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Abstract

In this paper we review a simple class of fixed point models for loss networks. We
illustrate how these models can readily deal with heterogeneous call types and with
simple dynamic routing strategies, and we outline some of the recent mathematical
advances in the study of such models. We describe how fixed point models lead
to a natural and tractable definition of the implied cost of carrying a call, and how
this concept is related to issues of routing and capacity expansion in loss networks.

1. Introduction

Fixed point models of loss networks have a long history in the telecommuni-
cations literature (see, for example, [3], [6], [19], [20] and [26]) and continue
to pose interesting and difficult challenges to mathematicians. In this paper
we review a very simple class of fixed point models, aiming to illustrate the
interplay between the practical and theoretical issues raised. We begin, in
Section 2, by describing the basic model in the case of a loss network op-
erating under fixed routing. In Section 3 we describe how the model leads
to a natural and tractable definition of the implied cost of carrying a call,
and how this concept is related to issues of routing and capacity allocation
in loss networks. In Sections 4 and 5 we outline how the basic model can
be extended to loss networks with alternative routing and trunk reservation,
and illustrate the form taken by implied costs in simple examples.1

There is currently considerable interest in schemes which can dynamically
control the routing of calls within a network. The purpose of such dynamic
routing schemes is to adjust routing patterns with a network in accordance
with varying or uncertain offered traffics, to make better use of spare capacity
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[2] Fixed point models of loss networks 205

in the network resulting from dimensioning upgrades or forecasting errors,
and to provide extra flexibility and robustness to respond to failures or over-
loads. In Section 6 we describe a scheme, Dynamic Alternative Routing,
which is now being implemented in the UK trunk network [23]. An impor-
tant contributing factor in the development of this scheme was the ease with
which fixed point methods could be adapted to provide accurate estimates of
network performance under a wide range of failure and overload conditions
([6], [8]).

Finally, in Section 7, we briefly outline an extension of our basic model to
the case of heterogeneous call types, and consider especially the interaction
of trunk reservation and variable holding period distributions. This topic is
becoming increasingly important with the advent of integrated services digital
networks, where a single network may have to handle demands with widely
differing service requirements.

2. Fixed routing

We begin by describing our basic model of a loss network operating under
fixed routing. Consider a network with J links, labelled 1,2,..., J, and sup-
pose that link j comprises C} circuits. A call on route r uses Ajr circuits from
link j , where Ajr e Z+. Let 31 be the set of possible routes. In the important
special case where each element of the matrix A = (Ajr, j = 1,2,..., J; r e M)
is either 0 or 1, a route r can be identified with a subset of the set of links
{ 1 , 2 , . . . , / } : just set r = {j: Ajr = 1}. Calls requesting route r arrive as
a Poisson stream of rate vr, and as r varies it indexes independent Pois-
son streams. A call requesting route r is blocked and lost if on any link j ,
j = 1,2, . . . , / , there are less than Ajr circuits free. Otherwise the call is
connected and simultaneously holds Ajr circuits from link j , j = 1 ,2, . . . , / ,
for the holding period of the call. The call holding period is independent of
earlier arrival times and holding periods; holding periods of calls on route r
are identically distributed with unit mean.

It is possible to provide an analytical formula for the stationary distribu-
tion of the stochastic process described above and hence for loss probabilities
(see, for example, [2], [12]), but these explicit forms are computationally in-
tractable for networks in which the number of routes \0l\ or the link capacities
C\, Ci,...,Cj are large. Fortunately there is an approximation to hand. Let
Bu Bi,..., Bj be a solution to the equations

Cj) j=\,2,-..,J (2.1)
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where

Pj = (1 -fly)"1 E ^ ' I I O -Bt)
A" (2.2)

r i

and

Here fi(i/, C) is just Erlang's formula for the loss probability of a single link
of capacity C offered Poisson traffic at rate v. Then an approximation for
the loss of probability on route r is

Lr=\-Y[{\-Bj)A". (2.4)
j

The right hand side of equations (2.1), regarded as a function of (B\ ,Bi,...,
Bj), defines a continuous mapping from the compact convex set [0, l]J into
itself, and so, by the Brouwer fixed point theorem, there exists a solution
(Bi,B2,...,Bj) to equations (2.1). In [13] it is proved that the solution is
unique, by showing that it is a stationary point of a strictly convex poten-
tial function. The solution has been termed the Erlang fixed point [13] or,
when A is a 0 - 1 matrix, the reduced load approximation [24]. The ap-
proximation (2.1)-(2.4) has a long history, at least in the case where A is
a 0 - 1 matrix: for early examples of its use see [3], [26]. The underlying
idea is simple to explain. If a request for a circuit from link / is denied with
probability /?,-, and if we make the approximation that all such requests are
granted or denied independently, then the traffic offered to link j will com-
prise independent Poisson streams, and the level of carried traffic on link j
will be J2rAjrvrTlj(l-Bi)A". Equations (2.1) and (2.2) simply state that the
blocking probability on link j should be consistent with this level of carried
traffic, under the Erlang model of a single link offered Poisson single-circuit
traffic. Call pj, given by expression (2.2), the reduced load on link j .

For small networks the approximation (2.4) can be checked against the
exact loss probability and it is known that the approximation can be fairly
accurate. In [13] it is further shown that if capacities Cj, j = 1,2, . . . , / ,
and offered traffics vr, r e 3i, are increased together (with ratios Cj/vr held
fixed) then the approximation (2.4) converges to the correct value. This result
indicates that the larger the capacities in a network the more accurate the
approximation will be, and complements the work of Whitt [24] and Ziedins
and Kelly [28]: by considering certain networks in which / and 31 become
large they obtained results which indicate that the more diverse the routing
within a network the more accurate the approximation procedure will be.

Of course there are circumstances where the approximation procedure
should not be expected to perform well. For example, if a number of small
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capacity links are arranged one after another in a line then we would expect
considerable dependence between the number of free circuits on adjacent
links. This example, more typical of local area networks than large scale
telecommunications networks, is considered in detail in [14] and [27]. Also,
note that our model assumes that routes are fixed. For models involving al-
ternative routing the equivalent approximation procedure may not lead to
a unique fixed point ([13], [19], [21]). This is not necessarily a fundamen-
tal flaw in the procedure: nonuniqueness may indicate instabilities in the
network, with a number of distinct modes of behaviour possible ([1], [7]).

3. Implied costs

Important issues concern how routes should be chosen or capacity allowed
in loss networks. These issues are complicated by the fact that small changes
in one part of the network may have repercussions over a large area, and
these knock-on effects must be taken into account. A related issue concerns
the extent to which control can be decentralised. Over a period of time the
form of the network or the demands placed on it may change, and routings
may need to adapt accordingly. A single node could perhaps control this,
receiving information from everywhere in the network and making all deci-
sions about routing. But this approach has drawbacks, particularly if links
or nodes may fail. Could control be distributed over the nodes of the net-
work, with computations and decisions made locally? A distributed control
scheme should be able to react rapidly to a local disturbance at the point of
the disturbance, with slower adjustments in the rest of the network as effects
propagate outwards.

Some insight into these issues can be gained from further analysis of the
fixed point model described in Section 2. Suppose that each call carried
on route r is worth wr. Then, under the approximation (2.4), the rate of
return from the network will be W{v;C) = X)rtMr where Xr = vr{\ - Lr)
corresponds to the traffic carried on route r. We emphasise the dependence
of W on the vectors of offered traffics v = (i/r, r e 31) and capacities C =
(Ci, C2 , . . . . Cj). Let dj = Pj{E{pj, Cj-l)- E(pj, Cj)), extend the definition
(2.3) to non-integral values of the scalar C by linear interpolation, and at
integer values of Cj define the derivative of W{v; C) with respect to C, to be
the left derivative. Then it is possible to prove that

(3.1)
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and

JjL-Wiv-O-Cj (3.2)

where s = (sr,r e &) and c = (c\,ci,...,Cj) are the unique solution to the
linear equations

Sr = Wr ~ Y^ CjAjr (3.3)
j

Cj = Sj £ AjMsr + Cj)/ £ Ajrkr- (3.4)
r r

We can interpret sr as the surplus value of a call on route r: if such a call
is accepted it will earn wr directly but at an implied cost of c, for each circuit
used from link j . The implied costs c measure the expected knock-on effects
of accepting a call upon later arrivals at the network. From (3.2) it follows
that Cj is also a shadow price, measuring the sensitivity of the rate of return
to the capacity Cj of link j . The local character of equations (3.3) and (3.4)
is striking. The right hand side of (3.3) involves costs Cj only for links j on
the route r, while (3.4) exhibits Cj in terms of an average, weighted over just
those routes through link j , of sr + Cj.

The formal mathematical derivation of the relationships (3.1)—(3.4) is, in
a certain sense, elementary. These are, after all, simply relationships between
the derivatives of an implicitly denned function. The elementary approach
is, however, tedious. It is illustrated in [15] where a frontal assault is made
on (2.1)—(2.3), involving calculation of partial and total derivatives of B\,
Bi,...,Bj with respect to v and C, and subsequent reduction of the equa-
tions obtained. An elegant alternative approach is suggested by the work of
Whittle [25]. The fixed point B\, B2,...,Bj locates a stationary point of a
potential function, and so derivatives of W can be deduced from derivatives
of the potential function (note that Whittle [25] focuses on an alternative
saddle-point approximation, but his approach applies in the present context
also). Unfortunately this approach does not appear capable of extension to
the more complex models, involving trunk reservation, to be considered in
later sections: these models lack the required characterisation of fixed points
as stationary points of a potential function. A third approach [ 16] is based on
the differentiation of W on various carefully constructed manifolds around
the point (y, C) € R^ x RJ. Currently this approach seems to be the most
widely applicable; it also seems to be the most direct, in that equations pos-
sessing the local character of (3.3) and (3.4) emerge naturally.

We illustrate the third approach by deriving the relations (3.2)-(3.4) in
the case where A is a 0 - 1 matrix. Suppose, without loss of generality, that
there exist marker routes {j} e 3 1 for j = l,2,...,J, with v^y = w^y = 0.
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For notational simplicity write VJ for v^y. We aim to differentiate W on a
manifold around {vk, k = 1,2,...,J) constructed so that on this manifold
Bk is constant for k ^ j . An informal description is as follows. Alter the
offered traffic Vj. This will affect directly the blocking probability Bj at link j ,
and hence the carried traffics XT for routes r through link j . This in turn will
have indirect effects upon other links through which these routes pass. We
can, however, cancel out these indirect effects by judicious alterations to vk

for k ̂  j . The alterations to vk have to be such as to leave the reduced load
pk constant for k ^ j , since then, from (2.1), the blocking probability Bk will
be left constant for k ̂  j . Let us begin by calculating the direct effect of the
change in i/j on the carried traffic Xr along a route through link j . From the
relation

the direct effect is

dXr = -Ajr{l - Bj)-lXr • | ^ . • dvj. (3.5)

Next we calculate the necessary alterations to vk for k ± j . In order that pk

be left constant the change dXr must be balanced by a change

dvk = -Akr(l-Bky
ldXr,

from (2.2); observe that Akr{\ - Bk)~
lXr is the contribution to the reduced

load pk from route r. Observe also that, apart from marker routes, the only
routes for which Xr changes are routes through link j ; the effect on W{v; C)
can thus be calculated from (3.5). Formally, we have an evaluation for the
differential form

(3.6)

Now an elementary partial derivative calculation from Erlang's formula shows
that

yL- = (l-Bj)djPji. (3.7)

A partial differentiation with respect to the second argument of Erlang's for-
mula further establishes that Cj, defined by (3.2), satisfies

Cj = -(l-Bj)-
i^rW{u;C). (3.8)
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Using the relations (3.7) and (3.8), (3.6) can be rewritten in the desired form
(3.3) and (3.4). We have thus established relations (3.2)-(3.4). Relation (3.1)
can be obtained similarly, by differentiating W on a manifold around v e R®
constructed so that vr and Vj, j e r, are allowed to alter, but B\, Bi,...,Bj
are held fixed.

The derivatives (3.1) and (3.2) are exact, but are calculated from a fixed
point model which is itself only approximate. How accurate are these deriva-
tives? Whittle [25] and Hunt [10] have shown that if capacities and offered
traffics are increased to infinity, with ratios held fixed, then derivatives calcu-
lated from the exact stationary distribution and derivatives calculated from
the Erlang fixed point converge to the same values provided the network has
no critically loaded links. A critically loaded link is one at which the reduced
load, pj, very nearly matches the capacity, C7, in that pj - Cj = o(Cj/2)
under the limiting regime. At a critically loaded link the blocking probability
approaches zero: the Erlang fixed point is asymptotically correct at this level
of detail, but it is incorrect in its estimation of the rate of convergence to
zero under the limiting regime [11]. This finer level of detail matters for
derivatives: Hunt [10] shows that in a network containing critically loaded
links, derivatives calculated from the exact stationary distribution and from
the Erlang fixed point may converge to different values. The extent of the
discrepancy depends on the diversity of routing within the network. Hunt
[10] also provides an example of a network in which all links have just unit
capacity, but in which the discrepancy between the derivatives disappears as
the number of links, and the number of routes through each link, increases.

4. Alternative routing

In this section we indicate how the fixed point model can deal with alter-
native routing, where a call which is blocked on a route may be allowed to
try again on another route. We begin by describing a very general form of
alternative routing, where the arrival rate for a route is allowed to depend
arbitrarily upon which links are full. Henceforth assume A is a 0 - 1 matrix,
so that a call requires at most one circuit from a link. Let b = {b\,bi,...,bj)
denote the blocking configuration of the links: bj = 1 or 0 according as link

j has free circuits or not. Write p(b,B) = UjBj~bj(l - Bj)bj- T h u s P(b,B)
is the probability of blocking configuration b under the assumption that links
1 ,2 , . . . , / block independently, link j blocking with probability Bj. Write
Ar(b) for the traffic offered to route r when the blocking configuration is b.
Insist that Xr(b) = 0 if rjy bf' = 0 where here and throughout 0° = 1. Thus
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no traffic is offered to route r if it cannot be accepted there, and so Xr(b) is
also the rate of accepted traffic on route r when the blocking condition is b.
Then the generalisation of the fixed point equations (2.1) and (2.2) is

Bj = E(pj,Cj) j=l,2,...,J (4.1)

where
Pj = (1 - Bj)~x ^2AjrY2p(b,B)Xr(b). (4.2)

r b

Observe that we recover (2.1) and (2.2) if we set Xr(b) = VrXljtf", corre-
sponding to the case of fixed routing.

We devote the rest of this section to a more complex example, in which we
suppose that the label r fixes a pair {<f>{r), y/(r)), where <p(r) and i//(r) are both
sets of links. Interpret y/(r) as the path used by a call on route r, and </>(r)
as a set of links each of which must be blocked in order for this path to be
attempted. For instance, suppose a call tries first a path through links {1,2};
if link 1 is blocked it then tries a path through links {3,4,5}; while if link 1 is
free and link 2 is blocked it tries a path through links {1,6,7}. This pattern
of choices can be represented by the following three pairs (<f>(r), y/(r)):

(0,{1,2}), ({1}, {3,4,5}), ({2},{1,6,7}).

Any routing scheme not involving crankback can be thus represented by pairs
(cj>(r), y/{r)), and with such a representation

*r{b) = vr Y[(\-bj) n bk (4.3)
j€<t>{r) k€i//(r)

where vr is the arrival rate at the network of calls potentially served by route
r.

Next we consider whether implied costs and surplus values can be defined
and calculated as in the case of direct routing. Let Xr = ^2bp(b,B)Xr(b),
where Xr(b) is given by (4.3); thus Xr corresponds to the total carried traffic
on route r. Again define the rate of return from the network by W{v; C) =
£)r wrXr, and let

A-W{v;C) = Cj. (4.4)
aLj

Then an elementary (but lengthy) analysis of the implicit equations (4.1)
and (4.2) defining Bu B2,...,Bj, and hence Xr and W{v\C), leads to the
following equations for C\, c-i,..., Cj [15]:

(4.5)

:j = r,j ( 1 - * , - ) - U Xr(sr + Cj)-B-> ^ >U (4.6)
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where nj = E(pj, Cj) - E(pj, Cj - 1). Further

4^W(v\C) = Sr JJ Bi
Vr je<t>(r)

Again we can interpret sr as the surplus value of a call on route r, and cy as the
implied cost of using a circuit from link j . Equations (4.5) and (4.6) retain
a local character, but it is weaker than that apparent in (3.3) and (3.4). The
right hand side of (4.6) involves the surplus values not just of those routes
which pass through link j , but also of those routes which require link j to be
blocked before they are attempted. The relation (4.4) shows that the implied
cost Cj retains its dual role as a shadow price.

5. Trunk reservation

Trunk reservation is an easily implemented control mechanism which al-
lows priority to be given to chosen traffic streams. It is especially helpful in
networks which allow alternative routing, where without its use performance
may degrade significantly ([19], [22]). Consider a single link with a capacity
of C circuits that is offered a stream of priority traffic at rate p\ and a stream
of non-priority traffic at rate p2. A priority call is accepted if there is a circuit
free on the link, while a non-priority call is accepted only if there are more
than t circuits free on the link. Here t is called the trunk reservation pa-
rameter. If the arrival streams are independent Poisson processes and if call
holding periods are independent of earlier arrival times and holding periods
and exponentially distributed with unit mean, then the number of circuits
busy is a birth and death process whose equilibrium distribution is readily
calculated. It follows from this distribution that

Ei(puPi, C, t) = G(Pl,P2, C, t)(Pl + p2)
c-'p\/a (5.1)

is the proportion of priority calls blocked and that

n=C-t

is the proportion of non-priority calls blocked, where
- l

G(pi,p2,C,t) =
n=0 n=C-t

Observe that E\(p\,0,C, t) reduces to Erlang's formula E(p\, C).
Using the functions E\, E2 it is straightforward to extend (4.1) and (4.2) to

deal with the possible use of trunk reservation in a network operating under
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alternative routing. Suppose that link j has a trunk reservation parameter tj\
if rij is the number of circuits occupied on link j let

bj = 0 if rij = Cj,

bj = 1 if Cj - tj < rij < Cj,

bj = 2 if rij < Cj - tj.

Let b = {b\,b2, ..-,bj) denote the blocking configuration of the network, and
write Xr{b) for the traffic offered to route r when the blocking configuration
is b. In this way the arrival rate for a route is allowed to depend arbitrar-
ily upon which links are full, which links are occupied beyond their trunk
reservation parameter and which links are neither. In [16] the resulting fixed
point equations are presented, and it is shown that they lead to a natural
definition of implied costs, surplus values and shadow prices. Implied costs
and shadow prices are no longer identical, as they are in networks without
trunk reservation, but they can both be readily calculated.

We end this section with a simple example which illustrates how implied
costs can be used to provide insight into the fascinating phenomena that arise
in networks involving alternative routing. Consider a fully connected network
with K nodes. Calls between each pair of nodes arrive at rate v, and each
pair of nodes is connected by a link of capacity C A call between two nodes
is carried on the link joining the nodes if possible. If this link is full, the call
is offered to one randomly selected two-link path between the nodes. Trunk
reservation operates against alternatively routed calls: such a call is carried
if both links have more than t free circuits and is lost otherwise. Suppose
now that an additional call is offered to a link of the network, to be routed
directly on that link provided the link is not full and to be lost otherwise.
If this additional call is accepted there will be an expected net effect upon
the network, measured in terms of calls lost that would otherwise have been
carried. Call this expected net effect the implied cost. Under the fixed point
model this implied cost is readily calculated, and is shown in Figure 1 for a
network with links of capacity 120. The dashed curve corresponds to using
the optimal trunk reservation parameter at each level of offered traffic. The
dotted curve corresponds to using a trunk reservation parameter of zero or,
equivalently, not using trunk reservation. Observe the steep rise of the dotted
curve, up to a value of almost 2, at an offered traffic of about 107 Erlangs. At
this point carrying an additional directly routed call causes the subsequent
loss of nearly two calls. The additional call can cause this much damage,
on average, because it can force a later call to be rerouted: this uses more
network resource and may in turn cause further calls to be rerouted. Graphs
of shadow prices (the marginal benefit of increased capacity) display very
similar features.
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FIGURE 1. Implied costs in a symmetric fully connected network

The implied costs illustrated in Figure 1 are exact deductions from a fixed
point model which itself gives only approximations for loss probabilities.
Gibbens and Whiting [9] study the validity of the procedure, by comparing
implied costs calculated analytically from the model with implied costs es-
timated by simulation. Preliminary conclusions are that the peak shown in
Figure 1 is a real effect, although its height and narrowness are exaggerated by
comparison with simulations. There appears to be good general agreement
between analysis and simulation when trunk reservation parameters are pos-
itive. It seems reasonable to expect that under certain limiting regimes the
implied costs calculated from the fixed point approximation will be asymp-
totically exact: see Hunt [10] for a detailed study in the case of fixed rout-
ing without trunk reservation. In practice implied costs have been of use in
large asymmetric networks with complex routing patterns ([4], [5], [17], [18]):
derivative information is especially valuable for optimising functions defined
on a high-dimensional space; and the structure of such networks, with traffic
through a link coming from a diverse range of routes, lends credence to the
fixed point approximation.

6. Dynamic Alternative Routing

DAR is a simple but effective dynamic routing strategy, which is decen-
tralised and uses only local information ([6], [8], [23]). Its definition for
a fully connected network is as follows. Suppose there are K nodes in the
network, with link {i,j} having capacity C,y. Each link is assigned a trunk
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reservation parameter r,y, and each source-destination pair stores the identity
of its current tandem k for use in two-link alternative routes. A call between
nodes / and j is first offered to the direct link and a call is always routed along
that link if there is a free circuit. Otherwise, the call attempts the two-link
alternative route via tandem node k with trunk reservation applied to both
links. If the call fails to be routed via k, this call is lost and, further, the
identity of the tandem node is reselected (at random perhaps) from the set
{1,2, . . . , K) — {/, j}. Note especially that the tandem node is not reselected
if the call is successfully routed on either the direct link or the two-link al-
ternative route. In practice it may be simpler to reselect a tandem node by
cycling around a fixed tandem permutation; the point is that reselection is
not based on any collected data, only the important information that a call
has just failed.

Let Pk(i,j) denote the long-run proportion of calls between / and j which
are offered to tandem node k, and let qk(i,j) be the long-run proportion of
those calls between / and j and offered to tandem node k which are blocked.
Then, under uniform reselection,

Pa(i, j)Qa{i, j) = Pb(i, J)Qb{i, j) a, b ^ i, j -

Observe that this simple ergodic result is exact for either random reselection
or reselection using a fixed permutation. More generally, suppose the DAR
mechanism for reselection of the tandem node between i and j chooses node
k with long-run frequency fk where J2k^ijfk — 1- Then each selection of
node k is paired with a failed call via node k, and so

Pa(iJ)Qa(i,j)-- Pb(i,J)Qb(iJ) = fa'- fb a,b ^ i,j.

We approximately estimate qk(ij) by Lk(i,j), the loss probability on the
two-link path i — k — j given by a fixed point model. The natural fixed
point model of DAR is that for a network with alternative routing and trunk
reservation, but with the overflow stream from node i to node j divided over
tandem nodes k e {1,2, . . . , K) — {i, j} in proportions

- l

Pk{iJ) =
fk

Lk(iJ)
fa (6.1)

Observe that if the offered traffic to a link increases, or the capacity of the
link decreases, then the blocking probabilities on that link will increase, and
this will affect the proportions (6.1). This is the means by which the fixed
point model mimics the flexible handling by the routing scheme of overloads
and failures.

Simulation experiments to assess the accuracy of the model are reported in
[8]. In general there is found to be excellent agreement between simulations
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and the model, both for overall and for stream grades of service. Key [17]
describes an approach to the calculation of implied costs and shadow prices
for a fully connected network using DAR, and shows how they can be used
interactively to dimension a network.

7. Heterogeneous call types

Our basic model of a loss network, described in Section 2, assumed that all
call holding periods had unit mean. This involved no real loss of generality,
since if the holding periods of calls on route r have mean pir, then the exact
analytical formula for loss probabilities in the network of Section 2 depends
only on the products {vrfir, r e 31): see, for example, [2], [12]. In a network
using trunk reservation, however, the consequences of differing mean hold-
ing periods between priority and non-priority traffic are less predictable. In
this section we outline a generalisation of our basic model that allows differ-
ing mean holding periods in a network with trunk reservation. We describe
only the case of fixed routing; the extension to alternative routing is natural
through the approach of Section 4.

Amend the model of Section 2 as follows. Let calls on route r have mean
holding period fir, and suppose that a call on route r requires Atjr circuits
from link j at priority level /, where / = 1,2, and A\jr, Ayr and A\jr +
Ayr £ {0,1}. Let Cj, tj be the capacity and the trunk reservation parameter
respectively for link j . Let (B\j, Bij, j = 1,2,. . . , /) solve the equations

B,j = E,(pij, p2j, Cj,tj) I = 1,2; . 7 = 1 , 2 , . . . , /

where

and the functions E\, Ei are defined by (5.1) and (5.2). Here Lr is the
approximation for the loss probability on route r, and fij is the approximate
mean holding period for a typical circuit on link j . Preliminary theoretical
and numerical investigations suggest that this model becomes increasingly
accurate in networks with diverse routing as capacities and offered traffics
are increased together, with ratios Cj/ur held fixed.
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