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1 Introduction

In 1922, S. Banach [4] proved the well known Banach contraction theorem
in a complete metric space, which became very famous due to its wide ap-
plications. In particular, it is an important tool for solving existence and
uniqueness problems in many branches of mathematics and applied sciences.
Several authors generalized this result in many directions. In 1989, I. A.
Bakhtin [3] introduced the concept of b-metric spaces as a generalization of
metric spaces and studied some fixed point results in the setting of b-metric
spaces.

In recent investigations, the study of fixed point theory combining a graph
is a new development in the domain of contractive type single valued and
multi valued theory. In 2005, Echenique [12] studied fixed point theory by
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using graphs. Later on, Espinola and Kirk [13] applied fixed point results in
graph theory. Afterwards, combining fixed point theory and graph theory, a
series of articles (see [1, 2, 6–8,16, 27] and references therein) have been ded-
icated to the improvement of fixed point theory. Many important results of
[10,18,21–24,26] have become the source of motivation for many researchers
that do research in fixed point theory. The main purpose of this article is
to obtain a fixed point theorem for generalized contraction mappings in the
framework of b-metric spaces with a graph. Furthermore, we apply our re-
sult to derive fixed points of cyclical mappings in metric spaces and b-metric
spaces. Finally, some examples are provided to justify the validity of our
main result.

2 Some Basic Concepts

We begin with some basic notations, definitions and results in b-metric spaces.

Definition 2.1. [3] Let X be a nonempty set and s ≥ 1 be a given real
number. A function d : X × X → R+ is said to be a b-metric on X if the
following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is to be noted that the class of b-metric spaces is effectively larger than
that of the ordinary metric spaces. The following example illustrates the
above fact.

Example 2.1. [20] Let X = {−1, 0, 1}. Define d : X×X → R+ by d(x, y) =
d(y, x) for all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) =
d(0, 1) = 1. Then (X, d) is a b-metric space, but not a metric space since the
triangle inequality is not satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2
.

Example 2.2. [25] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p,
where p > 1 is a real number. Then ρ is a b-metric with s = 2p−1.
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Definition 2.2. [9] Let (X, d) be a b-metric space, x ∈ X and (xn) be a
sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by

lim
n→∞

xn = x or xn → x(n→∞).

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is conver-
gent.

Remark 2.1. [9] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.

(iii) In general, a b-metric is not continuous.

Definition 2.3. [15] Let (X, d) be a b-metric space. A subset A ⊆ X is said
to be open if and only if for any a ∈ A, there exists ε > 0 such that the open
ball B(a, ε) ⊆ A. The family of all open subsets of X will be denoted by τ .

Theorem 2.1. [17] τ defines a topology on (X, d).

Theorem 2.2. [17] Let (X, d) be a b-metric space and τ be the topology
defined above. Then for any nonempty subset A ⊆ X we have

(i) A is closed if and only if for any sequence (xn) in A which converges
to x, we have x ∈ A;

(ii) if we define A to be the intersection of all closed subsets of X which
contains A, then for any x ∈ A and for any ε > 0, we have B(x, ε)∩A 6=
∅.

Theorem 2.3. [17] Let (X, d) be a b-metric space and τ be the topology
defined above. Let ∅ 6= A ⊆ X. The following properties are equivalent:

(i) A is compact;

(ii) For any sequence (xn) in A, there exists a subsequence (xnk
) of (xn)

which converges and lim
nk→∞

xnk
∈ A.
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Definition 2.4. [15] A subset A is called sequentially compact if and only
if for any sequence (xn) in A, there exists a subsequence (xnk

) of (xn) which
converges and lim

nk→∞
xnk
∈ A. Also A is called totally bounded if for any ε > 0,

there exist x1, x2, · · · , xn ∈ A such that A ⊆ B(x1, ε)∪B(x2, ε)∪· · ·B(xn, ε).

Theorem 2.4. [17] Let (X, d) be a b-metric space and τ be the topology
defined above. Let ∅ 6= A ⊆ X. Then

(i) A is compact if and only if A is sequentially compact.

(ii) If A is compact, then A is totally bounded.

Corollary 2.5. Every closed subset of a complete b-metric space is complete.

Let (X, d) be a b-metric space with the coefficient s ≥ 1 and ρ be a binary
relation over X. Denote S = ρ ∪ ρ−1. Then

x, y ∈ X, xSy ⇔ xρy or yρx.

Definition 2.5. We say that (X, d, S) is regular if the following condition
holds:

If the sequence (xn) in X and the point x ∈ X are such that xnSxn+1 for
all n ≥ 1 and lim

n→∞
d(xn, x) = 0, then there exists a subsequence (xni

) of (xn)

such that xni
Sx for all i ≥ 1.

Definition 2.6. Let (X, d) be a b-metric space and ρ be a binary relation
over X. Then the mapping T : X → X is called comparative if T maps
comparable elements into comparable elements, that is,

x, y ∈ X, xSy ⇒ TxS Ty.

Let Ψ be a class of functions ψ : [0,∞)→ [0,∞) satisfying the following
conditions:
(ψ1) ψ is a nondecreasing function;

(ψ2)
∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the nth iterate of ψ.

Remark 2.2. [19] For each ψ ∈ Ψ, we see that the following assertions hold:

(i) lim
n→∞

ψn(t) = 0, for all t > 0;

(ii) ψ(t) < t for each t > 0;

(iii) ψ(0) = 0.
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We next review some basic notions in graph theory.

Let (X, d) be a b-metric space. We assume that G is a digraph with the
set of vertices V (G) = X and the set E(G) of its edges contains all the
loops, i.e., ∆ ⊆ E(G) where ∆ = {(x, x) : x ∈ X}. We also assume that
G has no parallel edges. So we can identify G with the pair (V (G), E(G)).
G may be considered as a weighted graph by assigning to each edge the
distance between its vertices. By G−1 we denote the graph obtained from G
by reversing the direction of edges i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈
E(G)}. Let G̃ denote the undirected graph obtained from G by ignoring the
direction of edges. Actually, it will be more convenient for us to treat G̃ as a
digraph for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be
found in all graph theory books, like [5, 11, 14]. If x, y are vertices of the
digraph G, then a path in G from x to y of length n (n ∈ N) is a sequence
(xi)

n
i=0 of n + 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for

i = 1, 2, · · · , n. A graph G is connected if there is a path between any two
vertices of G. G is weakly connected if G̃ is connected.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient s ≥ 1 and
let G = (V (G), E(G)) be a graph. Then the mapping T : X → X is called
edge preserving if

x, y ∈ X, (x, y) ∈ E(G̃)⇒ (Tx, Ty) ∈ E(G̃).

3 Main Results

Theorem 3.1. Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1 and let G = (V (G), E(G)) be a graph. Assume that T : X → X is edge

preserving and there exists ψ ∈ Ψ with
∞∑
n=1

snψn(t) < ∞ for each t > 0

such that
sd(Tx, Ty) ≤ ψ(Ms(x, y)) (3.1)

for all x, y ∈ X with (x, y) ∈ E(G̃), where

Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}.
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Suppose also that the following property holds:
(∗) If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃)

for all n ≥ 1, then there exists a subsequence (xni
) of (xn) such that (xni

, x) ∈
E(G̃) for all i ≥ 1.

If there exists x0 ∈ X such that (x0, Tx0) ∈ E(G̃), then T has a fixed
point in X. Moreover, T has a unique fixed point in X if the graph G has
the following property:

(∗∗) If x, y are fixed points of T in X, then (x, y) ∈ E(G̃).

Proof. Suppose there exists x0 ∈ X such that (x0, Tx0) ∈ E(G̃). Define the
sequence (xn) in X such that xn = Txn−1, n = 1, 2, · · · . Since T is edge
preserving, it follows that (xn, xn+1) ∈ E(G̃) for all n = 0, 1, 2, · · · . We
assume that xn 6= xn−1 for every n ∈ N. If xn = xn−1 for some n ∈ N, then
xn−1 = xn = Txn−1 and hence xn−1 is a fixed point of T .

Note that

Ms(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), (3.2)

d(xn−1, xn+1) + d(xn, xn)

2s
}

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn) + d(xn, xn+1)

2
}

= max{d(xn−1, xn), d(xn, xn+1)}.

By (ψ1), it follows that

ψ(Ms(xn−1, xn)) ≤ ψ(max{d(xn−1, xn), d(xn, xn+1)}). (3.3)

For any natural number n, we have by applying conditions (3.1) and (3.3)
that

d(xn, xn+1) ≤ sd(Txn−1, Txn) ≤ ψ(Ms(xn−1, xn))

≤ ψ(max{d(xn−1, xn), d(xn, xn+1)}). (3.4)

We shall show that (xn) is a Cauchy sequence in (X, d).
If max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), then from condition (3.4)

and using ψ(t) < t for each t > 0, we obtain

d(xn, xn+1) ≤ ψ(d(xn, xn+1)) < d(xn, xn+1),

which is a contradiction. Therefore,

max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).
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Thus, it follows from condition (3.4) that

d(xn, xn+1) ≤ ψ(d(xn−1, xn)), for all n ∈ N.

By repeated use of (ψ1), we get

d(xn, xn+1) ≤ ψn(d(x1, x0)), for all n ≥ 0.

For m,n ∈ N with m > n, we have

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·
+sm−n−1d(xm−2, xm−1) + sm−n−1d(xm−1, xm)

≤ sψn(d(x1, x0)) + s2ψn+1(d(x1, x0)) + · · ·
+sm−n−1ψm−2(d(x1, x0)) + sm−nψm−1(d(x1, x0))

=
1

sn−1

m−1∑
i=n

siψi(d(x1, x0))

≤
m−1∑
i=n

siψi(d(x1, x0)).

Since
∞∑
n=1

snψn(t) <∞ for each t > 0, it follows that

lim
n,m→∞

d(xn, xm) = 0.

This proves that (xn) is a Cauchy sequence in (X, d). As (X, d) is com-
plete, there exists u ∈ X such that xn → u i.e., lim

n→∞
d(xn, u) = 0.

By property (∗), there exists a subsequence (xni
) of (xn) such that (xni

, u) ∈
E(G̃) for all i ≥ 1.

Again, using condition (3.1), we have

sd(xni+1, Tu) = sd(Txni
, Tu) ≤ ψ(Ms(xni

, u)), (3.5)

where Ms(xni
, u) = max{d(xni

, u), d(xni
, xni+1), d(u, Tu),

d(xni ,Tu)+d(u,xni+1)

2s
}.

Suppose that d(u, Tu) 6= 0. Let ε = d(u,Tu)
2s

> 0. Since xni
→ u, there

exists k1 ∈ N such that

d(xni
, u) <

d(u, Tu)

2s
, for each i ≥ k1. (3.6)
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Then, for each i ≥ k1

d(xni
, Tu) ≤ s[d(xni

, u) + d(u, Tu)]

< s[
d(u, Tu)

2s
+ d(u, Tu)]

≤ (
s

2
+ s)d(u, Tu)

=
3s

2
d(u, Tu).

As xn → u, there exists k2 ∈ N such that

d(xni+1, u) <
d(u, Tu)

2s
, for each i ≥ k2.

Put k = max{k1, k2}. Then, for i ≥ k, we have

d(xni
, Tu) + d(u, xni+1)

2s
<

1

2s
[
3s

2
+

1

2s
]d(u, Tu)

≤ 1

2s
[
3s

2
+
s2

2s
]d(u, Tu)

= d(u, Tu). (3.7)

Again, for i ≥ k, we have

d(xni
, xni+1) ≤ s[d(xni

, u) + d(u, xni+1)]

< s[
1

2s
+

1

2s
]d(u, Tu)

= d(u, Tu). (3.8)

Thus, for i ≥ k, it follows from conditions (3.6), (3.7) and (3.8) that

max{d(xni
, u), d(xni

, xni+1), d(u, Tu),
d(xni

, Tu) + d(u, xni+1)

2s
} = d(u, Tu).

Therefore, for i ≥ k, we obtain from (3.5) that

sd(xni+1, Tu) ≤ ψ(d(u, Tu)). (3.9)

By using condition (3.9), for i ≥ k, we have

d(u, Tu) ≤ sd(u, xni+1) + sd(xni+1, Tu)

≤ sd(u, xni+1) + ψ(d(u, Tu)).

Taking limit as i→∞, we get

d(u, Tu) ≤ ψ(d(u, Tu)),
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which is a contradiction, since d(u, Tu) > 0. Therefore, d(u, Tu) = 0 and so,
Tu = u, i.e., u is a fixed point of T .

For uniqueness, assume that v( 6= u) ∈ X is another fixed point of T .
Then, by property (∗∗), we have (u, v) ∈ E(G̃). Then,

d(u, v) = d(Tu, Tv) ≤ sd(Tu, Tv)) ≤ ψ(Ms(u, v)),

where

Ms(u, v) = max{d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2s
} = d(u, v).

Thus,
0 < d(u, v) ≤ ψ(d(u, v)),

which is a contradiction, since ψ(t) < t for each t > 0.
So, it must be the case that, d(u, v) = 0 and hence, u = v.
Therefore, T has a unique fixed point in X.

Corollary 3.2. Let (X, d) be a complete metric space and ρ be a binary
relation over X. Assume that T : X → X is a comparative map and

x, y ∈ X, xSy ⇒ d(Tx, Ty) ≤ ψ(M1(x, y)),

where ψ ∈ Ψ and S = ρ ∪ ρ−1. Suppose also that the following conditions
hold:

(i) (X, d, S) is regular;

(iii) there exists x0 ∈ X such that x0S Tx0.

Then T has a fixed point in X. Moreover, T has a unique fixed point in X
if the following property holds:
If x, y are fixed points of T in X, then xSy.

Proof. The proof follows from Theorem 3.1 by taking G = (V (G), E(G))
where V (G) = X, E(G) = {(x, y) ∈ X ×X : xSy} ∪∆ and s = 1.

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1 and let T : X → X be a mapping. Assume that there exists ψ ∈ Ψ

with
∞∑
n=1

snψn(t) <∞ for each t > 0 such that

d(Tx, Ty) ≤ 1

s
ψ(Ms(x, y))

for all x, y ∈ X. Then T has a unique fixed point in X.
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Proof. The proof follows from Theorem 3.1 by taking G = G0, where G0 is
the complete graph (X,X ×X).

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1 and T : X → X be such that

sd(Tx, Ty) ≤ hmax{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}

for all x, y ∈ X, where 0 < h < 1
s

is a constant. Then T has a unique fixed
point in X.

Proof. The proof can be obtained from Theorem 3.1 by taking G = G0 and
ψ(t) = ht for each t ≥ 0, where h ∈ (0, 1

s
) is a fixed number.

Corollary 3.5. Let (X, d) be a complete b-metric space with the coefficient
s ≥ 1 and T : X → X be such that

d(Tx, Ty) ≤ αd(x, y)+βd(x, Tx)+γd(y, Ty)+δ[d(x, Ty)+d(y, Tx)] (3.10)

for all x, y ∈ X, where α, β, γ, δ > 0 and α+ β + γ + 2sδ < 1
s2

. Then T has
a unique fixed point in X.

Proof. Condition (3.10) gives that

sd(Tx, Ty) ≤ (αs+ βs+ γs+ 2s2δ)Ms(x, y)

for all x, y ∈ X. Taking h = αs + βs + γs + 2s2δ, it follows that h ∈ (0, 1
s
).

Now applying Corollary 3.4, we obtain the desired result.

Finally, we provide some examples to justify the validity of our main
result.

Example 3.1. Let X = [0,∞) with d(x, y) = |x−y|2 for all x, y ∈ X. Then
(X, d) is a complete b-metric space with s = 2. Let G be a digraph such
that V (G) = X and E(G) = ∆ ∪ {(x, y) : x, y ∈ [0, 1]}. Let T : X → X be
defined by

Tx =

{
x
3
, if 0 ≤ x ≤ 1,

3x, if x > 1.
(3.11)

Then, (x, y) ∈ E(G̃) implies (Tx, Ty) ∈ E(G̃) i.e., T is edge preserving.
Take ψ(t) = t

4
for each t ≥ 0.
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If x, y ∈ [0, 1], then (x, y) ∈ E(G̃) and

sd(Tx, Ty) = s
∣∣∣x
3
− y

3

∣∣∣2 =
2

9
|x− y|2

=
8

9
· 1

4
d(x, y) ≤ ψ(d(x, y)) ≤ ψ(Ms(x, y)).

Thus,
sd(Tx, Ty) ≤ ψ(Ms(x, y)),

for all x, y ∈ X with (x, y) ∈ E(G̃).
Let (xn) be a sequence in X and x ∈ X be such that xn → x and

(xn, xn+1) ∈ E(G̃) for all n ≥ 1. Then, either (xn) is a constant sequence or
xn ∈ C for all n ≥ 1, where C = [0, 1]. In the former case, (xn, x) ∈ ∆ for
all n ≥ 1. But in the latter case, x ∈ C, C being closed and hence (xn, x) ∈
E(G̃). This proves that property (∗) holds. Moreover, (x0, Tx0) ∈ E(G̃) for
x0 = 1. Furthermore, the graph G has the property (∗∗). Thus, we have all
the conditions of Theorem 3.1 and 0 is the unique fixed point of T in X.

Remark 3.1. It is valuable to note that in Example 3.1, the condition

sd(Tx, Ty) ≤ ψ(Ms(x, y))

does not hold for all x, y ∈ X.
In fact, for x = 0, y = 4, we have sd(Tx, Ty) = 2d(0, 12) = 288 and

Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s
}

= max

{
16, 0, 64,

144 + 16

4

}
= 64,

which implies that,
sd(Tx, Ty) > ψ(Ms(x, y)).

We now examine the strength of the hypothesis made in Theorem 3.1.
The following example shows that the second part of Theorem 3.1 shall fall
through by dropping the property (∗∗) of the graph G.

Example 3.2. Let X = {2, 4, 6, 8} with d(x, y) = |x− y|2 for all x, y ∈ X.
Then (X, d) is a complete b-metric space with the coefficient s = 2. Let G
be a digraph such that V (G) = X and E(G) = ∆ ∪ {(2, 6), (4, 8)}. Let
T : X → X be defined by

Tx =

{
6, if x ∈ {2, 6},
4, if x ∈ {4, 8}.
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Obviously, T is edge preserving.

Take ψ(t) = t
4

for each t ≥ 0. Then it is easy to verify that

sd(Tx, Ty) ≤ ψ(Ms(x, y)),

for all x, y ∈ X with (x, y) ∈ E(G̃).

Moreover, property (∗) holds because if (xn) is a sequence in X such that
xn → x and (xn, xn+1) ∈ E(G̃) for all n ≥ 1, then there exists a subsequence
(xni

) of (xn) such that xni
= x for all i ≥ 1 and consequently, it follows that

(xni
, x) ∈ E(G̃) for all i ≥ 1. Furthermore, (x0, Tx0) ∈ E(G̃) for x0 = 4. We

find that 4 and 6 are fixed points of T in X but (4, 6) 6∈ E(G̃). It is worth
mentioning that there does not exist unique fixed point of T due to lack of
property (∗∗) of the graph G.

The following example shows that Theorem 3.1 is invalid without property
(∗).

Example 3.3. Let X = [0, 1] with d(x, y) = |x− y|3 for all x, y ∈ X. Then
(X, d) is a complete b-metric space with the coefficient s = 4. Let G be
a digraph such that V (G) = X and E(G) = {(0, 0)} ∪ {(x, y) : (x, y) ∈
(0, 1]× (0, 1], x ≥ y}.

Let T : X → X be defined by

Tx =

{
x
3
, if x ∈ (0, 1]

1, if x = 0.

Take ψ(t) = t
6

for each t ≥ 0. Then T is edge preserving and

sd(Tx, Ty) =
4

27
d(x, y) =

8

9
· 1

6
d(x, y)

≤ ψ(d(x, y)) ≤ ψ(Ms(x, y)),

for all x, y ∈ X with (x, y) ∈ E(G̃).
We now verify that property (∗) does not hold.
Taking xn = 1

n
, we observe that (xn) is a sequence in X with xn → 0 and

(xn, xn+1) ∈ E(G̃) for all n ≥ 1 but there exists no subsequence (xni
) of (xn)

such that (xni
, 0) ∈ E(G̃). Moreover, (x0, Tx0) ∈ E(G̃) for x0 = 1. Thus,

we have all the conditions of Theorem 3.1 except property (∗) and T has no
fixed point in X due to lack of property (∗).
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4 Fixed points for cyclical mappings

In this section, we obtain some fixed point results for generalized cyclic con-
traction mappings in b-metric spaces.

Theorem 4.1. Let (M,d) be a complete b-metric space with the coefficient
s ≥ 1 and let A, B be nonempty closed subsets of M . Suppose that T : M →
M satisfies the following conditions:

(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exists ψ ∈ Ψ with
∞∑
n=1

snψn(t) <∞ for each t > 0 such that

sd(Tx, Ty) ≤ ψ(Ms(x, y)),

for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

Proof. Let us put X = A ∪ B. Then, in view of hypothesis (i), T is a
selfmap of X. As A, B are closed, X is a closed subset of M and hence
(X, d) is a complete b-metric space. We define a graph G = (X,E(G)) where
E(G) = (A × B) ∪ ∆ and ∆ = {(x, x) : x ∈ X}. It is easy to verify that
E(G̃) = (A×B)∪ (B×A)∪∆ and condition (3.1) of Theorem 3.1 holds for
all x, y ∈ X with (x, y) ∈ E(G̃) and T is edge preserving.

We now verify property (∗) of Theorem 3.1.
Let (xn) be a sequence in X such that xn → x ∈ X and (xn, xn+1) ∈ E(G̃)

for all n ≥ 1. Denote I = {n ∈ N : (xn, xn+1) ∈ E(G)} and J = {n ∈ N :
(xn, xn+1) ∈ E(G−1)}. As I ∪ J = N, at least one of these subsets is infinite.
We assume that I is infinite. So, it may be written as a strictly increasing
sequence of ranks: I = {n(k) : k ≥ 0} where k 7−→ n(k) is strictly increasing
and hence lim

k→∞
n(k) = ∞. Denote m(k) = n(k) + 1, for k ≥ 0, which

is also a strictly increasing sequence of ranks which tends to infinity. The
sequences (xn(k) : k ≥ 0) and (xm(k) : k ≥ 0) have the properties lim

k→∞
xn(k) =

lim
k→∞

xm(k) = x, xn(k) ∈ A, xm(k) ∈ B, for all k ≥ 0. As x ∈ X = A ∪ B,

either x ∈ A or x ∈ B. If x ∈ A, then (xm(k), x) ∈ B × A ⊆ E(G̃),∀k ≥ 0.

On the otherhand, if x ∈ B, then (xn(k), x) ∈ A× B ⊆ E(G̃), ∀k ≥ 0. Thus,
in any case, we get a subsequence fulfilling the property (∗).

Moreover, taking x0 ∈ A, A being nonempty, it follows that Tx0 ∈ B and
so (x0, Tx0) ∈ A× B ⊆ E(G̃). By applying first part of Theorem 3.1, there
exists u ∈ X such that Tu = u.
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It is to be noted that u ∈ A ∩B. Because, if u ∈ A, then Tu ∈ B and so
u(= Tu) ∈ B i.e., u ∈ A ∩B. The case u ∈ B may be treated similarly.

Finally, let v(6= u) be another fixed point of T in X. Then u, v ∈ A ∩ B
and consequently, it follows that (u, v) ∈ A × B ⊆ E(G̃). Thus, property
(∗∗) of Theorem 3.1 also holds. By applying second part of Theorem 3.1,
there exists a unique fixed point of T in A ∩B.

The following result is an immediate consequence of Theorem 4.1.

Corollary 4.2. Let (M,d) be a complete metric space and let A, B be nonempty
closed subsets of M . Suppose that T : M → M satisfies the following condi-
tions:

(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exists ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(M1(x, y)),

for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

Remark 4.1. Corollary 4.2 is a generalization of Theorem 3.9 in [26]. Thus,
Theorem 4.1 is an extension of Theorem 3.9 in [26] in metric spaces to b-
metric spaces.

The following result (see [18, 22]) is an immediate consequence of Corol-
lary 4.2.

Corollary 4.3. Let (M,d) be a complete metric space and let A, B be nonempty
closed subsets of M . Suppose that T : M → M satisfies the following condi-
tions:

(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exists ψ ∈ Ψ such that

d(Tx, Ty) ≤ ψ(d(x, y)),

for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

Corollary 4.4. Let (M,d) be a complete metric space and let A, B be nonempty
closed subsets of M . Suppose that T : M → M satisfies the following condi-
tions:
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(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kmax{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
},

for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

Proof. The result follows from Corollary 4.2 by taking ψ(t) = kt for each
t ≥ 0, where k ∈ (0, 1) is a constant.

Corollary 4.5. Let (M,d) be a complete metric space and let A, B be nonempty
closed subsets of M . Suppose that T : M → M satisfies the following condi-
tions:

(i) T (A) ⊆ B, T (B) ⊆ A;

(ii) there exist α, β, γ, δ > 0 with α + β + γ + 2δ < 1 such that

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ[d(x, Ty) + d(y, Tx)],

for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

Proof. Condition (ii) implies that

d(Tx, Ty) ≤ (α + β + γ + 2δ)M1(x, y),

for all x ∈ A, y ∈ B. The result follows from Corollary 4.4 by taking
k = α + β + γ + 2δ.
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