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Abstract. In this paper, we establish a fixed point theorem for
generalized contraction mappings in b-metric spaces endowed with
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1 Introduction

In 1922, S. Banach [4] proved the well known Banach contraction theorem
in a complete metric space, which became very famous due to its wide ap-
plications. In particular, it is an important tool for solving existence and
uniqueness problems in many branches of mathematics and applied sciences.
Several authors generalized this result in many directions. In 1989, 1. A.
Bakhtin [3] introduced the concept of b-metric spaces as a generalization of
metric spaces and studied some fixed point results in the setting of b-metric
spaces.

In recent investigations, the study of fixed point theory combining a graph
is a new development in the domain of contractive type single valued and
multi valued theory. In 2005, Echenique [12] studied fixed point theory by
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using graphs. Later on, Espinola and Kirk [13] applied fixed point results in
graph theory. Afterwards, combining fixed point theory and graph theory, a
series of articles (see [1},2,6-8,/16/,27] and references therein) have been ded-
icated to the improvement of fixed point theory. Many important results of
[10,/18,21H24126] have become the source of motivation for many researchers
that do research in fixed point theory. The main purpose of this article is
to obtain a fixed point theorem for generalized contraction mappings in the
framework of b-metric spaces with a graph. Furthermore, we apply our re-
sult to derive fixed points of cyclical mappings in metric spaces and b-metric
spaces. Finally, some examples are provided to justify the validity of our
main result.

2 Some Basic Concepts

We begin with some basic notations, definitions and results in b-metric spaces.

Definition 2.1. [3] Let X be a nonempty set and s > 1 be a given real
number. A function d : X x X — RY is said to be a b-metric on X if the
following conditions hold:

(i) d(z,y) =0 if and only if x = y;

(i1) d(z,y) = d(y,z) for all x,y € X;
(11i) d(x,y) < s(d(z,z)+d(z,y)) for all z,y,z € X.
The pair (X, d) is called a b-metric space.

It is to be noted that the class of b-metric spaces is effectively larger than
that of the ordinary metric spaces. The following example illustrates the
above fact.

Example 2.1. [20] Let X = {—1,0,1}. Defined : X x X — R* by d(z,y) =
d(y,z) for all z,y € X, d(z,z) = 0,2 € X and d(—1,0) = 3, d(—1,1) =
d(0,1) = 1. Then (X, d) is a b-metric space, but not a metric space since the
triangle inequality is not satisfied. Indeed, we have that

d(—=1,1) 4+ d(1,0) = 1+1=2 < 3 =d(—1,0).

It is easy to verify that s = %
Example 2.2. [25] Let (X,d) be a metric space and p(x,y) = (d(z,y))?,
-1

where p > 1 is a real number. Then p is a b-metric with s = 2P~
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Definition 2.2. [9] Let (X,d) be a b-metric space, x € X and (x,) be a
sequence in X. Then

(i) (x,) converges to x if and only if lim d(x,,z) = 0. We denote this by
n—oo

lim z, =z or x, = x(n — ).
n—oo

(i1) (z,,) is Cauchy if and only if lim d(z,,x,) = 0.

7,1M—+00

(111) (X,d) is complete if and only if every Cauchy sequence in X is conver-
gent.

Remark 2.1. [9] In a b-metric space (X, d), the following assertions hold:
(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

Definition 2.3. |15] Let (X, d) be a b-metric space. A subset A C X is said
to be open if and only if for any a € A, there exists € > 0 such that the open
ball B(a,e) C A. The family of all open subsets of X will be denoted by 7.

Theorem 2.1. [17] 7 defines a topology on (X, d).

Theorem 2.2. [17] Let (X,d) be a b-metric space and T be the topology
defined above. Then for any nonempty subset A C X we have

(i) A is closed if and only if for any sequence (x,) in A which converges
to x, we have x € A;

(ii) if we define A to be the intersection of all closed subsets of X which
contains A, then for any x € A and for any € > 0, we have B(z,e)NA #

0.

Theorem 2.3. [17] Let (X,d) be a b-metric space and T be the topology
defined above. Let ) # A C X. The following properties are equivalent:

(i) A is compact;

(i1) For any sequence (x,) in A, there exists a subsequence (x,,) of (xy)

which converges and lim xz,, € A.
Ng—>00
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Definition 2.4. [15] A subset A is called sequentially compact if and only
if for any sequence (x,,) in A, there ezists a subsequence (z,,) of (x,) which
converges and lim x,, € A. Also A is called totally bounded if for any e > 0,

N —r00

there exist x1, To, -+ , T, € A such that A C B(xy1,€)UB(x9,€)U- - B(xy,€).

Theorem 2.4. [17] Let (X,d) be a b-metric space and T be the topology
defined above. Let ) # A C X. Then

(1) A is compact if and only if A is sequentially compact.
(i1) If A is compact, then A is totally bounded.
Corollary 2.5. Fvery closed subset of a complete b-metric space is complete.

Let (X, d) be a b-metric space with the coefficient s > 1 and p be a binary
relation over X. Denote S = pU p~!. Then

x,y € X, xSy < xpy or ypzr.

Definition 2.5. We say that (X, d,S) is regular if the following condition
holds:
If the sequence (x,) in X and the point x € X are such that x,Sx,1 for

alln > 1 and lim d(z,,x) =0, then there exists a subsequence (z,,) of (x,)
n—oo

such that x,, Sz for all v > 1.

Definition 2.6. Let (X,d) be a b-metric space and p be a binary relation
over X. Then the mapping T : X — X 1is called comparative if T maps
comparable elements into comparable elements, that is,

r,y€ X, xSy=TxSTy.

Let U be a class of functions 1) : [0, 00) — [0, 00) satisfying the following
conditions:

(11) ¥ is a nondecreasing function;
(o)

(1)9) Zw”(t) < oo for each t >0, where 9™ is the nth iterate of 1.
n=1

Remark 2.2. [19] For each ¢ € U, we see that the following assertions hold:

(i) lim ¥"(¢t) =0, for all ¢ > 0;

n—o0

(i) ¢(t) <t for each t > 0;

(i) (0) = 0.
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We next review some basic notions in graph theory.

Let (X,d) be a b-metric space. We assume that G is a digraph with the
set of vertices V(G) = X and the set E(G) of its edges contains all the
loops, i.e., A C FE(G) where A = {(z,z) : x € X}. We also assume that
G has no parallel edges. So we can identify G with the pair (V(G), E(G)).
G may be considered as a weighted graph by assigning to each edge the
distance between its vertices. By G~! we denote the graph obtained from G
by reversing the direction of edges i.e., E(G™') = {(z,y) € X x X : (y,x) €
E(G)}. Let G denote the undirected graph obtained from G by ignoring the
direction of edges. Actually, it will be more convenient for us to treat G as a
digraph for which the set of its edges is symmetric. Under this convention,

E(G) = E(G)UE(G™).

Our graph theory notations and terminology are standard and can be
found in all graph theory books, like [5,|11,14]. If x, y are vertices of the
digraph G, then a path in G from x to y of length n (n € N) is a sequence
(), of n+ 1 vertices such that zg = z, =, = y and (z;,_1,2;) € E(G) for
1=1,2,--- ,n. A graph G is connected if there is a path between any two
vertices of G. G is weakly connected if G is connected.

Definition 2.7. Let (X, d) be a b-metric space with the coefficient s > 1 and
let G = (V(G),E(G)) be a graph. Then the mapping T : X — X is called
edge preserving if

z,y € X, (x,y) € E(G) = (Tz,Ty) € E(G).

3 Main Results

Theorem 3.1. Let (X,d) be a complete b-metric space with the coefficient
s>1andlet G = (V(G), E(G)) be a graph. Assume that T : X — X is edge

preserving and there exists 1 € W with Zs";b”(t) < oo for each t >0

n=1

such that
sd(Tx, Ty) < (M(z,y)) (3.1)

for all x,y € X with (z,y) € E(G), where

d(x, Ty) +d(y, Tx)
2s

M(x,y) = max{d(z,y),d(z, Tx),d(y, Ty), }.
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Suppose also that the following property holds:

(%) If (z,) is a sequence in X such that x, — x and (z,,Tny1) € E(G)
for alln > 1, then there exists a subsequence (x,,) of (x,) such that (x,,,x) €
E(G) for alli> 1.

If there exists xy € X such that (zo, Txzo) € E(G), then T has a fived
point in X. Moreover, T has a unique fixed point in X if the graph G has
the following property:

(xx) If z, y are fized points of T in X, then (z,y) € E(G).

Proof. Suppose there exists zy € X such that (zg,Tz) € E(G). Define the
sequence (x,) in X such that =, = Tz, 1, n = 1,2, ---. Since T is edge
preserving, it follows that (z,,2n41) € F(G) for all n = 0, 1,2, ---. We
assume that x, # x,_; for every n € N. If x,, = x,_; for some n € N, then
Tp_1 =, = Tx,_1 and hence x,,_; is a fixed point of T

Note that

Ms<xn—17 xn) == ma]f{d(xn_l, xTL)? d('rn—h In)7 d(xna xn—i—l); (32)
d(xn—h xn—&—l) + d(l‘n, l‘n) }

2s
< max{d(x,_1,2,),d(xn, Tpi1),

d(xn—la xn) + d(l’n, xn—l—l)

5 }

= mazx{d(x,_1,2,),d(x, Tpni1)}
By (11), it follows that
Y(My(2p-1,2,)) < Y(maz{d(zn_1,2n), d(Tn, Tni1)}). (3.3)

For any natural number n, we have by applying conditions (3.1)) and (3.3))
that

d(&ln,$n+1) < Sd(TmnflyTer < w(Ms(an?xn))
< Y(mazx{d(x,—1,2n), d(xn, Tni1)}). (3.4)

We shall show that (z,,) is a Cauchy sequence in (X, d).
If max{d(x,—1,2,),d(Tn, 1)} = d(Tp, Tpy1), then from condition ((3.4)
and using v (t) < t for each ¢ > 0, we obtain

d(l‘n, xn—l—l) < ¢(d(xm xn—i-l)) < d(xm $n+1>7

which is a contradiction. Therefore,

max{d(x,_1,Ty), d(Tn, Tpi1)} = d(Tp_1,Tn).
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Thus, it follows from condition that

d(xp, Tpy1) < Y(d(xp_1,x,)), for all n € N.
By repeated use of (1), we get

d(xp, Tpy1) < Y"(d(21,20)), for all n > 0.
For m,n € N with m > n, we have

d(xn7 ZL‘m) S Sd(xn7 ZEn+1) + SQd('r’rH—lv xn+2) + e
+Smin71d(xm727 xm71> + Sminild(xmfla xm)

< s (d(w1,20)) + MY (d (@, ) A -
+5" N (d (2, o)) + 8™ (d (2, w0))
m—1
_ Snl_l S s (d(e1, 20))

i=n

i s " (d(zy, w0)).

IN

Since Z s""(t) < oo for each t > 0, it follows that
n=1

m}%gloo d(zp, ) = 0.

This proves that (z,) is a Cauchy sequence in (X, d). As (X,d) is com-
plete, there exists u € X such that z,, — u ie., lim d(z,,u) = 0.

n—oo
By property (), there exists a subsequence (1,,,) of (x,) such that (z,,,u) €
E(G) for all i > 1.

Again, using condition (3.1)), we have

sd(Tp,+1, Tu) = sd(Txy,, Tu) < Y(Ms(z,,;,u)), (3.5)

where My(z,,,, u) = max{d(x,,, u),d(Tn;, Tn,+1), d(u, Tu), d(w"“Tu);j(u’m"i“)}.

Suppose that d(u,Tu) # 0. Let ¢ = % > 0. Since z,, — u, there
exists k1 € N such that

d(u, Tu)

d(x,,.
(xp,,u) < P

, for each i > k. (3.6)
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Then, for each i > k;

d(zp,, Tu)

IN

sld(xy,;, u) + d(u, Tu)]
d(u, Tu)
sl 2s

(g + 8)d(u, Tu)

3?Sd(u, Tu).

A\

+ d(u, Tu)]

IN

As x,, — u, there exists ko € N such that
d(u, Tu)
25
Put k = max{ky, ko}. Then, for i > k, we have

d(zp,41,u) < , for each i > ks.

d(xy,, Tu) + d(u, T, 1) 1 3s 1
T 1 o . T
25 < 55lp Tl T
1 3s 2
< 2 ST
S 55l Tl Ty
= d(u,Tu). (3.7)

Again, for ¢ > k, we have

d(‘rmv xm-ﬁ-l) < S[d(l‘n“ u) + d(“? xm-ﬁ-l)]
1 1
< S[% + %]d(u, TU)
= d(u,Tu). (3.8)

Thus, for i > k, it follows from conditions (3.6)), (3.7) and (3.8)) that
d('rniv TU) + d(uv xnﬁ-l)

max{d(x,,, u),d(Tn,, Tn,+1), d(u, Tu), 5 }=d(u, Tu).
s
Therefore, for i > k, we obtain from (3.5 that
sd(xp, 41, Tu) < P(d(u, Tu)). (3.9)

By using condition (3.9)), for ¢ > k, we have

du, Tu) < sd(u,xn41)+ sd(xp, 41, Tu)
< sd(t, Ts) + (d(u, Tu))

Taking limit as ¢+ — oo, we get

d(u, Tu) < (d(u,Tu)),
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which is a contradiction, since d(u, Tw) > 0. Therefore, d(u, Tu) = 0 and so,
Tu = u, i.e., uis a fixed point of T
For uniqueness, assume that v(# u) € X is another fixed point of 7'

Then, by property (xx*), we have (u,v) € E(G). Then,
d(u, v) = d(Tu, Tv) < sd(Tu, To)) < ¥(My(u,v)),

where

d(u, Tv) + d(v, Tu)
2s

M, (u,v) = maz{d(u,v), d(u, Tu),d(v, Tv), } = d(u,v).

Thus,
0< d(u, U) S w(d(ua U))a

which is a contradiction, since 1 (t) < t for each ¢ > 0.
So, it must be the case that, d(u,v) = 0 and hence, u = v.
Therefore, T" has a unique fixed point in X. m

Corollary 3.2. Let (X,d) be a complete metric space and p be a binary
relation over X. Assume that T : X — X is a comparative map and

z,y € X, xSy = d(Tz,Ty) < (M (z,y)),

where ¢ € W and S = pU p~t. Suppose also that the following conditions
hold:

(1) (X,d,S) is reqular;
(iii) there exists xy € X such that xoS Txy.

Then T has a fixed point in X. Moreover, T has a unique fized point in X
if the following property holds:
If x, y are fixed points of T in X, then xSy.

Proof. The proof follows from Theorem by taking G = (V(G), E(GQ))
where V(G) = X, E(G) ={(z,y) e X x X : 2Sy} UA and s = 1. O

Corollary 3.3. Let (X,d) be a complete b-metric space with the coefficient
s>1andletT : X — X be a mapping. Assume that there exists 1 € ¥

with Z s"Y"(t) < oo for each t > 0 such that
n=1

for all x,y € X. Then T has a unique fixed point in X.
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Proof. The proof follows from Theorem by taking G = Gy, where G is
the complete graph (X, X x X). ]

Corollary 3.4. Let (X,d) be a complete b-metric space with the coefficient
s>1andT : X — X be such that

d(x,Ty) + d(y, Tz)

sd(Tz, Ty) < hmaz{d(z,y),d(z, Tz),d(y, Ty), 5
S

}

for all x,y € X, where 0 < h < % s a constant. Then T has a unique fized
point in X.

Proof. The proof can be obtained from Theorem [3.1] by taking G = Gy and
¥(t) = ht for each t > 0, where h € (0, 1) is a fixed number. O

Corollary 3.5. Let (X, d) be a complete b-metric space with the coefficient
s>1andT : X — X be such that

d(Tz,Ty) < ad(x,y)+ pd(z, Tx) +~vd(y, Ty)+6[d(z, Ty) +d(y, Tx)] (3.10)

forall x,y € X, where a,, 5, v, >0 and a+ [+ v+ 2s) < s% Then T has
a unique fized point in X.

Proof. Condition (3.10]) gives that
sd(Tx, Ty) < (as + Bs + s + 25%0) M (2, y)

for all z,y € X. Taking h = as + fs + s + 2576, it follows that h € (0, 1).
Now applying Corollary [3.4] we obtain the desired result. O

Finally, we provide some examples to justify the validity of our main
result.

Example 3.1. Let X = [0, 00) with d(z,y) = |z —y|? for all z,y € X. Then
(X,d) is a complete b-metric space with s = 2. Let G be a digraph such
that V(G) = X and E(G) = AU{(z,y) : x,y € [0,1]}. Let T: X — X be
defined by

Tp={® H0szsL (3.11)
3z, ifxz>1.

Then, (z,y) € E(G) implies (Tx, Ty) € E(G) i.e., T is edge preserving.
Take 9(t) = £ for each t > 0.



96 S. K. Mohanta and D. Biswas An. U.V.T.

If z, y € [0,1], then (z,y) € E(G) and

sd(Ta, Ty) = s[5 =2 = So—yP

Thus,
sd(Tz, Ty) < (My(z,y)),

for all z, y € X with (z,y) € E(G).

Let (z,) be a sequence in X and x € X be such that z, — 2 and
(2, Zns1) € E(G) for all n > 1. Then, either (z,) is a constant sequence or
x, € C for all n > 1, where C' = [0,1]. In the former case, (x,,z) € A for
all n > 1. But in the latter case, x € C', C being closed and hence (x,,,x) €
E(G). This proves that property () holds. Moreover, (o, Tzy) € E(G) for
xo = 1. Furthermore, the graph G has the property (xx). Thus, we have all

the conditions of Theorem [3.1] and 0 is the unique fixed point of 7" in X.
Remark 3.1. It is valuable to note that in Example [3.1] the condition
sd(Tx,Ty) < p(M(z,y))

does not hold for all z, y € X.
In fact, for z = 0, y = 4, we have sd(Tz, Ty) = 2d(0,12) = 288 and
d(z, Ty) + d(y, Tx)

My(z,y) = max{d(z,y), d(z, T), d(y, Ty), 5

144 + 16}

}

= max {16, 0, 64,
= 064,

which implies that,
sd(Tx, Ty) > (My(z,y)).

We now examine the strength of the hypothesis made in Theorem [3.1]

The following example shows that the second part of Theorem shall fall
through by dropping the property (*x) of the graph G.
Example 3.2. Let X = {2, 4, 6, 8} with d(z,y) = |z — y|* for all z,y € X.
Then (X, d) is a complete b-metric space with the coefficient s = 2. Let G
be a digraph such that V(G) = X and E(G) = AU {(2,6), (4,8)}. Let
T : X — X be defined by

. [6 ifwe{20
4, if z € {4,8}.
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Obviously, T is edge preserving.

Take ¢(t) = i for each ¢ > 0. Then it is easy to verify that

sd(Tz, Ty) < Y(My(z,y)),

for all z, y € X with (z,y) € E(G).

Moreover, property (x) holds because if (z,,) is a sequence in X such that
Tp — & and (2, Tny1) € E(G) for all n > 1, then there exists a subsequence
(xy,) of (x,) such that x,, = x for all ¢ > 1 and consequently, it follows that
(zn,, ) € E(G) for all i > 1. Furthermore, (29, Tzo) € E(G) for 2y = 4. We
find that 4 and 6 are fixed points of T in X but (4,6) ¢ E(G). It is worth
mentioning that there does not exist unique fixed point of 7" due to lack of

property (%) of the graph G.
The following example shows that Theorem [3.1]is invalid without property

().

Example 3.3. Let X = [0, 1] with d(z,y) = |x — y|? for all z,y € X. Then
(X,d) is a complete b-metric space with the coefficient s = 4. Let G be
a digraph such that V(G) = X and E(G) = {(0,0)} U {(z,y) : (z,y) €
(0,1] x (0,1], =z > y}.

Let T : X — X be defined by

T — g, ifxe(0,1]
1, ifz=0.

Take 1(t) = ¢ for each t > 0. Then T is edge preserving and

sd(Tx, Ty) = —d(z,y)
< Yd(z,y)) <

for all z, y € X with (x,y) € E(G).
We now verify that property (x) does not hold.
Taking z,, = %, we observe that (z,) is a sequence in X with z,, — 0 and

V(M(z,y)),

(Tn, Tny1) € E(G) for all n > 1 but there exists no subsequence (z,,) of (7,)
such that (z,,,0) € E(G). Moreover, (xg,Txo) € E(G) for xg = 1. Thus,
we have all the conditions of Theorem except property (x) and 7" has no

fixed point in X due to lack of property (x).
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4 Fixed points for cyclical mappings

In this section, we obtain some fixed point results for generalized cyclic con-
traction mappings in b-metric spaces.

Theorem 4.1. Let (M,d) be a complete b-metric space with the coefficient
s> 1 and let A, B be nonempty closed subsets of M. Suppose thatT : M —
M satisfies the following conditions:

(1) T(A) € B, T(B) € A;

(ii) there exists ¥ € U with Z s"Y"(t) < oo for each t > 0 such that

n=1
sd(Tx, Ty) < (Ms(z,y)),
forallx € A,y € B.
Then T has a unique fixed point in AN B.

Proof. Let us put X = AU B. Then, in view of hypothesis (i), T is a
selfmap of X. As A, B are closed, X is a closed subset of M and hence
(X, d) is a complete b-metric space. We define a graph G = (X, E(G)) where
E(G)=(Ax B)UA and A = {(z,x) : x € X}. It is easy to verify that
E(G) = (Ax B)U(B x A)UA and condition of Theorem [3.1{ holds for
all z, y € X with (z,y) € E(G) and T is edge preserving.

We now verify property (x) of Theorem [3.1]

Let (,,) be a sequence in X such that z,, — z € X and (&, T,41) € E(G)
for all n > 1. Denote I = {n € N: (z,,2,11) € E(G)} and J = {n € N:
(T, Tny1) € E(G™Y)}. As TUJ =N, at least one of these subsets is infinite.
We assume that [ is infinite. So, it may be written as a strictly increasing
sequence of ranks: I = {n(k) : k > 0} where k — n(k) is strictly increasing
and hence }}Lralon(k) = oo. Denote m(k) = n(k) + 1, for & > 0, which
is also a strictly increasing sequence of ranks which tends to infinity. The
sequences (Znpy : k > 0) and () : £ > 0) have the properties ]}grolo T(ky =
’}Lrgloxm(k) =T, Tpw) € A, Tpay) € B, forall k> 0. Asz € X = AU B,

either x € Aorx € B. If v € A, then (z,,4),2) € Bx A C E(G),Vk > 0.
On the otherhand, if z € B, then (z,4),r) € A x B C E(G),Vk > 0. Thus,
in any case, we get a subsequence fulfilling the property (x).

Moreover, taking xq € A, A being nonempty, it follows that Txq € B and
so (g, Txo) € A x B C E(G). By applying first part of Theorem there

exists v € X such that Tu = u.
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It is to be noted that u € AN B. Because, if u € A, then Tu € B and so
u(=Tu) € Bie.,u€ AN B. The case u € B may be treated similarly.
Finally, let v(# u) be another fixed point of 7" in X. Then v, v € AN B

and consequently, it follows that (u,v) € A x B C E(G). Thus, property
(#x) of Theorem also holds. By applying second part of Theorem ,
there exists a unique fixed point of T"in AN B. ]

The following result is an immediate consequence of Theorem

Corollary 4.2. Let (M, d) be a complete metric space and let A, B be nonempty
closed subsets of M. Suppose that T : M — M satisfies the following condi-
tions:

(i) T(A) € B, T(B) C A;
(1) there exists 1» € U such that

forallz e A, y € B.
Then T has a unique fized point in AN B.

Remark 4.1. Corollary is a generalization of Theorem 3.9 in |26]. Thus,
Theorem is an extension of Theorem 3.9 in [26] in metric spaces to b-
metric spaces.

The following result (see [18,22]) is an immediate consequence of Corol-

lary 4.2

Corollary 4.3. Let (M, d) be a complete metric space and let A, B be nonempty
closed subsets of M. Suppose that T : M — M satisfies the following condi-
tions:

(i) T(A) € B, T(B) € A;
(ii) there exists ¥ € VU such that
d(Tz,Ty) < ¥(d(z,y)),
forallz € A, y € B.
Then T" has a unique fived point in AN B.

Corollary 4.4. Let (M, d) be a complete metric space and let A, B be nonempty
closed subsets of M. Suppose that T : M — M satisfies the following condi-
tions:
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(i) T(4) C B, T(B) € 4;
(i1) there exists a constant k € (0,1) such that

d(Tx,Ty) < kmaz{d(z,y),d(z,Tx),d(y, Ty), d(z,Ty) —5 d(y, Tz) .

forallz e A, y e B.
Then T has a unique fixed point in AN B.

Proof. The result follows from Corollary by taking v (t) = kt for each
t >0, where k € (0,1) is a constant. ]

Corollary 4.5. Let (M, d) be a complete metric space and let A, B be nonempty
closed subsets of M. Suppose that T : M — M satisfies the following condi-

tions:

(i) T(A) € B, T(B) C 4;

(ii) there exist o, 3,7, 0 > 0 with a+ + v+ 20 < 1 such that
d(Tz,Ty) < ad(z,y) + fd(z, Tx) + yd(y, Ty) + 6ld(z, Ty) + d(y, Tx)],
forallz e A, y € B.

Then T has a unique fixed point in AN B.
Proof. Condition (i7) implies that
d(Tz, Ty) < (a+ B+ +20)Mi(z,y),

for all z € A,y € B. The result follows from Corollary by taking
k=oa+8+~v+20. O
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