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Let G be a finite exceptional group of Lie type acting tran-
sitively on a set Ω. For x ∈ G, the fixed point ratio of x is
the proportion of elements of Ω which are fixed by x. We
obtain new bounds for such fixed point ratios. When a point-
stabilizer is parabolic we use character theory; and in other
cases, we use results on an analogous problem for algebraic
groups in Lawther, Liebeck & Seitz, 2002. These give dimen-
sion bounds on fixed point spaces of elements of exceptional
algebraic groups, which we apply by passing to finite groups
via a Frobenius morphism.

Introduction.

If G is a finite group acting transitively on a set Ω, and x ∈ G, we define
the fixed point ratio of x to be the proportion of points fixed by x; that is,
denoting this quantity by fpr(x,Ω),

fpr(x,Ω) =
fixΩ(x)
|Ω|

,

where fixΩ(x) is the number of fixed points of x on Ω. This can also be
expressed in terms of conjugacy classes, as follows: If ω ∈ Ω and H = Gω,
then

fpr(x,Ω) =
|xG ∩H|
|xG|

,

where xG denotes the conjugacy class in G which contains x. (To see the
equality of the above two expressions for fpr(x,Ω), just count the pairs
{(ω, y) : ω ∈ Ω, y ∈ xG, ωy = ω} in two different ways.)

Fixed point ratios have been much studied in recent years, and applied to
a number of different problems, particularly in the case where G is almost
simple. We refer the reader in particular to [23, 27, 30, 52], where upper
bounds on fixed point ratios are obtained and applied to various problems
when G is a classical group; to [42], where a general upper bound of 4/3q
is obtained for groups of Lie type over Fq (with a few exceptions); and to
[24, 52], where these bounds are used to prove the Guralnick-Thompson
monodromy group conjecture.
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In view of these and possible future applications, it seems important to
obtain as strong as possible upper bounds for fixed point ratios. While the
bounds in the above references are fairly satisfactory for classical groups,
the 4/3q bound of [42] is still the strongest upper bound for exceptional
groups of Lie type which can be found in the literature, apart from groups
of rank at most 2, where better bounds are obtained in [25]. In this paper
we obtain stronger bounds for fixed point ratios of all exceptional groups.

Our main result is Theorem 2 below. This is divided into several cases,
giving upper bounds for fpr(x,Ω) according to whether x is a semisimple
or unipotent element, and also according to whether a point stabilizer is a
parabolic or reductive subgroup. In many cases, the bounds given are close
to best possible; in particular, this is the case for maximal parabolics. The
statement of Theorem 2 is necessarily somewhat involved, with reference to
a number of tables, so for convenience we first state the following greatly
simplified version, giving an overall bound for all elements and all point
stabilizers.

Theorem 1. Let L be a finite simple exceptional group of Lie type over Fq,
and let X be an almost simple group with socle L (that is, L / X ≤ AutL).
Suppose X acts faithfully and transitively on a set Ω, and 1 6= x ∈ X. Then

fpr(x,Ω) ≤ 1
eL(q)

,

where eL(q) is as in Table 1.

L = E8(q) E7(q), 2E6(q) E6(q), F4(q),3D4(q) 2F4(q)′

eL(q) = q8(q4 − 1) q6 − q3 + 1 q4 − q2 + 1 q4

L = G2(q)(q 6= 2, 4) G2(4) 2G2(q)(q > 3) 2B2(q)

eL(q) = q2 − q + 1 52/7 q2 − q + 1 (q2+1)

(q
2/a

+1)

Table 1.

For L = 2B2(q), the number a in eL(q) is the smallest prime divisor of
log2 q.

For all cases except L = E8(q), E7(q) or 2F4(q)′, the bounds in Theorem 1
are sharp, in the sense that there is an element x ∈ X and an X-space Ω for
which fpr(x,Ω) = 1/eL(q); and for L = E8(q), E7(q) or 2F4(q)′, eL(q) is of
the correct order of magnitude, as can be seen using Proposition 2.1 below.

Observe that in order to prove Theorem 1, it suffices to prove it in the case
where X = 〈L, x〉 and X acts primitively on Ω. To see this, note that if X
acts imprimitively, then the fixed point ratio of x on blocks of imprimitivity
is certainly no less than its fixed point ratio on points.
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As explained above, despite the sharpness of Theorem 1, it is possible
to obtain much stronger bounds for fixed point ratios, and this we do in
Theorem 2 below. In order to state Theorem 2, we need to set up some
notation. Let G be a simple adjoint algebraic group over an algebraically
closed field K of characteristic p > 0, and let σ be a Frobenius morphism of
G such that the fixed point group Gσ = CG(σ) is a finite exceptional group
over a field Fq, where q is a power of p. Write L for the simple group (Gσ)′,
and let X be an almost simple group with socle L.

Let Ω be a set on which X acts primitively, and let H be a point stabilizer.
Then Ω can be identified with the coset space of H in X, which we denote
by X/H. In order to obtain lower bounds on fixed point ratios fpr(x, Ω) for
1 6= x ∈ X, it suffices to obtain such bounds just when x is an element of
prime order.

Elements of prime order are of the following types: Unipotent elements
of order p in Gσ; semisimple elements (of p′-order) in Gσ; and outer auto-
morphisms of L of prime order, not lying in Gσ. The latter are described
in Proposition 1.1 in Section 1 below, taken from [28, Section 7] (see also
[29, p. 60]); they are classified as field automorphisms, graph-field automor-
phisms (which exist only if G = E6, F4(p = 2), G2(p = 3) or B2(p = 2)), and
graph automorphisms (which exist only if G = E6). The field and graph-
field automorphisms are those for which the centralizer has the same type
as G, possibly twisted.

Theorem 2 has different bounds for each of these types of elements. More-
over, separate bounds are given for long root elements uα of Gσ (i.e., non-
identity elements lying in the center of a long root subgroup Uα), for short
root elements uβ when these exist, and for unipotent elements which are not
long or short root elements.

Theorem 2 is also subdivided into various parts according to the following
possibilities for H:

(I) H is a parabolic subgroup of X (i.e., H ∩L is a parabolic subgroup of
L);

(II) H = NX(Mσ), where M is a σ-stable reductive subgroup of maximal
rank in G (i.e., M contains a maximal torus of G); such maximal
subgroups H are classified in [43], where they are called subgroups of
maximal rank;

(III) H is not as in (I) or (II).

Theorem 2. Let L = (Gσ)′ be a finite simple exceptional group of Lie type
over Fq as above, let X be an almost simple group with socle L, acting faith-
fully and primitively on a set Ω, and let H = Xα (α ∈ Ω), a point stabilizer.
Let u be a nonidentity unipotent element of Gσ, let uα be a long root el-
ement and uβ a short root element (if these exist); let s be a nonidentity
semisimple element of Gσ; let φ be a field or graph-field automorphism of L
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of prime order, and τ a graph automorphism of prime order (if these exist).
According as:

(I) H is a parabolic subgroup P ,
(II) H = NX(Mσ) is a subgroup of maximal rank, or

(III) H is not as in (I) or (II),

and x ∈ H is such that:

(a) x = u,
(b) x = s,
(c) x = φ, or
(d) x = τ ,

upper bounds for the fixed point ratio fpr(x,Ω) are given in Table 2 below.

Notation in Table 2. The bounds in Table 2 for parabolic actions are
expressed in terms of various polynomials fP,α(q), fP,β(q), gP (q) and hP (q),
which are defined in Tables 7.1A-D at the end of the paper. The symbol
u ∼ uα means that u is L-conjugate to uα. The values of eG and hG are given
in Table 3 (and if G is not exceptional — which occurs when L = 2B2(q) or
3D4(q) — we set eG = hG = 0), and eL(q) is defined in Table 1. We write

L1 = {G2(q), 2G2(q), 2B2(q), 3D4(q)},

and if H = NX(Mσ) and x = s we set ε7 = 1 if (G, M0) = (E7, E6T1) and 0
otherwise. In addition, there are certain exceptions to the entries in Table 2,
marked by single and double daggers: The single daggers indicate two ex-
ceptions to Cases (III)(a) and (b), for which upper bounds for fpr(x,Ω) are
provided in Table 4; the double dagger denotes that in Case (II)(b) separate
bounds are given in Table 5 for q ≤ 3.

(I) H = P (II) H = NX(Mσ) (III) H other

(a) x = u

1
fP,α(q) if u ∼ uα

1
fP,β(q) if u ∼ uβ

1
gP (q) otherwise

min
(

2
qeG , 1

eL(q)

)
min

(
1

qeG , 1
eL(q)

)
(†)

(b) x = s 1
hP (q) min

(
2+ε7
qhG

, 1
eL(q)

)
(‡) min

(
1

qhG
, 1

eL(q)

)
(†)

(c) x = φ
1

eL(q) if L ∈ L1
1

hP (q) otherwise

1
eL(q) if L ∈ L1
1

qhG
otherwise

1
eL(q) if L ∈ L1
1

qhG
otherwise

(d) x = τ 1
eL(q)

1
eL(q)

1
eL(q)

Table 2. Upper bounds for fpr(x,Ω).
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G eG hG

E8 24 48
E7 12 22
E6 6 12
F4 4 6
G2 2 2

Table 3. Values eG and hG.

(L,H ∩ L) = (2E6(q), F4(q)) (L,H ∩ L) = (G2(4), J2)
x = u 1

(q6−q3+1)
1
13

x = s 1
q6(q6−q3+1)

7
52

Table 4. Exceptional bounds for (III)(a) and (b).

L

q E8(q) E7(q) E6(q) 2E6(q) F4(q) 2F4(q)′ G2(q) 3D4(q)
2 1

237
1

212
1
25

1
26

1
25

1
25 − 1

25

3 2
348

1
319

2
312

2
312

2
35 − 2

33
1
34

Table 5. Upper bounds for fpr(s,Ω) for q ≤ 3 in (II)(b).

Remark. The polynomials fP,α(q) have the same degree as the rational
functions 1/fpr(uα, Gσ/P ) = |Gσ/P |/fixGσ/P (uα) (and likewise for fP,β(q)).
Precise values of the polynomials fixGσ/P (uα) can be read off from Proposi-
tion 2.1 in Section 2.

Note that Theorem 1 follows from Theorem 2.

Our methods for handling the three cases (I)-(III) in Theorem 2 are rather
different. For technical reasons, we postpone the cases (I)(c,d) and (II)(c,d),
where x is an outer automorphism, until the final Section 6 of the paper.
For Case (I)(a,b), where H = P is a parabolic subgroup, we use character
theory: The permutation character of Gσ on Ω is the induced character 1Gσ

P ,
and so

fpr(x,Ω) =
1Gσ

P (x)

1Gσ
P (1)

.

(We may take X = Gσ in Part (I), as we are considering only elements
u, s ∈ Gσ, and maximal parabolics of L extend to maximal parabolics of
Gσ.) In Sections 2 and 3 we investigate the values of 1Gσ

P on unipotent
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and semisimple elements, using some sophisticated tools from the character
theory of finite groups of Lie type — the Deligne-Lusztig theory, Green
functions, Foulkes functions, and so on. As a result we obtain some rather
precise upper bounds for fixed point ratios, which are recorded in column
(I) of Table 2.

The results in Sections 2 and 3 may have some independent interest, since
nowhere else have we found a detailed analysis of the values of the induced
characters 1Gσ

P .
In Case (II), where H is a subgroup of maximal rank, we may as above

take X = Gσ, and so H = Mσ with M reductive of maximal rank. For
this case we use results from the paper [40], in which we considered an
analogous question for the exceptional algebraic groups G. For these groups
the quantity analogous to the fixed point ratio is

−f(x,G/M) = dim fixG/M (x)− dim G/M.

In [40], upper bounds are obtained for −f(x,G/M). By passing from the
algebraic groups G to the finite groups Gσ, we are able in Section 4 to use
these dimension bounds to obtain the bounds for fixed point ratios recorded
in column (II) of Table 2. While basically a straightforward application
of Lang’s theorem, the process of passing from algebraic to finite groups
requires a great deal of careful calculation.

In Case (III), the results [45, Theorem 2] and [48, Corollary 8] imply that
one of the following holds:

(i) H = NX(Mσ) for some maximal closed subgroup M of positive di-
mension in G (not of maximal rank),

(ii) H is one of a few known local subgroups,
(iii) H is almost simple and of bounded order.

There are not many possibilities under (i) or (ii), and they are dealt with
fairly easily using the methods of [40]. The subgroups in (iii) are handled
in Section 5 using some rather lengthy ad hoc arguments. The upshot for
fixed point ratios is recorded in column (III) of Table 2.

For technical reasons, we postpone a few cases in Theorem 2 until the
final Section 6. These are the cases in (c) and (d), where x is an outer
automorphism, and some cases where L is one of the groups of small rank
in L1.

1. Preliminary results.

In this section we present a variety of results concerning groups of Lie type
which will be used in later sections. Some of these may be of independent
interest. In particular, Proposition 1.3 provides general upper bounds for
the numbers of elements of order 2 or 3 in groups of Lie type; Lemma 1.7 is
a general result on the order of a finite unipotent group which is presumably
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well-known, but for which we have been unable to find a reference; and 1.6
and 1.8 give general upper and lower bounds for the orders of finite reductive
groups and their conjugacy classes.

We begin with a well-known result which classifies all outer automor-
phisms of prime order of finite groups of Lie type. In the terminology of
[28, Section 7], all such are field, graph-field or graph automorphisms.

Proposition 1.1. Let L = L(q) be a simple group of Lie type over Fq, and
let α be an automorphism of L of prime order. If L is classical with natural
module V , suppose that α does not lie in PGL(V ); and if L is exceptional,
suppose that α 6∈ Inndiag(L). Then one of the following holds:

(i) α is a field or graph-field automorphism, and CL(α) is of type L(q1/|α|)
or 2L(q1/2) (or 3D4(q1/3) when L = D4(q));

(ii) α is a graph automorphism and the possibilities are as follows:

L |α| possible types for CL(α)
Lε

n(q) 2 PSOn(q) (n odd)
PSO±

n (q), PSpn(q) (n even, q odd)
Spn(q), CSpn(q)(t) (n even, q even)

D4(q), 3D4(q) 3 G2(q), Aε
2(q) if (3, q) = 1

G2(q), CG2(q)(t) if 3 divides q
Eε

6(q) 2 F4(q), C4(q) (q odd)
F4(q), CF4(q)(t) (q even)

(in the last column, t denotes a long root element).

Proof. By [28, Section 7], α is a field, graph-field or graph automorphism,
and in the first two cases CL(α) is as in (i). If α is a graph automorphism of
order 3, then L = D4(q) or 3D4(q) and CL(α) is as in the table, by [28, 9.1].
Finally, the conjugacy classes of graph automorphisms of order 2 are given
by [2, Section 19] when q is even, and by [29, 4.5.1] when q is odd. �

In the proof of the next proposition we shall require the following elemen-
tary lemma.

Lemma 1.2.
(i) If {a1, . . . , al} and {b1, . . . , bm} are two sets of distinct integers, all at

least 2, then ∏l
1(q

ai − 1)∏m
1 (qbi − 1)

< 2qΣai−Σbi .

(ii) If a1, . . . , al are distinct integers, all at least 2, and r ≥ 3, then

(qr + 1)
l∏
1

(qai + 1) < 2qr+Σai .
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(iii) If b ≤ a then qa+1
qb+1

< qa−b.

Proof. To prove (i), it is enough to establish that
∏n

2
qi

qi−1
< 2 for any n.

Taking natural logarithms, we require
∑

ln(1 + 1
qi−1

) < ln 2. The left hand
side is less than

∑
i≥2

1
2i−1

, which is less than 4
3

∑∞
2

1
2i = 2

3 , and this is less
than ln 2, as required. Part (ii) can be proved in similar fashion, and (iii) is
trivial. �

The next proposition is similar to but somewhat stronger than a result
in [51] (see [51, 4.1, 4.3]). It is a useful general result which bounds the
number of involutions and elements of order 3 in a finite group of Lie type.

For the statement we require a definition: For a finite group D and a
positive integer r, denote by ir(D) the number of elements of order r in D.

Proposition 1.3. Let Y be a simple algebraic group over K, and let N be
the number of positive roots in the root system of Y . Suppose that δ is a
Frobenius morphism of Y such that S = (Yδ)′ is a finite simple group of Lie
type over Fq. If S is not of type 2F4,

2G2 or 2B2, define

N2 = dim Y −N, N3 = dim Y − 2
3
N,

and if S is of type 2F4,
2G2 or 2B2 define

N2 =
1
2
(dim Y −N), N3 =

1
2

(
dim Y − 2

3
N

)
.

(i) We have

i2(Aut S) < 2(qN2 + qN2−1).

(ii) We have

i3(Aut S) < 2(qN3 + qN3−1).

(iii) The number of unipotent elements in Yδ is equal to q2N , unless S is of
type 2F4, 2G2 or 2B2, in which case it is qN .

Proof. (i) This is essentially careful book-keeping, using well-known infor-
mation about the conjugacy classes and centralizers of involutions which can
be found in [2, 29].

When S is an exceptional group of Lie type, there are few classes of
involutions in AutS. Representatives and centralizers of involutions in Yδ

are given in [29, 4.5.1] for q odd and in [2] for q even; and the classes of outer
involutions are given by 1.1. Using this information it is straightforward to
calculate the precise value of i2(Aut S), and to verify the conclusion of (i).

Now consider the case where S is a classical group.
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Consider first S = Ln(q) with q odd. In Yδ = PGLn(q), the conjugacy
classes of involutions are represented by the images (modulo scalars) of ma-
trices (

Im 0
0 −In−m

)
for 1 ≤ m ≤ n/2, and, for n even,(

0 In/2

αIn/2 0

)
,

where α is a fixed non-square in Fq. The centralizers of these involutions in
PGLn(q) are the images of the subgroups GLm(q)×GLn−m(q) for m < n/2
and, for n even, the images of GLn/2(q)2.2 and GLn/2(q2).2. Hence for each
class of involutions tYδ , we have, cancelling terms in

|GLn(q)|/(|GLm(q)|.|GLn−m(q)|)
and using Lemma 1.2(i),

|tYδ | < 2qdim tY .
q

q − 1
.

(The q/q−1 term arises because 1.2(i) applies only when all exponents ai, bi

are at least 2.) For n even, the dimensions of the involution classes tY are
1
2n2 (two classes), 1

2n2−2, 1
2n2−8, . . . , 2n−2; and for n odd, the dimensions

are 1
2(n2 − 1), 1

2(n2 − 9), . . . , 2n− 2. Hence for n even we have

(1) i2(Yδ) <
2q

q − 1
.
(
q

1
2
n2

+ q
1
2
n2−2 + · · ·+ q2n−2

)
while for n odd,

(2) i2(Yδ) <
2q

q − 1
.
(
q

1
2
(n2−1) + q

1
2
(n2−9) + · · ·+ q2n−2

)
.

Now consider involutions in (AutS)\Yδ. These are given by 1.1. The invo-
lutions t with centralizer of type Oε

n(q) have dim tY = dim Y − dim(SOn) =
dim Y −N = N2, so that by 1.2(i) the contribution of these involutions to
i2(Aut S) is less than 2qN2 . The other outer involutions in 1.1 contribute
less than 2qN2−n + 4q

1
2
(n2−1) (where the first term accounts for the remain-

ing class of graph automorphisms, and is present only if n is even, and the
second term accounts for the field and graph-field automorphisms, and is
present only if q is square).

Putting all this together, we see that

(3) i2(Aut S) < 2qN2 + (2aqN2−n + 4bq
1
2
(n2−1)) + i2(Yδ),

where a = 1 if n is even and a = 0 otherwise, and b = 1 if q is square and
b = 0 otherwise. Using (1) and (2) it is readily checked that this implies the
required inequality i2(Aut S) < 2(qN2 + qN2−1), provided n ≥ 5. And for



402 R. LAWTHER, M.W. LIEBECK, AND G.M. SEITZ

n ≤ 4 we improve the estimate of Lemma 1.2(i) by calculating the precise
value of i2(Aut S) using the information given above, and the result follows.

The proof for S = Ln(q) with q even follows along the same lines. Here the
classes of involutions in Yδ are represented by matrices jm (1 ≤ m ≤ n/2)
having m Jordan blocks of size 2 and the rest of size 1, and by [2], the
centralizer in GLn(q) of jm has order qm(2n−3m).|GLm(q)|.|GLn−2m(q)|, and
jY
m has dimension 2m(n−m). Hence we obtain inequalities analogous to (1)

and (2), and (3) also holds by 1.1. This gives the result for n ≥ 5, apart
from the cases where S = Ln(2) with n = 5 or 6. For these groups and
for n ≤ 4, we again calculate the precise values of i2(Aut S) to obtain the
result. This completes the proof of (i) for S = Ln(q).

The proof for S = Un(q) is very similar. For q odd, the classes of in-
volutions in Yδ = PGUn(q) have centralizers the image modulo scalars of
GUm(q) × GUn−m(q) (if m = n/2, GUm(q)2.2) or GLn/2(q2).2 (one class
for each centralizer). For q even involutions in Yδ are represented by matri-
ces jm as above, with centralizer of order qm(2n−3m).|GUm(q)|.|GUn−2m(q)|.
And all further outer involutions are given by 1.1. Similar calculations to
those above, this time using Parts (ii) and (iii) of Lemma 1.2 as well as Part
(i), yield the conclusion.

Now consider S = PSp2m(q) or PΩε
n(q). For q odd, involutions in

PGSp2m(q) have centralizer the image modulo scalars of Sp2l(q)×Sp2m−2l(q),
Spm(q)2.2, Spm(q2).2, GLm(q).2 or GUm(q).2; and in PGOε

n(q), involutions
have centralizer the image of GOk(q)×GOn−k(q), GOn/2(q)2.2, GOn/2(q2).2,
GLn/2(q).2 or GUn/2(q).2. All further outer involutions are field or graph-
field automorphisms, given by 1.1. The result follows, calculating as in the
Ln(q) case.

Finally, for q even, by [2, Sections 7,8], involutions in Sp2m(q) or Oε
2m(q)

are represented by certain elements am−k, bm−l, cm−k for 0 ≤ k ≤ m, m− k
even, and 0 ≤ l ≤ m, m− l odd. For Y = Sp2m, we have

dim aY
m−k = m2 − k2, dim bY

m−k = dim cY
m−k = m2 + m− k2 − k,

and for Y = SO2m,

dim aY
m−k = m2 −m− k2 + k, dim bY

m−k = dim cY
m−k = m2 − k2.

Again, further involutions are field and graph-field automorphisms. Also,
the number of simple factors in an involution centralizer is at most 2. The
result follows in the usual way.

(ii) This is fairly similar to the proof of (i), and we just give a sketch.
First consider S an exceptional group. For p 6= 3 the classes and centralizers
of elements of order 3 in Yδ are given in [29, 4.7.3], and by 1.1, further outer
elements of order 3 are field automorphisms (and graph automorphisms of
3D4(q)). Thus we can calculate i3(Aut S), and the result follows. For p = 3,
the classes of (unipotent) elements of order 3 are given by the classification



FIXED POINT RATIOS 403

of unipotent classes in Yδ to be found in [19, 59, 60, 65, 67]. A convenient
summary can be found in [38], from which we read off the labellings of
the elements of order 3 in Y ; centralizers in Yδ are then read off from the
appropriate references. (The largest classes have corresponding centralizer
orders q70|B2(q)|, q37|A1(q)|2, q21|A1(q)|, q13|A1(q)|, q4, according as Y =
E8, E7, E6, F4, G2; and the largest classes in 2G2(q), 3D4(q) have centralizer
orders q2, q7|A1(q)| respectively.) Thus i3(Aut S) can be calculated, giving
the result.

Now suppose S is a classical group. First consider S = Lε
n(q). If

q ≡ ε mod 3, then the classes of elements of order 3 in Yδ = PGLε
n(q) are

represented by the images of the matrices drs = diag(ωIr, ω
−1Is, In−r−s)

(r ≤ s ≤ n− r − s, ω a cube root of 1), and, when 3|n, the matrix

e =

 0 In/3 0
0 0 In/3

αIn/3 0 0


(α a fixed non-cube). The elements drs have centralizers the images of
GLε

r(q)×GLε
s(q)×GLε

n−r−s(q) (if r = s = n/3 the centralizer is the image
of GLε

n/3(q)
3.3), and e has centralizer the image of GLε

n/3(q
3).3. By 1.1,

further automorphisms of order 3 are field automorphisms. The result now
follows from calculations as in Part (i).

If q ≡ −ε mod 3 and ε = 1, the classes of elements of order 3 in Yδ are
represented by the images of e and of matrices fr = diag(A, . . . , A, In−2r),
where A ∈ SL2(q) has order 3 and there are r diagonal blocks A; the
centralizer of fr is the image of GLr(q2) × GLn−2r(q). And when q ≡
−ε mod 3 and ε = −1, representatives are e and drr, and the centralizer of
drr is the image of GLr(q2) × GUn−2r(q). The result follows in the usual
way.

To complete the case where S = Lε
n(q), suppose 3|q. The classes of ele-

ments of order 3 in Yδ are represented by matrices trs = diag(J3, . . . , J3, J2,
. . . , J2, In−3r−2s) where Ji is a unipotent i× i Jordan block and there are r
blocks J3 and s blocks J2. By [72, p. 34], writing t = n− 3r − 2s we have

|CGLε
n(q)(trs)| = q2ts+2tr+4sr+s2+2r2 |GLε

r(q)||GLε
s(q)||GLε

t(q)|,

and dim tYrs = 4rn + 2sn− 6r2 − 2s2 − 6rs. One checks that the maximum
possible value of this is [23n2] ≤ N3. Now the result follows in the usual way.

Now suppose S = PSp2m(q) or PΩε
n(q). For (3, q) = 1, the classes of

elements of order 3 are represented by the elements drr if q ≡ 1 mod 3 (cen-
tralizer GLr(q)×Sp2m−2r(q) or GLr(q)×Oε

2m−2r(q)), and by the elements fr

if q ≡ −1 mod 3 (centralizer GUr(q)× Sp2m−2r(q) or GUr(q)×Oε
2m−2r(q)).

The result follows in this case.
Finally, if 3|q, by [72, p. 34] the classes of elements of order 3 are rep-

resented by the elements trs (with r even for S symplectic, s even for S
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orthogonal). The centralizer orders are given in [72]. For S = PSp2m(q) we
have

dim tYrs = m(4r + s)− 3r2 − s2 − 3rs + r + s,

the maximum value of which is [23(2m2 + m)] ≤ N3, and the result follows
in the usual way. And if S = PΩε

n(q) then

dim tYrs = n(2r + s)− 3r2 − s2 − 3rs− r − s,

the maximum value of which is again [23 dim Y ] ≤ N3, and the result again
follows.

(iii) This is a well-known result of Steinberg (see [7, 6.6.1]). �

Next we prove a small generalisation of a result in [36, 5.2.11].

Proposition 1.4. If Y, Z are simple algebraic groups over K, and Y has a
Frobenius morphism δ such that Y ′

δ is isomorphic to a subgroup of Z, then
rank(Y ) ≤ rank(Z).

Proof. Write S = Y ′
δ . The result is trivial if S is soluble or of type Ω+

4 (q)
(see [36, 2.9.2] for a list of the possibilities). So we may assume that S is
quasisimple. Say S = S(q), a group of Lie type over Fq.

Suppose first that Z = Cl(V ), a classical group with natural module V .
Then Rp(S) ≤ dim V , where Rp(S) denotes the smallest dimension of a
nontrivial faithful projective representation of S. The values of Rp(S) are
given in [36, 5.4.13], from which it follows that the only possibility with
rank(Y ) > rank(Z) is Y = Al, Z = Bm, Cm or Dm, with l > m. However
V ↓ Z is self-dual in this case, so either dim V ≥ 2(l+1) or dim V is at least
the dimension of a self-dual irreducible projective Y -module, which by [36,
5.4.11] is greater that 2(l + 1). Hence dim V ≥ 2(l + 1) in any case, which
forces l < m, completing the proof for Z classical.

Now suppose Z is of exceptional type. If q > 2 then the conclusion is
immediate from [44, Theorem 2], so we may assume that q = 2. Moreover,
[36, 5.2.11] implies that the BN -rank of S is at most rank(Z). Therefore to
complete the proof it remains to exclude the following possible inclusions:

(1) U10(2),Ω−
18(2) < E8

(2) U9(2), SU9(2),Ω−
16(2) < E7

(3) U8(2),Ω−
14(2) < E6

(4) U6(2), SU6(2),Ω−
10(2), 2E6(2) < F4

(5) U4(2) < G2.
The abelian 3-rank of S is at most that of Z, which by [12] is equal to
rank(Z). This rules out Cases (1), (3) and (5), and also SU9(2) < E7

and SU6(2),Ω−
10(2) < F4. For the rest of Case (2), assuming Ω−

16(2) < E7,
observe that Ω−

16(2) has a Levi factor Ω−
14(2) which must lie in a Levi factor

of E7, hence in E6, which is impossible (we have already excluded Case (3)).
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And assuming U9(2) < E7, note that the group U9(2) contains a subgroup
37.A9 (corresponding to GU1(2) o A9), of which the normal 37 must lie in
a maximal torus of E7 by [12]; this means that A9 must be a section of
the Weyl group W (E7), which is not the case. To complete the proof we
must rule out U6(2), 2E6(2) < F4 in Case (4). Now U6(2) contains 34.S6,
so if this were in F4 the above argument would show that S6 is a section of
W (F4), which is not the case. Finally, 2E6(2) contains U6(2), so is not in F4

either. �

The next two results provide some general estimates for the orders of fixed
point groups of Frobenius morphisms on reductive groups. The first is an
elementary general fact, which is rather useful.

Proposition 1.5. Let X be a connected reductive algebraic group. Let σ be
a Frobenius endomorphism of X, and let K be a finite, σ-stable subgroup of
Z(X). Take σ to act on Y = X/K by xK → xσK. Then

|Xσ| = |Yσ|.

Proof. We count the elements of the set S = {x ∈ X : xσx−1 ∈ K} in two
different ways. On the one hand, for each k ∈ K, by Lang’s theorem there
exists x ∈ X such that xσx−1 = k. Hence there are precisely |Xσ| such
elements x, so it follows that |S| = |K||Xσ|. On the other hand, xσx−1 ∈ K
implies that (xK)σ = xK, so the number of elements x such that xσx−1 ∈ K
is equal to |Yσ||K|. This is also equal to |S|, and the conclusion follows. �

Remark. Another way of expressing Proposition 1.5 is simply to say that
the order of the fixed point group of a Frobenius morphism on a connected
reductive group is independent of the isogeny type of the group.

Proposition 1.6. Let G be a simple algebraic group in characteristic p > 0,
and let σ be a Frobenius morphism of G with fixed point group Gσ = G(q),
of Lie type over Fq; suppose further that Gσ 6= 2F4(q), 2G2(q), 2B2(q). Let
M be a connected reductive subgroup of G, and set

l = rank (M), z = rank (Z(M)0).

Then

(q − 1)lqdim M−l ≤ |Mσ| ≤ (q + 1)zqdim M−z.

Proof. Write M = ZE, where Z = Z(M)0, E = M ′. By 1.5, |Mσ| =
|Zσ||Eσ|. By [61, 2.4(iii)] and its proof, we have

(q − 1)z ≤ |Zσ| ≤ (q + 1)z.

Moreover, |Eσ| is a monic polynomial in q, and inspection of the orders of
quasisimple groups shows that if d = rank(E) = l − z, then

(q − 1)dqdim E−d ≤ |Eσ| < qdim E .
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The conclusion follows. �

Lemma 1.7. Let G, σ be as in the statement of 1.6, and let U be a connected
unipotent σ-stable subgroup of G. Then |Uσ| = qdim U .

Proof. By [4, 15.4], U has a σ-stable filtration by normal subgroups U =
U0 > U1 > . . . Uk = 1, where dim Ui/Ui−1 = 1 for all i. And by the proof of
[48, 1.13], |(Ui)σ/(Ui−1)σ| = q. The result follows. �

Corollary 1.8. Let G, σ be as in 1.6, and let x ∈ Gσ. Write E = CG(x),
and let a = dim Z(E0/Ru(E0)). Then

|xGσ | ≥ 1
2

qa

(q + 1)a|E : E0|
qdim xG

.

Proof. Let U = Ru(E0) and F = E0/U . Then |Uσ| = qdim U by 1.7, and by
1.6,

|Fσ| ≤
(q + 1)a

qa
qdim F .

From the order formulae for simple groups, and using Lemma 1.2, we have

|Gσ| >
1
2
qdim G.

Hence

|xGσ | ≥ 1
2

qa

(q + 1)a|E : E0|
qdim G−dim U−dim F .

The result follows. �

2. Proof of Theorem 2(I)(a): Unipotent elements in parabolics.

Let G be a simple algebraic group of exceptional type over the algebraically
closed field K of characteristic p > 0, and let σ be a Frobenius morphism
of G. In this section we prove Theorem 2(I)(a) — the case of unipotent
elements in parabolic subgroups. For this case we may assume that X = Gσ,
and moreover that G is simply connected (since Z(Gσ) has order coprime
to p).

We postpone until the end of the section the cases where Gσ is of type
2F4 or 2G2. (We also cover 3D4(q) and 2B2(q) at the end of the section.)
Excluding these cases, we have σ = qσ0 where σ0 is either 1 or a graph
automorphism of finite order, and q = pa. Let P be a σ-stable parabolic
subgroup of G, so that Pσ is a parabolic subgroup of Gσ. In this section we
shall consider fixed point ratios fpr(u, Gσ/Pσ) for u ∈ Gσ unipotent. Since
the value of the permutation character 1Pσ

Gσ at an element of Gσ is simply
the number of fixed points of the element in the action on Gσ/Pσ, we have

fpr(u, Gσ/Pσ) =
1Pσ

Gσ(u)
1Pσ

Gσ(1)
.
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Thus we may use character theory to calculate fixed point ratios; we begin
by considering the value of 1Pσ

Gσ at long root elements.
Let T0 be a fixed maximally split maximal torus of G, and let B be a

σ-stable Borel subgroup of G containing T0; we assume that P contains B.
Let W = NG(T0)/T0 be the Weyl group of G. Let Φ be the set of roots
with respect to T0, and Φ+ be the set of positive roots determined by B; let
Π = {α1, . . . , αr} be the corresponding simple system, so that σ0 permutes
the roots in Π. Let α0 be the highest root of Φ with respect to Π; write |α|
for the length of the root α. We shall find it convenient to define the long
height lht(α) of a long root α ∈ Φ by

lht
(∑

niαi

)
=
∑

ni
|αi|2

|α0|2

(note that
∑

niαi is long if and only if ni
|αi|2
|α0|2 ∈ Z for each i); thus if all

roots of Φ are long, then the long height coincides with the usual height of
a root. We also define the long root polynomial LΦ,σ0 of the pair (Φ, σ0) by

LΦ,σ0(t) =
∑

α∈Φ+ long, σ0(α)=α

tlht(α).

If we abbreviate the polynomial antn + an−1t
n−1 + · · ·+ a1t as n : an, an−1,

. . . , a1, then the polynomials LΦ,σ0 for simple systems Φ are given in the
following table, in which σ0 is specified (up to conjugacy) by its order.

Φ o(σ0) LΦ,σ0(t)
An 1 n : 1, 2, . . . , n
An 2 n : 1, 0, 1, 0, . . . , n− 2bn

2 c
Bn 1 2n− 2 : 1, 1, 2, 2, . . . , n− 1, n− 1
Cn 1 n : 1, 1, . . . , 1
Dn 1 2n− 3 : 1, 1, 2, 2, . . . , bn

2 c − 1, bn
2 c − 1, 3bn

2 c − n + 1, bn
2 c+ 1,

bn
2 c+ 2, bn

2 c+ 2, . . . , n− 1, n− 1, n
Dn 2 2n− 3 : 1, 1, 2, 2, . . . , bn

2 c − 1, bn
2 c − 1, bn−1

2 c, bn
2 c − 1,

bn
2 c, b

n
2 c, . . . , n− 3, n− 3, n− 2

D4 3 5 : 1, 1, 0, 0, 1
E6 1 11 : 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, 6
E6 2 11 : 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2
E7 1 17 : 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7
E8 1 29 : 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6,

7, 7, 7, 7, 7, 7, 8
F4 1 8 : 1, 1, 1, 1, 2, 2, 2, 2
G2 1 3 : 1, 1, 1

Let P0 be the normalizer in G of the long root subgroup Uα0 ; let WP0

be the Weyl group of P0, so that WP0 is a parabolic subgroup of W . Write
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P = LUP , where L is a Levi subgroup of P and UP its unipotent radical; let
Φ(L) be the root system of L. The following result gives the value of 1Pσ

Gσ

at long root elements if Gσ is not a Suzuki or Ree group.

Proposition 2.1. With the notation established, if σ0 preserves root lengths
then

1Pσ
Gσ(uα) =

|(P0)σ|
|Pσ|

(
qlht(α0)LΦ,σ0(q

−1) + qlht(α0)−1LΦ(L),σ0
(q)
)

.

Proof. Given w ∈ W , write Uw
− for the product of the root subgroups Uα

as α runs over the positive roots made negative by w. For each w ∈ W ,
choose ẇ ∈ NG(T0) with ẇT0 = w. Let DJ0 be the set of distinguished
coset representatives of WP0 in W ; thus any w ∈ W may be written as
w = w1w2 with w1 ∈ WP0 , w2 ∈ DJ0 and `(w) = `(w1) + `(w2). By the
Bruhat decomposition, it follows that any element of G may be written in
the form uhẇ1v1ẇ2v2, where u ∈ U , h ∈ T0, w1 ∈ WP0 , v1 ∈ Uw1

−, w2 ∈ DJ0

and v2 ∈ Uw2
−. Now uhẇ1v1 ∈ P0 = NG(Uα0); thus

xα0(1)uhẇ1v1ẇ2v2 = xw2
−1(α0)(t)

v2 for some t ∈ K.

It follows that if g = uhẇ1v1ẇ2v2 then

xα0(1)g ∈ P ⇐⇒ xw2
−1(α0)(t) ∈ P v2

−1
= P ⇐⇒ w2

−1(α0) ∈ Φ(P ),

where we set Φ(P ) = Φ(L) ∪ Φ+. It follows that if we set

DP = {w ∈ DJ0 : w−1(α0) ∈ Φ(P )},
then the number of elements g ∈ Gσ with xα0(1)g ∈ P is

|(P0)σ|
∑

w∈DP

|(Uw
−)σ|.

Since the value of 1Pσ
Gσ at an element x of Gσ is |Pσ|−1 times the number

of elements g ∈ Gσ with xg ∈ Pσ, we see that

1Pσ
Gσ(uα) =

|(P0)σ|
|Pσ|

∑
w∈DP , σ0(w−1(α0))=w−1(α0)

|(Uw
−)σ|.

Now as w ranges over DJ0 , w−1(α0) runs through the long roots of Φ;
thus for each long root α ∈ Φ there is a unique w(α) ∈ DJ0 such that
(w(α))−1(α0) = α; so we may write

1Pσ
Gσ(uα) =

|(P0)σ|
|Pσ|

∑
α∈Φ(P ) long, σ0(α)=α

|(Uw(α)
−)σ|.

If α is σ0-stable, we may write a reduced expression for w(α) in the form
wJ1wJ2 . . . wJt , where each wJi is a product of simple reflections corre-
sponding to the roots in a single σ0-orbit; by [7, 14.1.2(ii)] it follows that
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|(Uw(α)
−)σ| = q`(w(α)). Thus

1Pσ
Gσ(uα) =

|(P0)σ|
|Pσ|

∑
α∈Φ(P ) long, σ0(α)=α

q`(w(α)).

Finally, we consider separately the contributions to this sum from positive
and negative roots. If α is a positive long root, then there exists a chain of
roots from α to α0 in which each root is higher than its predecessor, and is
obtained from it by a simple reflection; the corresponding product of simple
reflections is w(α), and so `(w(α)) = lht(α0)− lht(α). Thus the contribution
to the above sum from positive long roots α is qlht(α0)LΦ,σ0(q

−1). On the
other hand, if α is a negative long root, there exists a chain of roots as above
from α to −β for some simple long root β; if w is the corresponding product
of simple reflections, then w(α) = w(β)wβw, and so `(w(α)) = (lht(α0)−1)+
1 + (lht(−α) − 1) = lht(α0) − 1 + lht(−α). Thus the contribution to the
above sum from negative long roots α is qlht(α0)−1LΦ(L),σ0

(q). The result
follows. �

Corollary 2.2. With the notation established, if either σ is untwisted or all
roots of Φ have the same length then

fpr(uα, Gσ/Pσ) =
|(P0)σ|
|Gσ|

(
qlht(α0)LΦ,σ0(q

−1) + qlht(α0)−1LΦ(L),σ0
(q)
)

.

The remaining cases of Suzuki and Ree groups are easily dealt with, since
tables giving unipotent characters are available; we mention these at the end
of this section.

We now turn to considering other values of the permutation character
1Pσ

Gσ ; we begin by briefly reviewing the theory by which the values of
1Pσ

Gσ may be obtained.
Since Pσ is a parabolic subgroup of Gσ, all the constituents of 1Pσ

Gσ are
unipotent characters lying in the principal series. To obtain such irreducible
characters of Gσ, we begin with generalized Deligne-Lusztig characters RT,θ

(where T is a σ-stable maximal torus of G and θ is a linear character of
Tσ) in which θ is the principal character 1 of Tσ. If T0 is a fixed maximally
split torus of G and T = gT0, then by [7, 3.3.1] g−1σ(g) ∈ NG(T0), and so
g−1σ(g) corresponds to an element w of W = NG(T0)/T0; by [7, 3.3.2] the
element w is defined up to σ-conjugacy, where w,w′ ∈ W are σ-conjugate
if w′ = x−1wσ(x) for some x ∈ W . In this case we say that T is obtained
from T0 by twisting with w, and may write Tw = T ; for convenience we
write Rw = RTw,1. A two-stage process is then applied to obtain the irre-
ducible unipotent characters (see [26, Section 10]). Firstly, class functions
are formed by taking linear combinations of the Rw with coefficients given by
values of irreducible characters of the Weyl group; the class functions formed
are of the type called almost characters. Secondly, the irreducible unipotent
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characters are formed by taking linear combinations of almost characters,
with coefficients given by entries of nonabelian Fourier transform matrices.
However, not all of the almost characters required for the second stage of
this process need be obtained from the first stage; this is because the span
of the generalized Deligne-Lusztig characters need not contain all class func-
tions of Gσ. Class functions which do lie in this span are called uniform;
our next result in this section shows that the permutation character 1Pσ

Gσ

is in fact a uniform function. Let WP be the Weyl group of P , so that WP

is a standard parabolic subgroup of W .

Lemma 2.3. With the notation established,

1Pσ
Gσ =

1
|WP |

∑
w∈WP

Rw.

Proof. Let L be the standard Levi subgroup of P (so that L is also σ-stable).
If T is any σ-stable maximal torus of L, and θ is a linear character of Tσ,
then we write RL

T,θ and RG
T,θ for the generalized Deligne-Lusztig characters

of Lσ and Gσ respectively associated with the pair (T, θ). If we denote by
(RL

T,θ)Pσ the generalized character of Pσ which agrees with RL
T,θ on Lσ and

contains the unipotent radical of Pσ in its kernel, and by (RL
T,θ)Pσ

Gσ the
result of inducing (RL

T,θ)Pσ up to Gσ, then by [7, 7.4.4] we have

(RL
T,θ)Pσ

Gσ = RG
T,θ.

Now the Weyl group of L is WP , and we have

1Lσ =
1

|WP |
∑

w∈WP

RL
Tw,1;

thus

1Pσ =
1

|WP |
∑

w∈WP

(RL
Tw,1)Pσ .

Inducing up to Gσ, we obtain

1Pσ
Gσ =

1
|WP |

∑
w∈WP

(RL
Tw,1)Pσ

Gσ =
1

|WP |
∑

w∈WP

RG
Tw,1 =

1
|WP |

∑
w∈WP

Rw

as required. �

Now assume that σ is untwisted, so that σ0 = 1 and Gσ is an untwisted
group G(q). In this case we proceed as follows: Let Ŵ be the set of irre-
ducible characters of W , and for φ ∈ Ŵ set

Rφ =
1
|W |

∑
w∈W

φ(w)Rw.
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We may invert these equations as in [7, p. 383] to express each Rw as a
linear combination of almost characters Rφ:

Rw =
∑
φ∈Ŵ

φ(w)Rφ.

Thus by Lemma 2.3 we have

1Pσ
Gσ =

∑
φ∈Ŵ

 1
|WP |

∑
w∈WP

φ(w)

Rφ.

Now if we write
1WP

W =
∑
φ∈Ŵ

nφφ,

then by [15] we know that

1Pσ
Gσ =

∑
φ∈Ŵ

nφχφ,

where χφ is the unipotent character of Gσ corresponding to φ.

Lemma 2.4. With the notation established, if σ is untwisted then

1Pσ
Gσ =

∑
φ∈Ŵ

nφRφ.

Proof. By Frobenius reciprocity we have

nφ = (1WP

W , φ) = (1WP
, φ|WP

)WP
=

1
|WP |

∑
w∈WP

φ(w);

thus
1Pσ

Gσ =
∑
φ∈Ŵ

nφRφ

as required. �

This result has a corollary concerning Lusztig’s nonabelian Fourier trans-
form matrices, which generalizes a result in [37]; to state this we require
a little notation. We recall that the unipotent characters of Gσ occur in
families, say F1, . . . ,Fr, and that each such family Fj has associated with it
a square matrix Mj . The matrix Mj gives, up to a sign, the inner products
between the irreducible unipotent characters in Fj and the almost charac-
ters in Fj ; the sign is identically 1 for all families except three, one in E7 and
two in E8. Let d =

∑r
j=1 |Fj | be the number of unipotent characters of Gσ;

let M be the d× d matrix with blocks M1, . . . ,Mr down the diagonal, and
assume that the unipotent characters are numbered χ1, . . . , χd in accordance
with the order of the columns of M . For j = 1, . . . , d let Rj be the class
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function which is the linear combination of χ1, . . . , χd given by the jth row
of M . If χj = χφ we then have Rj = Ri(φ), where i is the involution on Ŵ
defined in [7, p. 373] as interchanging the pairs of characters involved in the
three exceptional families mentioned above, and fixing all other characters
in Ŵ ; the involution i appears because the effect of the signs on the relevant
matrices is to interchange pairs of rows.

Corollary 2.5. With the notation established, if σ is untwisted and v is the
row vector of length d with vj = (1Pσ

Gσ , χj), then vM = v.

Proof. We have

vj =
{

nφ if χj = χφ,
0 if χj is not in the principal series;

by 2.4 we have
vj = (1Pσ

Gσ , χj) =
∑
φ∈Ŵ

nφ(Rφ, χj).

By [3] we know that the characters of W (E7) and W (E8) which are inter-
changed by the involution i appear in 1WP

W with equal multiplicity; thus
nφ = ni(φ), and so

vj =
∑
φ∈Ŵ

ni(φ)(Rφ, χj) =
∑
φ∈Ŵ

nφ(Ri(φ), χj) = (vM)j

as required. �

Now in this section we are concerned with values at unipotent elements;
the restrictions to unipotent elements of almost characters Rφ are
called Foulkes functions, while the corresponding restrictions of generalized
Deligne-Lusztig characters RT,θ are Green functions. The equations above
expressing the Rφ as linear combinations of the Rw and vice versa show
that the problems of computing all Foulkes functions of Gσ and all Green
functions of Gσ are equivalent.

In [53] Lusztig described an algorithm for computing certain functions
associated to character sheaves of the algebraic group G; it was later shown
by Lusztig [54] and Shoji [66] that the functions computed by this algorithm
were in fact the desired Green functions. However, the functions computed
in this way are given as linear combinations of other functions, called charac-
teristic functions of irreducible local systems on geometric unipotent classes,
and the values of these are in general known only up to a complex scalar of
absolute value 1. On unipotent classes containing elements with connected
centralizers, or elements with centralizers C such that |C/C0| = 2, it is pos-
sible to determine the scalars concerned; for other classes the situation is
more complicated.
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Using Lusztig’s algorithm, Frank Lübeck has computed tables for all fi-
nite exceptional groups of Lie type. Each table is a two-dimensional array,
with rows indexed by unipotent classes and columns by irreducible charac-
ters of the Weyl group, and with all entries being polynomials in q; separate
tables are provided for good characteristic and for each bad characteristic.
For unipotent classes where the geometric class contains at most two ratio-
nal classes, the values are known to be those of the Foulkes functions; for
the (relatively few) other classes the problem with scalars mentioned above
means that in some cases it is not certain that the values given are actually
those of the Foulkes functions. The authors are grateful to Lübeck for mak-
ing these tables available, in CHEVIE-readable format, and for providing
the explanation above of the status of Green function computation.

From Lübeck’s tables we make two observations:
(i) Rφ(uα) is a polynomial in q with nonnegative coefficients;
(ii) if all roots have the same length, then Rφ(uα) ≥ |Rφ(u)| for any u 6= 1.

(The problem of the uncertainty over certain values in the tables does not
create difficulties in (ii): In each of the small number of geometric unipotent
classes uG containing more than two rational classes, the values taken by
any Rφ are dominated by Rφ(uα) to such an extent that it is easy to see that
we must have Rφ(uα) ≥ |Rφ(u)| for any choice of scalars of absolute value 1.
For example, if G = E6 and φ = φ6,1, then Rφ(uα) = q8+q7+q5+q4+q; the
only unipotent class of G containing more than two Gσ-classes in Gσ is the
class D4(a1), which contains three Gσ-classes, the values of Rφ on which are
given as 2q3 + q, q and −q3 + q. It follows from the way in which the Green
functions are obtained from the characteristic functions of irreducible local
systems on geometric unipotent classes that the correct values must be of
the form ζq + 2ζ ′q3, ζq and ζq − ζ ′q3 for some ζ, ζ ′ of absolute value 1, and
clearly each of these has absolute value less than q8 +q7 +q5 +q4 +q.) Since
Lemma 2.4 shows that the permutation character 1Pσ

Gσ is a nonnegative
linear combination of the almost characters Rφ, it follows immediately that
for G = E6, E7 or E8 and for any u 6= 1 we have 1Pσ

Gσ(uα) ≥ 1Pσ
Gσ(u),

and so fpr(u, Gσ/Pσ) ≤ fpr(uα, Gσ/Pσ) as required.
However, since we wish actually to obtain bounds for the fixed point ratios

of root elements and other unipotent elements, we need to calculate values
of 1Pσ

Gσ . To do this, Lemma 2.4 shows that in each case we simply need to
form the linear combination of Foulkes functions with coefficients obtained
from the decomposition of the corresponding permutation character 1WP

W

in the Weyl group; we may of course treat F4 and G2 in this way as well as
E6, E7 and E8. The decompositions of the permutation characters 1WP

W

are straightforward to obtain; for convenience we record them here, using
the notation given in [7] for irreducible characters of W .

1WP1

W (G2) = φ1,0 + φ2,1 + φ2,2 + φ1,3
′′
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1WP2

W (G2) = φ1,0 + φ2,1 + φ2,2 + φ1,3
′

1WP1

W (F4) = φ1,0 + φ9,2 + φ8,3
′ + φ4,1 + φ2,4

′

1WP2

W (F4) = φ1,0 + 2φ9,2 + 2φ8,3
′ + φ8,3

′′ + φ4,1 + φ2,4
′ + φ12,4 + φ9,6

′ +
φ4,7

′ + φ6,6
′ + φ16,5

1WP3

W (F4) = φ1,0 + 2φ9,2 + φ8,3
′ + 2φ8,3

′′ + φ4,1 + φ2,4
′′ + φ12,4 + φ9,6

′′ +
φ4,7

′′ + φ6,6
′ + φ16,5

1WP4

W (F4) = φ1,0 + φ9,2 + φ8,3
′′ + φ4,1 + φ2,4

′′

1WP1

W (E6) = 1WP6

W (E6) = φ1,0 + φ6,1 + φ20,2

1WP2

W (E6) = φ1,0 + φ6,1 + φ20,2 + φ30,3 + φ15,4

1WP3

W (E6) = 1WP5

W (E6) = φ1,0 +φ6,1 +2φ20,2 +φ64,4 +φ60,5 +φ30,3 +φ15,4

1WP4

W (E6) = φ1,0 +φ6,1 +3φ20,2 +2φ64,4 +3φ60,5 +φ81,6 +φ24,6 +2φ30,3 +
2φ15,4 + φ80,7 + φ60,8 + φ10,9

1WP1

W (E7) = φ1,0 + φ7,1 + φ27,2 + φ56,3 + φ35,4

1WP2

W (E7) = φ1,0 + φ7,1 + φ27,2 + φ21,3 + φ189,5 + φ105,6 + φ56,3 + φ35,4 +
φ120,4 + φ15,7

1WP3

W (E7) = φ1,0 +φ7,1 +2φ27,2 +φ21,3 +2φ189,5 +φ210,6 +φ105,6 +φ168,6 +
2φ56,3 + 2φ35,4 + φ120,4 + φ105,5 + φ315,7 + φ280,8 + φ70,9

1WP4

W (E7) = φ1,0 + φ7,1 + 3φ27,2 + 2φ21,3 + 5φ189,5 + 2φ210,6 + 3φ105,6 +
4φ168,6 + 2φ189,7 + 2φ378,9 + 2φ210,10 + φ210,13 + 3φ56,3 + 3φ35,4 + 3φ120,4 +
φ15,7+2φ105,5+2φ405,8+2φ216,9+φ420,10+φ84,12+φ512,11+φ512,12+3φ315,7+
3φ280,8 + φ280,9 + 2φ70,9

1WP5

W (E7) = φ1,0 + φ7,1 + 2φ27,2 + 2φ21,3 + 3φ189,5 + φ210,6 + 2φ105,6 +
2φ168,6 + φ189,7 + φ378,9 + φ210,10 + 2φ56,3 + 2φ35,4 + 2φ120,4 + φ15,7 + φ105,5 +
φ405,8 + φ216,9 + φ315,7 + φ280,8 + φ70,9

1WP6

W (E7) = φ1,0 + φ7,1 + 2φ27,2 + φ21,3 + φ189,5 + φ168,6 + φ56,3 + φ35,4 +
φ120,4 + φ105,5

1WP7

W (E7) = φ1,0 + φ7,1 + φ27,2 + φ21,3

1WP1

W (E8) = φ1,0 + φ8,1 + φ35,2 + φ560,5 + φ112,3 + φ84,4 + φ210,4 + φ50,8 +
φ700,6 + φ400,7

1WP2

W (E8) = φ1,0+φ8,1+φ35,2+2φ560,5+φ567,6+φ3240,9+2φ112,3+2φ84,4+
φ210,4+φ50,8+2φ700,6+2φ400,7+φ2240,10+φ1400,11+φ1400,7+φ1344,8+φ448,9+
φ1400,8 + φ1050,10 + φ175,12

1WP3

W (E8) = φ1,0 + φ8,1 + 2φ35,2 + 4φ560,5 + 2φ567,6 + 3φ3240,9 + φ4536,13 +
φ2835,14+3φ112,3+3φ84,4+2φ210,4+φ50,8+φ160,7+4φ700,6+3φ400,7+φ300,8+
φ2268,10+φ972,12+2φ2240,10+2φ1400,11+φ4096,11+φ4096,12+φ4200,12+φ3360,13+
3φ1400,7 +3φ1344,8 +φ1008,9 +2φ448,9 +2φ1400,8 +2φ1050,10 +φ1575,10 +φ175,12

1WP4

W (E8) = φ1,0 + φ8,1 + 3φ35,2 + 9φ560,5 + 5φ567,6 + 13φ3240,9 + φ525,12 +
9φ4536,13 + 5φ2835,14 + 4φ6075,14 + 3φ4200,15 + φ4200,21 + φ2835,22 + 5φ112,3 +



FIXED POINT RATIOS 415

5φ84,4 + 4φ210,4 + 2φ50,8 + 2φ160,7 + 10φ700,6 + 6φ400,7 + 4φ300,8 + 6φ2268,10 +
5φ972,12 + φ1296,13 + 9φ2240,10 + 7φ1400,11 + 2φ840,13 + 7φ4096,11 + 7φ4096,12 +
8φ4200,12 + 3φ840,14 + 5φ3360,13 + 2φ2800,13 + φ700,16 + φ2100,16 + 3φ5600,15 +
3φ3200,16 + 10φ1400,7 + 10φ1344,8 + 4φ1008,9 + 6φ448,9 + 6φ1400,8 + 6φ1050,10 +
4φ1575,10 + 2φ175,12 + 2φ4480,16 + 2φ3150,18 + 2φ4200,18 + φ4536,18 + φ5670,18 +
φ420,20 + φ2688,20 + 3φ7168,17 + φ1344,19 + 2φ2016,19 + φ5600,19

1WP5

W (E8) = φ1,0 + φ8,1 + 2φ35,2 + 6φ560,5 + 3φ567,6 + 8φ3240,9 + φ525,12 +
5φ4536,13+3φ2835,14+2φ6075,14+2φ4200,15+4φ112,3+4φ84,4+3φ210,4+2φ50,8+
φ160,7+7φ700,6+5φ400,7+2φ300,8+3φ2268,10+3φ972,12+6φ2240,10+5φ1400,11+
φ840,13 + 3φ4096,11 + 3φ4096,12 + 4φ4200,12 + 2φ840,14 + 2φ3360,13 + φ2800,13 +
φ700,16+φ5600,15+φ3200,16+6φ1400,7+6φ1344,8+2φ1008,9+4φ448,9+4φ1400,8+
4φ1050,10+2φ1575,10+2φ175,12+φ4480,16+φ3150,18+φ4200,18+φ420,20+φ7168,17+
φ1344,19 + φ2016,19

1WP6

W (E8) = φ1,0 + φ8,1 + 2φ35,2 + 4φ560,5 + 2φ567,6 + 3φ3240,9 + φ4536,13 +
3φ112,3+3φ84,4+2φ210,4+φ50,8+φ160,7+4φ700,6+2φ400,7+2φ300,8+φ2268,10+
φ972,12 +2φ2240,10 +φ1400,11 +φ840,13 +φ4096,11 +φ4096,12 +φ4200,12 +φ840,14 +
3φ1400,7 + 3φ1344,8 + φ1008,9 + 2φ448,9 + φ1400,8 + φ1050,10 + φ1575,10

1WP7

W (E8) = φ1,0 + φ8,1 + 2φ35,2 + 2φ560,5 + φ567,6 + 2φ112,3 + 2φ84,4 +
φ210,4 + φ160,7 + φ700,6 + φ300,8 + φ1400,7 + φ1344,8 + φ448,9

1WP8

W (E8) = φ1,0 + φ8,1 + φ35,2 + φ112,3 + φ84,4

On taking the corresponding linear combinations of Foulkes functions,
we obtain the values of 1Pσ

Gσ on unipotent elements. In E6, E7 and E8

we observe that, as noted above, the maximum value of 1Pσ
Gσ on non-

identity elements occurs on the class of root elements. Table 7.1A gives
lower bounds for the reciprocal of the fixed point ratio for root elements
and for other nonidentity unipotent elements; in each case the lower bound
given for the element x is a polynomial f(q) in q such that the polynomial
1Pσ

Gσ(1)−f(q)1Pσ
Gσ(x) always takes positive values but is of smaller degree

than 1Pσ
Gσ(1). In F4 and G2, the presence of short root elements makes for

complications in characteristic 2 and 3 respectively; here we observe that the
maximum value of 1Pσ

Gσ on nonidentity elements always occurs at a root
element, and in fact if 1Pσ

Gσ(u) > 1Pσ
Gσ(uα) for some nonidentity unipo-

tent element u and some parabolic subgroup P , then u must be a short root
element. (The problem of the uncertainty over certain values in the tables
provided by Lübeck does not in fact affect these statements, as it is possible
to see as above that values on root elements dominate all others, irrespec-
tive of the choice of scalars of absolute value 1; of course, in many cases
this question does not even arise, because the Green functions have been
independently obtained by another method – for example, the full character
table of G2(q) is given in all characteristics in [9, 19, 20].) Accordingly,
for these groups Tables 7.1B,C give bounds for long root elements, short
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root elements and other nonidentity unipotent elements. This completes
the treatment of untwisted groups.

Now consider the case Gσ = 2E6(q). Here we have σ0 = w0, the longest
word in the Weyl group W = W (E6), and the almost characters are defined
by

Rφ =
1
|W |

∑
w∈W

φ(w0w)Rw

for φ ∈ Ŵ . Inverting these equations gives

Rw =
∑
φ∈Ŵ

φ(w0w)Rφ;

thus by Lemma 2.3 we have

1Pσ
Gσ =

∑
φ∈Ŵ

 1
|WP |

∑
w∈WP

φ(w0w)

Rφ.

For each choice of P we may calculate the coefficients 1
|WP |

∑
w∈WP

φ(w0w)
which appear, and hence form the appropriate linear combination of Foulkes
functions. Here we observe that the maximum value of 1Pσ

Gσ on nonidentity
elements always occurs at a long root element; nevertheless, in Table 7.1B we
give bounds for long root elements, short root elements and other nonidentity
unipotent elements. (In fact, the irreducible unipotent characters of Gσ lying
in the principal series are labelled by the irreducible characters of W (F4),
and the parabolic permutation characters 1Pσ

Gσ for P = P1,6, P2, P3,5 and
P4 are given by the expressions above for 1WPi

W (F4) with i = 4, 1, 3 and 2
respectively.)

The remaining twisted groups may be handled more simply, because ir-
reducible unipotent characters have already been obtained. If Gσ = 3D4(q),
the characters in the principal series are labelled by the irreducible charac-
ters of W (G2); there are two maximal parabolic subgroups, (P1,3,4)σ and
(P2)σ, with permutation characters φ1,0 +φ2,1 +φ2,2 +φ1,3

′′ and φ1,0 +φ2,1 +
φ2,2 + φ1,3

′ respectively. In this case the unipotent characters are given in
[67]; using them we obtain the bounds for long root elements, short root
elements and other nonidentity unipotent elements given in Table 7.1C. If
instead Gσ = 2F4(q), there are again two maximal parabolic subgroups,
(P1,4)σ and (P2,3)σ, with permutation characters 1 + ε′ + ρ2

′ + ρ2
′′ + ρ2 and

1+ ε′′+ρ2
′+ρ2

′′+ρ2 respectively, in the notation of [7]. Here the unipotent
characters are given in [55]; again, we obtain the bounds for long root ele-
ments, short root elements and other nonidentity unipotent elements given
in Table 7.1C. Finally, if Gσ = 2B2(q) or 2G2(q), the Borel subgroup Bσ is a
maximal subgroup of Gσ, and the permutation character 1Bσ

Gσ is the sum
of the principal and the Steinberg characters of Gσ; since the second of these
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is zero on nonidentity unipotent elements, we have fpr(u,Gσ/Bσ) = 1
q2+1

or 1
q3+1

respectively for any nonidentity unipotent element u ∈ Gσ. This
completes the proof of Theorem 2(I)(a). �

It is convenient at this point to handle a case in Part (I)(d) of Theorem 2,
using the character-theoretic methods of this section. This is the case of the
fixed point ratio of a graph automorphism τ when G = E6 and p = 2, for
parabolic actions.

Proposition 2.6. Let G = E6 with p = 2, so that L = G′
σ = E6(q) or

2E6(q), and let τ be a graph automorphism of L of order 2. If P is a maximal
〈σ, τ〉-stable parabolic subgroup of G, then

fpr(τ,Gσ/Pσ) ≤ 1
kP (q)

,

where kP (q) is as in the table below.

L P kP (q)
2E6(q) P1,6 q8(q − 1)

P2 q6 − q3 + 1
P3,5 q10(q − 1)
P4 q6(q2 − 1)(q − 1)

E6(q) P1,6 q9

P2 q9

P3,5
1
3q11

P4 q9

Proof. Let δ be the standard graph automorphism of G centralizing F4. By
Proposition 1.1, we may take τ = δ or rδ, where r is a long root element
in F4. Write Gσ.2 = Gσ〈δ〉. Let P be a standard 〈δ, σ〉-stable parabolic
subgroup of G, so that Pσ is a standard parabolic subgroup of Gσ; write
Pσ.2 = Pσ〈δ〉. We consider fixed point ratios f(uδ, Gσ.2/Pσ.2), where u ∈
Gσ is such that uδ is unipotent (i.e., has order a power of 2); in particular,
this includes the case where u = 1 or r, i.e., where uδ = τ .

As before, we have

fpr(uδ, Gσ.2/Pσ.2) =
1Pσ .2

Gσ .2(uδ)
1Pσ .2

Gσ .2(1)
,

so that we may use character theory to calculate fixed point ratios.
In [18], Digne and Michel developed a Deligne-Lusztig theory for the com-

plex characters of a non-connected reductive group over a finite field. They
defined characters which they called generalized Deligne-Lusztig characters;
these are extensions of (ordinary) Deligne-Lusztig characters for the rele-
vant connected group. They showed that classes of δ, σ-stable maximal tori
of G〈δ〉 may be taken to be parametrized by conjugacy classes of Wδ, the
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group of fixed points under δ of the Weyl group W of G; writing Tw for a
maximal torus of Gσ corresponding to w ∈ Wδ, the character RTw,1 depends
only on the class of w ∈ Wδ, and there are results on scalar products of such
characters similar to those in the connected case.

Malle built upon the work of Digne and Michel in [57], and in particular
considered the decomposition of the RTw,1. By analogy with the connected
case, linear combinations of RTw,1 are formed with coefficients given by
the character table of Wδ, to create class functions of the type called al-
most characters; Fourier transform matrices then relate almost characters
to irreducible unipotent characters. Malle gives details of the Fourier trans-
form matrices required for several small rank cases, including E6(q).2 and
2E6(q).2. He then goes on to calculate Green functions for certain cases in
which the order of δ is equal to the characteristic of the underlying field, so
that there are unipotent elements lying in the outer coset(s); the cases of
E6(q).2 and 2E6(q).2 in characteristic 2 are not treated in [57], but are cov-
ered by a separate paper [58], which first gives details of the outer unipotent
classes which occur.

Using the above, and the known decompositions of the permutation char-
acters into irreducible constituents, it is possible to determine the values
1Pσ .2

Gσ .2(uδ) in the twisted case for all unipotent elements uδ; doing so and
comparing with the values 1Pσ .2

Gσ .2(1) gives fpr(uδ, Gσ.2/Pσ.2) ≤ 1
kP (q) with

kP (q) as in the table above.
However, there is a complication in the untwisted case, caused by the fact

that not all extensions of unipotent characters need occur in a family. In
particular the subcuspidal characters induced from the Levi factor 2A5 of the
twisted group have scalar product zero with all almost characters formed as
described above, and are thus orthogonal to the space of uniform functions.
This does not create difficulties in the twisted case, since such characters
do not occur as constituents of the permutation characters 1Pσ .2

Gσ .2. In
the untwisted case, though, the Fourier transform matrices are described
by means of a natural correspondence between unipotent characters of the
untwisted and twisted groups, under which the unipotent character χφ64,4

of E6(q) is paired with such a subcuspidal character of 2E6(q); and the
extension to E6(q).2 of χφ64,4 does occur as a constituent of some of the
permutation characters 1Pσ .2

Gσ .2. The solution to this problem is to apply
the criterion given in [57, Proposition 9] to show that most of the outer
unipotent classes, including in particular the two containing elements of
prime order, are in fact uniform (as defined just before Lemma 2.3), so that
the extension to E6(q).2 of χφ64,4 takes the value zero on such classes. It
is now possible to proceed as in the twisted case, and obtain the bounds
fpr(uδ, Gσ.2/Pσ.2) ≤ 1

kP (q) with kP (q) as in the table. �
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3. Proof of Theorem 2(I)(b): Semisimple elements in parabolics.

We continue with the notation of the previous section, so that G, σ, q, σ0,
Gσ, P , Pσ, T0, B, Φ, Π and α0 are as before; however, we do not assume
that G is simply connected. Our focus in this section is on the fixed point
ratios fpr(s,Gσ/Pσ) for s ∈ Gσ semisimple; as before, we have

fpr(s,Gσ/Pσ) =
1Pσ

Gσ(s)
1Pσ

Gσ(1)
.

Since Lemma 2.3 gives 1Pσ
Gσ = |WP |−1

∑
w∈WP

Rw, we must consider the
values Rw(s).

We first require further notation. Since W = NG(T0)/T0 and T0 is σ-
stable, we have an action of σ on W . We recall that elements w,w′ ∈ W are
said to be σ-conjugate if there exists x ∈ W with w′ = x−1wσ(x); the Gσ-
classes of σ-stable maximal tori of G are in natural correspondence with the
σ-conjugacy classes in W , and we have Rw = Rw′ if and only if w and w′ are
σ-conjugate. Let w1, w2, . . . , wc be representatives of the σ-conjugacy classes
in W . For each w ∈ W choose ẇ ∈ NG(T0) with ẇT0 = w; take gw ∈ G
with gw

−1σ(gw) = ẇ, and set Tw = gwT0. The torus Tw is then σ-stable,
and is said to be obtained from T0 by twisting with w; for 1 ≤ i ≤ c write
Ti = Twi , so that (T1)σ, (T2)σ, . . . , (Tc)σ are representatives of the Gσ-classes
of maximal tori of Gσ.

Now assume that the action of σ on W is such that there exists w∗ ∈ W
with

σ(w) = w∗
w for all w ∈ W.

(This hypothesis is certainly satisfied if either σ is untwisted or Gσ = 2E6(q),
as we may take w∗ = 1 or w0 respectively, where w0 is the long word in W ;
the remaining cases are easily dealt with, and will be mentioned briefly at
the end of this section.) In this case, w and w′ are σ-conjugate if and only
if ww∗ and w′w∗ are conjugate; thus w1w

∗, w2w
∗, . . . , wcw

∗ are conjugacy
class representatives in W . Let Ci = (wiw

∗)W be the ith conjugacy class of
W , so that Ciw

∗−1 is the σ-conjugacy class containing wi. By Lemma 2.3
we have

1Pσ
Gσ =

1
|WP |

c∑
i=1

|WP ∩ Ciw
∗−1|Rwi .

We next consider the semisimple element s. We recall that each semisim-
ple class in Gσ may be associated with a pair (J, [w]), where J is a proper
subset of Π∪ {α0} (determined up to conjugacy in W ), WJ is the subgroup
of W generated by reflections in the roots in J , and [w] = WJw is a con-
jugacy class representative of NW (WJ)/WJ , as explained in [16, 21, 22].
This association has the following properties: If s ∈ Gσ has class associated
with (J, [w]), then s lies in Tww∗−1 , and if we set t = sg

ww∗−1 ∈ T0, then
WJ = (CG(t)0 ∩N)/T0.
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For H a σ-stable subgroup of G, let εH = (−1)rH , where rH is the relative
rank of H.

Proposition 3.1. With the notation established,

Rwi(s) =
|W |
|Ci|

.
|WJw ∩ Ci|

|WJ |
.
εCG(s)0εTi |(CG(s)0)σ|p′

|(Ti)σ|
.

Proof. By [7, 7.2.8] we have

Rwi(s) =
1

|(CG(s)0)σ|
∑

x∈Gσ , sx∈Ti

Q
CG(s)0
xTi

(1),

while by [7, 7.5.1] we have

Q
CG(s)0
xTi

(1) =
εCG(s)0εTi |(CG(s)0)σ|p′

|(Ti)σ|
.

We must therefore determine |(CG(s)0)σ|−1|{x ∈ Gσ : sx ∈ Ti}|.
Let r = |CG(s)/CG(s)0|, and m = |CGσ(s)|/|(CG(s)0)σ|; thus m is the

number of σ-stable cosets of CG(s)0 in CG(s). For convenience write z =
gww∗−1 and y = gwi ; set t = sz ∈ T0, so that |CW (t)| = r|WJ |. Define
σ′ : G → G by σ′(g) = ẇẇ∗−1

σ(g) = z−1
σ(zg). Given g ∈ CG(t) we have

zg ∈ CG(s); since s is σ-stable we have σ(zg) ∈ CG(s), so that σ′(g) ∈ CG(t).
Thus σ′ preserves CG(t); and CG(t)σ′ = CGσ(s)z.

Now assume that sx = s′ ∈ Ti; set t′ = (s′)y ∈ T0, so that t′ = tz
−1xy.

Since t, t′ ∈ T0 are G-conjugate, there exists w′ ∈ W with tw
′

= t′; thus
(z−1xy).(ẇ′)−1 ∈ CG(t), so that x = zcẇ′y−1 for some c ∈ CG(t). It follows
that

|{x ∈ Gσ : sx ∈ Ti}| =
1

|CW (t)|
|{(c, w′) ∈ CG(t)×W : zcẇ′y−1 ∈ Gσ}|.

Since

zcẇ′y−1 ∈ Gσ ⇐⇒ zcẇ′y−1 = σ(z)σ(c)σ(ẇ′)σ(y)−1

⇐⇒ ẇ′ẇiσ(ẇ′)−1 = c−1ẇẇ∗−1σ(c)
⇐⇒ ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 = c−1σ′(c),

we have
|{x ∈ Gσ : sx ∈ Ti}|

|(CG(s)0)σ|

=
m

|CGσ(s)|.|CW (t)|
|{(c, w′) ∈ CG(t)×W : ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 = c−1σ′(c)}|

=
m

r|WJ |
|{w′ ∈ W : ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 = c−1σ′(c) for some c ∈ CG(t)}|.
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Given g ∈ CG(t), by [7, 3.5.3] we may choose ẇg ∈ N ∩ CG(t)0g; then
wg ∈ CW (t). Set vg = wg

−1.wwg ∈ W . Since the map x 7→ x−1σ′(x) from
CG(t)0 to itself is surjective by Lang’s theorem, we have

{c−1σ′(c) : c ∈ CG(t)0g} = {c−1σ′(c) : c = c0ẇg, c0 ∈ CG(t)0}
= {ẇ−1

g .c0
−1σ′(c0).σ′(ẇg) : c0 ∈ CG(t)0}

= ẇ−1
g .CG(t)0.σ′(ẇg)

= CG(t)0ẇ−1
g σ′(ẇg)

= CG(t)0v̇g,

since wg
−1σ′(wg) = wg

−1.ww∗−1
σ(wg) = wg

−1.wwg = vg. Thus if we set

W (g) = {w′ ∈ W : ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 = c−1σ′(c) for some c ∈ CG(t)0g},
then

W (g) = {w′ ∈ W : ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 ∈ CG(t)0v̇g ∩N}
= {w′ ∈ W : w′wiσ(w′)−1w∗w−1 ∈ WJvg}
= {w′ ∈ W : w′wiw

∗w′−1 ∈ WJvgw}
= {w′ ∈ W : w′

(wiw
∗) ∈ WJ .wwg}.

Now it is clear that premultiplication by wg gives a bijection from the set
{w′ ∈ W : w′

(wiw
∗) ∈ WJ .wwg} to the set {w′ ∈ W : w′

(wiw
∗) ∈ WJw}.

Thus |W (g)| is independent of g ∈ CG(t). Since the number of cosets of
CG(t)0 in CG(t) which contain elements of the form c−1σ′(c) with c ∈ CG(t)
is r

m , we have

|{w′ ∈ W : ẇ′ẇiσ(ẇ′)−1ẇ∗ẇ−1 = c−1σ′(c) for some c ∈ CG(t)}|

=
r

m
|{w′ ∈ W : w′

(wiw
∗) ∈ WJw}|.

Hence
|{x ∈ Gσ : sx ∈ Ti}|

|(CG(s)0)σ|
=

m. r
m |{w

′ ∈ W : w′
(wiw

∗) ∈ WJw}|
r|WJ |

=
|CW (wiw

∗)|.|WJw ∩ Ci|
|WJ |

=
|W |
|Ci|

.
|WJw ∩ Ci|

|WJ |
.

The result follows. �

Corollary 3.2. With the notation established, we have

1Pσ
Gσ(s) =

c∑
i=1

|W |
|Ci|

.
|WP ∩ Ciw

∗−1|
|WP |

.
|WJw ∩ Ci|

|WJ |
.
εCG(s)0εTi |(CG(s)0)σ|p′

|(Ti)σ|
.
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We observe that all quantities in the above expression may be calculated
for given w∗, P and (J, [w]). In [21, 22] Fleischmann and Janiszczak list
all possibilities for (J, [w]), and give the centralizers CGσ(s), if G is of type
En; similar information for G = F4 or G2 may be obtained from [8, 19, 63,
65]. For a given Gσ, it is thus straightforward (if somewhat lengthy in the
cases of E7 and E8) to work through all types of semisimple class sGσ and
calculate the values 1Pσ

Gσ(s) for all maximal σ-stable parabolic subgroups
P . This has been done using the computer package Maple, which facilitates
the manipulation of the polynomials in q which occur. It is observed that
in all cases the value 1Pσ

Gσ(s) is a polynomial in q in which all coefficients
are nonnegative integers. Moreover, for each choice of Gσ and P , there is
a single pair (J ′, [w′]) 6= (Π, [1]) such that if s′ is any associated semisimple
element, and s is any semisimple element associated with any other pair
(J, [w]) 6= (Π, [1]), then 1Pσ

Gσ(s′) − 1Pσ
Gσ(s) is a polynomial in q which

takes positive values for any q > 1. The elements s′ are as follows:

G E8 E7 E6 F4 (Gσ = F4(q)) G2 (Gσ = G2(q))
CG(s′) E7A1 E6T1 D5T1 B4 A2

We may therefore use the values 1Pσ
Gσ(s′) to obtain the bounds for

fpr(s,Gσ/Pσ) required for Theorem 2(I)(b).
Though our calculations are now complete (except for the small twisted

groups, which are handled at the end of the section below), we now offer
some comments which explain in some cases why 1Pσ

Gσ(s) is a polynomial
in q in which all coefficients are nonnegative integers. In the case where
w∗ = 1 (and so σ is untwisted), it is possible to simplify the expression in
Corollary 3.2 above somewhat. Note that

1WP

W (wiw
∗) =

1
|WP |

∑
w∈W, w(wiw∗)∈WP

1

=
1

|WP |
|CW (wiw

∗)|.|WP ∩ Ci|

=
|W |
|WP |

.
|WP ∩ Ci|

|Ci|
;

thus if w∗ = 1 we have

1Pσ
Gσ(s) =

c∑
i=1

1WP

W (wi).
|WJw ∩ Ci|

|WJ |
.
εCG(s)εTi |CGσ(s)|p′

|(Ti)σ|

=
1

|WJ |
∑

w′∈WJ

1WP

W (w′w)
εCG(s)εTw′w |CGσ(s)|p′

|(Tw′w)σ|

=
1

|WJ |
∑

w′∈WJ

1WP

W (w′w)QCG(s)
Tw′w

(1),
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where we assume (as we may) that the elements gw′w for w′ ∈ WJ are chosen
so that each maximal torus Tw′w lies in CG(s).

If w = 1 as well, so that we may take s ∈ T0, we may simplify further.
Recall that for φ ∈ ŴJ , by [7, 11.1.1] we have

1
|WJ |

∑
w′′∈WJ

φ(w′′)QCG(s)
Tw′′ (1) = P

CG(s)
φ (q),

where P
CG(s)
φ (t) is the fake degree corresponding to φ. Inverting these equa-

tions gives
Q

CG(s)
Tw′′ (1) =

∑
φ∈ŴJ

φ(w′′−1)PCG(s)
φ (q).

Thus

1Pσ
Gσ(s) =

1
|WJ |

∑
w′∈WJ

1WP

W (w′)
∑

φ∈ŴJ

φ(w′−1)PCG(s)
φ (q)

=
∑

φ∈ŴJ

 1
|WJ |

∑
w′∈WJ

1WP

W (w′)φ(w′−1)

P
CG(s)
φ (q)

=
∑

φ∈ŴJ

(1WP

W |WJ
, φ)WJ

P
CG(s)
φ (q)

=
∑

φ∈ŴJ

(1WP

W , φW )W P
CG(s)
φ (q),

using Frobenius reciprocity. Since we may write P
CG(s)
φ (t) =

∑
i ni(φ)ti,

where ni(φ) is the multiplicity of φ in the ith graded component of the
regular WJ -module, we have

1Pσ
Gσ(s) =

∑
i

 ∑
φ∈ŴJ

(1WP

W , φW )W ni(φ)

 qi,

which is indeed a polynomial in q with all coefficients nonnegative integers.
Finally in this section we consider the cases which are not covered by the

above. If Gσ = 3D4(q) or 2F4(q), as already stated the unipotent characters
are given in [67] or [55] respectively; it is thus straightforward to calculate
the values 1Pσ

Gσ(s) for all semisimple s ∈ Gσ. If Gσ = 2B2(q) or 2G2(q),
again the only permutation character involved is 1Bσ

Gσ which is the sum
of the principal and Steinberg characters of Gσ. In the former case the
centralizer of any nonidentity semisimple element lying in Bσ is merely a
torus, so the value of the Steinberg character is 1 and thus fpr(s,Gσ/Bσ) =

2
q2+1

. In the latter case, the only nonidentity semisimple elements in Bσ

whose centralizer is not merely a torus are involutions with centralizer A1(q),
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so the value of the Steinberg character is q and thus fpr(s,Gσ/Bσ) = q+1
q3+1

=
1

q2−q+1
(as may be checked from the character table in [73]).

4. Proof of Theorem 2(II)(a,b): Maximal rank subgroups.

We now embark on the proof of Theorem 2(II)(a,b). Let G be an adjoint
exceptional algebraic group of rank l over the algebraically closed field K
of characteristic p > 0, and let σ be a Frobenius morphism of G such that
Gσ = G(q), a finite exceptional group of Lie type over Fq, where q = pa.
Assume that Gσ is not 2F4(q) or 2G2(q) (these cases will be dealt with later
in Section 6).

For Theorem 2(II)(a,b) we need to obtain bounds for unipotent and
semisimple elements of Gσ in actions where the point stabilizer is a sub-
group H of maximal rank. Since for such a subgroup, HL = Gσ, we may
assume that X = Gσ. Then H = Mσ, where M is reductive of maximal
rank in G. The possibilities for M are given by [43] (see Tables A and B,
p. 302, and 2.2 and 2.3), and for convenience we record them here.

Proposition 4.1. The possibilities for the maximal rank subgroup M are
as follows:

G M0 M/M0

E8 A1E7, D8, A8, A2E6, D4D4, 1, 1, Z2, Z2, S3 × Z2,
A4A4, A

4
2, A

8
1, T8 Z4, GL2(3), AGL3(2), 2.O+

8 (2)
E7 T1E6, A1D6, A7, A2A5, Z2, 1, Z2, Z2,

A3
1D4, A

7
1, T7 S3, L3(2), 2× Sp6(2)

E6 T1D5, T2D4, A1A5, A
3
2, T6 1, S3, 1, S3, O

−
6 (2)

F4 A1C3, B4, C4(p = 2), D4, A2A2 1, 1, 1, S3, Z2

G2 A1A1, A2 1, Z2

We wish to bound the fixed point ratios fpr(u, Gσ/H) and fpr(s,Gσ/H),
where u is a unipotent and s a semisimple element of Gσ. To this end we
may assume that u and s both have prime order and lie in H.

In the proof we shall make heavy use of the main result in [40], namely
[40, Theorem 2]; for x = s, u this result provides strong lower bounds for
the quantities

dim G/M − dim fixG/M (x) = dim xG − dim(xG ∩M)

(the equality is a consequence of [40, 1.14]). We shall also freely use several
of the preliminary results given in [40, Section 1], particularly those on
conjugacy classes. Here is one particular consequence:

Proposition 4.2. Let uα be a long root element in Gσ (or a short root
element when (G, p) = (F4, 2) or (G2, 3)), and let u be a nonidentity unipo-
tent element which is not Aut (Gσ)-conjugate to uα. Let s be a nonidentity
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semisimple element of Gσ, with D = CG(s). Then lower bounds for the sizes
of the classes |sGσ |, |uGσ

α | and |uGσ | are given in Table 6 below.

G |sGσ | ≥ |uGσ | ≥ |uGσ
α | ≥

E8 q112 , if D . E7 q92 q58

q128, if D 6 .E7

E7 q53 , if D0 = T1E6 q52 q34

q64, if D0 6= T1E6

E6 q31 , if D = T1D5 q31 q22

q40, if D 6= T1D5

F4 q16 , if D = B4 q21 q16

q28, if D 6= B4

G2 q3(q3 − 1), if D = A2 (q2 − 1)(q6 − 1) q6 − 1
q8, if D 6= A2

Table 6.

Proof. First consider semisimple elements. Inspection of subsystems shows
that the possibilities for D = CG(s) of the largest few dimensions are:

G = E8 : D . E7, D = D8, D = T1D7

G = E7 : D0 = T1E6, D . D6, D
0 = A7

G = E6 : D = T1D5, D . A5, D = T2D4

G = F4 : D = B4, D . C3, D = T1B3, D = A2A2

For the two possibilities of largest dimension, we calculate |sGσ | directly, and
see that the bound in the conclusion holds. And for possibilities of smaller
dimension, 1.8 gives the result.

For unipotent elements the argument is similar: By [40, 1.7], for G =
E6, E7, E8, the two smallest classes are those with labels A1 (long root ele-
ments) and 2A1, and for these we calculate |uGα | directly; while for the rest
we use [40, 1.7] and 1.8. �

Lemma 4.3. The conclusion of Theorem 2(II)(a,b) holds if H = Mσ, where
the maximal rank reductive subgroup M is one of the following:

G = E8 : M0 = T8, A
8
1, A

4
2

G = E7 : M0 = T7, A
7
1

G = E6 : M0 = T6.

Proof. Suppose first G = E8,M
0 = T8 = T . Then

|Mσ| ≤ |Tσ||W (E8)| ≤ (q + 1)8|2.O+
8 (2)| < (q + 1)8.230.
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For 1 6= s ∈ Gσ semisimple, we have |sGσ | ≥ q112 by 4.2, and hence, writing
Ω = Gσ/Mσ, we have

fpr(s,Ω) =
|sGσ ∩Mσ|

|sGσ |
<
|Mσ|
|sGσ |

<
1

q48
,

as required. For 1 6= u ∈ Gσ unipotent and not a root element, we have
|uGσ | > q92 by 4.2, yielding

fpr(u, Ω) <
|Mσ|
q92

<
1

q24
,

as required. Finally, for u a root element, |uGσ | > q58 by 4.2, which as
above gives fpr(u, Ω) < 1/q24, except when q = 2. For q = 2, observe that
a root element w ∈ NG(T ) corresponds to a reflection in W (E8) (see [40,
1.13(iii)]). It follows that if r(W (E8)) denotes the number of reflections in
W (E8), then

|uGσ ∩Mσ| ≤ |Tσ|.r(W (E8)) ≤ (q + 1)8.120,

which is enough to give the desired bound fpr(u, Ω) < 1/q24.
All other cases in the hypothesis of the lemma follow using the same

arguments: The bound fpr(x,Ω) < |Mσ|/|xGσ | gives the conclusion except
for some small values of q when x is a root element and M0 is a maximal
torus, in which case the bound is strengthened by replacing |Mσ| by the
number of root elements in Mσ. �

We assume for the rest of this section that the maximal subgroup H in
Theorem 2 is not one of the subgroups in Lemma 4.3.

Lemma 4.4. The conclusion of Theorem 2(II)(a) holds if u is a long root
element (or a short root element when (G, p) = (F4, 2) or (G2, 3)).

Proof. Suppose u is as in the statement. We may assume that u ∈ H = Mσ.
Exclude for the moment the case where (G, M0, p) = (F4, D4, 2). We then

claim that u ∈ M0. For otherwise, by 4.1, M is one of the following:

G = E8 : M0 = A8, A2E6, D4D4, A4A4

G = E7 : M0 = T1E6, A7, A2A5, A
3
1D4

G = E6 : M0 = T2D4, A
3
2

G = F4 : M0 = D4(p 6= 2), A2A2

G = G2 : M0 = A2.

However, [40, 1.13(iii)] shows that none of these has a root element in
M\M0.

Thus u ∈ M0. Now by [40, 1.13(ii)], u lies in a simple factor M0 of M0,
and is a long root element therein (or a short root element for (G, M, p) =
(F4, B4, 2)). Now the result follows from the list of possibilities for M given
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in 4.1, together with the sizes of the long root classes given by [40, 1.12];
for example, when G = E8, these results imply that

fpr(u, Ω) ≤ |uE7(q)
α |+ |uA1(q)

α |
|uE8(q)

α |
<

2
q24

as required.
Finally, we deal with the excluded case (G, M, p) = (F4, D4, 2). In this

case [40, 1.13(iii)] shows that there is one class of root involutions in M\M0,
centralizing B3 in D4. Hence as above we obtain

fpr(u, Ω) ≤ |uD4(q)
α |+ |D4(q) : B3(q)|

|uF4(q)
α |

<
1

q4 − q2 + 1
,

as required. �

The next result is our main tool for passing from the dimension bounds
of [40, Theorem 2] to the bounds for the finite groups Gσ that we require.
In the statement, we denote by f the order of the fundamental group of G
(so f = 2, 3 for G = E7, E6 respectively, and f = 1 otherwise). Reference is
also made to a double coset space W (D)\W (G)/W (M): Here D = CG(s)
for some semisimple element s ∈ G, and we observe that some conjugate of s
lies in a maximal torus T of M0. Replacing s by this conjugate, we have T ≤
D∩M , so we have a well-defined double coset space ND(T )\NG(T )/NM (T ),
which we identify with W (D)\W (G)/W (M).

Lemma 4.5. Let u, s ∈ Gσ be unipotent and semisimple elements of prime
order, and let C = CG(u), D = CG(s). Write z = dim Z(D0) and y =
dim Z(C0/Ru(C0)). Let l′ be the semisimple rank of M , and Ω = Gσ/Mσ.
Then

fpr(s,Ω) <

(
|W (D)\W (G)/W (M)|+ |M/M0|

o(s)

)
.|M/M0|.2(q + 1)zf

qdim sG−dim(sG∩M)+z−l′(q − 1)l′

and

fpr(u, Ω) <
up(M).|M/M0|.2(q + 1)y|C : C0|
qdim uG−dim(uG∩M)+y−l′(q − 1)l′

,

where up(M) denotes the number of classes of elements of order p in M .

Proof. We have |D : D0| ≤ f by [68, II, 4.4], and by 1.8,

(1) |sGσ | ≥ 1
2

qz

(q + 1)zf
qdim sG

.

By [40, 1.3], sG ∩M0 =
⋃

i∈I sM
i , where |I| ≤ |W (D)\W (G)/W (M)|. Also

by Lang’s theorem [68, I, 2.2], (sM0

i )σ breaks up into M0
σ-classes correspond-

ing to the σ-classes in E/E0, where E = CM0(si); if the representatives are
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sij corresponding to wij ∈ E/E0, then |sM0
σ

ij | = fij(q)/cij , where fij(q) is a
monic polynomial of degree dim sM

i , and cij is the order of the σ-centralizer
of wij in E/E0. Note that

∑
j

1
cij

= 1.
Write M0 = TN , where T = Z(M0), N = (M0)′. By 1.5 and 1.6, |M0

σ | ≤
|Tσ|qdim N . And if Cij = CM0(sij), then |(C0

ij)σ| = |Tσ||CN (sij)0σ|, whence

|(sM0

i )σ| ≤
|M0

σ |
minj |(C0

ij)σ|
≤ qdim N

|CN (sij)0σ|
.

By 1.6,

|CN (sij)0σ| ≥
(q − 1)l′

ql′
qdim CN (sij)

and hence

|(sM0

i )σ| ≤
qdim N+l′

(q − 1)l′qdim CN (si)
.

Therefore

(2) |(sM0

i )σ| ≤
qdim M−dim CM (si)+l′

(q − 1)l′
.

It follows that

(3) |(sM
i )σ| ≤

qdim M−dim CM (si)+l′ |M/M0|
(q − 1)l′

and hence

(4) |(sG ∩M0)σ| ≤
|W (D)\W (G)/W (M)|.|M/M0|.qdim(sG∩M0)+l′

(q − 1)l′
.

Now consider the case where s ∈ M −M0. For this case, we first verify
that inequality (2) still holds (with s replacing si). If M0 is semisimple then
by [40, 1.4], CM0(s) is semisimple of rank at most l′ − 1, so by 1.6,

|CMσ(s)| ≥ (q − 1)l′−1

ql′−1
qdim CM (s),

whence (2) holds. And if M0 is not semisimple, then either M0 = E6T1

(with G = E7) or M0 = T2D4 (with G = E6). In the first case, s acts as a
graph automorphism of order 2 on the E6 factor, and inverts T1, so by [40,
1.4], CM0(s)0 is simple of rank 4 = l′ − 2, so

|(sM0
)σ| ≤

(
q + 1

q
qdim M

)/((q − 1)l′−2

ql′−2
qdim CM (s)

)
,

which again yields the bound in (2) (since (q− 1)2/q2 < q/(q + 1)). Finally,
if M0 = T2D4 then M/M0 ∼= S3, so s has order 2 or 3. For o(s) = 3,
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|Mσ| ≤ (q2 + q + 1)|3D4(q)|, and by 1.1, CM (s) has semisimple rank at most
2, giving

|(sM0
)σ| ≤

q2 + q + 1
(q − 1)2

qdim sM
<

q4

(q − 1)4
qdim sM

,

which implies (2). And for o(s) = 2, |Mσ| ≤ (q2 − 1)|2D4(q)|, and by [40,
1.4], CM (s) has semisimple rank at most 3, giving (2) in similar fashion.

Thus (2) holds for s ∈ M −M0. Using [40, 1.4 and 1.10], we see that the
number of classes of elements of prime order in M −M0 is at most |M/M0|;
therefore the above considerations give

|(sG ∩ (M −M0))σ| < |M/M0| · qdim(sG∩(M−M0))+l′

(q − 1)l′
· |M/M0|
|CM/M0(s)|

.

Combining this with (4) we obtain
(5)

|(sG ∩M)σ| ≤

(
|W (D)\W (G)/W (M)|+ |M/M0|

o(s)

)
.|M/M0|.qdim(sG∩M)+l′

(q − 1)l′
.

Finally, fpr(s,Ω) ≤ |(sG ∩M)σ|/|sGσ |, from which the conclusion follows
using (1) and (5).

The proof for unipotent elements is entirely similar to the above, except
that for unipotent elements we use up(M) to bound the number of M -classes
in uG ∩M . �

Remark. If M = M0, then in the statement of 4.5, the extra term |M/M0|
o(s)

does not have to be included, as the proof shows.

Lemma 4.6. The conclusion of Theorem 2(II)(a) holds for unipotent ele-
ments u.

Proof. We have H = Mσ; write Ω = (Gσ : H). By 4.4, we may assume u is
not a long root element.

Consider first G = E8. Here dim uG ≥ 92 by [40, 1.7], and dim uG −
dim(uG∩M) ≥ 40 by [40, Theorem 2(II)(a)]. Arguing as in (1) in the proof
of the previous lemma, we have

fpr(u, Ω) ≤ |H|
|uGσ |

≤ 2|H|(q + 1)8

q8
q− dim uG

.

This yields the desired bound fpr(u, Ω) < 2/q24, unless |H| > q76/(q + 1)8.
We may suppose the latter bound to hold, in which case by 4.1, we have
M0 = A1E7, D8, A2E6 or A8. Using [40, 1.8 and 1.10] for these groups, we
have up(M).|M : M0| ≤ 130. Also, writing C = CG(u), we have |C : C0| ≤
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60 by [60]. Hence 4.5 gives

|(uG ∩M)σ|
|uGσ |

<
130.2(q + 1)8.60

q40(q − 1)8
.

If q ≥ 3 this yields the required bound fpr(u, Ω) < 2/q24.
To complete the E8 case, assume q = 2. Here u is an involution. The

involution classes in Mσ and their sizes are given by [2]. For M0 = A8, D8

or A2E6, Mσ has at most 9 involution classes, the largest of which has size
|D8(q) : CD8(q)(c8)| (notation of [40, 1.10]), which is less than q64. Since
the smallest non-root involution class in Gσ has size |E8(q) : q78B6(q)|, it
follows that

f(u, Ω) <
9q64

|E8(q) : q78B6(q)|
<

2
q24

.

Finally, for M0 = A1E7, the involution classes in M and the corresponding
classes in G are given in the proof of [40, 4.6], and the result follows easily.

Next consider G = E7. By 4.1 and 4.3, we have M0 = T1E6, A1D6, A7,
A2A5 or A3

1D4. Assume first that p ≥ 5. Using [40, 1.4, 1.8 and 1.10], we
deduce that up(M).|M : M0| ≤ 39.6. Also dim uG − dim uM ≥ 20 by [40,
Theorem 2], and |C : C0| ≤ 6 by [60]. Hence 4.5 gives

fpr(u, Ω) ≤ 39.6.2(q + 1)7.6
q20(q − 1)7

which, for q ≥ 5, is less than 2/q12, as required.
For p = 2, we argue in similar fashion to the E8 case above, using [2].

If M = (T1E6).2, then Mσ has 4 non-root involution classes, with E6-
centralizers F4, CF4(uα), U24B3T1, U27A2A1, and the corresponding classes
in G are 3A′′

1, 4A1, 2A1, 3A′
1 respectively (see the proofs of [40, 4.1 and 4.6]).

It follows that fpr(u, Ω) = |uMσ |/|uGσ | < 2/q12. If M = A1D6 then by [40,
1.10], Mσ has 13 classes of involutions, the largest two of which are repre-
sented by c6 and u0c6, where c6 ∈ D6 is as in [40, 1.10], and 1 6= u0 ∈ A1.
The smallest non-root involution class in Gσ has centralizer q42.B4(q)A1(q).
Hence

fpr(u, Ω) <
|A1(q)D6(q) : C(u0c6)|+ 12|A1(q)D6(q) : C(c6)|

|E7(q) : q42.B4(q)A1(q)|
<

2
q12

.

If M = A7.2 then Mσ has 6 involution classes, the largest of which has M0-
centralizer CC4(uα) (uα a long root element of C4). The conclusion follows
in the usual way. Finally, for M0 = A2A5 or A3

1D4, the conclusion follows
by the same method, estimating |(uG ∩ M)σ| by multiplying the largest
unipotent class size of Mσ by u2(Mσ) ≤ 10 or 23.

To complete the E7 case, it remains to handle p = 3. This is similar to
the p = 2 case, and we give just a sketch. For M0 = T1E6, the classes
of (non-root) elements of order 3 in Mσ are in E6, and are represented
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by 2A1, 3A1, A2, A2 + A1, 2A2, A2 + 2A1; since E6 is a Levi subgroup of
G, the labels of the corresponding classes in G are the same (with label
3A′

1 for the second class by [38]). The centralizers in Mσ and in Gσ of all
these elements can be read off from [40, 1.7], and the result follows. For
M0 = A7 or A1D6 we argue as follows. If u is not in class 2A1 or 3A′′

1 of
G, then |uGσ | > q64 (see [40, 1.7] and the proof of 4.2), and we see that
fpr(u, Ω) < i3(Mσ)/q64 < 2/q12, where i3(Mσ) is the number of elements of
order 3 in Mσ, estimated as above. And if u is in class 2A1 or 3A′′

1 of G,
then analysis of Jordan blocks on V56 using [38] shows that for M0 = A7, u
is in class 2A1 of M0, and for M = A1D6, u = u0u1 with u0 in the A1 factor
and u1 in class kA1 (k ≤ 3) of D6, and the result again follows. Finally, for
the cases M0 = A2A5, A

3
1D4 we argue just as in the p = 2 analysis above.

The cases G = E6, G2 are handled with very similar arguments, and are
left to the reader. As for F4, the same is true except for the case where M =
B4. When p = 2, the involution classes in B4 and the corresponding classes
in F4 are given by [63] (see the proof of [40, 4.6] for a list); and for p 6= 2,
classes of elements of order p in B4 are labelled either by Levi subgroups
which are also Levi in F4, or by the Levi subgroups A1A1, A3, A1B2, B4

of B4; consideration of actions on VF4(λ4) (see [47, Section 2]) shows that
the corresponding classes in F4 are Ã1, B2, C3(a1), F4(a1) respectively. The
conclusion follows quickly. �

Lemma 4.7. The conclusion of Theorem 2(II)(b) holds for semisimple el-
ements s.

Proof. Let H = Mσ, Ω = Gσ/H and D = CG(s). In most of the cases
of interest we have |M/M0| ≤ 2, in which case the following bound is a
consequence of 4.5:

(†) f(s,Ω) <
|W (G) : W (M)|.|M/M0|.2(q + 1)zf

qdim sG−dim(sG∩M)+z−l′(q − 1)l′
(if |M/M0| ≤ 2)

(note that we have not included the |M/M0|
o(s) term in the statement of 4.5: This

is because if o(s) > 2 then no conjugate of s lies in M\M0, while if o(s) = 2
then it is easy to check that |W (D)\W (G)/W (M)|+ 1 < |W (G) : W (M)|).

Consider G = E8. Arguing as at the beginning of the proof of the previous
lemma, we may assume that M0 = A1E7, D8, A2E6 or A8.

If M 6= A1E7, D8, or if CG(s) has no factor E7 or D8, then [40, Theorem
2(II)(b)] gives dim sG − dim(sG ∩M) ≥ 65, so by (†) we have

fpr(s,Ω) <
|W (E8) : W (A2E6).2|.2.2.(q + 1)8

q65(q − 1)8
=

27.35(q + 1)8

q65(q − 1)8
,

and the bounds in Theorem 2(II)(b) follow from this.
Thus we assume now that M = A1E7 or D8 and CG(s) has a factor E7

or D8.
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If CG(s) = D8 then |s| = 2 and q is odd; M is also the centralizer of an
involution, say t, and 〈s, t〉 is a Klein 4-group in G. From the classification
of Klein 4-groups in [10, 3.7], we see that sG ∩M consists of two M -classes,
and either

M = D8, M ∩D = (D4D4).2 or (A7T1).2, or

M = A1E7, M ∩D = A1A1D6 or (A7T1).2.

Similarly, if CG(s) = X1E7 (where X1 = A1 or T1) then either

M = D8, (M ∩D)0 = A7T1 or X1A1D6, or

M = A1E7, M ∩D = X1A1D6 or E6T2.

The conclusion now follows by direct calculation of |(sG ∩ M)σ| and |sGσ |;
the only close call is the case where M = A1E7, D . E7, when

|(sG ∩M)σ|
|sGσ |

≤
|(A1E7)(q) : (A1A1D6)(q)|+ |(A1E7)(q) : (q − 1)2.E6(q).2|+ |(A1E7)(q) : (q + 1)2. 2E6(q).2|

|E8(q) : (A1E7)(q)|
,

which we check is less than 2/q48, as required.
Now let G = E7. Consider first M0 = T1E6. If s ∈ M\M0 then s is

an involution, CM0(s) = F4 or C4, and CG(s)0 = T1E6 or A7 respectively
(see [11, 2.15]). Now consider s ∈ M0. Here M0 and D share a common
maximal torus, so, as explained at the beginning of [40, Section 5], the
possible intersections of the maximal rank subgroups D,M are determined
by properties of the root systems, to study which we may assume p = 0.
Then M = CG(t) where t is an involution, and t ∈ D.

Suppose now that D0 = T1E6, A1D6 or T1D6. By the above, up to G-
conjugacy the possibilities for (M∩D)0 are T1A1A5, T2A5, T2D5 and F4 (the
first does not occur when D0 = T1E6, by an argument in the proof of [40,
5.7]; the second only occurs when D0 = T1D6; and the last is for s ∈ M\M0).
Taking fixed point groups, we can calculate |(sG∩M)σ |

|sGσ | as above, and see that
it is less than 3/q22, as required: The only close call occurs when D0 = T1E6

and (M ∩D)0 = T2D5; here |W (D)\W (G)/W (M)| = 2, so sG∩M contains
two M -classes, and we have

fpr(s,Ω) <
|(T1E6)σ.2 : (T2D5)σ|+ |(T1E6)σ.2 : (F4)σ|

|Gσ : (T1E6)σ|
,

the right hand side of which is actually greater than 2/q22, but less than
3/q22.

If instead D0 6= T1E6, A1D6 or T1D6, then by [40, Theorem 2], dim sG −
dim(sG ∩M) ≥ 27. In the notation of 4.5, set z = dim Z(D0). If z ≥ 3 then
dim D ≤ dim T3D4 = 31, so dim sG ≥ dim G − 31 = 102 while dim sM ≤
dim M − 7 = 72 (this is clear for s ∈ M0, and follows from [40, 1.4] for
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s ∈ M\M0), giving dim sG − dim(sG ∩M) ≥ 30. Hence the right hand side
of (†) is at most

|W (G) : W (E6).2|.2.2(q + 1)7.2
q30+7−6(q − 1)6

=
224(q + 1)7

q31(q − 1)6
.

And if z ≤ 2 the right hand side of (†) is at most

224(q + 1)2

q27+2−6(q − 1)6
,

which is larger. Hence by (†), we have

fpr(s,Ω) ≤ 224(q + 1)2

q27+2−6(q − 1)6
.

This yields the bounds required for Theorem 2 in this case.
Next let M0 = A7. If D0 6= T1E6 then [40, Theorem 2] gives dim sG −

dim(sG ∩ M) ≥ 31. If also z ≥ 3 then dim sG ≥ 102 while dim sM ≤
dim M − 7 = 56, giving dim sG − dim sM ≥ 46. Hence as above, (†) gives

fpr(s,Ω) ≤ |W (E7) : W (A7).2|.2.2(q + 1)2.2
q31−5(q − 1)7

=
288(q + 1)2

q26(q − 1)7
.

This gives the result. And if D0 = T1E6 we can similarly use 4.5 to get

fpr(s,Ω) ≤ (|W (E6).2\W (E7)/W (A7).2|+ 1).2.2(q + 1).2
q27−6(q − 1)7

.

Observe that the relevant number of double cosets is 1, as Sp6(2) =
O+

6 (2)O−
6 (2) (see [13, p. 46]). The required bounds follow.

Entirely similar calculations handle the remaining possibilities M0 =
A1D6, A2A5 and A3

1D4.
Now suppose G = E6. Here M0 = T1D5, T2D4, A1A5 or A3

2.
Consider first M0 = T1D5. Assume D does not have a normal subgroup

D5 or A5. Then by [40, Theorem 2], dim sG−dim(sG∩M) ≥ 20. As above,
(†) gives

fpr(s,Ω) ≤ |W (E6) : W (D5)|.2(q + 1)2.3
q17(q − 1)5

,

which yields the bounds required for Theorem 2.
Now assume D has a factor A5. Here [40, Theorem 2] gives dim sG −

dim(sG ∩ M) ≥ 16. As |D : D0| is not divisible by 3, then we lose the
number 3 (= f) in the numerator above. We may also replace |W (E6) :
W (D5)| by |W (D)\W (E6)/W (D5)|, which is equal to the inner product(
1W (E6)

W (D) , 1W (E6)
W (D5)

)
, and from the induced characters given in Section 2 we

see that this is at most 3. Hence

fpr(s,Ω) ≤ 3.2(q + 1)2

q13(q − 1)5
,
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which is enough to give the bound required in this case.
Finally, assume that D = D5T1. As above, the possibilities for D ∩ M

depend only root systems, and not on the characteristic. To calculate these
possibilities we take p = 0 for now. Then M = CG(t) for an involution t.
Moreover, t ∈ D, and the image of t in the associated orthogonal group
SO10 is either an involution of the form diag(−14, 16) or diag(−18, 12), or a
matrix diag(−i5, i5), where i is a fourth root of unity. The first involution
diag(−14, 16) has centralizer A1A5 in G, since its action on the irreducible
27-dimensional module VG(λ1) is diag(−112, 115); the second involution has
G-centralizer T1D5 and D-centralizer T2D4.2; and the third element has G-
centralizer T1D5 and D-centralizer T2A4.2. Resuming our calculations in
the finite group Gσ, and taking fixed points, we obtain the desired upper
bound 2/q12 for |(sG∩M)σ |

|sGσ | .
This completes the proof for M = T1D5. The remaining possibilities

T2D4, A1A5, A
3
2 for M0 are treated in similar fashion, and we leave this to

the reader.
Now let G = F4. By [40, Theorem 2], dim sG − dim(sG ∩ M) ≥ 8. If

M = B4 then as before we may take z = 2 in 4.5, giving

fpr(s,Ω) ≤ |W (F4) : W (B4)|.2(q + 1)2

q6(q − 1)4
=

6(q + 1)2

q6(q − 1)4
.

This gives the conclusion, except when q = 2. For q = 2, [39] gives much
information about the action of Gσ = F4(2) on Ω = F4(2)/B4(2): The
rank is 5, and in the notation of [13, p. 167], the permutation character is
1a+1105a+1377a+23205a+44200a. The fixed point ratios of all elements
of F4(2) can be read off from this permutation character, and the result
follows. The remaining possibilities for M are dealt with using the same
methods.

Finally, the case G = G2 is similar and straightforward, and we leave it
to the reader. �

5. Proof of Theorem 2, Part (III).

Continue to let G be an exceptional algebraic group of rank l over the
algebraically closed field K of characteristic p > 0, and let σ be a Frobenius
morphism of G such that Gσ is a finite exceptional group of Lie type over
Fq, where q = pa. Assume that Gσ 6= 2F4(q) or 2G2(q) (these cases will
be dealt with in Section 6). Let X be an almost simple group with socle
L = G′

σ.
In this section we handle Case (III) of Theorem 2, in which H is a maximal

subgroup of X which is not parabolic or of maximal rank. Write Ω = X/H,
and let s, u be nonidentity semisimple and unipotent elements of prime order



FIXED POINT RATIOS 435

in H. Also let φ be a field or graph-field automorphism of L of prime order,
and τ a graph automorphism of prime order (if these exist).

For the case where G = G2, we shall use the fact that the maximal
subgroups of Gσ = G2(q) are known by [14, 34].

The first result is taken from [45, Theorem 2], and classifies the possibil-
ities for H into various types.

Proposition 5.1. One of the following holds:

(1) H = NX(Mσ) for some maximal σ-stable closed subgroup M of G of
positive dimension (not parabolic or of maximal rank);

(2) H is one of the local subgroups given in [11, Theorem 1(II)];
(3) G = E8 and F ∗(H) = Alt5 ×Alt6;
(4) H is of the same type as G (possibly twisted) over a subfield of Fq;
(5) H is almost simple, and not of type (1) or (4).

We shall deal with each of the cases in 5.1 separately. First it is convenient
to handle root elements.

Lemma 5.2. Assume that Case (4) of 5.1 does not hold. Then the conclu-
sion of Theorem 2(III)(a) holds for u a long root element (or a short root
element if (G, p) = (F4, 2) or (G2, 3)).

Proof. Suppose u is a long root element. Observe that uX = uGσ . The
conclusion certainly holds if |H| < |uGσ |/qeG , so we may assume that

(∗) |H| ≥ |uGσ |
qeG

.

Lower bounds for |uGσ | are given in 4.2.
Assume first that H is not almost simple. If H is local then [11], together

with (∗), implies that either G = G2, p 6= 2 and H = 23.L3(2), or G = E7,
p 6= 2 and H = Mσ, where M = (22 × D4).S3. In the latter case, by [40,
1.13], we have u ∈ M0 = D4, and moreover, u is a root element of M0. This
D4 lies in a subgroup A7 of G. If V56 denotes the 56-dimensional G-module
V (λ7), then by [47, Section 2], V56 ↓ A7 = VA7(λ2)⊕ VA7(λ6), and hence

V56 ↓ D4 = VD4(λ2)⊕ VD4(λ2).

It follows that if u ∈ D4 then CV56(u) has dimension 2 dim CD4(u), which
by [40, 1.12] is 36. However, as u is a root element of G, dim CV56(u) = 44
by [38], so in fact u 6∈ H in this case. For the case where G = G2 and
H = 23.L3(2), observe that (∗) forces q = 3; but elements of order 3 in H
act on V7 = VG2(λ1) as J2

3 ⊕ J1, so by [38] are not root elements (in fact
they are in the class G2(a1)).

Thus we can assume H is non-local. Clearly Case (3) of 5.1 is impossible
by (∗). Therefore by [45, Theorem 2], H = Mσ, where M is one of the
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following:

G = E8 : M = G2F4

G = E7 : M = G2C3 or A1F4

G = E6 : M = (A2G2).2
G = F4 : M = A1G2.

By [40, 1.13(iii)], u ∈ M0, and by [40, 1.13(ii)], u lies in one of the simple
factors of M0 and is a long root element therein. Thus |uGσ ∩ H| is equal
to the number of long root elements in the two factors of H, which is given
by [40, 1.12], and it follows that |uGσ ∩H|/|uGσ | < 1/qeG , as required.

We have dealt with the case where H is not almost simple, so assume now
that H is almost simple.

Suppose p 6= 2. Denote by Lie(p) the set of all simple groups of Lie
type in characteristic p. If F ∗(H) 6∈ Lie(p), the list of possible isomorphism
types for F ∗(H) is given by [49]. Using this together with the bound (∗),
we see that the only possibilities in which H\F ∗(H) can have an element
of order p are: Gσ = F4(3), H = D4(2).3 or 3D4(2).3, or Gσ = G2(3),
H = L2(8).3. Suppose x is a long root element in H\F ∗(H). In the case
where F ∗(H) = D4(2), x permutes transitively three commuting subgroups
S3, and so for some involution t we have 〈x, xt〉 ∼= Alt4; this is not possible
as x is a long root element. Similarly, in the other cases x acts on a Sylow
2-subgroup of L2(8) and we obtain the same contradiction.

Thus we have u ∈ F ∗(H). By Baer’s theorem we can find h ∈ F ∗(H) such
that 〈u, uh〉 is not nilpotent. Then 〈u, uh〉 ∼= SL2(pe) lies in a fundamental
SL2 in G. At this point we apply the main result of [1], which, together
with (∗), gives the conclusion.

Now suppose F ∗(H) ∈ Lie(p) (with p 6= 2). Let Uα be a long root group
in G containing u, and define

H = 〈H,Uα〉.

Then by [46, 6.4], H and H stabilize the same subspaces of L(G). We
are assuming that Case (4) of 5.1 does not hold. Hence [48, Theorem 4]
implies that F ∗(H) acts reducibly on some G-composition factor of L(G).
Since u acts on L(G) with exactly one Jordan block of size 3 and the rest
of size 1 or 2, it follows that H also acts reducibly. Therefore so does H,
and in particular, H is proper in G. Now Uα is σ-stable, as it is the unique
root group containing u, and hence H is σ-stable. It follows that H = Mσ

for some σ-stable maximal closed subgroup M of G of positive dimension.
Using (∗) and [45, Theorem 2], we see that one of the following holds:

G = E6 : M = F4, C4 (p 6= 2) or G2 (p 6= 7)
G = F4 : M = G2 (p = 7).
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In all cases, [40, 1.13] implies that u is a long root element of M , the number
of which is given by [40, 1.12]. For M 6= F4, we check that

fpr(u, Ω) =
|uMσ |
|uGσ |

<
1

qeG
,

and for M = F4 we similarly check that for G′
σ = Eε

6(q) (ε = ±), we have

fpr(u, Ω) =
1

q6 + εq3 + 1
,

which gives the conclusion.
To complete the proof we must deal with the case where p = 2 (and H is

almost simple). The main result of [71] gives a list of possible isomorphism
types for F ∗(H), and identifies u as a root involution for each type; we also
use (∗) together with [49] to pare down this list when F ∗(H) 6∈ Lie(2). The
upshot is that one of the following holds:

(a) F ∗(H) ∈ Lie(2) and u ∈ F ∗(H) is a long or short root element;
(b) F ∗(H) = Dn(2e) and u 6∈ F ∗(H) is a reflection;
(c) 〈F ∗(H), u〉 = Sc, and u is a transposition, where c ≤ 17, 13, 12, 10, 5

according as G = E8, E7, E6, F4, G2;
(d) F ∗(H) = Fi22,Ω7(3), U4(3), L4(3), and u is a root involution (also

G = E6 for the first three possibilities).
In Cases (c) and (d), a simple check shows that |uH |/|uGσ | < 1/qeG .
In Cases (a) and (b), let F ∗(H) = H(q0), a group of Lie type over Fq0 ,

where q0 is a power of 2. Now H contains two root elements u, uh with
product a = uuh of order q0 + 1, and a lies in a torus T1 of a fundamental
SL2 in G. The weights of T1 on L(G) are ±2,±1, 0. Hence if q0 > 2 then
a and T1 stabilize the same subspaces of L(G). Thus H and H = 〈H,T1〉
stabilize the same subspaces of L(G). The weights ±2 of T1 occur exactly
once on L(G), so we see as before that H is reducible on L(G), and deduce
that H = Mσ with M maximal σ-stable of positive dimension. Now the
conclusion follows as above.

This leaves the case where q0 = 2. By 1.4, the rank of F ∗(H) = H(2) is
at most that of G. For each possible subgroup H(2) of G(q) which satisfies
Lagrange’s theorem and (∗), we use [40, 1.12] to calculate the number |uH |
of root elements (or reflections in Case (b)) in H, and check again that
|uH |/|uGσ | < 1/qeG , as required. �

In view of 5.2, we assume from now on that the unipotent element u is
not a long root element (or a short root element when (G, p) = (F4, 2) or
(G2, 3)).

Now suppose that x = s, u, φ or τ is an element which violates the con-
clusion of Theorem 2(III); in other words, there is a maximal subgroup H as
in Theorem 2(III), such that fpr(x,X/H) is greater than the upper bound
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stated in Theorem 2. We may take x ∈ H and replace X by the group 〈L, x〉
(so xX = xL). In particular, if x = u then X = L, and if x = s then X = L
or Gσ, and sL = sGσ .

Then, excluding the exceptional cases in Table 4 of Theorem 2, when x = s
or φ we have |xL∩H| ≥ |xL|/qhG ; when x = u we have |xL∩H| ≥ |xL|/qeG ;
and when x = τ we have |xL ∩ H| ≥ |xL|/eL(q). The conjugacy classes of
field and graph-field automorphisms φ, and of graph automorphisms τ are
given in 1.1, and the next lemma follows from this, together with 4.2.

Lemma 5.3. As above, assume that x violates the conclusion of Theorem
2(III). Exclude the case where (G′

σ,H) = (2E6(q), F4(q)).
(i) If x = s, then, writing D = CG(s), we have the following lower bounds

for |sL ∩H|:

G = E8 : |sL ∩H| > q64, and |sL ∩H| > q80 if D 6 .E7

G = E7 : |sL ∩H| > q31, and |sL ∩H| > q42 if D 6 .E6

G = E6 : |sL ∩H| > q19, and |sL ∩H| > q28 if D 6 .D5

G = F4 : |sL ∩H| > q10, and |sL ∩H| > q22 if D 6 .B4.

(ii) If x = u, we have the following lower bounds for |uL ∩H|:

G = E8 : |uL ∩H| > q68

G = E7 : |uL ∩H| > q40

G = E6 : |uL ∩H| > q25

G = F4 : |uL ∩H| > q17.

(iii) If x = φ, of order r say, then CL(x) = L(q1/r) is a group of the same
type as G (possibly twisted) over Fq1/r , and

|xL ∩H| > |L : L(q1/r)|/qhG .

(iv) If x = τ (so G = E6), then CGσ(τ) = F4(q), C4(q)(p 6= 2) or CF4(q)(t)
(p = 2, t a long root element of F4(q)), and

|xL ∩H| > |L : CL(τ)|/eL(q).

Remark. The following observation will be useful, in the special case
where q = 2, x = s, G = E6 and D = T1D5. In this case, the fact that
1 6= s ∈ Z(Dσ) implies that Gσ = 2E6(2).3 and Dσ = 2D5(2) × 3, with s a
central element of order 3. Then s ∈ Gσ\G′

σ, so s is an outer automorphism
of F ∗(H). In particular, this case does not occur if F ∗(H) is a simple group
which has no outer automorphism of order 3.

Lemma 5.4. The conclusion of Theorem 2(III) holds in the case where G =
E6 and F ∗(H) = Mσ, where M = F4 or C4 (p 6= 2).

Proof. Note that H = Mσ, unless x = φ or τ , in which case H = Mσ〈x〉.
First consider the unipotent case x = u. For M = F4, [38, Table A, p. 4130]
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lists the unipotent classes of M together with the corresponding classes in G,
from which it follows that with one exception, uG ∩M = uM ; the exception
occurs for p = 2 with the class 2A1 in G, which is represented by two classes
in M , namely Ã1 and Ã

(2)
1 . The required bounds for fpr(u, Ω) follow easily.

For M = C4 (still with x = u) we use the fact that the total number
of unipotent elements in Mσ is q32, by 1.3(iii). Therefore we may assume
that |uGσ | ≤ q32qeG = q38. It follows from the unipotent class classification
(see [40, 1.7]) that u lies in class 2A1 of G. As shown in the last paragraph
of the proof of [40, 6.2], u must act as J2

2 ⊕ J4
1 on the usual module for

C4. Thus dim uG = 32,dim uM = 14, and the result follows easily on taking
fixed point groups under σ.

Now we consider the case where x = s, a semisimple element. Observe
that M = CG(τ), where τ is an involutory graph automorphism of G. We
refer the reader to the proof of the corresponding result for algebraic groups
in [40, 6.2]. We shall handle in turn the various possibilities for D = CG(s):
These are

D = T1D5, D . A5, D = T2D4, D . A4, D . A3, and D ≤ A3
2.

Suppose first that D = T1D5. As τ inverts T1, and s ∈ M = CG(τ), it
follows that s is an involution and p 6= 2. We must have CF4(s) = B4 and
CC4(s) = C2C2, with sG∩M = sM , and the required bound fpr(s,Ω) < 1/q12

follows.
If D = A1A5 then again s is an involution, and CF4(s) = A1C3, CC4(s) =

A1C3. The bound follows in the C4 case, while for M = F4 we have

fpr(s,Ω) =
|F4(q) : (A1C3)(q)|
|Eε

6(q) : (A1Aε
5)(q)|

=
1

q6(q6 + εq3 + 1)
,

as in the conclusion of Theorem 2 (see Table 3 when ε = −1). The argument
for D = T1A5 is the same, replacing A1 by T1.

Next let D = T2D4. Here CM (s) = CD(τ) = B3T1, B2B1T1 for M =
F4, C4 respectively, and sG ∩M falls into at most two M -classes (as T1 can
only be inverted in G). The required bounds follow.

At this point the proof is complete for M = C4, since for the remaining
possibilities for D we have |sGσ | > q48 > |C4(q)|q12, giving fpr(s,Ω) < 1/q12.
So assume from now on that M = F4.

Now suppose D . A4. Then D = A4T2 (not A4A1T1, for τ inverts the T1,
which would force s to have order 2, hence have centralizer A5A1). Now
CG(A4)′ = A1, so τ normalizes an A5 centralizing this A1 and containing
the A4. We established above that CA5(τ) = C3. However, CA4(τ) must be
a subgroup B2 = SO5 acting irreducibly in this A4, whereas C3 does not
contain such an SO5, a contradiction.

Next consider D . A3. We have NG(A3)0 = A1A1A3T1 < A1A5. Now
τ inverts the T1 factor, so s lies diagonally in the A1A1, and hence in fact
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D = A3T3. Then CD(τ) = D2T2 or C2T2, and the former is impossible as
A1A1 (both long root SL2s) is not a Levi subgroup of F4. Moreover, NG(A3)
and NF4(C2) both induce groups of order 8 on T3 and T2 respectively, so
sG ∩ F4 = sF4 , and so

fpr(s,Ω) ≤ |(A3T3)σ : (C2T2)σ|
|Gσ : Mσ|

,

giving the required bound.
Lastly, suppose D ≤ A3

2. If D = A3
2 then τ interchanges two of the factors

and centralizes a diagonal subgroup Ã2 of their product, which is a short
root A2 in F4. Since s has order 3 in this case, it follows that CF4(s) = A2Ã2,
sG ∩M = sM , and the result follows.

Now suppose D < A3
2. We now make a general observation. The number

of F4-classes in sG ∩M is at most |W (G) : W (F4)| = 45, and hence, taking
s with |CMσ(s)| minimal, we have

(∗∗) fpr(s,Ω) ≤ 45
|Mσ : CMσ(s)|
|Gσ : Dσ|

= 45
|τDσ |

|Gσ : Mσ|
.

If D contains two factors A2, these are interchanged by τ , and so CF4(s) =
Ã2T2 or Ã2A1T1. Hence by (∗∗)

fpr(s,Ω) ≤ 45
|(A2

2A1T1)σ : (Ã2T2)σ|
|Gσ : Mσ|

,

which gives the result. Therefore D has at most one factor A2, so D ≤
A2A1A1T2, and now the required bound follows directly from (∗∗).

It remains to consider the cases where x = φ, a field or graph-field auto-
morphism, or τ , a graph automorphism. Now φ is a Frobenius morphism
of both G and M , and hence by a standard argument using Lang’s theo-
rem (see [28, 7.2]), the coset Mσφ contains only one Mσ-conjugacy class of
elements of (prime) order |φ| = r. Therefore

fpr(φ,Ω) ≤ |φMσ |
|φL|

≤ |F4(q) : F4(q1/r)|
|L : Eδ

6(q1/r)|
or

|C4(q) : C4(q1/r)|
|L : Eδ

6(q1/r)|
and the result follows for x = φ.

Finally, suppose x = τ . If CG(τ) 6= F4, then by 1.1 we have |CGσ(τ)| <
q36, and the bound fpr(τ,Ω) ≤ i2(Mσ)/|L : CL(τ)| gives the result, using
1.3(i) to bound i2(Mσ).

So assume that CG(τ) = F4. This case requires a fairly delicate analysis.
First consider the case where M = C4 (so p 6= 2). Then there exists c ∈ M
such that τc centralizes M , and so τG ∩ Mτ consists of all elements τct,
where t is an involution in F4 with centralizer A1C3 (not B4, as B4 does not
lie in C4); hence fpr(τ,Ω) = |Mσ : (A1C3)σ|/|L : (F4)σ|, giving the required
bound.
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Now suppose M = F4 = CG(τ). For p odd, τG ∩ Mτ consists of all
elements τt with t an involution in M with centralizer B4, and the required
bounds follow. Now let p = 2. The involution classes in Mτ (apart from {τ}
itself) are of the form τC, where C is one of the involution classes A1,Ã1,
Ã

(2)
1 , A1Ã1 in F4. Of these, we claim that only the class τC with C = Ã1 lies

in τG. For by 1.1, we know that τuα0(1) 6∈ τG (where α0 is the highest root
of E6). Conjugating this by uα1(1), we see that τuα0(1)uα1(1)uα6(1) 6∈ τG,
and this is of the form τc with c in class A1Ã1 of F4. Finally, for C = Ã

(2)
1 , we

can take the representative as τU2342(1)U1232(1) (where a1a2a3a4 denotes the
F4-root

∑
aiαi). As an element of E6 this is τU122321(1)U111221(1)U112211(1),

which is (τU122321(1))U111221(1), hence is not in τG.
Thus τG ∩M = τC, where C is the class Ã1 of F4, and hence

fpr(τ,Ω) =
|F4(q) : q15C3(q)|
|Eε

6(q) : F4(q)|
giving the result. �

Lemma 5.5. The conclusion of Theorem 2(III) holds if H is as in Case (1)
of 5.1.

Proof. In this case, H = NX(Mσ) for some maximal σ-stable closed sub-
group M of G of positive dimension and not parabolic or of maximal rank.
We exclude the possibilities G = E6, M = F4 or C4 dealt with in the previ-
ous lemma. By [45, Theorem 1] and the bounds in 5.3, the possibilities for
M are as follows:

G M x
E8 G2F4 x = s, D = CG(s) . E7

E7 A1F4

G2C3 x = s, D . E6

E6 A2G2 x = s, D . D5, or x = τ
B3 (p = 2) x = s, D . D5

F4 A1G2 (p 6= 2) x = s, D = B4

G2 (p = 7) x = s, D = B4

G2 A1 (p ≥ 7)

Consider first G = E8. Here M = G2F4 and CG(s) = A1E7 or T1E7.
By [40, 1.3], sG ∩M splits into at most |W (G) : W (E7)| = 240 M -classes,
with representatives si (1 ≤ i ≤ k), say. Now |W (M)| = 2933, so it fol-
lows that for each i, W (CM (si)) has order at least 2933/240, hence at least
58. Also CM (si) is connected, and it follows easily that |CMσ(si)| > q10.
Consequently, estimating |sGσ ∩Mσ| as in the proof of 4.5, we deduce that

|sGσ ∩Mσ| <
240.|G2(q)|.|F4(q)|

q10
,
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which contradicts 5.3.
Likewise, for M = G2C3 < E7, we have |W (G) : W (E6)| = 56, |W (M)| =

2632, so |W (CM (si))| > 10. In this case |CM (si) : CM (si)0| ≤ 2, so it follows
that CM (si) contains A3

1T2, C2T3 or A2T3. The result follows as before,
except when q = 2. In this case s has order 3, and we have |sGσ ∩ Mσ| <
i3(G2(q)× C3(q)). By 1.3 this is less than q31, contrary to 5.3.

A similar argument handles the case where G = E6,M = A2G2 and
x = s. Here |W (CM (si))| ≥ 3, so either CM (si) is connected and contains
A2

1T2 or A2T2, or |CM (si)/CM (si)0| = 3 and |s| = 3. In the first case we
obtain the result as before, and in the second we use |sGσ ∩Mσ| ≤ i3(Mσ)
together with 1.3 to contradict 5.3. And for M = B3, we have

|sGσ ∩Mσ| <
|W (G) : W (D5)|.|B3(q)|

(T3)σ
≤ 27|B3(q)|

(q − 1)3
.

This contradicts 5.3 provided q > 5. And for q ≤ 5 we have r = |s| ≤ 5, and
using |sGσ ∩Mσ| < ir(B3(q)) together with 1.3 gives the result.

When M = A2G2 with x = τ , we use the bound fpr(τ,Ω) ≤ i2(Mσ)/|τL|
to obtain the result.

Next consider G = F4,M = A1G2. By [47, Section 2] we have

L(G) ↓ A1G2 = L(A1G2)⊕ (V (4)⊗ V (λ1)).

Using this we check that all involutions in M not in the A1 factor act on L(G)
as (124, (−1)28), hence have centralizer A1C3. As CG(s) = B4, it follows that
sG ∩ M ⊆ A1 giving a contradiction to 5.3. And if M = G2 (p = 7) then
|sGσ ∩H| ≤ i2(H) < q10, contrary to 5.3.

The case with G = G2 is trivial (just use estimates for class sizes in Gσ,
compared to |M |), so it remains to deal with the case G = E7,M = A1F4.
For the unipotent case x = u, we may assume that |uL| < qeG |uL∩H| < q67,
and hence u is in one of the unipotent classes 2A1, 3A′′

1, 3A′
1, A2 of G (see

[40, 1.7]). Write u = u0u1 with u0 ∈ A1, u1 ∈ F4. There are at most 20
unipotent classes in F4 (see [63, 65]), so we may assume that

|uH | > |uGσ |
20qeG

>
q40

20
.

It follows that u1 lies in one of the classes C3(a1), . . . , F4 of F4, listed in
order as in [38, Table 4]. However, by [38], elements in each of these classes
have more than one Jordan block of size 5 or more on L(F4), whereas u has
at most one such block on L(G), a contradiction.

Now suppose x = s, a semisimple element. If |s| = 2 then by 1.3,
|sGσ ∩ H| ≤ i2(H) < q31, contrary to 5.3. Hence s has odd (prime) order.
Moreover, we have |sGσ | < |H|qhG < q77, whence (by [40, 1.1] for example)
CG(s) must be T1E6 or T1D6. Write F for the factor F4 of M . The proof
of [40, 6.3] shows that there is a rank 1 torus T1 < F such that s ∈ T1, and
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moreover that p = 2 and CG(s) = T1E6. There is an element t ∈ T1 of order
3 such that CG(s) = CG(t). As in [40, 6.3], we see that sGσ∩Fσ splits into at
most three Fσ-classes, with F4-centralizers T1B3, T1C3 or A2A2; moreover,
the centralizer A2A2 does not occur when D = T1E6. It follows that

fpr(s,Gσ/Mσ) < 2
|Mσ : (T1B3)σ|

|sGσ |
<

1
qhG

,

as required.
Finally, if x = φ, a field automorphism, then φ is a Frobenius morphism of

M , so the coset Mσφ has only one class of elements of (prime) order |φ| = r,
and CMσ(φ) = A1(q1/r)F4(q1/r). The result follows. �

Lemma 5.6. The conclusion of Theorem 2(III) holds if H is as in Case (2)
or (3) of 5.1.

Proof. In this case the only possibility for H which satisfies the bounds in
5.3 is G = G2, H = 23.L3(2) (with p 6= 2). For x = u, we have the result
unless |uGσ | ≤ qeG |uGσ ∩ H|, which forces q = 3. But elements of order 3
in H act as J2

3 ⊕ J1 on V7 = VG(λ1), so by [38] are in class G2(a1), which
gives |uGσ | > q2(q2 − 1)(q6 − 1)/6, contradicting the above inequality.

Now consider the semisimple case x = s. If s has order 7 then CG(s) =
A1T1 or T2, so |sGσ | > q9; and if s has order 3 then it acts on V7 as
(α, α, α−1, α−1, 13), where α is a cube root of 1, so has centralizer A1T1 in G
(rather than A2). The required bound follows easily for these cases. Finally,
if s is an involution then |sGσ | > q8 and we use fpr(s,Ω) ≤ i2(H)/|sGσ |
together with 1.3. �

Lemma 5.7. The conclusion of Theorem 2(III) holds if H is as in Case (4)
of 5.1.

Proof. In this case, by [46, 5.1], there are three kinds of subgroups H of the
same type as G:
(A) Gσ = G(q), H = Gδ = G(q0), where δr = σ and qr

0 = q;
(B) Gσ = Inndiag(E6(q)), H = Gτσ = Inndiag( 2E6(q1/2)), where τ is a

graph automorphism of G;
(C) Gσ = F4(q) or G2(q) and H = 2F4(q) or 2G2(q) respectively, where

q = 22a+1 or 32a+1.

First observe that if x = φ or τ , then x acts as a field, graph-field or graph
automorphism of H, and the result follows using 1.1. So assume from now
on that x = s or u.

We handle Cases (A) and (B) together. If x = u is unipotent, then
its class in Gσ and in H is determined by its the labelling of its class in
G. Hence |uL| and |uL ∩ H| can be worked out using the lists of classes
and centralizers of unipotent elements to be found in [59, 60, 63, 65]. In
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particular, |uL| / |uL ∩ H| = f(q0) is a rational function of q0 of degree
(r − 1) dim uG, and f(q0) is easily seen to be greater than qeG , as required.

When x = s is semisimple, let C = CG(s), and C0 = DT with D semisim-
ple, T a central torus. Note that |C : C0| ≤ f , the order of the fundamental
group of G. Then CGσ(s) contains (DT )σ (or (DT )τσ) with index at most f ,
and likewise for CH(s). Moreover, sGσ ∩H consists of at most f H-classes
(see [68, I,3.4 and II,4.4]). It follows that |sGσ | / |sGσ ∩ H| = g(q0) is a
rational function of q0 of degree (r − 1) dim sG, which is easily seen to be
greater than qhG , as required.

Finally, consider Case (C). The conjugacy classes in 2F4(q) and the corre-
sponding classes in F4(q) are given explicitly in [64], and the result follows
in this case. In 2G2(q), by [73], unipotent elements of prime order have
centralizers of size q3 or 2q2, and correspond respectively to elements of
G2(q) with centralizer orders q6 (class A

(3)
1 in [38]) or 2q4 (class G2(a1)).

And semisimple elements in 2G2(q) are either regular, or involutions with
centralizer 2×L2(q), and correspond to regular elements or involutions with
centralizer A1A1 in G2. The result follows. �

Lemma 5.8. The conclusion of Theorem 2(III) holds if H is as in Case (5)
of 5.1, with F ∗(H) 6∈ Lie(p).

Proof. In this case the possibilities for S = F ∗(H) are given by [49].
If S ∼= Altc, the bounds of 5.3 imply that one of the following holds:

G = E7 : c = 12 or 13, q = 2, x = s,D = T1E6

G = E6 : 9 ≤ c ≤ 12, q = 2, and if x = s then D = T1D5

G = F4 : 7 ≤ c ≤ 10, q = 2, x = u.

In each case, x has order r = 2 or 3, and using |xL ∩H| ≤ ir(Sc), we obtain
the result using 1.3 and also the remark after 5.3.

Next suppose S is a sporadic group. Here [49] and the bounds of 5.3
(together with the remark after 5.3) imply that one of the following holds:

G = E6 : S = Fi22(q = 2 or 4)
G = F4 : S = J2(q = 2)
G = G2 : S = J1(q = 11), J2(q = 4).

First consider G = E6, S = Fi22. If q = 2 then L = G′
σ = 2E6(2) by

Lagrange’s theorem. The embeddings of Fi22 in 2E6(2) are identified and
studied in [31]; there are precisely three conjugacy classes of subgroups Fi22
in 2E6(2), permuted by Out(L) ∼= S3. Referring to [13, pp. 192, 156], we
check that the irreducible character χ1938 of L restricts to each subgroup
Fi22 as a sum χ1 +χ78 +χ429 +χ1430 of irreducible characters. From this it
is easy to see which classes in a subgroup Fi22.2 lie in which classes of L.2,
hence to calculate |xL∩H|/|xL| for each x ∈ L.2 of prime order, and to show
that it satisfies the required bound. If q = 4 then G′

σ = E6(4) by Lagrange,
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and Gσ = Inndiag(E6(4)) = E6(4).3. The bound in 5.3 shows that x = s and
D = T1D5. Then Dσ = 3×D5(4), with central 3-elements lying outside the
simple group E6(4). But this means that x 6∈ E6(4), whereas x ∈ S < E6(4),
a contradiction.

For G = F4, S = J2 with q = 2, the bound in 5.3 implies that x = u, and
we obtain the result using |xL ∩H| ≤ i2(H).

When G = G2, S = J1 with q = 11, the only case which does not
yield to trivial bounds has x = s of order 3, with D = A2 and Dσ =
SU3(11). But from [32] we see that an element of order 3 in J1 has
trace 1 on the 7-dimensional G2-module V (λ1), whereas x acts on V (λ1)
as (α, α, α, α−1, α−1, α−1, 1) (where α is a cube root of 1), hence has trace
−2.

For Gσ = G2(4) with H = J2, we use [13, p. 97] to see that fpr(s,Ω) ≤
7/52 (with equality for 3A-elements of J2, which have centralizer SL3(4) in
G2(4)), and fpr(u, Ω) ≤ 1/13 (with equality for 2A-elements of J2), as in the
conclusion of Theorem 2.

Now suppose that S ∈ Lie(p′). Then [49] and 5.3 show that one of the
following holds:

G = E6 : S = L4(3), U4(3),Ω7(3), G2(3), all with q = 2
G = F4 : S = L4(3)(q = 2), 3D4(2)(q = 3)
G = G2 : S = L2(13), U3(3).

For G = E6, the remark after 5.3 shows that S = Ω7(3). If x has order
r = 2 or 3 we use |xL ∩H| ≤ ir(H) and 1.3 to obtain the result. And if x
has order greater than 3 then x = s and |sGσ | ≥ |Gσ : (T2D4)σ| > 246, while
|H| < 234, giving the conclusion in this case.

Now consider G = F4, S = L4(3). For x = s of order greater than 3,
we have |sGσ | > 26|H|, giving the conclusion. And for x of order r = 2 or
3 we use |xL ∩ H| ≤ ir(H). For S = 3D4(2), q = 3, 5.3 forces x = s and
D = B4, so x is an involution. From [32] we see that the largest class of
involutions in S have trace 1 on the 25-dimensional module V = VG(λ4),
whereas involutions with centralizer B4 have trace −7. Hence xGσ ∩H lies
in the smallest class of involutions of S, and the result follows in this case.

Lastly, for G = G2 there are unique classes of subgroups L2(13), U3(3).
The classes of elements of these subgroups can be identified in G2 using [13]
and the action on the 7-dimensional module VG(λ1). Hence the fixed point
ratios can be calculated, and the result follows easily. �

Lemma 5.9. The conclusion of Theorem 2(III) holds if H is as in Case (5)
of 5.1 with F ∗(H) = H(q0) ∈ Lie(p), a group of Lie type over Fq0 where
q0 > 2.

Proof. Suppose S = F ∗(H) = H(q0) ∈ Lie(p), where q0 is a power of p and
q0 > 2. By the conditions of 4.1(5), H(q0) is not of the same type as G, and
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also H 6= Mσ for any positive-dimensional closed subgroup M of G. For
G = G2 the maximal subgroups of Gσ are known, and none falls into this
category; thus G 6= G2.

By [48, Theorem 1], one of the following holds:
(a) q0 ≤ 9,
(b) S = A1(q0), 2B2(q0), 2G2(q0) or Aε

2(16) (ε = ±).
First consider Case (b). For S = A1(q0) with q0 = pa, choose a prime r
dividing p2a−1 but not dividing pi−1 for 1 ≤ i < 2a (by [74], such a prime
exists, except when a = 1, or p2a = 26; we can assume neither of these hold,
by orders). Then r divides |Gσ|, and it follows that if q = pb then 2a is
at most kb, where k is the largest integer such that a factor qk − 1 occurs
in the order formula for |Gσ|. Therefore q0 ≤ q15, q9, q6 or q6, according
as G = E8, E7, E6 or F4, respectively. This contradicts the bounds in 5.3,
except when G = F4. In this case, q0 cannot be q6, as this would mean that
S had an element of order (q6 + 1)/(2, q − 1), whereas F4(q) has no such
element. Hence the above argument using the prime r shows that q0 ≤ q4,
which gives a contradiction using 5.3 again.

The argument for S = 2B2(q0) or 2G2(q0) is similar. Reasoning as above
using [74], we obtain, for G = E8, E7, E6, F4 respectively, q0 ≤ q6, q3, q3, q3

(S = 2B2(q0)), and q0 ≤ q5, q3, q2, q2 (S = 2G2(q0)). Except for G = F4,
this contradicts 5.3. And for G = F4, 5.3 implies that |x| = 2 and we use
|xL ∩H| < i2(H) to obtain a contradiction.

Finally for (b), if S = Aε
2(16), then 5.3 forces q = 2 and G = E6 or F4.

But E±
6 (2) does not contain Aε

2(16): For ε = − this is implied by Lagrange;
and L3(16) contains L2(16) × 5 lying in a parabolic, whereas no parabolic
of E±

6 (2) contains such a subgroup.
Now consider Case (a), q0 ≤ 9. For q0 > 2, [44, Theorem 3] deter-

mines all maximal subgroups H such that F ∗(H) = H(q0) as above, and
rk(S) > 1

2rk(G) (where rk(S) denotes the untwisted rank of S, i.e., the rank
of the corresponding simple algebraic group). The conclusion is that for such
subgroups, either H = NX(Mσ) with M of positive dimension, or G = E8

and S = 2A5(5) or 2D5(3). In the latter cases the bound of 5.3 is violated.
Hence

rk(S) ≤ 1
2
rk(G).

It is shown in [50, 1.2] that for such subgroups, |H| < q60 or q30 · 4 logp q if
G = E8 or E7, so these cases are out by 5.3.

Thus G = E6 or F4. Further, the bounds in 5.3 force either q0 > q, or
(G, S) to be one of (E6, B3(q) or C3(q)), (F4, B2(q) or G2(q)). Moreover, in
these cases, x = s, D = T1D5 if G = E6, and D = B4 if G = F4. In the
F4 cases, x is an involution, and using |xL ∩ H| < i2(H) we see that 5.3
is violated. And for G = E6, x has order r dividing q ± 1, and we check
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that ir(S) < q19 (use 1.3 for r = 2, 3 and check directly for r = 5, 7), again
contradicting 5.3.

Therefore q0 > q. Since q0 ≤ 9, the only possibilities for (q, q0) are
(3, 9), (2, 4) and (2, 8).

Consider the first two cases. Here q0 = q2, so S is a group over Fq2

of untwisted rank at most 1
2rank(G), of order dividing |Gσ| = |G(q)|, and

satisfying the bounds of 5.3. Inspection shows that the only such possibilities
for S are among the following:

G = E6 : S = A3(q2), B2(q2), G2(q2)
G = F4 : S = Aε

2(q
2), B2(q2), G2(q2).

Consider G = E6. As A3(q2) has an element of order (q8 − 1)/((q2 −
1)(4, q2 − 1)), and Gσ has no such element (see [5]), we have S = B2(q2) or
G2(q2). For x = u now use 1.3(iii); for x = s, we have q 6= 2 by the remark
after 5.3, so q = 3 and |s| = 2 and the result follows using i2(H) in 1.3; and
for x = φ or τ we also have |x| = 2, which again gives the result using i2(H)
in 1.3.

Now let G = F4. Here S = G2(q2) is ruled out, as G2(q2) contains an
element of order q4 + q2 + 1, whereas F4(q) has no such element (see [5]). If
S = Aε

2(q
2), then 5.3 implies that x = s and D = B4, whence q = 3. Now

i2(H) < 310, giving a contradiction by 5.3. Lastly, let S = B2(q2). If x = u
then ip(H) < q16 by 1.3(iii), contrary to 5.3. Therefore x = s, and 5.3 implies
that q = 3 and D = B4. We argue that in fact, B2(9) 6≤ F4(3). For suppose
X = B2(9) < F4(3), and consider the possible nontrivial composition factors
for X on the irreducible 25-dimensional F4(3)-module V25 over F3. The
irreducible X-modules over F3 of dimension 25 or less are V (10)⊕ V (10)(3)

of dimension 10, V (02) ⊕ V (02)(3) of dimension 20, V (01) ⊗ V (01)(3) of
dimension 16, and V (10) ⊗ V (10)(3) of dimension 25. The involutions of
F4(3) act as either (−116, 19) or (−112, 113) on V25. However, one checks
that on any set of composition factors for X of dimension adding to 25, one
of the involutions in X does not act as either of these possibilities. Therefore
B2(9) 6≤ F4(3).

This finishes the case where (q, q0) = (3, 9) or (2, 4). Finally, consider
the other case, in which q = 2, q0 = 8. Here Lagrange restricts us to the
following possibilities:

G = E6 : S = Aε
2(8), Aε

3(8), B2(8)
G = F4 : S = B2(8).

Now Aε
3(8) has an element of order (212 − 1)/(23 − ε), whereas Eε

6(2) has
no such element ([5]); and B2(8) has an element of order 65, which likewise
cannot lie in Eε

6(2). This leaves us with S = Aε
2(8). Here 5.3 implies that

x = s and D = T1D5. As we have seen before, this means that x has order
3 and is an outer automorphism of G′

σ = 2E6(2), hence acts as an outer
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automorphism of S. All such are conjugate to a field automorphism of S,
so |xGσ ∩H| ≤ |S : Aε

2(2)| < 219, contrary to 5.3. �

Lemma 5.10. The conclusion of Theorem 2(III) holds if H is as in Case
(5) of 5.1 with p = 2 and F ∗(H) = H(2), a group of Lie type over F2.

Proof. First consider G = E8. When q = 2, x = s and D = T1E7 we have
|s| = 3. Hence 5.3 implies the following bounds: If q = 2 and x = s, then
either i3(H) > q64 or |sGσ∩H| > q80; if q ≥ 4 and x = s then |sGσ∩H| > q64;
and if x = u then i2(H) > q68. Noting that rk(S) ≤ 8 by 1.4, we deduce
that H(2) is one of the following:

Aε
8(2), Dε

7(2), D8(2), B7(2) all with q = 2,
E7(2)with q = 2 or 4.

Suppose H(2) 6= Aε
8(2). Then H(2) contains D6(2). The latter contains

(S3 × S3 ×D4(2)).2 = (32 ×D4(2)).Dih8 (where Dih8 indicates a dihedral
group of order 8 induced on the 32). Using [40, 1.2] we see that either
CG(32)0 = T2E6, or CG(32)′ is a product of classical groups. In the first case,
NG(T2E6) = (T2E6).(S3 × 2) does not induce Dih8, so this does not occur.
In the second, the subgroup D = D4(2) lies in a factor Dn (4 ≤ n ≤ 6)
of CG(32)0. Since H1(D4(2), V (λ1)) = 0 (see [33]), D lies in a natural
connected subgroup D4 of Dn. Now

L(G) ↓ D4 = V (λ1)8 ⊕ V (λ3)8 ⊕ V (λ4)8 ⊕ V

(see [62, 1.8]), where V has composition factors V (λ2) (of dimension 26) and
030. Pick an element t ∈ D of order 15. Then t lies in a subgroup A3 of D4,
and in a torus T1 = {diag(α, α2, α4, α8) : α ∈ K} of this A3. One checks that
CV (t) = CV (T1), from which it follows that D and D4 = 〈D,T1〉 stabilize
the same subspaces of L(G). Therefore H and H = 〈H,D4〉 stabilize the
same subspaces of L(G).

We claim that H is reducible on L(G). For suppose otherwise. Since
by [48, Theorem 4], H(2) = F ∗(H) is not irreducible on L(G), we must
have L(G) ↓ H(2) = V1 ⊕ · · · ⊕ Vt, a direct sum of conjugate modules Vi of
dimension 248/t, permuted transitively by an outer automorphism of H(2)
of order t. It follows that t = 2. Pick an involution y ∈ H −H(2). Since y
interchanges V1 and V2, it has 124 Jordan blocks of size 2 in its action on
L(G). But there is no such involution in E8, by [38].

Therefore H is reducible on L(G), from which we deduce that H 6= G.
Moreover, H is σ-stable, since D4 is uniquely determined by D, hence is
σ-stable. Therefore H = Mσ for some σ-stable maximal closed subgroup M
of positive dimension in G, contrary to our earlier assumption.

Finally, suppose H(2) = Aε
8(2). Here 5.3 forces x = s and D = T1E7.

Then s has order 3, so |xGσ ∩ H| ≤ i3(H), giving a contradiction by 1.3
and 5.3.
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Next consider G = E7. Here the bounds in 5.3 imply that H(2) is of one
of the following types:

Aε
c(2) (c = 6, 7), Bd(2) (d = 5, 6, 7), Dε

e(2) (e = 5, 6, 7), F4(2), Eε
6(2)

with q = 2 or 4.
If H(2) contains A4(2), then we can choose an element t ∈ H(2) of order

31. Because 〈t〉 is a Sylow subgroup of Gσ, we know that t lies in a subsystem
subgroup A4 of G, and indeed lies in a rank 1 torus

T1 = {tα = diag(α, α2, α4, α8, α−15) : α ∈ K} < A4.

From [47, Section 2] we see that if V56 denotes the 56-dimensional G-module
V (λ7), then V56 ↓ A4 has nontrivial composition factors VA4(λi) for i =
1, 2, 3, 4. One checks that on the sum of these four modules, tα has just
the eigenvalues α±k with 0 ≤ k ≤ 15. It follows that the 31-element t and
the torus T1 fix precisely the same subspaces of V56. Therefore, if we define
H = 〈H,T1〉, then H and H fix the same subspaces of V56. By calculating
the dimensions of irreducible H-modules of dimension up to 56, we see easily
that H is not irreducible on V56 except possibly if H(2) = A7(2), in which
case V56 ↓ H(2) could be the sum of two 28-dimensional modules permuted
by an outer automorphism of order 2. Excluding the latter possibility, we
have H < G, and now we obtain H = Mσ with M of positive dimension
as above. And if H(2) = A7(2), we redefine H = 〈H(2), T1〉. Then H <
G and contains Aε

7(2), from which it follows that H = A7, a subsystem
subgroup. The embedding of H(2) in this A7 is determined by [46, 5.1],
and we conclude that H = NGσ(H(2)) lies in NG(A7). Hence H = Mσ

again.
This leaves the cases H(2) = 2A6(2), 2A7(2), 2D5(2), F4(2) and 2E6(2) to

deal with. A subgroup 2E6(2) must act on V56 with nontrivial composition
factors just V27 and V ∗

27 (where V27 = VE6(λ1)). But the acting group on
V27 is a triple cover 3.2E6(2), which is not simple, so H(2) 6= 2E6(2). And if
H(2) = F4(2) then the only nontrivial composition factors of V56 ↓ H(2) are
V i

26 = VF4(λi) (i = 1 or 4). Since H1(V i
26, V (0)) = 0 by [33], it follows that

H fixes a nonzero vector in V56, hence lies in a positive-dimensional proper
subgroup of E7, giving a contradiction in the usual way.

Next consider H(2) = 2A7(2) = U8(2). This contains a subgroup 3 ×
SU6(2) with centre 32, and from the centralizers of 3-elements in Gσ = E7(2)
we see that the SU6(2) lies in a subsystem group A5 of G. If V56 = VG(λ7),
then V56 ↓ A5 is a direct sum of submodules V (λi) (i ∈ {1, 2, 3, 4, 5}) and
trivial modules, so A5 and SU6(2) fix the same subspaces of V56. The group
〈H(2), A5〉 is reducible on V56 and normalized by H (as A5 is uniquely
determined by SU6(2)), so we see in the usual way that H = Mσ for some σ-
stable maximal subgroup M of positive dimension, contrary to assumption.
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Now let H(2) = U7(2). Here 5.3 implies that q = 2, x = s and D = T1E6,
so s has order 3. Let M be a subgroup SU6(2) of H, with centre 〈t〉. Then
CG(t) = A2A5 or T1E6. In the former case, M and A5 fix the same subspaces
of V56 and we argue as in the previous paragraph. So suppose CG(t) = T1E6

(so s is conjugate to t). As

V56 ↓ E6 = V (λ1)⊕ V (λ6)⊕ 02,

(see [47, Section 2]), t acts on V56 as (α27, (α−1)27, 12), where α ∈ K is a
cube root of 1. It follows that

V56 ↓ U7(2) = V7 ⊕ V ∗
7 ⊕ ∧2V7 ⊕ ∧2V ∗

7 ,

where V7 is the usual module for U7(2). Moreover, s ∈ U7(2) must act as
(α6, 1) or ((α−1)6, 1) on V7. It follows that |sGσ ∩ H| ≤ 2|U7(2) : SU6(2)|,
contrary to 5.3.

It remains to consider H(2) = 2D5(2). Again 5.3 forces q = 2, x = s and
D = T1E6. The action of s on V56 is given above. The nontrivial irreducible
modules for H(2) of dimension 56 or less are V (λi) for i = 1, 2, 4, 5, of
dimension 10, 44, 16, 16 respectively. It is easy to check that there are
no combinations possible, of dimension adding to 56, on which an element
s ∈ H(2) of order 3 can act with only 2-dimensional fixed space.

Now let G = E6. Here the bound of 5.3 implies that one of the following
holds:

q = 2 : H(2) = 2A5(2), B4(2), Dε
5(2) or F4(2)

q = 4 : H(2) = Bd(2), Dε
d(2)(d = 5, 6) or F4(2).

As before, if H(2) = F4(2) then H fixes a 1-space of V27, leading to H = Mσ,
a contradiction.

Consider q = 2. The case H(2) = B4(2) is ruled out for x = s using the
remark after 5.3 and the bound for i3(B4(2)) in 1.3, and for x = u or τ using
the bound for i2(H) in 1.3. If H(2) = Dε

5(2) then H contains a subgroup
3 × D−ε

4 (2), with centre 〈t〉, say. Then CG(t)0 = T2D4, so D−ε
4 (2) < D4

and we see in the usual way that these two subgroups of G fix the same
subspaces of V27, leading to H = Mσ with M of positive dimension, a
contradiction. And if H(2) = U6(2), the remark after 5.3 forces s to be an
outer automorphism of G′

σ = 2E6(2), so H contains U6(2).3, which contains
3×U5(2). Say 〈t〉 is the centre of the group. The only possibility for CG′

σ
(t)

is 2D5(2). Then U5(2) < A4 < D5 < G, and the subgroups U5(2) and A4 fix
the same subspaces of V27, giving a contradiction in the usual way.

For q = 4, Lagrange forces G′
σ = E6(4). If x = s and D = T1D5 then

Dσ = 3 × D5(4), with central 3-element lying in Gσ\G′
σ, so this is not

possible. Therefore 5.3 implies that either x = s and |sGσ ∩ H| > 428, or
x ∈ {u, φ, τ} and i2(H) ≥ |uL ∩H| > 421. It follows that x = s and H(2) =
Dε

6(2) or B6(2). However, both of these contain a subgroup 3 × Dε
5(2),

whereas G′
σ contains no such subgroup.
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Finally, when G = F4, 5.3 implies that H(2) is B4(2) or Dε
4(2), with

q = 2. However, the classes of such subgroups in F4(2) are determined in
[41], and all are of the form Mσ. This completes the proof. �

This completes the proof of Theorem 2(III), apart from the case where
Gσ = 2F4(q), 2G2(q), 3D4(q) or 2B2(q), which we shall deal with in the next
section.

6. Completion of proof of Theorem 2.

By the work in the previous sections, what remains for us to do in order to
complete the proof of Theorem 2 is the following:

(i) To prove Theorem 2(c,d) (the case of outer automorphisms);
(ii) to prove Theorem 2 for L = 2F4(q)′, 2G2(q), 3D4(q) and 2B2(q).

We carry this out in this section.
We adopt the notation of previous sections, except that in this section

our simple exceptional group L = G′
σ = G(q) is also allowed to be 2F4(q)′,

2G2(q), 3D4(q) or 2B2(q). Let 1 6= x ∈ AutL be of prime order. As usual we
assume that X = 〈L, x〉, H is a maximal subgroup of X containing x, and
Ω = X/H.

We shall prove the bounds for fpr(x, Ω) required for the conclusion of
Theorem 2 in Cases (i), (ii) above. First we deal with some of the outer
automorphisms.

Lemma 6.1. The conclusion of Theorem 2(c) holds when x = φ, a field or
graph-field automorphism of L of prime order.

Proof. Suppose x = φ, of prime order r. Observe that φ extends to a
Frobenius morphism of G such that σ = φr or (τφ)r. In Section 5 we
handled the case where H is as in (III) of Theorem 2, i.e., not parabolic or
reductive of maximal rank. (We did not do this when L =2 F4(q)′ or 2G2(q),
but we will cover this in Lemma 6.2 below.) Thus we assume that H is
parabolic or of maximal rank.

Suppose first that H is parabolic, so NGσ(H) = Pσ where P is a σ-stable
parabolic subgroup of G. We claim that φ normalizes P . For suppose that
Pσ lies in another parabolic subgroup P ′ of G. Now a Borel subgroup of Pσ

contains a regular unipotent element, which lies in a unique Borel subgroup
of G. Therefore P and P ′ share a common Borel subgroup, and since both
contain Pσ it follows that P = P ′. Hence φ normalizes P , as claimed.

Now φ is a Frobenius morphism of the connected group P . Hence by a
standard argument using Lang’s theorem, the coset Pσφ has just one Pσ-class
of elements of order r (cf. [28, 7.2]), and hence φGσ ∩Pσφ = φPσ . Moreover,
CPσ(φ) is the corresponding parabolic of the group CGσ(φ) = Gε(q1/r).
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Thus, writing Pσ = P (q) we have

fpr(φ,Gσ/Pσ) =
|Gε(q1/r) : P (q1/r)|

|G(q) : P (q)|
.

Routine computation shows that this is less than 1
hP (q) , as required for The-

orem 2, except when G = G2 and r = 2, in which case it is less that 1/eL(q),
as required.

Now suppose that H = NX(Mσ) = NX(M), where M is a σ-stable re-
ductive subgroup of maximal rank in G. By [43], either the subgroup M is
as in 4.1; or (G, p) = (F4, 2) and M0 = B2B2 or T4, with φ a graph-field
automorphism (i.e., with fixed point group of type 2F4); or (G, p) = (G2, 3)
and M0 = T2 with φ a graph-field automorphism. The cases where M0 is a
maximal torus, or is as in 4.3 are quickly ruled out as in that proof.

In the action of Mσ on L(G), there is a unique summand on which Mσ has
the same composition factors as it does on L(M). It follows that Mφ = M .
As above using Lang’s theorem we see that φGσ ∩ Hφ falls into at most
|M/M0| H-classes. By 1.6, if z = dim Z(M0) and l = rank(G), we have
|M0

σ | ≤ (q + 1)zqdim M−z, while |M0
φ| ≥ (q1/r − 1)lq(dim M−l)/r, from which

we obtain the bound

fpr(φ,Ω) ≤ |M/M0|.(q + 1)z.qdim M−z

(q1/r − 1)l.q(dim M−l)/r.|φL|
.

This gives the bound required for Theorem 2(c) in all cases in 4.1. �

Lemma 6.2. The conclusion of Theorem 2 holds when L = 2F4(q)′ or
2G2(q).

Proof. First consider L = 2F4(q)′. The maximal subgroups of L are de-
termined in [56]. For q > 2 they are just parabolics, subgroups 2F4(q0)
with q = qr

0, together with the maximal rank subgroups (2B2(q)× 2B2(q)).2,
B2(q).2, 2A2(q) and some maximal torus normalizers. And for q = 2 they
are these, and also L2(25) and L3(3).2. The parabolics have been dealt with
in Section 2 (together with 6.1). Suppose now that H is one of the maximal
rank subgroups or 2F4(q0).

By 6.1 we may assume that x = s or u, a semisimple or unipotent element
in Gσ. The conjugacy classes of Gσ are determined in [64], from which we
deduce the following information:

(1) 2F4(q) has two classes of involutions, with centralizers q9SL2(q) and
q10 2B2(q);

(2) either |s| = 3 and CGσ(s) = SU3(q), or |sGσ | > q20/3.
Now for x = u we use fpr(u, Gσ/H) ≤ i2(H)/|uGσ |, which together with
1.3 gives the conclusion. And for x = s the crude bound fpr(s,Gσ/H) <
|H|/|sGσ | is sufficient.
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Finally, for q = 2 the subgroups L2(25) and L3(3).2 are easily dealt with
using [13, p. 74].

Now consider L = 2G2(q), q > 3. The conjugacy classes of L are found in
[73], and the maximal subgroups are determined in [34]: These are Borel
subgroups, subfield subgroups 2G2(q0), involution centralizers 2×L2(q), and
some maximal torus normalizers (of maximal order 6(q +

√
3q + 1)).

Suppose H = 2 × L2(q). If x = u then |CL(u)| = 2q2, so fpr(u,Ω) =
2(q2−1)/(q(q3 +1)(q−1)) < 1/q2; if x = s is an involution then fpr(x,Ω) =
(1+q(q−1))/q2(q2−q+1); and if x = s has order greater than 2 then |xGσ | ≥
|Gσ : Tσ| for some maximal torus T , and the result follows easily. Other
subgroups H are handled simply using the bound fpr(x,Ω) ≤ ir(H)/|xGσ |
and we leave this to the reader. �

Lemma 6.3. The conclusion of Theorem 2 holds when L = 3D4(q) or
2B2(q).

Proof. For 2B2(q) the conjugacy classes and maximal subgroups are given in
[70]: The maximal subgroups are Borel subgroups, subfield subgroups and
torus normalizers (of maximal order 4(q +

√
2q + 1)). For H = B, a Borel

subgroup, elements of L fix at most 2 points, while a field automorphism φ
of order a (where a divides log2 q) fixes q2/a + 1 points, giving fpr(φ,Ω) =
(q2/a + 1)/(q2 + 1). For other maximal subgroups, just use the fact that the
smallest semisimple and unipotent classes of elements of prime order in L
have sizes |L|/(q +

√
2q + 1) and (q2 + 1)(q− 1), respectively, and the result

follows easily.
Now consider L = 3D4(q). The conjugacy classes of elements of L can

be found in [17, 67]; and the classes of outer automorphisms of prime or-
der are given in 1.1. Long root elements of L have centralizer q9SL2(q3);
other unipotent classes have size at least q16. And apart from involutions
with centralizer (SL2(q) ◦ SL2(q3)).(2, q − 1) and elements with centralizer
(SLε

3(q)◦(q2+εq+1)).(3, q−ε), semisimple classes have size at least q17(q−1).
The maximal subgroups of L are classified in [35]: These are parabolics,

maximal rank subgroups (SL2(q) ◦ SL2(q3)).(2, q − 1) and (SLε
3(q) ◦ (q2 +

εq + 1)).(3, q − ε), subgroups G2(q), 3D4(q0), PGLδ
3(q) (q ≡ δ mod 3), and

the torus normalizers (q2 ± q + 1)2.SL2(3), (q4 − q2 + 1).4. The possibility
H = 3D4(q0) is handled as in 5.7, while the torus normalizers are small
enough to be dealt with easily by counting.

Suppose H is parabolic, say H∩L = Pσ, where P is a parabolic subgroup
of the ambient algebraic group G = D4 (and L = Gσ). The case where
x ∈ L was handled in Sections 2 and 3, and the case where x is a field
automorphism is dealt with as in the proof of 6.1. So let x be a graph
automorphism of order 3. For p 6= 3, x lifts to a semisimple automorphism
of G, so by [69, 7.5] stabilizes a maximal torus T of P . Hence we see as in
the proof of [40, 3.1] that CH(x) is a parabolic subgroup of CL(x) = G2(q)
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or Aε
2(q). Now there are 3 classes of elements of order 3 in Tx, represented

by x, xy and xy−1, where y is an element of order 3 in T . From the action
on VD4(λ2) we see that xy and xy−1 are not G-conjugate to x, and hence
xG ∩ P = xP . It follows that fpr(x,Ω) = |H : CH(x)|/|L : CL(x)|, and the
result follows easily from this.

Now suppose p = 3 (and x is a graph automorphism of order 3). Note
that P = P2 or P134.

First assume P = P2 and P = P x. Here P = NG(U), where U is a long
root subgroup of G and U = Z(Ru(P )), so x normalizes U , inducing an
automorphism. But Aut(U) is the multiplicative group of the base field, so
contains no elements of order 3. Hence U < CG(x).

If CG(x) = G2, then CG(x) contains just one class of root groups, hence is
transitive on the conjugates of P stabilized by x. It follows that xG ∩Px =
xP and we proceed as for p 6= 3. Otherwise, CG(x) = CG2(u) for u a long
root element of G2, so this is the derived group of a parabolic of G2. Here
we check that there are two classes of long root groups, the center and
noncentral root groups in the unipotent radical. Then xG ∩ Px = xP

1 ∪ xP
2 ,

where CP (x1) = CG(x) = U5A1T1 and CP (x2) = U4U1T1. In both cases the
stabilizers are connected and an easy check gives the desired inequality.

Now assume P = P134 and P = P x. We first determine the conjugacy
classes of outer automorphisms. Let τ be a graph automorphism for which
Px = Pτ and set Q = Ru(P ). Modulo Q the elements of order 3 in Pτ are
represented by τ and τu, where u is a long root element of the Levi group
(which is centralized by τ). Now Q/[Q,Q] is the direct sum of 3 copies of U2

which are permuted transitively by τ and fixed by u. Similarly, [Q,Q]/Z(Q)
is the sum of 3 copies of U1 with similar action.

It follows that each element of order 3 in Pτ is P -conjugate to an element
of either Z(Q)τ or Z(Q)τu. The A1 Levi factor centralizes τ and acts on
Z(Q) as on the natural module. So elements of Z(Q)τ are P -conjugate to
either τ or τU1211(1).

Now consider Z(Q)τu. We may take u = U0100(1), which induces a
transvection on Z(Q). Conjugating by elements in a torus centralizing τu
and elements of Z(Q) we see that all elements in the coset are conjugate to
τu = τU0100(1) or to τU0100(1)U1111(1).

We have therefore shown that elements of order 3 in Px are conjugate to τ ,
τU0100(1), τU1211(1), or τU0100(1)U1111(1). There are two classes of elements
of order 3 in Gτ , with representatives τ and τv for v a long root element in
CG(τ). The last 3 representatives are all of this latter type. This is clear
for the first two. For the last representative, note that U0100(1)U1111(1) is
a regular unipotent element in an A2 centralized by τ . Using this and a
consideration of the action on L(G) we see from the dimension of the fixed
point space that the assertion holds.
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We can now complete the argument. If x is conjugate to τ , then from the
above we have xG∩Px = xP and we proceed as before. On the other hand if
x is conjugate to τu, then xG∩Px is the union of 3 conjugacy classes. Each
class has a connected centralizer, as is easily checked, and the centralizer
has dimension at least 5. At this point we easily get the necessary bounds.

Now suppose H = G2(q). If x is a long root element of L then it is a long
root element of H also (see [40, 1.13]), so

fpr(x,Ω) =
|G2(q) : q5SL2(q)|
|3D4(q) : q9SL2(q3)|

=
1

q4 − q2 + 1
,

as required for Theorem 1. For other unipotent classes, we simply use 1.3(iii)
to get ip(H) = q12, and hence fpr(x,Ω) ≤ 1/q4. For x semisimple the result
is clear using the above information on semisimple classes, except when x is
an involution, in which case we have

fpr(x,Ω) =
|G2(q)|
|SL2(q)|2

.
|SL2(q)| |SL2(q3)|

|3D4(q)|
,

giving the conclusion. When x is a field automorphism, the result follows
as in 6.1. Now let x be a graph automorphism of order 3. If CL(x) 6= G2(q)
then by 1.1, |xL| > q20/2 and the result follows easily, so assume CL(x) =
G2(q) = H. For p 6= 3 there are two classes of elements of order 3 in G2 with
centralizers A2 and A1T1. If y belongs to the latter class then consideration
of actions on L(D4) shows that xy is not conjugate to x. Hence xL ∩ Hx
consists of x, together with elements xy with y in the 3-element class of H
having centralizer A2, and the required bound follows easily.

Now assume p = 3 in this case. Let xy ∈ xL ∩ Hx, where y is an ele-
ment of order 3 in H. In the notation of [38], y lies in one of the classes
A1, Ã1, Ã

(3)
1 , G2(a1) of the algebraic group G2. We know that x is not con-

jugate to xy with y a long root element of D4 (see 1.1), so y is not in
class A1. If y is in class G2(a1) then y is a regular element in a maximal
unipotent subgroup of a maximal rank A2 < G2. If we multiply y by a
root element u in the centre of this maximal unipotent subgroup, we again
obtain a regular unipotent element of A2, so xy is conjugate to xyu with u
a long root element centralizing xy; therefore by the previous observation,
xy is not conjugate to x. If y lies in class Ã

(3)
1 , then y lies in Z(U) for U a

maximal unipotent subgroup of G2. The group Z(U) has the form UαUβ,
where α is a long root and β a short root in the G2 system. All elements of
Z(U)\(Uα ∪ Uβ) are conjugate by a maximal torus. Hence xy is conjugate
to xyUα(c) for suitable choice of c, and consequently xy is not conjugate to
x. It follows that x is only conjugate to itself and to xy with y ∈ Ã1 a short
root element. Hence |xL ∩H| = 1 + |yH | ≤ q6, which gives the result.
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Finally, when H = (SL2(q) ◦ SL2(q3)).(2, q − 1), (SLε
3(q) ◦ (q2 + εq +

1)).(3, q − ε), or PGLδ
3(q), the argument is similar and much easier and we

leave it to the reader. �

Lemma 6.4. The conclusion of Theorem 2(d) holds when G = E6 and
x = τ , an involutory graph automorphism.

Proof. Suppose x = τ . By 1.1, CG(τ) = F4 or C4 (p 6= 2), CF4(t) (p = 2),
where t is a long root element of F4.

Suppose H is parabolic, say H = NX(Pσ), where P is a τ -stable parabolic
in G. The case where p = 2 was handled in 2.6, so assume p 6= 2. Then by
[69, 7.5], τ normalizes a maximal torus and Borel subgroup of P , and we
see as in the proof of [40, 5.1] that CP (τ) is a parabolic subgroup of CG(τ).
The result follows easily from this: For example, suppose P = P2. This
has Levi factor A5, on which τ centralizes C3 or D3, and it follows that if
CG(τ) = F4 then CP (τ) is a C3-parabolic of F4, while if CG(τ) = C4 then
CP (τ) is an A3-parabolic of C4. Therefore

fpr(τ,Ω) =
|F4(q) : C3(q)-parabolic|
|Eε

6(q) : Aε
5(q)-parabolic|

or
|C4(q) : A3(q)-parabolic|
|Eε

6(q) : Aε
5(q)-parabolic|

giving the result.
The case where H is as in (III) of Theorem 2 was handled in Section 5, so

it remains to consider the case where H = NX(Mσ), where M is reductive
of maximal rank (and τ -stable). We certainly have |τGσ ∩H| ≤ i2(Mσ〈τ〉).
If CG(τ) 6= F4 then |τGσ | > q40, and the conclusion is clear using 1.3. So
assume CG(τ) = F4. Here the conclusion follows in the same way using 1.3,
unless M = T1D5 or A1A5.

Consider M = T1D5. If p 6= 2 then as τ inverts T1, it centralizes an
involution t ∈ T1, and so CM (τ) = CF4(t), which must be B4 (not A1C3, as
this does not lie in D5). Therefore fpr(τ,Ω) = |Mσ : B4(q)|/|Gσ : F4(q)|,
giving the result. And when p = 2, the outer involution classes of D5〈τ〉 are,
in the notation of [2] (see [40, 1.10]), b1, b3 and b5. Here b1 is a conjugate of
τ and CD5(b1) = B4; and b3 = b1uα with uα a root element of D5, so b3 is
not G-conjugate to τ (see 1.1). Finally, b5 acts as J5

2 on the usual D5-module
V10, and L(E6) ↓ D5T1 = L(D5T1) ⊕ V (λ4) ⊕ V (λ5), with b5 interchanging
the 16-dimensional modules V (λ4) and V (λ5); if b5 were conjugate to τ it
would centralize a 36-dimensional subspace of L(D5), but this is clearly not
the case as L(D5) involves V (λ2) = ∧2V10/N , where N is 1-dimensional.
We conclude that only b1 is conjugate to τ , and the result follows as before.

Lastly, consider M = A1A5. If p 6= 2 then τ centralizes the involution
in Z(M), so CM (τ) is an involution centralizer in F4, hence is A1C3, giving
fpr(τ,Ω) = |Mσ : (A1C3)(q)|/|Gσ : F4(q)|. If p = 2 there are four M -classes
of involutions in Mτ , with representatives τ, τu, τu′, τuu′, where u, u′ are
long root elements in A5, A1 respectively. We know by 1.1 that τu and τu′
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are not G-conjugate to τ . We claim that neither is τuu′. To see this, embed
uu′ ∈ A1 ×A1 < A3, with τ inducing a graph automorphism (fixing C2) on
A3. From the action on L(A3) we see that τuu′ cannot centralize a group of
type C2, whence it is conjugate to τu′′ with u′′ a root element centralizing
τ . The claim follows. �

This completes the proof of Theorem 2.

7. The tables of polynomials for Theorem 2.

This section consists of Tables 7.1A-D containing the polynomials fP,α(q),
fP,β(q), gP (q) and hP (q) which define the bounds in the conclusion of The-
orem 2. Recall that L = G′

σ, a simple group of exceptional Lie type over
Fq.

Our convention about labelling maximal parabolics in twisted groups is
standard: We label according to the corresponding twisted root system, as
described in [6, 13.3.8]. For example, the maximal parabolics of 2E6(q) are
labelled according to the root system F4: Thus P1, P2, P3, P4 correspond
respectively to the E6-parabolics P2, P4, P35, P16.
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P poly L = E8(q) E7(q) E6(q)

P1 fP,α(q) = q11(q5 − 1)(q2 − 1) q6(q2 − 1) q4 − q2 + 1

gP (q) = q23(q3 − 1)(q2 − 1) q5(q5 − 1)(q2 − 1) q4(q2 − 1)

hP (q) = q33(q − 1)2 q4(q5 − 2)(q3 − 1) q(q3 − 1)(q2 − 1)

P2 fP,α(q) = q21(q − 1) q10(q − 1) q5(q − 1)

gP (q) = q31(q2 − 1)(q − 1) q15(q − 1) q3(q3 − 1)(q2 − 1)

hP (q) = q37(q3 − 3)(q − 1) q11(q4 − 1)(q2 − 1) q3(q3 − 2)(q2 − 1)

P3 fP,α(q) = q17(q5 − 1)(q − 1) q11(q − 1) q6(q − 1)

gP (q) = q34(q2 − q − 1) q16(q2 − q − 1) q7(q2 − 1)(q − 1)

hP (q) = q38(q6 − 2q5 + 2q3 − 4) q9(q4 − 3)(q3 − 3)(q2 − 1) q7(q2 − 2)(q − 1)

P4 fP,α(q) = q23(q2 − q − 1) q12(q − 1)2 1
2
q7(q − 1)(q − 1

2
)

gP (q) = 1
2
q38(q − 1)2 q17(q − 1)4 q9(q − 1)3

hP (q) = q45(q3 − 4q2 + 4q + 1) 1
3
q19(q2 − 4

3
)(q − 1) q10(q2 − 3q + 3)

P5 fP,α(q) = q23(q − 1)2 q10(q2 − 1)(q − 1) q6(q − 1)

gP (q) = q36(q − 1)3 1
2
q18(q − 1)(q − 1

2
) q7(q2 − 1)(q − 1)

hP (q) = q44(q3 − 3q2 + 2q + 1) 1
4
q18(q2 − 3

4
)(q − 1

2
) q7(q2 − 2)(q − 1)

P6 fP,α(q) = q17(q3 − 1)(q2 − 1) q5(q3 − 1)(q2 − 1) q4 − q2 + 1

gP (q) = q34(q − 1)2 q13(q2 − 1)(q − 1) q4(q2 − 1)

hP (q) = 1
2
q42(q2 − q − 3

2
) 1

2
q11(q3 − 3

4
)(q2 − 1

4
)(q − 1

2
) q(q3 − 1)(q2 − 1)

P7 fP,α(q) = q11(q4 − 1)(q3 − 1) q6 − q3 + 1

gP (q) = q25(q4 − 1)(q − 1) q9(q − 1)

hP (q) = q24(q5 − 2)(q4 − 4)(q3 − 2) 1
2
q7(q4 − 1)

P8 fP,α(q) = q8(q4 − 1)

gP (q) = q18(q2 − 1)

hP (q) = q9(q6 − 1)(q5 − 1)(q4 − 1)

Table 7.1A. L = E8(q), E7(q), E6(q).
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P poly L = 2E6(q) F4(q)

P1 fP,α(q) = q6 − q3 + 1 q2(q3 − 1)

fP,β(q) = q9(q − 1) q5(q − 1) (p 6= 2),

q4 − q2 + 1 (p = 2)

gP (q) = q7(q3 − 1)(q2 − 1) q7(q − 1) (p 6= 2),

q4(q2 − 1) (p = 2)

hP (q) = (q7 − 1)(q3 − 1) q4 − q2 + 1

P2 fP,α(q) = q6 q6(q − 1)

fP,β(q) = q3(q3 − 1)(q2 − 1) 1
2q7(q − 1)(q − 1

2) (p 6= 2),

q5(q − 1) (p = 2)

gP (q) = q10(q − 1) q10(q − 3) (p 6= 2),

q7(q − 1)2 (p = 2)

hP (q) = q6(q2 − 1) q3(q2 − 1)(q − 1)

P3 fP,α(q) = q8(q − 1) q5(q − 1)

fP,β(q) = 1
2q13(q − 1) q6(q − 1)3 (p 6= 2),

q6(q − 1) (p = 2)

gP (q) = q12(q3 − 1)(q − 1) q10(q − 3) (p 6= 2),

q7(q − 1)2 (p = 2)

hP (q) = q11(q2 − 1)(q − 1) q5(q2 − 2q + 2)

P4 fP,α(q) = q9(q − 1) q4 − q2 + 1

fP,β(q) = q8(q3 − 1)(q − 1) q2(q2 − 1)2 (p 6= 2),

q2(q3 − 1) (p = 2)

gP (q) = q14(q − 1) q7(q − 1) (p 6= 2),

q4(q2 − 1) (p = 2)

hP (q) = q11(q − 1) q2(q3 − 2)

Table 7.1B. L = 2E6(q), F4(q).
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P poly L = G2(q) 3D4(q) 2F4(q)′

P1 fP,α(q) = q3 + 1 q5 q4

fP,β(q) = q2(q − 1) (p 6= 3), q2(q3 − 1) q6 + 1

q2 (p = 3)

gP (q) = 1
3q4 (p 6= 3), q8 q4(q2 − 1)

q3 + 1 (p = 3)

hP (q) = 1
2(q3 + 1) q5(q2 − 2q + 2) 1

3q8

P2 fP,α(q) = q2 q4 q6 + 1

fP,β(q) = q3 (p 6= 3), q2(q3 − 1) q5(q − 1)

q3 + 1 (p = 3)

gP (q) = q4 (p 6= 3), q6(q2 − 1) q5(q2 − 1)

q3 + 1 (p = 3)

hP (q) = q2 − q + 1 q2(q3 − 2) (q6 + 1)(q2 + 1)

Table 7.1C. L = G2(q), 3D4(q), 2F4(q)′.

P poly L = 2G2(q) 2B2(q)

B fP,α(q) = q3 + 1 q2 + 1

(Borel sgp) gP (q) = q3 + 1 q2 + 1

hP (q) = q2 − q + 1 q2 + 1

Table 7.1D. L = 2G2(q), 2B2(q).
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