and 

arbitrary dgsm's A and B. It was recently shown in [7] that Theorem 14(i) is true for 

deterministic pushdown transducers and that it is even decidable for a nondeterministic 

pushdown transducer whether it realizes a subset of  the identity. 
A stronger version of  Theorem 14(ii) was proved in [12]: The emptiness problem is even 

undecidable for the fixed point languages of  D2L mappings. 
Finally the reader should realize that the undecidability of  the finiteness problem for 

EQ(HOM) is known under the name of  Post correspondence problem. 

Next we turn to similar problems concerning complete twin shuffles. We show that it 

is undecidable for an arbitrary regular language M whether or not it contains a string 

from Lto.x~. 

THEOREM 15. It  is undecidable whether or not 

(i) M A Lto,11 = 0 ,  

(ii) M N Lto, l) is finite, 

where M is an arbitrary regular language. 

PROOF. It follows from the proof of  Theorem 13(i) (and so from the proofs of  Theorem 

8 and Lemma 9) that each recursively enumerable language K is (effectively) of  the form 

K = a(Lz N M),  where a is an injective mapping on Lz N M. Since both the emptiness and 

the finiteness problems are undecidable for recursively enumerable languages, this implies 

that both emptiness and finiteness are not decidable for languages of  the form 

Lz N M, where M is a regular language. But then if we code elements of  E into "bytes" 

from {0, 1} (see our proof of  Theorem 13(ii)), we also get that both emptiness and finiteness 

are undecidable for languages of  the form M fq Lio.a J, where M is a regular language. [] 

Obviously Theorem 15 is true for any other L~_ providing that #Y. ~ 2. This yields the 

following result. 

THEOREM 16. Let ~-, be an alphabet such that #Y. >_ 2. Let I TM be a family  o f  grammars 
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such that there exists an algorithm which, given an arbitrary finite automaton A and 

an arbitrary grammar G in F, decides whether or not L(G) n L(A)  = ~. Then Lz f~ 
{L(G) I G e F}. 

The usefulness of the above result stems from the fact that it allows one to locate 
"concrete" languages in between the class of context-sensitive languages and various 
subclasses of it. Thus, for example, we have the following result. 

COROLLARY 1. For every ~. with #~. > 2, Lz is a context-sensitive language which is not 
an I 0  macro langauge. 

Note that the class of IO macro languages (see [13]) is not closed under dgsm mappings, 

so that the above result cannot be obtained from Theorem 13(iii) (see the discussion 
following Theorem 13 at the end of the last section). 

In the same way as Theorem 15 was proved on the basis of Theorem 13(i), one can, 
using Theorem 11, prove the following result. 

THEOREM 17. It is undecidable whether or not 

(0 M A {wff~RIwE {0, 1}*} = ~ ,  
(i 0 g o  { w ~ n l w E  {0, 1}*} isfinite, 

where M is an arbitrary simple deterministic linear language. 

7. Equality Machines 

Guided by the results of the previous sections we present in this section an automaton 
(called the equality machine) which nondeterministically accepts all recursively enumerable 
languages and deterministically accepts all languages in the class EQ(DGSM). 

The equality machine has the usual structure of a one-way acceptor (see Figure 2). It 

has a one-way input tape, a finite control, and a memory. The memory part consists of two 
write-only tapes (i.e., two tapes of the kind mostly used as output tapes); thus the machine 
has no tests on its memory. Initially the memory tapes are empty. The interesting feature 
of the equality machine, making it different from other machines, is that it "accepts by 

equality" (and final state): At the end of its computation the machine accepts the input 
only if the contents of the two memory tapes are the same. 

Thus the equality machine may be regarded as a very special case of the (one-way 
nondeterministic) machine with two one-turn pushdown stores (equality may be checked 

by popping the symbols on each tape simultaneously); it was shown in [3] using their 
version of Theorem 11 that each RE language can be accepted by such a machine. 
Similarly, the equality machine is a special case of the recently introduced (one-way 
nondeterministic) machine with two "reset" tapes [4] (equality can be checked by resetting 
each head to the beginning of its tape and moving them simultaneously to the right); each 
RE language can be accepted by such a machine [4]. 

11 I write-only 
tapes 

21 

l 
input 

finite 

control 

FIGURE 2 
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The equality machine can be formalized as follows. 

Definition 2. A (one-way, nondeterministic) equality machine M is a structure (Q, Y~, 

A, 8, qi., F)  where Q is the finite set of  states, qin ~ Q is the initial state, F _  Q is the set 

of  final states, Z is the input alphabet, A is the memory alphabet, and 8 is a mapping from 

Q × Z* into the finite subsets o f Q  x (A x {1, 2})*. 

The interpretation of  (q, u) E 6(p, w) is that M, in state p, may move its input pointer 

over the string w, go into state q, and execute the sequence of  instructions u on its memory. 

An instruction (a, 1) is executed by writing the symbol a at the right end of  its memory 

tape 1, and similarly for (a, 2). 

Definition 3. Let M = (Q, Z, A, 8, qm, F) be an equality machine. 

(1) For u E (A x {1, 2})* we define if:A* × A* ..-, A* × A* as follows: For vl, v2 E A* 

and a E A, (a, l)(vl, v2) = (via, v2) and (a,----~)(vl, v2) = (vl, v2a); for u = ulu~ . . .  un 

(ui ~ A × {1, 2}, n >_ 1), if(v1, v2) -- fin(.., ff2(ffl(vl, v2)) . - . ) ;  for u -- X, if(v1, v_o) = (vl, v2). 

(2) A configuration of  M is of  the form (q, w, (v~, v2)) with q E Q, w E Z*, and 

vl, v2 E A*. If  (q, u) U 6(p, w), then we write (p, ww', (vl, v2)) t-  (q, w', if(v1, v2)). The 

relation ~- is defined as usual. 

(3) The language accepted by M is L(M)  = {w ~ ~.* [(qi,, w, (h, ?Q)I L (q, 2~, (v, v)) for 

some q ~ F a n d  v E A*}. 

Note that in the definition of  8 (in Definition 2) we could have taken (A X {1})*(A × 
(2})* instead of(A X (I, 2})*. 

Definition 4. An equality machine M = (Q, E, A, 6, qi,, F)  is deterministic if 6 is a 

mapping from Q × Y~ into Q x (A × (l, 2})*. M is one-state i f Q  = {qin} = F. 

It is usual to allow a deterministic machine also to read h-input; however, since there are 

no tests on the memory, this makes no difference for the equality machine. In a one-state 

deterministic machine the input can be viewed as a "code" of  a sequence of  instructions 

(6 is a mapping from Z into (A x { 1, 2})*); this code is interpreted directly by the machine 

by executing the corresponding instructions. Thus one-state deterministic machines are a 

natural subclass of  the class of  deterministic machines. 

The classes of  languages accepted by nondeterministic, deterministic, and one-state 

deterministic equality machines will be denoted by LPN(EM), £,aD(EM), and Z~'oD(EM), 
respectively. 

We now show the power of  the equality machine and its restrictions. 

THEOREM 18 

(i) .~N(EM) = RE, 
(ii) £~o(EM) = EQ(DGSM); 

(iii) LPoo(EM) = EQ(HOM).  

PROOF 

(i) This follows from Theorem 8. Since ZPN(EM) is obviously closed under homomor- 

phism, it remains to show that the equality machine can accept Fp(a) for all dgsm 

mappings a. But clearly, for every input string w, the equality machine can copy w into the 

first memory tape and simultaneously, simulating the dgsm A with Tr(A ) = a, write a(w) 

on the second memory tape. Thus w is accepted by the equality machine if and only if 
a ( w )  = w. 

(ii) To see that EQ(DGSM) _ ~D(EM) it suffices to notice that a deterministic equality 

machine can simulate two dgsm's simultaneously and write their respective output strings 

on the memory tapes. For the reverse inclusion let M be a deterministic equality machine. 

A dgsm A~ can be obtained from M by viewing the first memory tape of M as the output 

tape of  Ab and disregarding the second memory tape of  M. Similarly a dgsm A2 can be 
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constructed which simulates M with respect to its second memory tape. It should be clear 

that the equality language ofA~ and A2 is precisely the language accepted by M. Note that 

this would not work in the nondeterministic case. 

(iii) The constructions used in the proof of  (ii) preserve the one-state property (of both 

the equality machine and the dgsm's involved). Since a one-state dgsm is a homomorphism, 

the result follows. []  

Note that Theorem 18(i) can also be proved easily by the fact that the equality machine 

is very suitable to simulate tag-systems [28] (see also [12]). 

We also note that regarding the equality machine as a machine with two one-turn 

pushdown stores shows that Theorem 18(i) is just a stronger version of  Theorem 2 of  [3]: 

Every RE language can be accepted by such a machine. A similar remark holds for the 

"reset" machine of [4]. 

We now discuss how the results of  Section 4 (Theorems 12 and 13) can be understood 

from Theorem 18 and some elementary facts from machine theory (AFA theory [15]; see 

also [19]). 

Let M = (Q, Z, A, 8, q~, F) be an equality machine. Let 1"  ̀denote /x x { 1, 2}, i.e., 

the set of  instructions of  M. Now 8 is a mapping from Q x Z* into the finite subsets of  

Q x 1L By viewing 1,, as an alphabet, M may be viewed as an a-transducer AM from Z* 

into I L  Let aM = Tr(AM). The relationship between L(M) and aM is established as follows. 

Let L a denote the language over la of  all sequences of  instructions leading from the initial 

memory state to a final memory state, i.e., L'` = {u ~ I ]  I ff(~., ~,) = (v, v) for some 

v E A*}. Then L(M) = a~l(L~); see [15] for a formal proof, or better [19], because in [15] 

acceptance by equality has to be simulated by an additional instruction. 

But it is easy to see (after renaming (c, 1 ) as c and (c, 2) as ~" for every c ~ A) that 

L a = L'` as defined in Section 5 (Definition 1). In words, the complete twin shuffle L'` is 

precisely the language of  all instruction sequences which lead from the initial memory 

state to some final memory state of  the equality machine with memory alphabet A. 

Since one may assume that each equality machine has memory alphabet A = {0, 1}, it 

follows from the above considerations that .£PN(EM) = {a-~(L~o.~)la is an a-transducer). 

Moreover, a -~ may be replaced by a, because a-transducers are closed under inverse. By 

Theorem 18(i) and well-known decomposition properties of  a-transducers, this implies the 

result of  Theorem 13(ii). 

In the deterministic case ~ is a mapping from Q x X into Q × I~, and consequently 

aM is a dgsm mapping. Hence Z-aD(EM) = {a-Z(LIo,~l)la is a dgsm mapping). By Theorem 

18(ii) this corresponds to Theorem 12(ii). Finally, in the one-state deterministic case 6 is a 

mapping from Y. into I~, and so aM is a homomorphism. Thus ~oD(EM) = {a-1(Lto.l~)]a 
is a homomorphism}, which is Theorem 12(i) (by Theorem 18(iii)). 

It is also possible to explain Theorem 13(iii) by the same methods, as follows: Consider 

a (nondeterministic) equality machine working backward in time, i.e., it starts with its 

memory pointers at the end of  equal memory tapes, goes through its computation steps in 

the reverse order, moving its memory pointers to the left, and halts with empty memory 

tapes, it should be clear (by identifying the equal tapes) that a backward equality machine 

is the same as a one-way two-head finite state transducer (and vice versa): The single 

memory tape is the input tape of  the transducer, whereas the original input string is 

produced as output; the two memory pointers both move on the same tape. Since it is well 

known [30] that each recursively enumerable language can be obtained as the range of  a 

deterministic one-way two-head transducer (it checks the successful computation strings of  

a Turing machine by comparing two consecutive configurations with its two heads), it 

easily follows that the mapping S of  the corresponding equality machine is from Q × Z* 

to the finite subsets of  Q × I'` and such that 8 -~ is a mapping from Q × Ia into Q × E* 

(6-1 is the transition function of the one-way two-head transducer). Consequently, for each 

equality machine M we may assume that aM is an inverse dgsm mapping. Hence, as before, 

£Pr,,(EM) = {a-l(Lto.ji)la is an inverse dgsm mapping) -- {a(Lto.,Ola ~ DGSM),  and we 
have obtained Theorem 13(iii). It should now be clear that an easy proof of  Theorem 
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13(iii) can also be obtained directly from the simulation of Turing machines by one-way 

two-head transducers. 
Note that the above remarks together with Theorem 7 also imply that if the memory 

tapes of the equality machine are viewed as output tapes (and the output is the one word 

on both tapes), then the class of ranges of such an "equality transducer" is EQ(A-TR). 
We conclude this section by considering the two-way case. Similarly to the one-way 

case, a two-way deterministic equality machine is given by a two-way dgsm mapping from 

E* into I ]  (for the notion of two-way dgsm see [2]; the input is surrounded by endmarkers). 
Hence, denoting L, e2D(EM) the corresponding class of languages, we obtain as before that 

~q~..D(EM) = (a-~(Lto, ll)Ja is a two-way dgsm mapping} which is the smallest class 
containing Li0.1> and closed under two-way dgsm mappings (these mappings are closed 
under composition). It is also straightforward to show that -~2D(EM) = EQ(2DGSM), 
where 2DGSM denotes the class of two-way dgsm mappings. These results generalize 

Theorem 12 and Theorem 18. 
We note that EQ(DGSM) c EQ(2DGSM) (cf. Examples 5 and 6) and that EQ(2DGSM) 

C DSPACE(Iog n) (cf. [12] and the comment following Theorem 6). From the above 

characterization of EQ(2DGSM) it can be shown that EQ(2DGSM) is included in (one- 
turn)-2DPDA, the class of languages accepted by two-way deterministic pushdown auto- 
mata for which the pushdown store turns once only. In fact, it is obvious that L~0.tl is in 
this class; moreover, every class of two-way deterministic automata of a given storage type 
is closed under inverse 2dgsm mappings [2]. 

8. Discussion 

In this paper we have considered the fixed point languages and the equality languages of 

homomorphisms and dgsm mappings. We have investigated some of their basic properties, 
like, e.g,, the relationships between these classes of languages and their position in the 
Chomsky hierarchy. However, we have focused our attention on the problem of repre- 
senting recursively enumerable languages by languages from the above mentioned classes. 
In particular, we have found equality languages of a special, very simple form that play for 
the class RE the same role as Dyck languages play for the class of context-free languages. 
These special languages (complete twin shuffles) were shown also to have a very clear 
interpretation in the framework of equality machines. 

The results of this paper add to the research of [6, 7, 9, 12, 31]. However, it is rather 
clear that all these papers together form only a beginning of research in this (rather 
promising) direction. For example, there is no reason to restrict attention to homomor- 
phisms and dgsm mappings only. Formal language theory is full of various kinds of 
mappings on free monoids. The thorough investigation of these mappings is very essential 
for understanding various aspects of formal language theory. But clearly considering the 
nature of similarity of mappings and of their fixed point languages constitutes perhaps the 

most basic step (from the mathematical point of view) in their systematic investigation. As 
we have also seen, research in this direction is quite instructive from the point of view of 
various decision problems. 

For example, one could start by considering several two-way and nondeterministic 
variants of dgsm mappings. Comparing these new classes of (equality and fixed point) 
languages with the corresponding ones for dgsm mappings could shed some light on the 
nature of deterministic and one-way restrictions in machines. 
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