
1

Fixed-Point Processing of the SAR Back Projection

Algorithm on FPGA
Don Lahiru Nirmal Hettiarachchi, Student Member, IEEE, Eric J. Balster, Senior Member, IEEE

Abstract—Time-domain back projection (BP) is a widely
known method used in Synthetic Aperture Radar (SAR) image
formation. Despite its advantages over other image formation
algorithms, the BP method is hindered due to its computational
complexity and its requirement of higher number of operations
and processing power. Recently, Field Programmable Gate Array
(FPGA) devices have been used for BP acceleration mainly
due to their parallel processing capabilities, reconfigurability,
scalability, and low power requirement. This paper presents a
new Fixed-point based BP (FxBP) design for FPGA devices and a
Floating-point based BP (FlBP) design to compare performance.
Both designs are developed with N-Dimensional Range (NDR)
structure and Single Work Item (SWI) structure using OpenCL.
The FPGA performance is evaluated using a FPGA performance
metric (FPM). It is shown that FxBP-NDR and FxBP-SWI
designs generate high quality back projected images compared to
FlBP designs, while saving 16.87% and 42.54% on logic resources
and gaining 17.90% and 91.62% on FPGA performance in NDR
and SWI, respectively. Obtained results clearly indicate that
FPGA devices perform significantly better with FxBP designs
compared to FlBP designs, even with hardened FPUs.

Index Terms—Synthetic Aperture Radar, SAR, Back Projec-
tion, FPGA, Hardware Acceleration, OpenCL, HLS, Intel Stratix
10.

I. INTRODUCTION

S
YNTHETIC Aperture Radar (SAR) systems are used

to obtain high-resolution imagery of various targets.

SAR systems have been used by researchers for decades

due to their reliable performance in all-weather and all-light

conditions. The resolution of the target images depends on

the nature (frequency band) of the transmitted signal. Thus,

SAR systems can maintain a considerably higher resolution

up to thousands of meters or hundreds of kilometers from the

target. Unlike optical sensor systems, SAR systems do not

depend on environmental conditions. Due to its robustness for

environmental conditions, SAR systems are adopted by many

applications. Such applications are, monitoring climate change

and wildfire progression, military applications, deforestation

detection, population estimation, urban planning, and natural

disaster monitoring [1]–[5]. To detect targets, first, the SAR

system transmits an electromagnetic wave towards the target

area. When the system receives a return signal (an echoed

signal) from the target, image formation steps are carried out

to generate the output image. For the SAR image formation

process, two algorithms are used widely. These algorithms

can be categorized into two main groups, frequency-domain

algorithms and time-domain algorithms. Both algorithm

The authors are with the Department of Electrical and Computer
Engineering, University of Dayton, Dayton, OH, 45469 USA (e-mail:
hettiarachchid1@udayton.edu, ebalster1@udayton.edu).

types have their advantages and can be used with specific

applications.

Frequency-domain algorithms require less processing power

compared to time-domain algorithms. The computational

complexity of a frequency-domain algorithm is O(N2log2N),
where N corresponds to the N pulses of echo data and

N×N samples (per image) [6]. Therefore, frequency-domain

algorithms such as the Range Doppler (RD) [7]–[9], the

Omega-K (ω−k) [10]–[14], and the Chirp Scaling (CS) [15]–

[17] algorithms are often used for image formation in SAR

systems. However, in general, frequency-domain algorithms

are not applicable for all imaging cases due to multiple

assumptions that need to be considered for each specific

case. Some frequency-domain algorithms rely upon geometric

approximations that break on various limits (narrow-angle

swath, low squint angle, large image size, wide bandwidth,

etc.) while some algorithms assume that the aircraft flies on

a linear and uniform trajectory. Frequency-domain algorithms

require a motion compensation to reduce the off-track errors

generated from non-ideal flight paths. Even though the motion

compensation corrects most of the sampling assumptions,

it is not perfect, and mostly the compensated value is an

approximated value that can yield poorly focused imagery.

Also, most frequency-domain algorithms are required to

carry out an interpolation in the frequency domain (Stolt

interpolation) that can generate artifacts in the output image

due to interpolation errors caused by re-sampling data into

uniform spacing [18], [19].

Back Projection (BP) is a time-domain algorithm. For the

SAR image formation, the BP algorithm uses a matched filter

to filter out expected echoed data from an array of target

locations. Since the BP method uses the motion compensation

implicitly to handle arbitrary flight paths, it does not need

a separate module for motion compensation [20]–[22].

Another benefit of the BP is that it can work with all

imaging modes (spotlight, stripmap, and scan). Also, the BP

algorithm is not affected by the limitations mentioned for

the frequency-domain algorithms and shows superiority over

the frequency-domain algorithms. However, the BP method

is computationally expensive compared to frequency-domain

algorithms and requires substantial processing time. The

computational complexity of the BP algorithm is O(N3),
where N corresponds to the N pulses of echo data and

N×N samples (per image) [18].

In the past two decades, many BP algorithms have been

designed to accelerate the SAR image formation process. Most

2

of these methods are derived by modifying the traditional BP

algorithm.

Yegulalp et al., introduces a fast back projection (FBP)

algorithm [18]. The FBP algorithm introduces a method

to divide the synthetic aperture into sub-apertures. Each

sub-aperture produces a sub-image later added coherently

to generate the final image output. The FBP algorithm use

O(N3/2Npulses) operations for a N×N image with Npulses

of range compressed data. Compared to the traditional back

projection, the FBP algorithm is faster by a factor of
√
N .

Ulander et al., introduces the fast factorized back projection

(FFBP) algorithm [23]. The FFBP algorithm is derived from

the traditional BP algorithm and by generalizing the FBP

algorithm. It uses the Sub-Aperture (SA) concept and each SA

uses a Local Polar Coordinate (LPC) system and a pyramid

computational architecture to generate full aperture. Then, a

fusion technique and 2-D interpolation is used to obtain the

final back projected image. Compared to the traditional BP,

the FFBP algorithm reduces the computational burden by two

to three orders of magnitude.

Zhang et al., introduces an accelerated back projection

(AFBP) algorithm [24]. The AFBP algorithm is created by

modifying the FFBP algorithm and uses the sub-aperture

concept. Instead of the LPC system described in FFBP, the

AFBP method use a Unified Polar Coordinate (UPC) system.

Also, the AFBP method avoids the 2-D interpolation by

converting all data into a 2-D wavenumber domain. In AFBP,

sub-aperture fusion is carried out in the 2-D wavenumber

domain and finally, all data are converted to the time domain

to obtain the back projected image.

In [25], a new method for BP algorithm acceleration using

fixed-point arithmetic is described. The method is developed

by modifying the BP algorithm described in [26]. Also,

the BP algorithm is designed with floating-point arithmetic

and fixed-point arithmetic. Both designs are developed

with OpenCL and tested on a CPU. It has shown that the

fixed-point based BP algorithm gains ∼ 11%, ∼ 12%, and

∼ 25% for 128×128, 256×256, and 512×512 sized images,

respectively. Also, Peak Signal-to-Noise Ratio (PSNR) is

calculated for all back projected images to show that the

fixed-point based BP algorithm managed to preserve high

quality images with 0.2 dB difference.

Even though most of the accelerated BP algorithms are

modified from the traditional BP algorithm, few methods

use hardware acceleration from devices like General Purpose

Graphics Processing Unit (GPGPU) [27]–[30] and Field

Programmable Gate Arrays (FPGA) [31], [32]. Since the BP

algorithm is highly parallelizable, accelerators can execute

multiple operations simultaneously to reduce the processing

time significantly. Typically, GPGPUs are used for SAR

processing due to their multi-core system. However, GPGPUs

require a higher amount of power to maintain their full

processing capability. Therefore, GPGPUs may not be a

suitable solution with strict space and power requirements.

FPGA devices are capable of processing multiple operations

simultaneously with a significantly lower power requirement

than GPGPUs. Reconfigurability of FPGA devices can be

used for fine-tuning application specific implementations.

Compared to functionality, power consumption, and cost,

FPGA devices are ranked between GPGPUs and high-end

customized Application Specific Integrated Circuits (ASICs).

Therefore, FPGA devices may be an ideal choice for SAR

processing. Despite the advantages, few BP algorithms are

developed using FPGA devices. This is mainly due to two

reasons. First, traditional FPGA programming flow and usage

of Hardware Description Language (HDL) requires a lengthy

programming cycle with simulation and verification. To

avoid the tedious HDL programming cycle, many modern

FPGA developments use High Level Synthesis (HLS) tools

to interpret the hardware designs that are programmed

as C/C++ source codes [33], [34]. Secondly, fixed-point

design techniques and floating-point design techniques lead

to design complications on FPGA devices. Traditionally,

FPGA accelerators use fixed-point based designs. Fixed-point

based designs are faster and utilize fewer logic resources.

However, it is difficult to handle fixed-point based designs

with recursive operations on varying dynamic ranges. Due

to fixed point scaling, it is hard to create designs with

higher accuracy for non-trivial functions like trigonometric

and square-root functions [35]. Compared to fixed-point

based designs, floating-point based designs are prohibitively

costly due to higher logic utilization and slower kernel speed

[36]. Designs with higher logic utilization (higher circuit

area) require high-end FPGAs, which increase the cost

significantly. In 2014, Intel Corporation, introduced single

precision hardened Floating-Point Units (FPUs) on DSP

blocks with Arria 10 FPGA family [37]. Since FPUs reduce

the logic requirement, floating-point based designs are used

to process many computationally intensive algorithms on

FPGA accelerators.

In [38], it is shown that even with hardened FPUs, floating-

point designs that are converted to fixed-point designs use

fewer logic resources compared to the floating-point designs.

The method is tested with a series of basic arithmetic

operations for both floating-point and fixed-point based

designs. Also, an FPGA Performance Metric (FPM) is

introduced to evaluate the FPGA performance for all designs.

The FPM is designed to address the trade-off between logic

utilization and kernel frequency (fMAX) caused by the

floating-point to fixed-point conversion process. The FPM

shows that on average the fixed-point designs have a better

FPGA performance than floating-point based designs.

This paper introduces a new Fixed-point based Back

Projection (FxBP) algorithm on an FPGA. The FxBP method

is developed for spotlight SAR geometry by modifying

the Floating-point based Back Projection (FlBP) algorithm

described in [25]. The proposed FxBP algorithm is optimized

using fixed-point conversions with multiple scale factors and

3

look-up tables. The Open Computing Language (OpenCL)

and Intel OpenCL SDK are used to design kernel files for

the FPGA. Both FlBP and FxBP kernels are structured as

NDRange kernels (FlBP-NDR, FxBP-NDR) and as Single

Work Item kernels (FlBP-SWI, FxBP-SWI) to test the FPGA

resource utilization and performance for different design

techniques. All designs are tested with BittWare 520N-MX

board which is equipped with an Intel Stratix 10-MX2100

FPGA. Intel Quartus Pro/AOCL 19.3 version is used to

compile and generate FPGA bit-stream. The Board Support

Package (BSP) developed by BittWare (BIST 1.0-1) is used

to program the FPGA.

Comparing the results obtained from the FxBP and

FlBP algorithm designs on Stratix 10 FPGA device shows

that FPGA performance on FxBP designs is higher than

FlBP designs. The FxBP-NDR show a gain of 17.90% in

performance increase than FlBP-NDR and the FxBP-SWI

show a gain of 91.62% in performance increase than FlBP-

SWI. Also, FxBP designs use fewer resources compared to

FlBP designs. Compared to FlBP designs, the FxBP-NDR and

FxBP-SWI save 37.47% and 44.06% resources on ALUTs,

16.76% and 23.83% resources on Registers, and 16.87%
and 42.54% resources on Logic Utilization, respectively.

All designs are tested with synthetic video phase history

data (VPH) generated from [26] and real phase history

data from the GOTCHA dataset [39]. Back projected image

quality is calculated using Peak signal-to-noise ratio (PSNR),

and it shows that FxBP designs manage to preserve image

quality while using fewer resources compared to FlBP designs.

Following the introduction, Section II consists an overview

Spotlight SAR Model and BP implementation. Section III

introduces the fixed-point based BP algorithm and its im-

plementation. Section IV describes the FPGA programming

model used to design and program BP algorithms. Section

V consists obtained results, and analysis and Section VI is

dedicated for conclusion.

II. SPOTLIGHT SAR MODEL

This section describes a brief overview of the SAR image

processing modules introduced in the spotlight SAR simulator

[26]. The spotlight SAR simulator is used to generate a syn-

thetic phase history (echoed data) for digital images. In order

to obtain the phase history data, a simulated aircraft rotating

around the target (digital image) is used. Figure1 shows the

SAR image formation flow. Image formation modules receive

the phase history (echoed data) of the target and generate

a range profile. Then the range profile is used by the back

projection module to generate the final back projected image

output.

A spotlight SAR imaging model [25] shown in Figure 2

is used for designing floating-point based BP and fixed-point

based BP algorithms. The range profile generation from phase

history is described briefly for completeness.

Figure 1: SAR image formation flow [26]

Figure 2: Spotlight SAR imaging model for floating-point

processing [25]

A. Generate Range Profile

First, the distance between radar to each pixel dac[x, y, θ]
of the image is shown in (1).

dac[x, y, θ] =
√

(xG− dso sin(θ))2 + (yG− dso cos(θ))2 + r2x,
(1)

where x(∈ [N2 ,
−N
2]) and y(∈ [N2 ,

−N
2]) are row and

column image indexes, N is the number of rows and columns,

G is the ground sample distance (GSD), and θ is the horizontal

angular displacement. Then the distance between scene center

and each pixel is given by,

d[x, y, θ] = dac[x, y, θ]−

√

d2alt +

(

dso −
NG√

2

)2

. (2)

The distance vector d[·] in (2) is used to calculate the echoed

pulse return xret(t, θ). As shown in (3), xret(t, θ) is derived

by summing up all pulse returns from each individual pixel

distances.

xret(t, θ) =
∑

x,y

I[x, y]xp

(

t− 2d[x, y, θ]

c

)

(3)

where the xp(t) is the transmitted linear frequency mod-

ulated pulse, and c is the speed of light. To apply matched

filtering operation, first, the xret(t, θ) is demodulated then

sampled and discretized. As shown in (4), demodulation is

done by mixing the xret(t, θ) with carrier signal (c(t)) and

applying a low-pass filter.

xmix(t, θ) = F{xret(t, θ)c(t)}, (4)

where F{·} is the LPF operator, c(t) = cos(2πflt) and fl is

the lowest frequency of the chirp signal. Then the demodulated

xmix(t, θ) is sampled and discretized to create

xmix[n, θ] = xmix(t, θ)|t=nT , (5)

4

where, T = (2S0BWp)
−1, the S0 is an oversampling factor,

BWp = 2fmTp is the bandwidth, fm is the modulation

frequency, and Tp represents the duration of the pulse signal.

The Match filter process in the frequency domain is given by,

Xph[n, θ] = Xmix[n, θ]Hmf [n], (6)

where Hmf [n] is the frequency response of the matched

filter. Finally, the range profile (Rp[k, θ]) is obtained by

applying FFT and oversampling to the phase history. The range

profile is given by,

Rp[k, θ] =
∑

n

Xph[n, θ]e
−j 2πn

N
k, (7)

where N represents the number of samples in the FFT.

B. Back Projection

The back projection module use the Rp[k, θ] as an input and

back projected data into a 2-D image space to generate the

final output image. First, differential range dR[ξ] is calculated

by,

dR[ξ] = drcp[ξ]− drsc[ξ]; ξ ∈ (x, y, z) (8)

where, drcp[ξ] is the distance between radar to current pixel,

and drsc[ξ] is the distance from radar to scene center. The

drcp[ξ]) is given by,

drcp[ξ] =
√

(rx − dx)2 + (ry − dy)2 + r2z , (9)

where rx, ry, rz are ranges from radar to imaging scene, and

dx, dy are the displacements from scene center to current pixel.

The drsc[ξ] is shown in (10).

drsc[ξ] =
√

r2x + r2y + r2z (10)

After calculating the dR[ξ], back projection module applies

a phase correction and projects the range profile data to the 2-

D image space. Then for each return signal, projected grids are

summed up to generate the final image output. Back projected

image output is obtained by,

Ĩ[x, y] =
1

ΞN

∣

∣

∣

∣

∣

∣

∑

ξ

R̃p(i, ξ)e
−jγ[ξ]

∣

∣

∣

∣

∣

∣

, γ[ξ] =
4πfldR[ξ]

c
,

(11)

where ΞN is the total number of projected range profiles,

e−jγ[ξ] is the phase correction term and R̃p(i, ξ) is a bi-linearly

interpolated range profile shown in (12). The range profile is

interpolated to convert discrete range profile data to continuous

data.

R̃p(i, ξ) ={(⌊i+ 1⌋ − i)Rp[⌊i⌋, ξ]+
(i− ⌊i⌋)Rp[⌊i+ 1⌋, ξ]},

(12)

and i is given by i = dR[ξ]/ds and ds is the sample distance.

C. OpenCL Implementation of the FlBP Algorithm

The Floating-point based Back Projection (FlBP) OpenCL

implementations are shown in Listing 1 and 2. The FlBP

kernel uses OpenCL N-Dimensional Range (NDR) structure

(FlBP-NDR) as shown in Listings 1. In FlBP-NDR method,

each pixel of the BP image gets assigned as an independent

work item. To optimize the process, compiler executes

multiple work items concurrently (data parallelism). The

FlBP kernel uses OpenCL Single Work Item (SWI) structure

(FlBP-SWI) as shown in Listings 2. In the FlBP-SWI method,

single work item is assigned to generate the BP image output

for a single return pulse. The compiler optimizes the process

by using pipeline techniques (task parallelism).

In Listing 1, lines 1-4 initialize the kernel and variables.

The back projected image output in Equation (11) shows

that the BP modules require complex math calculations.

Therefore, range profile (Rp[·]) and image output (Ĩ[·]) are

divided to real (Rpr, Ĩr) and imaginary (Rpi, Ĩi) samples for

calculation. In Line 5, current pixel index of the BP image (u)

is obtained. Line 6 and 7, initialize temporary image variables

for real (Imr) and imaginary (Imi) samples. Lines 8 and 9

calculates the (x, y) positions of the image and lines 10 and

11 show the displacement from current pixel to scene center

in (x, y) directions, where C (∈ 128, 256, 512) represents

the number of columns and rows in the image and G is the

ground sampling distance. Line 12 calculates the intensity

values for all pixels, where N represents the number of

pulses (image size). Lines 13-15 show the differential range

(dR[ξ]) calculation. Lines 16-17 shows the calculation of

nearest range profile sample indexes, where P represents the

number of FFT samples. Line 18 constrains the sample index

k within the range profile. Line 19 shows the calculation of

phase correction term (γ), where B = 4π/c. The d in line

20 represents the differential distance from current pixel to

scene center and the t in line 21 represents the difference

between current pixel to scene center and the nearest range

profile sample. Lines 22-25 show the bi-linear interpolation

of range profile. Lines 26-27 show the sine and cosine

angle calculation for phase correction term (γ). Lines 28-29

show the summed up real and imaginary intensity values

for all range profiles. Finally, Lines 31-32, show real and

imaginary samples of the back projected image output.

The FlBP-SWI in Listing 2 is very similar to the FlBP-NDR

in Listing 1. The only difference is in the line 5, where in

FlBP-NDR method, the variable u represents the image pixel

index and in FlBP-SWI method, variable u is the index that

used to calculate intensities for all pixels in the image.

III. FIXED-POINT BASED BACK PROJECTION ALGORITHM

The Fixed-point based Back Projection (FxBP) algorithm

is designed by converting back projection variables listed in

Section II-B into integers using fixed-point arithmetic. Due to

rounding-off, typical floating-point to fixed-point conversion

generates data with less accuracy. However, multiplying the

floating-point variable with a constant scale value and then

5

Listing 1 : The FlBP-NDR OpenCL module

1: kernel void FlBP_NDR (Ĩ[·], Rp[·, ξ], P,N, ds, rx,
ry, rz, G, fl, C){

2: float dx, dy, drsc, drcp, dR, γ, d, t, Sγ , Cγ ;

3: float Imr, Imi, R̃pr, R̃pi;

4: int x, y, k,m,ml;
5: u = get_global_id(0);
6: Imr = 0;

7: Imi = 0;

8: x = u%C;

9: y =(int)(u/C);
10: dx = ((float)y−(float)C/2 + 0.5)G;

11: dy = ((float)C/2−(float)x/2− 0.5)G;

12: for(n = 0;n < N ;n++){
13: drsc = sqrt(r2x[n] + r2y[n] + r2z [n]);
14: drcp = sqrt((rx[n]−dx)

2+(ry[n]−dy)2+r2z [n]);
15: dR = drsc − drcp;

16: k =(int)(dR/dS) + ((P + 1) >> 1);
17: if(dR >= 0) k+ = 1;

18: if(k > 0 && k < P){
19: γ = BfldR;

20: d = dS(k − ((P + 1) >> 1));
21: t = d− dR;

22: m = kN + n;

23: ml = m−N ;

24: R̃pr = (Rpr[ml]t+Rpr[m](dS − t))/dS ;

25: R̃pi = (Rpi[ml]t+Rpi[m](dS − t))/dS ;

26: Sγ = sin(γ);
27: Cγ = cos(γ);
28: Imr + = R̃prCγ − R̃piSγ ;

29: Imi + = R̃prSγ + R̃piCγ ;

30: }
31: }
32: Ĩr[u] = Imr/N ;

33: Ĩi[u] = Imi/N ;

34: }

converting it to fixed-point variable can preserve high accuracy

of the floating-point variable. Higher scale values can generate

high accuracy from the conversion process. After processing

fixed-point operations, fixed-point data can be converted back

to floating-point data by dividing with the same scale factor.

Scale values are limited to power of 2 to increase the design

optimization by applying binary shifts for multiplications and

division operations [40]. Floating-point to fixed-point conver-

sion is represented by,

F̂ = ⌊2λF ⌋, (13)

where F represents the floating-point variable, F̂ is the fixed-

point variable, and λ is the scale factor. The Table I shows the

floating-point variables, scale factors, and fixed-point variables

generated for BP algorithm described in Section II-B. All

floating-point variables are converted using Equation 13, and

converted fixed-point variables are represented with a hat

symbol.

Listing 2 : The FlBP-SWI OpenCL module

1: kernel void FlBP_SWI (Ĩ[·], Rp[·, ξ], P,N, ds, rx,
ry, rz, G, fl, C){

2: float dx, dy, drsc, drcp, dR, γ, d, t, Sγ , Cγ ;

3: float Imr, Imi, R̃pr, R̃pi;

4: int x, y, k,m,ml;
5: for(u = 0;u < C2;u++){
6: Imr = 0;

7: Imi = 0;

8: x = u%C;

9: y =(int)(u/C);
10: dx = ((float)y−(float)C/2 + 0.5)G;

11: dy = ((float)C/2−(float)x/2− 0.5)G;

12: for(n = 0;n < N ;n++){
13: drsc = sqrt(r2x[n] + r2y[n] + r2z [n]);
14: drcp = sqrt((rx[n]− dx)

2 + (ry[n]− dy)2+
15: r2z [n]);
16: dR = drsc − drcp;

17: k =(int)(dR/dS) + ((P + 1) >> 1);
18: if(dR >= 0) k+ = 1;

19: if(k > 0 && k < P){
20: γ = BfldR;

21: d = dS(k − ((P + 1) >> 1));
22: t = d− dR;

23: m = kN + n;

24: ml = m−N ;

25: R̃pr = (Rpr[ml]t+Rpr[m](dS − t))/dS ;

26: R̃pi = (Rpi[ml]t+Rpi[m](dS − t))/dS ;

27: Sγ = sin(γ);
28: Cγ = cos(γ);
29: Imr + = R̃prCγ − R̃piSγ ;

30: Imi + = R̃prSγ + R̃piCγ ;

31: }
32: }
33: Ĩr[u] = Imr/N ;

34: Ĩi[u] = Imi/N ;

35: }
36: }

Table I: Floating-point variable to fixed-point variable conver-

sion map with scale factors.

Floating-point variables Scale factor Fixed-point variables

rx, ry , rz

2λR

r̂x, r̂y , r̂z

dx, dy , dz d̂x, d̂y , d̂z

dR d̂R

drcp d̂rcp

drsc d̂rsc

Ĩ
ˆ̃
I

γ γ̂

Rp 2λM R̂p

Sγ
2β

Ŝγ

Cγ Ĉγ

6

There are three scale factors defined in Table I, λR, λM ,

and β. The λR scale is applied to variables that pose a

significant impact for the overall accuracy, such as range

distances (rx, ry, rz) and distances from radar to scene center

(drsc) or current pixel (drsc). The λM scale is used for range

profile (Rp) conversion. Typically, range profile consists sig-

nificantly smaller values compared to range distances. Method

described in [25] is applied to find the optimum λR, λM

values that can generate higher quality output. Both λR and

λM are varied from 1 to 31 and parameters such as standoff

distance(dso), altitude (rz),and patch width (target area) are

varied to increase the robustness of the algorithm. Obtained

results for all configurations are averaged to find an optimum

range for λR and λM values. The BP algorithm generates

highest PSNR values for image output when λR is at 15 and

when λM varies between 14-16. Therefore, both λR and λM

are set as 15 for the BP algorithm. The β scale value is used

for the conversion of phase correction (γ[·]), that consists angle

values obtained from Sine and Cosine functions. The angle

conversion is explained in Section III-A2.

A. Fixed-Point Conversion

The fixed-point conversion of the BP algorithm is divided

into two main parts. First, the fixed-point based differential

range (d̂R[ξ]) is calculated. Secondly, the fixed-point based

conversion is applied to the phase correction term (γ̂[ξ]).
Finally, the BP algorithm equations are redefined with

fixed-point variables.

1) Differential Range Conversion: The differential range

(dR[ξ]) in Equation (8) is converted to a fixed-point vector.

The converted differential range (d̂R[ξ]) is given by,

d̂R[ξ] = d̂rcp[ξ]− d̂rsc[ξ], ξ ∈ (x, y, z), (14)

where,

d̂rcp[ξ] =
⌊

√

(r̂x − d̂x)2 + (r̂y − d̂y)2 + r̂2z

⌋

, (15)

d̂rsc[ξ] =
⌊√

r̂2x + r̂2y + r̂2z

⌋

. (16)

The r̂x, r̂y, r̂z are converted fixed-point ranges from radar

to imaging scene, and d̂x, d̂y are the fixed-point displacements

from scene center to current pixel.

2) Phase Correction Conversion: Converting an exponen-

tial term with varying dynamic range, to a fixed-point variable

is a challenging task that requires higher amount of logic

resources. Therefore, Euler’s formula is used to convert the

phase correction term (e−jγ[ξ]) in Equation (11) to a fixed-

point variable. Using Euler’s formula, e−jγ̂[ξ] is redefined as

shown in Equation (17).

e−jγ̂ = Ĉγ − jŜγ , (17)

where Ŝγ = sin(γ̂[ξ]), Ĉγ = cos(γ̂[ξ]), and γ̂ is given by,

γ̂ =
4πfld̂R[ξ]

c
. (18)

In the FlBP method, sine and cosine angles are calcu-

lated using OpenCL library functions. However, for the FxBP

method, library functions can generate inaccurate results with

scaled up fixed-point angle values. Therefore, a fixed-point

look-up table is created to calculate the Ŝγ and Ĉγ angle

values. First, 2π range is divided to a 2β number of linearly

spaced data array. The array indexes are given by,

θ[i] =
2π

2β
i, (19)

where θ[i] is the ith data point of the array, and 2β is the

scale. As shown in (20), the scaled-up fixed-point look-up table

is created by calculating sine angles for each data point and

multiplying with the scale factor of 2β .

Fsin[i] = ⌊sin(θ[i])× 2β⌋, (20)

where Fsin[·] is the look-up table with 2β samples for one

full period of the sin() function. Same method can be

used to create a look-up table for cosine angles (Fcos[·]).
Approximated sine and cosine values can be calculated

by,

˜sin[θ[i]] =
Fsin[i]

2β
, ˜cos[θ[i]] =

Fcos[i]

2β
, (21)

where i = ⌊2βθ/2π⌋. Figure 3 shows a comparison between

approximated sine and cosine values and sin() and

cos() library functions. Accuracy of the approximated sine

and cosine values can be increased by increasing the 2β

scale.

Figure 3: Sine and Cosine approximation with fixed-point

arithmetic

In the FxBP algorithm, resources are saved by only using

Fsin[·] look-up table in the design and sine angle Ŝγ is

calculated by,

Ŝγ = F̂sin[γ̂]2
(λR−β). (22)

The cosine angle Ĉγ is calculated by shifting Fsin[·] look-

up table by a quarter of a period and is given by,

Ĉγ = F̂sin[(γ̂ +
2β

4
)%2β]2(λR−β), (23)

7

where % is the modulus operator. The modulus operator is

used to find the principle angle in the 2π scale. However,

modulus and division operators use higher number of logic

resources. Thus, the Equation (23) is redefined with bit-wise

and operator and with bit-shift operator and it is given by,

Ĉγ = F̂sin[(γ̂ + (2β >> 2))&(2β − 1)] << (λR − β). (24)

The Ŝγ and Ĉγ are multiplied with 2(λR−β) scale to match

the range profile scale.

B. The BP Algorithm With Fixed-Point Variables

As described in Section III-A1 and III-A2, once d̂R[ξ]
and e−jγ̂[ξ] are calculated, redefined Equation (11) for back

projected image output is given by,

ˆ̃I[x, y] =
1

ΞN

∣

∣

∣

∣

∣

∣

∑

ξ

ˆ̃Rp(i, ξ)e
−jγ̂[ξ]

∣

∣

∣

∣

∣

∣

, γ̂[ξ] =
4πfld̂R[ξ]

c
,

(25)

where,

ˆ̃Rp(i, ξ) ={(⌊i+ 1⌋ − i)R̂p[⌊i⌋, ξ]+
(i− ⌊i⌋)R̂p[⌊i+ 1⌋, ξ]}2(λR−λM),

(26)

and i is given by

i =
d̂R[ξ]

d̂s
. (27)

The R̂p(i, ξ) in (26) is scaled up with 2λM and then

the
ˆ̃Rp(i, ξ) is scaled up by 2λR−λM to match the e−jγ̂[ξ]

scale. Finally, as shown in Equation (28), the scaled-up back

projected image output (
ˆ̃I[x, y]) is scaled-down to obtain the

final image output.

Ĩ[x, y] =
ˆ̃I[x, y]

2λR

(28)

C. OpenCL Implementation of the FxBP Algorithm

The FxBP-NDR and FxBP-NDR OpenCL kernels are

shown in Listings 3 and 4. The FxBP-SWI is very similar to

the FxBP-NDR. The only difference is in the line 9, where

in FxBP-NDR method, the variable u represents the image

pixel index and in FxBP-SWI method, variable u is the index

that is used to calculate intensities for all pixels in the image.

In Listing 3, lines 1-4 initialize the kernel and fixed-point

variables. Lines 5-8 show constant values that are used to avoid

repeated division operation in the kernel. Instead of dividing

a variable with a denominator, the variable is multiplying

with scaled up inverse denominator. In line 9, current pixel

index of the BP image (u) is obtained. Lines 10 and 11,

initialize temporary fixed-point image variables for real (Îmr)

and imaginary (Îmi) samples. Lines 12 and 13 calculates the

(x, y) positions of the image. The modulus operation in FlBP-

NDR method is replaced with bitwise modulus operation to

calculate x position and y is calculated using constant inverse

denominator value to avoid the costly division operation. Lines

Listing 3 : The FxBP-NDR OpenCL module

1: kernel void FxBP_NDR (ˆ̃I[·], R̂p[·, ξ], P,N, d̂s, r̂x,
r̂y, r̂z, Ĝ, fl, C){

2: int x, y, k,m,ml, Ŝγ , Ĉγ ,
ˆ̃Rpr,

ˆ̃Rpi;

3: long Îmr, Îmi, d̂rsc, d̂rcp, d̂R, d, t;
4: long d̂x, d̂x, r̂xl, r̂yl, r̂zl, r̂xd, r̂yd, r̂zd;

5: constant iC =(int)(1 << λR)/C;

6: constant iK =(int)(1 <<kScale)/dS ;

7: constant iD =(int)(1 << λR)/dS ;

8: constant iN =(int)(1 << λR)/N ;

9: u = get_global_id(0);
10: Îmr = 0;

11: Îmi = 0;

12: x = u%C;

13: y = uiC >> λR;

14: d̂x = (long)(2y − C + 1)Ĝ;

15: d̂y = (long)(C − 2x− 1)Ĝ;

16: for(n = 0;n < N ;n++){
17: r̂xl =(long)r̂x[n];
18: r̂yl =(long)r̂y[n];
19: r̂zl =(long)r̂z[n];
20: r̂xd = r̂xl − d̂x;

21: r̂yd = r̂yl − d̂y;

22: r̂zd = r̂2zl;
23: d̂rsc = (long)sqrt((float)(r̂2xl + r̂2yl + r̂2zl));

24: d̂rcp = (long)sqrt((float)(r̂2xd+ r̂2yd+ r̂zd));

25: d̂R = d̂rsc − d̂rcp;

26: k = ((d̂RiK) >>kScale) + ((P + 1) >> 1);
27: if(d̂R >= 0) k+ = 1;

28: if(k > 0 && k < P){
29: γ̂ = (B̂d̂R) >> λR;

30: d = d̂S(k − ((P + 1) >> 1));
31: t = d− d̂R;

32: m = kN + n;

33: ml = m−N ;

34:
ˆ̃Rpr = (R̂pr[ml]t+ R̂pr[m](d̂S − t))iD >> λR;

35:
ˆ̃Rpi = (R̂pi[ml]t+ R̂pi[m](d̂S − t))iD >> λR;

36: Ŝγ = F̂sin[γ̂] << (λR − β);

37: Ĉγ = F̂sin[(ˆγ + (2β >> 2))&(2β − 1)] <<
38: (λR − β);

39: Îmr + = (ˆ̃RprĈγ − ˆ̃RpiŜγ) >> λM ;

40: Îmi + = ˆ̃RprŜγ + ˆ̃RpiĈγ >> λM ;

41: }
42: }
43:

ˆ̃Ir[u] = ÎmriN >> λR;

44:
ˆ̃Ii[u] = ÎmiiN >> λR;

45: }

14-15 show the displacement from current pixel to scene center

in (x, y) directions, where C (∈ 128, 256, 512) represents the

number of columns and rows in the image and Ĝ is the

fixed-point ground sampling distance. Line 16 calculates the

intensity values for all pixels, where N represents the number

of pulses (image size). Lines 17-25 show the differential

8

range (d̂R[ξ]) calculation. Lines 26-27 shows the calculation

of nearest range profile sample indexes (k), where kScale

is a constant scale value and P represents the number of FFT

samples. Line 28 constrains the k within the range profile. Line

29 shows the calculation of phase correction term (γ̂), where

B̂ = 4πfl/c. The γ̂ scaled down by λR to avoid double scale

up. The d in line 30 represents the differential distance from

current pixel to scene center and the t in line 31 represents

the difference between current pixel to scene center and the

nearest range profile sample. Lines 32-35 show the bi-linear

interpolation of the fixed-point based range profile. The range

profile real (
ˆ̃Rpr) and imaginary (

ˆ̃Rpi) samples are scaled

down by λR to avoid double scale up. Lines 36-37 show the

sine and cosine angle calculation for fixed-point based

phase correction term (γ̂). As described in Equation (22), the

Ŝγ and Ĉγ are scaled up by (λR − β) to match the range

profile scale. Lines 38-39 show the summed up real (Îmr)

and imaginary (Îmi) intensity values for all range profiles and

both of them are scaled down by λM to remove λM scale

from all the image variables. Finally, Lines 41-42, show the

scaled up real (Ĩr) and imaginary (Ĩi) samples of the back

projected image output.

IV. FPGA PROGRAMMING MODEL

The FPGA programming model consists two main coding

paths, host side coding path and device side coding path. The

Figure 4 shows the FPGA Programming Model used to design

FlBP and FxBP algorithms.

Figure 4: FPGA Programming Model

As shown in Figure 4, the host side is typically designed

with the C++ language and OpenCL C++ wrapper API.

The source code is compiled using the system compiler to

generate the host binary code. The device side source code is

designed using OpenCL 1.2 and Intel OpenCL SDK is used

to compile the FPGA binary (.aocx file). The manufacturer

supplied board support package (BSP) is integrated to the

SDK to communicate and program the device. Once the

Listing 4 : The FxBP-SWI OpenCL module

1: kernel void FxBP_SWI (ˆ̃I[·], R̂p[·, ξ], P,N, d̂s, r̂x,
r̂y, r̂z, Ĝ, fl, C){

2: int x, y, k,m,ml, Ŝγ , Ĉγ ,
ˆ̃Rpr,

ˆ̃Rpi;

3: long Îmr, Îmi, d̂rsc, d̂rcp, d̂R, d, t;
4: long d̂x, d̂x, r̂xl, r̂yl, r̂zl, r̂xd, r̂yd, r̂zd;

5: constant iC =(int)(1 << λR)/C;

6: constant iK =(int)(1 <<kScale)/dS ;

7: constant iD =(int)(1 << λR)/dS ;

8: constant iN =(int)(1 << λR)/N ;

9: u = get_global_id(0);
10: for(u = 0;u < C2;u++){
11: Îmr = 0;

12: Îmi = 0;

13: x = u%C;

14: y = uiC >> λR;

15: d̂x = (long)(2y − C + 1)Ĝ;

16: d̂y = (long)(C − 2x− 1)Ĝ;

17: for(n = 0;n < N ;n++){
18: r̂xl =(long)r̂x[n];
19: r̂yl =(long)r̂y[n];
20: r̂zl =(long)r̂z[n];
21: r̂xd = r̂xl − d̂x;

22: r̂yd = r̂yl − d̂y;

23: r̂zd = r̂2zl;
24: d̂rsc = (long)sqrt((float)(r̂2xl + r̂2yl+
25: r̂2zl));
26: d̂rcp = (long)sqrt((float)(r̂2xd + r̂2yd+
27: r̂zd));
28: d̂R = d̂rsc − d̂rcp;

29: k = ((d̂RiK) >>kScale) + ((P + 1) >> 1);
30: if(d̂R >= 0) k+ = 1;

31: if(k > 0 && k < P){
32: γ̂ = (B̂d̂R) >> λR;

33: d = d̂S(k − ((P + 1) >> 1));
34: t = d− d̂R;

35: m = kN + n;

36: ml = m−N ;

37:
ˆ̃Rpr = (R̂pr[ml]t+ R̂pr[m](d̂S − t))iD >>

38: λR;

39:
ˆ̃Rpi = (R̂pi[ml]t+R̂pi[m](d̂S−t))iD >> λR;

40: Ŝγ = F̂sin[γ̂] << (λR − β);

41: Ĉγ = F̂sin[(ˆγ + (2β >> 2))&(2β − 1)] <<
42: (λR − β);

43: Îmr + = (ˆ̃RprĈγ − ˆ̃RpiŜγ) >> λM ;

44: Îmi + = ˆ̃RprŜγ + ˆ̃RpiĈγ >> λM ;

45: }
46: }
47:

ˆ̃Ir[u] = ÎmriN >> λR;

48:
ˆ̃Ii[u] = ÎmiiN >> λR;

49: }
50: }

offline compiler generates the FPGA binary, the host can

9

execute the host binary to send and receive data from the

device.

Typically, FPGA kernel compilation process takes few hours

to compile the bit stream. Therefore, all kernels are emulated

to verify the kernel performance and functionality on a host

running 4-core Intel core I7-4810MQ 2.8 GHz processor and

64-bit CentOS 7.3 operating system. After verifying kernel

functionality, all BP designs are executed on a BittWare

520N-MXboard which is equipped with an Intel Stratix 10-

MX2100FPGA. The Intel Stratix 10 FPGA consists of hard-

ened floating-point units (FPUs) dedicated to perform floating-

point operations. The Intel Quartus Pro/AOCL 19.3 is used to

compile and generate the FPGA bit-stream and BittWare BSP

(BIST 1.0-1) is used to program the FPGA.

A. FPGA Performance metric

Performance of an FPGA is evaluated using its resource

utilization and kernel speed for a given design. FPGA resource

utilization report shows the usage statistics of Adaptive Look-

Up Tables (ALUTs), registers, logic utilization, DSP

Blocks, and RAM Blocks for kernel design. However, the

implemented FPGA Performance Metric (FPM) only uses

logic utilization and kernel FMAX [38]. Generally, FPGA

devices consist of thousands of Logic Array Blocks (LABs)

that are connected to interconnects. In the Stratix 10 FPGA,

each of these LABs contain ten Adaptive Logic Modules

(ALMs) and each ALM contains a combinational Look-Up

Table (LUT), two adders, and four registers [41]. Number

of ALUTs and registers in the resource utilization report

represents the number of half-ALMs used for the design and

the number of logic utilization indicates the total number of

ALMs necessary to implement the design [42]. Therefore,

amount of logic utilization is a good indication to measure

the FPGA resource usage.

Sometimes higher logic utilization leads to high kernel

FMAX but it highly depends on the compiler. Therefore, FPM

metric is designed to generate higher values for designs that

has high kernel speed and low logic utilization. The FPM value

is a good metric to compare FlBP and FxBP designs fairly and

it is given by,

FPM =
fMAX

LU
, (29)

where, fMAX is the kernel speed (Hz) and LU is the logic

utilization (logic elements).

V. RESULTS

All BP designs are tested with synthetic phase history

data obtained from the SAR simulator [26] for 512×512

sized images and real SAR data obtained from the GOTCHA

dataset [39]. Then, resource utilization of each kernel design

is obtained from the ACL Quartus Report and the back

projected output image quality is evaluated by computing the

peak signal to noise ratio (PSNR) of the output image.

A. Resource Utilization and Kernel FMAX

The resource utilization is divided into five types, ALUTs,

Registers, Logic Utilization, RAM Blocks, and DSP Blocks.

These five resource types and kernel FMAX (MHz) are

considered individually to understand the resource utilization

and performance of each design. Table II shows the resource

utilization, kernel FMAX for all BP kernel designs. The

resource utilization in the ACL Quartus Report consists

of kernel resource utilization and the BSP resource utilization.

Therefore, resource utilization of hello world kernel is

subtracted from the resource utilization of individual BP

kernels to create a reference point and remove BSP resource

utilization. All results shown in Table II are based on a

reference design.

Table II: Resource Utilization and kernel FMAX (MHz) of BP

kernels
.

Resource

Type

Kernel Designs

FlBP-NDR FxBP-NDR FlBP-SWI FxBP-SWI

ALUTs 29634 18530 30426 17020

Registers 67097 55849 69171 52686

Logic Utilization 25820 21464 36687 21081

RAM Blocks 233 242 220 224

DSP Blocks 69 85 72 82

Kernel FMAX 405.67 397.61 376.22 408.32

Table II shows that the FxBP designs have lower resource

utilization of resource types ALUTs, Registers, and Logic

Utilization. However, FlBP designs use less DSP Blocks and

RAM Blocks compared to FxBP designs. This is mainly due

to the square-root operation that uses 32-bit float type

variables (Listings 1 and 2 lines 13-14) in floating-point

based designs and 64-bit long type variables in fixed-point

based designs. Since FxBP designs mostly use λR scaled up

fixed-point values, all variables in square-root operation use

64-bit long type to avoid the overflow.

Further analysis of Table II shows that the logic utilization

of the FxBP-NDR is less compared to FlBP-NDR but it has a

lower FMAX and generates the BP image output faster. This is

another instance to showcase the importance of a performance

metric for FPGA designs, since it is hard to evaluate kernels

design solely on logic utilization or kernel speed. Table III

shows the resources saved by FxBP designs compared to

FlBP designs. It is evident that even with hardened FPUs,

FxBP designs use less hardware resources than FlBP designs.

Overall, FxBP designs use significantly fewer resources than

FlBP designs.

B. Performance Metric Evaluation

FPGA performance is evaluated by calculating FPM value

for each design. Table IV shows the logic utilization, FMAX ,

and FPM for each design.

As shown in TableIV, FPGA performance is higher for

FxBP designs compared to FlBP designs. The FxBP-NDR

shows a 17.90% performance increase than FlBP-NDR and

10

Table III: Resource Savings from fixed-point based designs

.

Resource

Type

Kernel Designs

FxBP-NDR FxBP-SWI

ALUTs 37.47% 44.06%

Registers 16.76% 23.83%

Logic Utilization 16.87% 42.54%

RAM Blocks -3.86% -1.82%

DSP Blocks -23.19% -13.89%

Table IV: FPGA performance of all BP designs
.

Kernel Designs

FlBP-NDR FxBP-NDR FlBP-SWI FxBP-SWI

Logic Utilization 25820 21464 36687 21081

Kernel FMAX 405.67 397.61 376.22 414.25

FPM 15711.46 18524.51 10254.86 19650.40

% improved FPM 17.90% 91.62%

the FxBP-SWI shows a performance increase of 91.62% than

FlBP-SWI. Analyzing logic utilization data shown in Table

III and FPGA performance shown in Table IV, it is clear that

FxBP-SWI design is the best design choice compared to all

other designs.

C. Back Projected Image Quality Comparison

All images shown in Figure 5 are processed with the SAR

simulator [26] to create synthetic phase history for each

image. Then the synthetic phase history data is given as an

input to the BP modules to generate the back projected image

output. Usage of synthetic phase history data is beneficial to

evaluate performance of various BP design techniques, and

objective and subjective image quality evaluation is possible

by comparing the original image with the back projected

image. Back projected output image quality is evaluated

objectively by calculating PSNR values for each image

output. All calculated PSNR (dB) values for all BP designs

are shown in Table V. The PSNR values shown in Table V

are categorized as FlBP and FxBP designs, since both NDR

and SWI design techniques generate the same image output

with the same PSNR value.

Table V: PSNR (dB) results for test images

.

Test images FlBP Designs FxBP Designs Error (∆)

Pentagon 25.2305 25.1438 0.0867

Airport 20.5262 20.4465 0.0797

San Diego 23.5844 23.4785 0.1059

Stockton 27.2434 27.0831 0.1603

Wash-ir 19.1631 19.2551 -0.0920

Average Error 0.0681

Note that the difference between PSNR values (∆) of

FlBP and FxBP designs are very low. On average, for all

images, PSNR value is decreased by 0.0681 dB which is

negligible. Therefore, FlBP and FxBP designs are generating

very similar back projected images. Figures 6 and 7 show the

back projected outputs from FlBP and FxBP designs. Figure 8

shows the back projected output of FlBP and FxBP designs for

the ‘parking lot’ SAR data from the GOTCHA dataset [39].

As expected both designs generate image outputs for real SAR

data that are visually indistinguishable.

VI. CONCLUSION

This paper introduces a new fixed-point based FPGA design

for SAR back projection algorithm (FxBP) and shows the

significance of fixed-point based designs for computationally

complex algorithms. The proposed FxBP algorithm is designed

with NDR and SWI kernel structures. The floating-point based

back projection algorithm (FlBP) is designed with NDR and

SWI kernel structures to compare with the FxBP designs. All

designs are programmed and tested with a Stratix 10 FPGA

device. It is shown that the FxBP designs save a significant

amount of resource utilization compared to FlBP designs.

Compared to FlBP designs, FxBP-NDR and FxBP-SWI de-

signs save 16.87% and 42.54% logic resources, respectively.

The FPGA performance metric shows that the FxBP-NDR and

FxBP-SWI designs gain a 17.90% and 91.62% performance

increase compared to FlBP designs. Also, the FxBP designs

generate imagery of comparable image quality when compared

to FlBP designs. Image quality is evaluated using PSNR and

for all images the average PSNR decrease is 0.0681 dB. It is

shown that for modern FPGA devices (with hardened FPUs),

fixed-point based designs are still a significant option for

computationally expensive algorithms and due to significant

logic reduction it offers more flexibility to select devices for

specific applications.

REFERENCES

[1] Y. S. Rao, Synthetic Aperture Radar (SAR) Interferometry for Glacier

Movement Studies. Dordrecht: Springer Netherlands, 2011, pp. 1133–
1142.

[2] Y. Ban, P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder,
“Near real-time wildfire progression monitoring with sentinel-1 sar time
series and deep learning,” Nature Scientific Reports, vol. 10, no. 1, p.
1322, 2020.

[3] M. Watanabe, C. N. Koyama, M. Hayashi, I. Nagatani, and M. Shimada,
“Early-stage deforestation detection in the tropics with l-band sar,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 11, no. 6, pp. 2127–2133, 2018.

[4] F. M. Henderson and Zong-Guo Xia, “Sar applications in human
settlement detection, population estimation and urban land use pattern
analysis: a status report,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 35, no. 1, pp. 79–85, 1997.

[5] Y. Yamaguchi, “Disaster monitoring by fully polarimetric sar data
acquired with alos-palsar,” Proceedings of the IEEE, vol. 100, no. 10,
pp. 2851–2860, 2012.

[6] H. L. Li, J. Li, Y. X. Hou, L. Zhang, M. D. Xing, and Z. Bao, “Synthetic
aperture radar processing using a novel implementation of fast factorized
back-projection,” in IET International Radar Conference 2013, 2013, pp.
1–6.

[7] W. M. Brown and R. J. Fredricks, “Range-doppler imaging with motion
through resolution cells,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. AES-5, no. 1, pp. 98–102, 1969.

[8] R. Bamler, “A comparison of range-doppler and wavenumber domain
sar focusing algorithms,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 30, no. 4, pp. 706–713, 1992.

11

(a) Left: Pentagon image, center: Airport image, right: San Diego image

(b) Left: Stockton image, right: Wash-ir image

Figure 5: Test images used to create synthetic video phase history (VPH)

[9] J. Mittermayer, A. Moreira, and O. Loffeld, “Spotlight sar data pro-
cessing using the frequency scaling algorithm,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2198–2214, 1999.

[10] D. An, Y. Li, X. Huang, X. Li, and Z. Zhou, “Performance evaluation
of frequency-domain algorithms for chirped low frequency uwb sar
data processing,” IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 7, no. 2, pp. 678–690, 2014.

[11] L. Zhang, J. Sheng, M. Xing, Z. Qiao, T. Xiong, and Z. Bao,
“Wavenumber-domain autofocusing for highly squinted uav sar im-
agery,” IEEE Sensors Journal, vol. 12, no. 5, pp. 1574–1588, 2012.

[12] H. Shin and J. Lim, “Omega-k algorithm for airborne forward-looking
bistatic spotlight sar imaging,” IEEE Geoscience and Remote Sensing

Letters, vol. 6, no. 2, pp. 312–316, 2009.

[13] B. Liu, T. Wang, Q. Wu, and Z. Bao, “Bistatic sar data focusing using
an omega-k algorithm based on method of series reversion,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 47, no. 8, pp.
2899–2912, 2009.

[14] C. Cafforio, C. Prati, and F. Rocca, “Sar data focusing using seismic
migration techniques,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 27, no. 2, pp. 194–207, 1991.

[15] R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong,
“Precision sar processing using chirp scaling,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 32, no. 4, pp. 786–799, 1994.

[16] F. H. Wong, I. G. Cumming, and Y. L. Neo, “Focusing bistatic sar
data using the nonlinear chirp scaling algorithm,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 46, no. 9, pp. 2493–2505, 2008.

[17] F. Li, S. Li, and Y. Zhao, “Focusing azimuth-invariant bistatic sar
data with chirp scaling,” IEEE Geoscience and Remote Sensing Letters,
vol. 5, no. 3, pp. 484–486, 2008.

[18] A. F. Yegulalp, “Fast backprojection algorithm for synthetic aperture
radar,” in Proceedings of the 1999 IEEE Radar Conference. Radar into

the Next Millennium (Cat. No.99CH36249), 1999, pp. 60–65.

[19] Shu Xiao, D. C. Munson, S. Basu, and Y. Bresler, “An n2logn back-
projection algorithm for sar image formation,” in Conference Record

of the Thirty-Fourth Asilomar Conference on Signals, Systems and

Computers (Cat. No.00CH37154), vol. 1, 2000, pp. 3–7 vol.1.

[20] L. A. Gorham and L. J. Moore, “SAR image formation toolbox for
MATLAB,” in Algorithms for Synthetic Aperture Radar Imagery XVII,
E. G. Zelnio and F. D. Garber, Eds., vol. 7699, International Society for
Optics and Photonics. SPIE, 2010, pp. 46 – 58. [Online]. Available:
https://doi.org/10.1117/12.855375

[21] A. Sommer and J. Ostermann, “Explicit motion compensation for back-
projection in spotlight sar,” in 2016 17th International Radar Symposium

(IRS), 2016, pp. 1–4.

[22] L. Chen, D. An, and X. Huang, “A backprojection-based imaging for
circular synthetic aperture radar,” IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, vol. 10, no. 8, pp.
3547–3555, Aug 2017.

[23] L. M. H. Ulander, H. Hellsten, and G. Stenstrom, “Synthetic-aperture
radar processing using fast factorized back-projection,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 39, no. 3, pp. 760–776,
2003.

[24] L. Zhang, H. Li, Z. Qiao, and Z. Xu, “A fast bp algorithm with
wavenumber spectrum fusion for high-resolution spotlight sar imaging,”
IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 9, pp. 1460–
1464, 2014.

[25] D. L. N. Hettiarachchi and E. Balster, “An accelerated sar back pro-
jection algorithm using integer arithmetic,” in 2018 Asia-Pacific Signal

12

and Information Processing Association Annual Summit and Conference

(APSIPA ASC), 2018, pp. 80–88.
[26] E. J. Balster, F. A. Scarpino, A. M. Kordik, and K. L. Hill, “A simulator

for spotlight sar image formation,” in 2017 IEEE 7th Annual Computing

and Communication Workshop and Conference (CCWC), 2017, pp. 1–5.
[27] A. Fasih and T. Hartley, “Gpu-accelerated synthetic aperture radar

backprojection in cuda,” in 2010 IEEE Radar Conference, 2010, pp.
1408–1413.

[28] E. J. Balster, M. P. Hoffman, J. P. Skeans, and D. Fan, “Gpgpu
acceleration using opencl for a spotlight sar simulator,” in Proceedings

of the 5th International Workshop on OpenCL, ser. IWOCL 2017.
New York, NY, USA: Association for Computing Machinery, 2017.
[Online]. Available: https://doi.org/10.1145/3078155.3078157

[29] B. Ge, L. Chen, D. An, and Z. Zhou, “Gpu-based ffbp algorithm
for high-resolution spotlight sar imaging,” in 2017 IEEE International

Conference on Signal Processing, Communications and Computing

(ICSPCC), 2017, pp. 1–5.
[30] M. Wielage, F. Cholewa, C. Fahnemann, P. Pirsch, and H. Blume,

“High performance and low power architectures: Gpu vs. fpga for fast
factorized backprojection,” in 2017 Fifth International Symposium on

Computing and Networking (CANDAR), 2017, pp. 351–357.
[31] D. Pritsker, “Efficient global back-projection on an fpga,” in 2015 IEEE

Radar Conference (RadarCon), 2015, pp. 0204–0209.
[32] F. Cholewa, M. Wielage, P. Pirsch, and H. Blume, “Synthetic aper-

ture radar with fast factorized backprojection: A scalable, platform
independent architecture for exhaustive fpga resource utilization,” in
International Conference on Radar Systems (Radar 2017), 2017, pp.
1–6.

[33] M. W. Numan, B. J. Phillips, G. S. Puddy, and K. Falkner, “Towards
automatic high-level code deployment on reconfigurable platforms: A
survey of high-level synthesis tools and toolchains,” IEEE Access, vol. 8,
pp. 174 692–174 722, 2020.

[34] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 30, no. 4, pp. 473–491, 2011.
[35] Intel FPGA SDK for OpenCL pro edition: Best practices guide, Intel

Corporation, may 2019.
[36] M. Parker, “High-performance floating-point implementation using fp-

gas,” in MILCOM 2009 - 2009 IEEE Military Communications Confer-

ence, 2009, pp. 1–5.
[37] The industry’s first floating-point FPGA, Intel Corporation, 2014.
[38] D. L. N. Hettiarachchi, V. S. P. Davuluru, and E. J. Balster, “Integer

vs. floating-point processing on modern fpga technology,” in 2020

10th Annual Computing and Communication Workshop and Conference

(CCWC), 2020, pp. 0606–0612.
[39] Gotcha volumetric sar data set. [Online]. Available:

https://www.sdms.afrl.af.mil/index.php?collection=gotcha
[40] J. C. French and E. J. Balster, “A fast and accurate orthorectification

algorithm of aerial imagery using integer arithmetic,” IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 7, no. 5, pp. 1826–1834, 2014.

[41] Intel Stratix 10 Logic Array Blocks and Adaptive Logic Modules User

Guide, Intel Corporation, apr 2020.
[42] Fitter Resource Usage Summary Report, Intel Corporation, 2017.

13

(a) Pentagon image

(b) Airport image

(c) San Diego image

Figure 6: Output image comparison. Left: FlBP design output, Right: FxBP design output

14

(a) Stockton image

(b) Wash-ir image

Figure 7: Output image comparison. Left: FlBP desgin output, Right: FxBP design output

(a) Left: FlBP design output (b) Left: FxBP design output

Figure 8: Back projected ‘parking lot’ image from GOTCHA dataset [39]

