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Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the
classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing
inconsistent, indeterminate, and imprecise data. ,e notion of intuitionistic fuzzy metric space is useful in modelling
some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the
concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space.
Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples
are given.

1. Introduction

Zadeh [1] was the first to put forward the concept of fuzzy
sets (FSs), and this idea has deeply influencedmany scientific
fields since its inception. Using the concepts of probabilistic
metric space and fuzzy sets, fuzzy metric space (FMS) was
introduced in [2]. Kaleva and Seikkala [3] defined the FMS
as a distance between two points to be nonnegative fuzzy
numbers. Afterward, the utility of FMS appeared in applied
sciences such as fixed point theory, image and signal pro-
cessing, medical imaging, and decision-making. ,is clas-
sical result was generalized in different spaces, and different
structures were attained using this topic, and one may recall
the existing notions, ordered theoretic results in fuzzy b
metric spaces [4], fuzzy b-metric-like spaces [5], orthogonal
control fuzzy metric spaces [6], fuzzy generalized prioritized
weighted average operator [7], fuzzy C-means clustering
with locality preservation [8], the measure of divergence
with fuzzy [9], and many more.

In 1986, Zadeh [1] introduced the concept of intui-
tionistic fuzzy sets (IFSs), which is considered as a new
version of the idea of the classical set, defined by
Hezarjaribi [10]. Park [11] utilized the idea of IFSs and
initiated the concept of intuitionistic fuzzy metric spaces
(IFMSs). Later, Kirişci and Simsek [12] introduced the
notion of neutrosophic metric spaces (NMSs) which deal
with membership, nonmembership, and naturalness
functions. Simsek and Kirişci [13] and Sowndrarajan
et al. [14] proved some fixed point results in the setting of
NMSs.

On the other hand, Eshaghi et al. [15] introduced the
approach of an orthogonal set (OS) and generalized the
Banach fixed point (FP) theorem. Furthermore, fixed point
results on orthogonal (generalized) metric spaces have been
provided by Senapati et al. [16], Javed et al. [17], and Uddin
et al. [18]. Using the fuzzy structure, Hezarjaribi [10] ini-
tiated the notion of an orthogonal fuzzy metric space
(OFMS) and established the Banach contraction principle.
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In this study, we have introduced the notion of or-
thogonal neutrosophic metric space, which is a general-
ization of FMS, IFMS, and NMS, and we have provided
nontrivial examples to justify our claim that our results
would be more efficient in dealing with many scientific
problems than those in the literature.

,e main objectives of this study are as follows.

(1) To introduce the concept of orthogonal neutrosophic
metric space (ONMSs)

(2) To prove some fixed point results in the sense of
orthogonal neutrosophic metric space

(3) To enhance existing literature of fuzzy metric spaces
and fuzzy fixed point theory

,is study is organized with some rudimentary concepts
of IFMS, NMS, OSs, and O-sequences. ,e concept of
ONMSs is discussed in detail, and some fixed point results
with nontrivial examples are imparted. A conclusion is
provided for the obtained results.

In the end, some basic definitions which are important
for the understanding of this study and proofs of some new
results (,eorem 2 and Corollary 1) are accommodated in
the Appendix section to avoid obscurity and vagueness.

,roughout this study, CTN is used for a continuous
triangular norm and CTCN for a continuous triangular
conorm.

2. Preliminaries

In this section, some basic definitions are given that are
helpful to understand the main results.

Park introduced the concept of intuitionistic fuzzy
metric spaces (IFMSs) and utilized this idea to investigate
fixed point results. Park defined the notion of IFMSs as
follows.

Definition 1 (See [11]). Suppose E≠∅ is an arbitrary set,
assume a five-tuple (E, R, S, ∗,Δ), where ∗ is a CTN, Δ is a
CTCN, and R, S are the FSs on E × E × (0,∞). If
(E, R, S, ∗,Δ) meet the following circumstances for all
β, δ, z∈ E and π, λ> 0,

(B1) R(β, δ, λ) + S(β, δ, λ)≤ 1
(B2) R(β, δ, λ)> 0
(B3) R(β, δ, λ) � 1⟺ β � δ

(B4) R(β, δ, λ) � R(δ, β, λ)

(B5) R(β, z, (λ + π))≥R(β, δ, λ)∗R(δ, z, π)
(B6) R(β, δ,Δ) is a nondecreasing (ND) function ofR+

and limλ⟶∞R(β, δ, λ) � 1

(B7) S(β, δ, λ)> 0
(B8) S(β, δ, λ) � 0⟺ β � δ

(B9) S(β, δ, λ) � S(δ, β, λ)

(B10) S(β, z, (λ + π))≤ S(β, δ, λ)⟺ S(δ, z, π)

(B11) S(β, δ,Δ) is a nonincreasing (NI) function of R+

and limλ⟶∞S(β, δ, λ) � 0

,en, (E, R, S, ∗,Δ) is an IFMS.
,e concept of neutrosophic metric spaces was discussed

by Kirişci and Simsek, and they defined the said concept as
follows:

Definition 2 (See [11]). Suppose E≠∅, assume a five-tuple
(E, R, S, T, ∗,Δ), where ∗ is a CTN, Δ is a CTCN, and
R, S, T are the neutrosophic sets (NSs) on E × E × (0,∞). If
(E, R, S, T, ∗,Δ) meet the following circumstances for all
β, δ, z∈ E and π, λ> 0,

(N1) R(β, δ, λ) + S(β, δ, λ) + T(β, δ, λ)≤ 3
(N2) R(β, δ, λ)> 0
(N3) R(β, δ, λ) � 1⟺ β � δ

(N4) R(β, δ, λ) � R(δ, β, λ)

(N5) R(β, z, (λ + π))≥R(β, δ, λ)∗R(δ, z, π)
(N6) R(β, δ,Δ) is a nondecreasing (ND) function of

R
+ and limλ⟶∞R(β, δ, λ) � 1

(N7) S(β, δ, λ)< 1
(N8) S(β, δ, λ) � 0⟺ β � δ

(N9) S(β, δ, λ) � S(δ, β, λ)

(N10) S(β, z, (λ + π))≤ S(β, δ, λ)ΔS(δ, z, π)
(N11) S(β, δ,Δ) is a nonincreasing (NI) function of R+

and limλ⟶∞S(β, δ, λ) � 0

(N12) T(β, δ, λ)< 1
(N13) T(β, δ, λ) � 0⟺ β � δ

(N14) T(β, δ, λ) � T(δ, β, λ)

(N15) T(β, z, (λ + π))≤T(β, δ, λ)ΔT(δ, z, π)
(N16) T(β, δ,Δ) is a nonincreasing (NI) function of R+

and limλ⟶∞T(β, δ, λ) � 0

(N17) If λ≤ 0, then R(β, δ, λ) � 0, S(β, δ, λ) � 1 and
T(β, δ, λ) � 1

,en, (E, R, S, T, ∗,Δ) is a NMS.
Eshaghi et al. introduced the concept of orthogonal sets

using a binary relation and defined it as:

Definition 3 (See [15]). Assume E≠Δ and ⊥∈ E × E is a
binary relation. Assume there exists β0 ∈ E, such that β0 ⊥ β
or β⊥ β0 for all β ∈ E. ,us, E is said to be an OS. Fur-
thermore, we denote OS by (E, ⊥ ).

Definition 4 (See [15]). Suppose that (E, ⊥ ) is an OS. A
sequence βn{ } for n ∈ N is called an O-sequence if
(∀n; βn ⊥ βn+1) or (∀n; βn+1 ⊥ βn).

More definitions and basic results related to these topics
are available in the Appendix section at the end of this study.
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3. Orthogonal Neutrosophic Metric Spaces

Now, we introduce the notion of ONMSs and utilize this
concept to investigate some fixed point results.

Definition 5. Let (E, R, S, T, ∗,Δ, ⊥ ) is called an ONMS if E
is a (nonempty) OS, where ∗ is a CTN, Δ is a CTCN, and
R, S, T are the NSs on E × E × (0,∞) meeting the following
circumstances:

B⊥ (1) R(β, δ, λ) + S(β, δ, λ) + T(β, δ, λ)≤ 3 for all β,
δ ∈ E, λ> 0, such that β⊥ δ and δ⊥ β
B⊥ (2) R(β, δ, λ)> 0, for all β, δ ∈ E, λ> 0, such that
β⊥ δ and δ⊥ β
B⊥ (3) R(β, δ, λ) � 1 if and only if β � δ, for all
β, δ ∈ E, λ> 0, such that β⊥ δ and δ⊥ β
B⊥ (4) R(β, δ, λ) � R(δ, β, λ), for all β, δ ∈ E, λ> 0, such
that β⊥ δ and δ⊥ β
B⊥ (5) R(β, z, (λ + π))≥R(β, δ, λ)∗R(δ, e, π), for all
β, δ, z∈ E, λ, π > 0, such that β⊥ δ, δ⊥ z and β⊥ z
B⊥ (6) R(β, δ,Δ): (0,∞)⟶ [0, 1] is continuous, for
all β, δ ∈ E, such that β⊥ δ and δ⊥ β
B⊥ (7) S(β, δ, λ)> 0, for all β, δ ∈ E, λ> 0, such that
β⊥ δ and δ⊥ β
B⊥ (8) S(β, δ, λ) � 1 if and only if β � δ, for all
β, δ ∈ E, λ> 0, such that β⊥ δ and δ⊥ β
B⊥ (9) S(β, δ, λ) � S(δ, β, λ), for all β, δ ∈ E, λ> 0, such
that β⊥ δ and δ⊥ β
B⊥ (10) S(β, z, (λ + π))≤ S(β, δ, λ)ΔS(δ, z, π), for all
β, δ, z∈ E, λ, π > 0, such that β⊥ δ, δ⊥ z, and β⊥ z
B⊥ (11) S(β, δ,Δ): (0,∞)⟶ [0, 1] is continuous, for
all β, δ ∈ E, such that β⊥ δ and δ⊥ β
B⊥ (12) T(β, δ, λ)> 0, for all β, δ ∈ E, λ> 0, such that
β⊥ δ and δ⊥ β
B⊥ (13) T(β, δ, λ) � 1 if and only if β � δ, for all
β, δ ∈ E, λ> 0, such that β⊥ δ and δ⊥ β
B⊥ (14) T(β, δ, λ) � T(δ, β, λ), for all β, δ ∈ E, λ> 0,
such that β⊥ δ and δ⊥ β
B⊥ (15) T(β, z, (λ + π))≤T(β, δ, λ)ΔT(δ, z, π) for all
β, δ, z∈ E, λ, π > 0, such that β⊥ δ, δ⊥ z, and β⊥ z
B⊥ (16) T(β, δ,Δ): (0,∞)⟶ [0, 1] is continuous, for
all β, δ ∈ E, such that β⊥ δ and δ⊥ β
B⊥ (17) If λ≤ 0 then R(β, δ, λ) � 0, S(β, δ, λ) � 1 and
T(β, δ, λ) � 1, for all β, δ ∈ E, λ> 0, such that β⊥ δ and
δ⊥ β.

,en, (E, R, S, T, ∗,Δ, ⊥ ) is called ONMS.

Remark 1. Every NMS is an ONMS, but the converse is not
necessarily true.

Example 1. Let E � [− 5, 5] and define a CTN as a∗ b � ab,
CTCN as aΔb � max a, b{ }, and a binary relation ⊥ by β⊥ δ
iff β + δ ≥ 0. Take

R(β, δ, λ) �

1, if β � δ,

λ

λ +max β, δ{ }, if otherwise,



S(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ +max β, δ{ }, if otherwise,



T(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ

, if otherwise,



(1)

for all β, δ ∈ E, λ> 0, then it is ONMS, but not an NMS.
Easy to see, for π � λ � 1, β � − 1, δ � − (1/2), z � − 2.

(B5), (B10), and (B15) fail.

Remark 2. ,e above example is also true for CTN a∗ b �
min a, b{ } and CTCN aΔb � max a, b{ }.

Remark 3. ,e above example is also ONMS if we take

S(β, δ, λ) �

0, if β � δ,

1 −
λ

λ +max β, δ{ }, if otherwise.


(2)

Definition 6. An O-sequence βn{ } in an ONMS
(E, R, S, T, ∗,Δ, ⊥ ) is called to be orthogonal convergent
(O-convergent) to β ∈ E, if

lim
n⟶∞

R βn, β, λ( ) � 1, ∀λ> 0,

lim
n⟶∞

S βn, β, λ( ) � 0, ∀λ> 0,

lim
n⟶∞

T βn, β, λ( ) � 0, ∀λ> 0.

(3)

Definition 7. An O-sequence βn{ } in an ONMS
(E, R, S, ∗,Δ, ⊥ ) is named to be orthogonal Cauchy (O-
Cauchy) if there exists n ∈ N, such that

lim
n⟶∞

R βn, βn+p, λ( ) � 1,

lim
n⟶∞

S βn, βn+p, λ( ) � 0,

lim
n⟶∞

T βn, βn+p, λ( ) � 0,

for all λ≥ 0, p≥ 1.

(4)

Definition 8. ψ: E⟶ E is ⊥-continuous at β ∈ E in an
ONMS (E, R, S, T, ∗,Δ, ⊥ ), whenever for each O-sequence
βn{ } for all n ∈ N in E; if limn⟶∞R(βn, β, λ) � 1,
limn⟶∞S(βn, β, λ) � 0, and limn⟶∞T(βn, β, λ) � 0 for all
λ> 0, then limn⟶∞R(ψβn,ψβ, λ) � 1, limn⟶∞S
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(ψβn,ψβ, λ) � 0, and limn⟶∞T(ψβn,ψβ, λ) � 0 for all λ> 0.
Furthermore, ψ is ⊥-continuous on E if ψ is⊥-continuous at
each β ∈ E. Also, ψ is ⊥-preserving if ψβ⊥ψδ when β⊥ δ.

Definition 9. An ONMS (E, R, S, T, ∗,Δ, ⊥ ) is said to or-
thogonally complete (O-complete) if every O-Cauchy se-
quence is convergent.

Remark 4. It is necessary for the limit of a convergent
O-sequence to be unique in an ONMS.

Example 2. Assume ONMS given in an Example 1 and
define a sequence βn{ } in E by βn � 1 − (1/n),∀n ∈ N, such
that (∀n; βn ⊥ βn+1) or (∀n; βn+1 ⊥ βn). Define a CTN as
a∗ b � ab, CTCN as aΔb � max a, b{ }, and a binary relation
⊥ by β⊥ δ iff β + δ ≥ 0. Take

lim
n⟶∞

R βn, β, λ( ) � lim
n⟶∞

1, if β � δ,

λ

λ +max βn, β{ }, if otherwise



�

1, if β � δ,

λ

λ +max β, β{ }, if otherwise


� 1,

lim
n⟶∞

S βn, β, λ( ) � lim
n⟶∞

0, if β � δ,

max βn, β{ }
λ +max βn, β{ }, if otherwise



�

0, if β � δ,

max β, β{ }
λ +max β, β{ }, if otherwise


� 0,

lim
n⟶∞

T βn, β, λ( ) � lim
n⟶∞

0, if β � δ,

max βn, β{ }
λ

, if otherwise



�

0, if β � δ,

max β, β{ }
λ

, if otherwise


� 0.

(5)

Similarly, for any convergent O-sequence, limit will be
unique in an ONMS.

Remark 5. It is necessary that a convergent O-sequence is
O-Cauchy in an ONMS.

Example 3. From proof of above Example 2
βn � 1 − (1/n), ∀n ∈ N is a convergent O-sequence in an
ONMS.

lim
n⟶∞

R βn, βn+p, λ( ) � lim
n⟶∞

1, if β � δ,

λ

λ +max βn, βn+p{ }, if otherwise



�

1, if β � δ,

λ

λ +max β, β{ }, if otherwise


� 1,

lim
n⟶∞

S βn, βn+p, λ( ) � lim
n⟶∞

0, if β � δ,

max βn, βn+p{ }
λ +max βn, βn+p{ }, if otherwise



�

0, if β � δ,

max β, β{ }
λ +max β, β{ }, if otherwise


� 0,

lim
n⟶∞

T βn, βn+p, λ( ) � lim
n⟶∞

0, if β � δ,

max βn, βn+p{ }
λ

, if otherwise



�

0, if β � δ,

max β, β{ }
λ

, if otherwise



� 0,

(6)
for all λ≥ 0, p≥ 1. Similarly, every convergent O-sequence is
an O-Cauchy sequence in an ONMS.

Lemma 1. If for some v ∈ (0, 1) and β, δ ∈ E,
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R(β, δ, λ)≥R β, δ,
λ

v
( ), λ> 0,

S(β, δ, λ)≤ S β, δ,
λ

v
( ), λ> 0,

T(β, δ, λ)≤T β, δ,
λ

v
( ), λ> 0,

(7)

then β � δ.

Proof. Easy to show on the lines of [24].
Now, we introduce the notion of Banach contraction in

the sense of ONMSs. □

Definition 10. Let (E, R, S, T, ∗,Δ, ⊥ ) be an ONMS. A map
ψ: E⟶ E is an orthogonal contraction if there exists
θ ∈ (0, 1), such that for every λ> 0 and β, δ ∈ E with β⊥ δ,
we have

R(ψβ,ψδ, θλ)≥R(β, δ, λ), (8)

S(ψβ,ψδ, θλ)≤ S(β, δ, λ), (9)

T(ψβ,ψδ, θλ)≤T(β, δ, λ). (10)

Theorem 1. Let (E, R, S, T, ∗,Δ, ⊥ ) be an O-complete
NMS, such that

lim
λ⟶∞

R(β, δ, λ) � 1,

lim
λ⟶∞

S(β, δ, λ) � 0,

lim
λ⟶∞

T(β, δ, λ) � 0,

∀β, δ ∈ E.

(11)

Let ψ: E⟶ E be an ⊥-continuous, ⊥-contraction, and
⊥-preserving mapping. Bus, ψ has a unique FP, say β∗ ∈ E.
Furthermore,

lim
n⟶∞

R ψnβ, β∗, λ( ) � 1,

lim
n⟶∞

S ψnβ, β∗, λ( ) � 0,

lim
n⟶∞

T ψnβ, β∗, λ( ) � 0,

for all β ∈ E and λ> 0.

(12)

Proof. Since (E, R, S, T, ∗,Δ, ⊥ ) is an O-complete NMS,
there exists β0 ∈ E, such that

β0 ⊥ δ, for all δ ∈ E. (13)

,at is, β0 ⊥ ψβ0. Take
βn � ψ

nβ0 � ψβn− 1, for all n ∈ S. (14)

Since ψ is ⊥-preserving, βn{ } is an O-sequence. Now,
since ψ is an ⊥-contraction, we can get

R βn+1, βn, θλ( ) � R ψβn,ψβn− 1, θλ( )≥R βn, βn− 1, λ( ), (15)

for all n ∈ S and λ> 0. Note that R is nondecreasing on
(0,∞). ,erefore, by applying the above expression, we can
deduce

R βn+1, βn, λ( )≥R βn+1, βn, θλ( ) � R ψβn,ψβn− 1, θλ( )≥R βn, βn− 1, λ( )
� R ψβn− 1,ψβn− 2, λ( )≥R βn− 1, βn− 2,

λ

θ
( )≥ · · · ≥R β1, β0,

λ

θn
( ), (16)

for all n ∈ S and λ> 0. ,us, from (13) and (B4), we have

R βn, βn+α, λ( )≥R βn, βn+1,
λ

2
( )∗R βn+1, βn+α,

λ

2
( )

≥R βn, βn+1,
λ

2
( )∗R βn+1, βn+2,

λ

22
( )∗R βn+2, βn+3,

λ

23
( )∗ · · · ∗R βn+α− 1, βn+α,

λ

2n+α
( )

≥R β1, β0,
λ

2θn
( )∗R β1, β0,

λ

22θn
( )∗ · · · ∗R β1, β0,

λ

2n+αθn
( ).

(17)
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We know that limλ⟶∞R(β, δ, λ) � 1, for all β, δ ∈ E and
λ> 0. So, from (17), we get

lim
n⟶∞

R βn, βn+α, λ( )≥ 1∗ 1∗ · · · ∗ 1 � 1,

S βn+1, βn, θλ( ) � S ψβn,ψβn− 1, θλ( )≤ S βn, βn− 1, λ( ), (18)

for all n ∈ S and λ> 0. ,erefore, by applying the above
expression, we can deduce

S βn+1, βn, λ( )≤ S βn+1, βn, θλ( ) � S ψβn,ψβn− 1, θλ( )≤ S βn, βn− 1, λ( )
� S ψβn− 1,ψβn− 2, λ( )≤ S βn− 1, βn− 2,

λ

θ
( )≤ · · · ≤ S β1, β0,

λ

θn
( ), (19)

for all n ∈ S and λ> 0. ,us, from (19) and (B10), we have

S βn, βn+α, λ( )≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+α,

λ

2
( )

≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+2,

λ

22
( )ΔS βn+2, βn+3,

λ

23
( )Δ · · ·ΔS βn+α− 1, βn+α,

λ

2n+α
( )

≤ S β1, β0,
λ

2θn
( )ΔS β1, β0,

λ

22θn
( )Δ · · · ΔS β1, β0,

λ

2n+αθn
( ).

(20)

We know that limλ⟶∞S(β, δ, λ) � 0 for all β, δ ∈ E and
λ> 0. So, from (20), we get

lim
n⟶∞

S βn, βn+α, λ( )≤ 0Δ0Δ · · ·Δ0 � 0,

T βn+1, βn, θλ( ) � T ψβn,ψβn− 1, θλ( )≤T βn, βn− 1, λ( ),
(21)

for all n ∈ S and λ> 0. ,erefore, by applying the above
expression, we can deduce

T βn+1, βn, λ( )≤T βn+1, βn, θλ( ) � T ψβn,ψβn− 1, θλ( )≤T βn, βn− 1, λ( )
� T ψβn− 1,ψβn− 2, λ( )≤T βn− 1, βn− 2,

λ

θ
( )≤ · · · ≤T β1, β0,

λ

θn
( ), (22)

for all n ∈ S and λ> 0. ,us, from (22) and (B15), we have

T βn, βn+α, λ( )≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+α,

λ

2
( )

≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+2,

λ

22
( )ΔT βn+2, βn+3,

λ

23
( )Δ · · ·ΔT βn+α− 1, βn+α,

λ

2n+α
( )

≤T β1, β0,
λ

2θn
( )ΔT β1, β0,

λ

22θn
( )Δ · · ·ΔT β1, β0,

λ

2n+αθn
( ).

(23)
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We know that limλ⟶∞T(β, δ, λ) � 0, for all β, δ ∈ E,
and λ> 0. So, from (23), we get

lim
n⟶∞

T βn, βn+α, λ( )≤ 0Δ 0Δ · · ·Δ0 � 0. (24)

So, βn{ } is a Cauchy O-sequence. ,e O-completeness of
the NMS (E, R, S, T, ∗,Δ, ⊥ ) ensures that there exists
β∗ ∈ E, such that R(βn, β∗, λ)⟶ 1, S(βn, β∗, λ)⟶ 0, and
T(βn, β∗, λ)⟶ 0 as n⟶ +∞ for all λ> 0. Now, since ψ
is an ⊥-continuous mapping, R(βn+1,ψβ∗, λ) �
R(ψβn,ψβ∗, λ)⟶ 1, S(βn+1,ψβ∗, λ) � S(ψβn,ψβ∗, λ)
⟶ 0, and T(βn+1,ψβ∗, λ) � T(ψβn,ψβ∗, λ)⟶ 0 as
n⟶ +∞. Now, we have

R β∗,ψβ∗, λ( )≥R β∗, βn+1,
λ

2
( )∗R βn+1,ψβ∗,

λ

2
( ),

S β∗,ψβ∗, λ( )≤ S β∗, βn+1,
λ

2
( )ΔS βn+1,ψβ∗,

λ

2
( ),

T β∗,ψβ∗, λ( )≤T β∗, βn+1,
λ

2
( )ΔT βn+1,ψβ∗,

λ

2
( ).

(25)

Taking limit as n⟶ +∞, we get
R(β∗,ψβ∗, λ) � 1∗ 1 � 1, S(β∗,ψβ∗, λ) � 0Δ0 � 0, and
T(β∗,ψβ∗, λ) � 0Δ0 � 0, and hence, ψβ∗ � β∗.

Now, we show the uniqueness of the FP of the mapping
ψ. Assume that β∗ and δ∗ are two FPs of ψ, such that β∗ ≠ δ∗.
We can get

β0 ⊥ β∗,
β0 ⊥ δ∗.

(26)

Since T is ⊥-preserving, one writes

ψnβ0 ⊥ ψnβ∗,
ψnβ0 ⊥ ψnδ∗,

(27)

for all n ∈ S. So from (8), we can derive

R ψnβ0,ψ
nβ∗, λ( )≥R ψnβ0,ψ

nβ∗, θλ( )≥R β0, β∗,
λ

θn
( ),

R ψnβ0,ψ
nδ∗, λ( )≥R ψnβ0,ψ

nδ∗, θλ( )≥R β0, δ∗,
λ

θn
( ).

(28)
,erefore,

R β∗, δ∗, λ( ) � R ψnβ∗,ψ
nδ∗, λ( )

≥R ψnβ0,ψ
nβ∗,

λ

2
( )∗R ψnβ0,ψ

nδ∗,
λ

2
( )

≥R β0, β∗,
λ

2θn
( )∗R β0, δ∗,

λ

2θn
( )⟶ 1, as n⟶∞.

(29)
So from (9), we can derive

S ψnβ0,ψ
nβ∗, λ( )≤ S ψnβ0,ψnβ∗, θλ( )≤ S β0, β∗,

λ

θn
( ),

S ψnβ0,ψ
nδ∗, λ( )≤ S ψnβ0,ψnδ∗, θλ( )≤ S β0, δ∗,

λ

θn
( ).

(30)
,erefore,

S β∗, δ∗, λ( ) � S ψnβ∗,ψnδ∗, λ( )
≤ S ψnβ0,ψ

nβ∗,
λ

2
( )ΔS ψnβ0,ψ

nδ∗,
λ

2
( )

≤ S β0, β∗,
λ

2θn
( )ΔS β0, δ∗,

λ

2θn
( )⟶ 0, as n⟶∞.

(31)
Similarly, from (10), we can derive

T ψnβ0,ψ
nβ∗, λ( )≤T ψnβ0,ψ

nβ∗, θλ( )≤T β0, β∗,
λ

θn
( ),

T ψnβ0,ψ
nδ∗, λ( )≤T ψnβ0,ψ

nδ∗, θλ( )≤T β0, δ∗,
λ

θn
( ).

(32)
,erefore,

T β∗, δ∗, λ( ) � T ψnβ∗,ψ
nδ∗, λ( )

≤T ψnβ0,ψ
nβ∗,

λ

2
( )ΔT ψnβ0,ψ

nδ∗,
λ

2
( )

≤T β0, β∗,
λ

2θn
( )ΔT β0, δ∗,

λ

2θn
( )⟶ 0, as n⟶∞.

(33)
So, β∗ � δ∗; hence, β∗ is the unique FP. □

Corollary 1. Let (E, R, S, T, ∗,Δ, ⊥ ) be an O-complete
NMS. Let ψ: E⟶ E be ⊥-contraction and ⊥-preserving.
Suppose that if βn{ } is an O-sequence with βn⟶ β ∈ E, then
β⊥ βn for all n ∈ N. Ben, ψ has a unique FP, say β∗ ∈ E.
Furthermore, limn⟶∞R(ψ

nβ, β∗, λ) � 1, limn⟶∞S(ψ
n

β, β∗, λ) � 0, and limn⟶∞T(ψ
nβ, β∗, λ) � 0, for all β ∈ E

and λ> 0.

Proof. See Appendix. □

Example 4. Let E � [− 2, 2]. We define a binary relation⊥ by

β⊥ δ⟺ β + δ ≥ 0. (34)

Define an ONMS as in Example 2 by
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R(β, δ, λ) �

1, if β � δ,

λ

λ +max β, δ{ }, if otherwise,



S(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ +max β, δ{ }, if otherwise,



T(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ

, if otherwise,



(35)

for all β, δ ∈ E, λ> 0, with the CTN a∗ b � aΔb and CTCN
aΔb � max a, b{ }. ,en, (E, R, S, T, ∗,Δ, ⊥ ) is an O-com-
plete NMS. Define ψ: E⟶ E by

ψβ �

β

4
, β ∈ [− 2, 0],

0, β ∈ (0, 2].

 (36)

,en, the following cases are satisfied.

(1) If β ∈ [− 2, 0] and δ ∈ (0, 2], then ψβ � (β/4) and
ψδ � 0

(2) If β, δ ∈ [− 2, 0], then ψβ � (β/4) and ψδ � (δ/4)

(3) If β, δ ∈ (0, 2], then ψβ � 0 and ψδ � 0

(4) If β ∈ (0, 2] and δ ∈ [− 2, 0], then ψβ � 0 and
ψδ � (δ/4)

,is clearly implies that ψβ + ψδ ≥ 0. Hence, ψ is ⊥--
preserving. We can easily see that if limn⟶∞R(βn, β, λ) � 1,
then limn⟶∞R(ψβn,ψβ, λ) � 1, limn⟶∞S(βn, β, λ) � 0,
then limn⟶∞S(ψβn,ψβ, λ) � 0 and limn⟶∞T(βn, β, λ) � 0,
then limn⟶∞T(ψβn,ψβ, λ) � 0 for all β ∈ E and λ> 0.
Hence, ψ is ⊥ -continuous.

,e above cases 1–4 for θ ∈ [(1/2), 1) are satisfied
contractive conditions:

R(ψβ,ψδ, θλ)≥R(β, δ, λ),
S(ψβ,ψδ, θλ)≤ S(β, δ, λ),
T(ψβ,ψδ, θλ)≤T(β, δ, λ).

(37)

All conditions of ,eorem 1 are satisfied. Also, 0 is the
unique FP of ψ.

Theorem 2. Let (E, R, S, T, ∗,Δ, ⊥ ) be an O-complete
NMS, such that

lim
λ⟶∞

R(β, δ, λ) � 1,

lim
λ⟶∞

S(β, δ, λ) � 0,

∀β, δ ∈ E and λ> 0.

(38)

Let ψ: E⟶ E be ⊥-continuous, ⊥-contraction, and
⊥-preserving. Assume that there exist θ ∈ (0, 1) and λ> 0,
such that

R(ψβ, ψδ, θλ) ≥min R(ψβ, β, λ), R(ψδ, δ, λ){ },
S(ψβ, ψδ, θλ) ≤min S(ψβ, β, λ), S(ψδ, δ, λ){ },
T(ψβ, ψδ, θλ) ≤min T(ψβ, β, λ), T(ψδ, δ, λ){ },

(39)

for all β, δ ∈ E, λ> 0. Ben, ψ has a unique FP, so β∗ ∈ E.
Furthermore, limn⟶∞R(ψ

nβ, β∗, λ) � 1, limn⟶∞S
(ψnβ, β∗, λ) � 0, and limn⟶∞T(ψ

nβ, β∗, λ) � 0 for all β ∈ E
and λ> 0.

Proof. See Appendix. □

Corollary 2. Let (E, R, S, ∗ ,Δ, ⊥ ) be an O-complete IFMS
and ψ: E⟶ E be an ⊥-continuous and ⊥-preserving
mapping. Assume that there exists θ ∈ (0, 1), so that for all
λ> 0,
R(ψβ, ψδ, θλ)≥min R(ψβ, β, λ), R(ψδ, δ, λ), R(β, δ, λ){ },
S(ψβ, ψδ, θλ)≤min S(ψβ, β, λ), S(ψδ, δ, λ), S(β, δ, λ){ },
T(ψβ, ψδ, θλ)≤min T(ψβ, β, λ), T(ψδ, δ, λ), T(β, δ, λ){ }.

(40)

,en, ψ has a unique FP.

Proof. It follows from ,eorems 1 and 2. □

Example 5. Let E � [− 2, 2] and define a binary relation⊥ by
β ⊥ δ⟺ β + δ ≥ 0. (41)

Define R and S by

R(β, δ, λ) �

1, if β � δ,

λ

λ +max β, δ{ }, otherwise,



S(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ +max β, δ{ }, otherwise,



T(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ

, otherwise,



(42)

for all β, δ ∈ E, and λ> 0, with the CTN and CTCN, re-
spectively: a∗ b � a · b, aΔb � max a, b{ }, then
(E, R, S, T, ∗,Δ, ⊥ ) is an O-complete NMS. Note that
limλ⟶∞R(β, δ, λ) � 1, limλ⟶∞S(β, δ, λ) � 0, and
limλ⟶∞T(β, δ, λ) � 0 ∀ β, δ ∈ E. Define ψ: E⟶ E by
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ψβ �

β

4
, β ∈ − 2,

2

3
[ ],

1 − β, β ∈ 2

3
, 1( ],

β −
1

2
, β ∈ (1, 2].



(43)

We have the following cases:

(1) If β, δ ∈ [− 2, (2/3)], then ψβ � (β/4) and ψδ � (δ/4)
(2) If β, δ ∈ ((2/3), 1], then ψβ � 1 − β and ψδ � 1 − δ

(3) If β, δ ∈ (1, 2], then ψβ � β − (1/2) and
ψδ � δ − (1/2)

(4) If β ∈ [− 2, (2/3)] and δ ∈ ((2/3), 1], then ψβ � (β/4)
and ψδ � 1 − δ

(5) If β ∈ [− 2, (2/3)] and δ ∈ (1, 2], then ψβ � (β/4)
and ψδ � δ − (1/2)

(6) If β ∈ ((2/3), 1] and δ ∈ (1, 2], then ψβ � 1 − β and
ψδ � δ − (1/2)

(7) If β ∈ (1, 2] and δ ∈ ((2/3), 1], then ψβ � β − (1/2)
and ψδ � 1 − δ

(8) If β ∈ (1, 2] and δ ∈ [− 2, (2/3)], then
ψβ � β − (1/2) and ψδ � (δ/4)

(9) If β ∈ ((2/3), 1] and δ ∈ [− 2, (2/3)], then ψβ � 1 − β
and ψδ � (δ/4)

Because β⊥ δ⟺ β + δ ≥ 0, it clearly implies that
ψβ + ψδ ≥ 0. Hence, ψ is ⊥-preserving. Let βn{ } be an
arbitrary O-sequence in E that converges to β ∈ E. We
have

lim
n⟶∞

R βn, β, λ( ) � lim
n⟶∞

1, if β � δ,

λ

λ +max βn, β{ }, otherwise


� 1,

lim
n⟶∞

S βn, β, λ( ) � lim
n⟶∞

1, if β � δ,

max βn, β{ }
λ +max βn, β{ }, otherwise


� 0,

lim
n⟶∞

T βn, β, λ( ) � lim
n⟶∞

1, if β � δ,

max βn, β{ }
λ

, otherwise

 � 0.

(44)
Note that if limn⟶∞R(βn, β, λ) � 1, limn⟶∞S

(βn, β, λ) � 0, and limn⟶∞T(βn, β, λ) � 0, then limn⟶∞
R((ψβn,ψβ, λ) � 1, limn⟶∞S(ψβn,ψβ, λ) � 0, and limn⟶∞
T(ψβn,ψβ, λ) � 0 for all β ∈ E and λ> 0. Hence, ψ is or-
thogonal continuous. ,e case β � δ is clear. Let β≠ δ. We
have

R(ψβ, ψδ, θλ) ≥min R(ψβ, β, λ), R(ψδ, δ, λ){ },
S(ψβ, ψδ, θλ) ≤min S(ψβ, β, λ), S(ψδ, δ, λ){ },
T(ψβ, ψδ, θλ) ≤min T(ψβ, β, λ), T(ψδ, δ, λ){ }.

(45)

Indeed, it is satisfied for all above 9 cases. But, ψ is not a
contraction. Assume

min R(ψβ, β, λ), R(ψδ, δ, λ){ } � R(ψβ, β, λ),
min S(ψβ, β, λ), S(ψδ, δ, λ){ } � S(ψβ, β, λ),
min T(ψβ, β, λ), T(ψδ, δ, λ){ } � T(ψβ, β, λ),

(46)

then for β � − 1, δ � − 2, we have

R(ψβ,ψδ, θλ) �
θλ

θλ +max (β/4), (δ/4){ } �
4θλ

4θλ − 1
≥ 1,

S(ψβ,ψδ, θλ) �
max (β/4), (δ/4){ }

θλ +max (β/4), (δ/4){ } �
− 1

4θλ − 1
≤ 0,

S(ψβ,ψδ, θλ) �
max (β/4), (δ/4){ }

θλ
�
− 1

4θλ
≤ 0.

(47)
It is a contradiction. Hence, all the conditions of ,e-

orem 2 are satisfied and 0 is the unique FP of ψ.

Definition 11. Let (E, R, S, T, ∗,Δ, ⊥ ) be an ONMS. A
mapping ψ: E⟶ E is named to be an NS ⊥ -contractive if
∃ θ ∈ (0, 1), so that

1

R(ψβ, ψδ, λ)
− 1≤ θ 1

R(β, δ, λ)
− 1[ ],

S(ψβ,ψδ, λ)≤ θS(β, δ, λ),

T(ψβ,ψδ, λ)≤ θT(β, δ, λ),

(48)

for all β, δ ∈ E and λ> 0. Here, θ is called the NS ⊥ -con-
tractive constant of ψ.

Theorem 3. Let (E, R, S, T, ∗,Δ, ⊥ ) be an O-complete
NMS, such that

lim
λ⟶∞

R(β, δ, λ) � 1,

lim
λ⟶∞

S(β, δ, λ) � 0,

lim
λ⟶∞

T(β, δ, λ) � 0,

∀β, δ ∈ E.

(49)

Let ψ: E⟶ E be an ⊥-continuous, NS⊥-contraction,
and ⊥-preserving mapping. Bus, ψ has a FP, say υ ∈ E,
R(υ, υ, λ) � 1, S(υ, υ, λ) � 0, and T(υ, υ, λ) � 0 for all λ> 0.

Proof. Let (E, R, S, T, ∗,Δ, ⊥ ) be an O-complete NMS. For
an arbitrary β0 ∈ E,
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β0 ⊥ δ,
∀δ ∈ E.

(50)

,at is, β0 ⊥ψβ0. Consider
βn � ψ

nβ0 � ψβn− 1, for all n ∈ N. (51)

Since ψ is ⊥-preserving, βn{ } is an O-sequence. If βn �
βn− 1 for some n ∈ N, then βn is a FP of ψ. We assume that
βn ≠ βn− 1 for all n ∈ N. For all λ> 0 and n ∈ N, we get
from (48),

1

R βn, βn+1, λ( ) − 1 �
1

R ψβn− 1, ψβn, λ( ) − 1≤ θ 1

R βn− 1, βn, λ( ) − 1[ ],
S βn, βn+1, λ( ) � S ψβn− 1, ψβn, λ( )≤ θS βn− 1, βn, λ( ),
T βn, βn+1, λ( ) � T ψβn− 1, ψβn, λ( )≤ θT βn− 1, βn, λ( ).

(52)

We have

1

R βn, βn+1, λ( )≤
θ

R βn− 1, βn, λ( ) +(1 − θ), ∀λ> 0

�
θ

R ψβn− 2, ψβn− 1, λ( ) +(1 − θ)≤
θ2

R βn− 2, βn− 1, λ( ) + θ(1 − θ) +(1 − θ).
(53)

Continuing in this way, we get

1

R βn, βn+1, λ( )≤
θn

R β0, β1, λ( ) + θn− 1(1 − θ) + θn− 2(1 − θ) + · · · + θ(1 − θ) +(1 − θ)

≤ θn

R β0, β1, λ( ) + θn− 1 + θn− 2 + · · · + 1( )(1 − θ)

≤ θn

R β0, β1, λ( ) + 1 − θn( ).

(54)

We have

1

θn/R β0, β1, λ( )( ) + 1 − θn( )≤R βn, βn+1, λ( ), ∀λ> 0, n ∈ N, (55)

S βn, βn+1, λ( ) � S ψβn− 1,ψβn, λ( )≤ θS βn− 1, βn, λ( ) � θS ψβn− 2,ψβn− 1, λ( )
≤ θ2S βn− 2, βn− 1, λ( )≤ · · · ≤ θnS β0, β1, λ( ), ∀λ> 0, n ∈ N, (56)

T βn, βn+1, λ( ) � T ψβn− 1,ψβn, λ( )≤ θT βn− 1, βn, λ( ) � θT ψβn− 2,ψβn− 1, λ( )
≤ θ2T βn− 2, βn− 1, λ( )≤ · · · ≤ θnT β0, β1, λ( ), ∀λ> 0, n ∈ N. (57)

Now, for m≥ 1 and n ∈ N, we have
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R βn, βn+m, λ( )≥R βn, βn+1,
λ

2
( )∗R βn+1, βn+m,

λ

2
( )

≥R βn, βn+1,
λ

2
( )∗R βn+1, βn+2,

λ

22
( )

∗R βn+2, βn+m,
λ

22
( ).

(58)

Again, continuing in this way, we get

R βn, βn+m, λ( )≥R βn, βn+1,
λ

2
( )∗R βn+1, βn+2,

λ

22
( )∗ · · · ∗R βn+m− 1, βn+m,

λ

2m− 1
( ),

S βn, βn+p, λ( )≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+p,

λ

2
( )

≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+2,

λ

22
( )ΔS βn+2, βn+p,

λ

22
( ).

(59)

Continuing in this way, we get

S βn, βn+p, λ( )≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+2,

λ

22
( )Δ · · ·ΔS βn+p− 1, βn+p,

λ

2p− 1
( )

T βn, βn+p, λ( )≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+p,

λ

2
( )

≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+2,

λ

22
( )ΔT βn+2, βn+p,

λ

22
( ).

(60)

Continuing in this way, we get

T βn, βn+p, λ( )≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+2,

λ

22
( )Δ · · ·ΔT βn+p− 1, βn+p,

λ

2p− 1
( ). (61)

By using (55) in the above inequality, we have

R βn, βn+m, λ( )≥ 1

θn/R β0, β1, (λ/2)( )( ) + 1 − θn( ) ∗
1

θn+1/R β0, β1, λ/2
2( )( )( ) + 1 − θn+1( )

∗ · · · ∗ 1

θn+m− 1/R β0, β1, λ/2
m− 1( )( )( ) + 1 − θn+m− 1( ),

≥ 1

θn/R β0, β1, (λ/2)( )( ) + 1
∗ 1

θn+1/R β0, β1, λ/2
2( )( )( ) + 1

∗ · · · ∗ 1

θn+m− 1/R β0, β1, λ/2
m− 1( )( )( ) + 1

,

(62)
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using (56),

S βn, βn+p, λ( )≤ S βn, βn+1,
λ

2
( )ΔS βn+1, βn+2,

λ

22
( )Δ · · ·ΔS βn+p− 1, βn+p,

λ

2p− 1
( ), (63)

and using (57),

T βn, βn+p, λ( )≤T βn, βn+1,
λ

2
( )ΔT βn+1, βn+2,

λ

22
( )Δ · · ·ΔT βn+p− 1, βn+p,

λ

2p− 1
( ), (64)

θ ∈ (0, 1), we deduce from the above expression that

lim
n⟶∞

R βn, βn+m, λ( ) � 1,

lim
n⟶∞

S βn, βn+m, λ( ) � 0,

lim
n⟶∞

T βn, βn+m, λ( ) � 0,

for all λ> 0, m≥ 1.

(65)

,erefore, βn{ } is a Cauchy O-sequence in
(E, R, S, T, ∗,Δ, ⊥ ). By the completeness of
(E, R, S, T, ∗,Δ, ⊥ ), we know that ψ is an ⊥ -continuous
mapping and there exists υ ∈ E, such that

lim
n⟶∞

R βn+1, υ, λ( ) � lim
n⟶∞

R ψβn,ψυ, λ( ) � 1, ∀λ> 0,

(66)

lim
n⟶∞

S βn+1, υ, λ( ) � lim
n⟶∞

S ψβn,ψυ, λ( ) � 0, ∀λ> 0,

(67)

lim
n⟶∞

T βn+1, υ, λ( ) � lim
n⟶∞

T ψβn,ψυ, λ( ) � 0, ∀λ> 0.

(68)
Now, we prove that υ is a FP of ψ. For this, we obtain

from (48) that

1

R ψβn,ψυ, λ( ) − 1≤ θ 1

R βn, υ, λ( ) − 1[ ] � θ

R βn, υ, λ( ) − θ.
(69)

,at is,

1

θ/R βn, υ, λ( )( ) + 1 − θ
≤R ψβn,ψυ, λ( ). (70)

Using the above inequality, we obtain

R(υ,ψυ, λ)≥R υ, βn+1,
λ

2
( )∗R βn+1,ψυ,

λ

2
( )

� R υ, βn+1,
λ

2
( )∗R ψβn,ψυ,

λ

2
( )

≥ R υ, βn+1,
λ

2
( )∗ 1

θ/R βn, υ, λ/2( )( ) + 1 − θ
,

S(w, v, λ) � S(ψw,ψv, λ)≤ θS(w, v, λ)< S(w, v, λ),

� S w, βn+1,
λ

2
( )ΔS ψβn,ψw,

λ

2
( )

≤ S w, βn+1,
λ

2
( )ΔθS βn, w,

λ

2
( ),

T(w, v, λ) � T(ψw,ψv, λ)≤ θT(w, v, λ)<T(w, v, λ)

� T w, βn+1,
λ

2
( )ΔT ψβn,ψw,

λ

2
( )

≤ T w, βn+1,
λ

2
( )ΔθT βn, w,

λ

2
( ).

(71)
Taking limit as n⟶∞ and using (66)–(68) in the

above expression, we get that R(υ,ψυ, λ) � 1, S(υ,ψυ, λ) � 0
and T(υ,ψυ, λ) � 0, that is, ψυ � υ. ,erefore, υ is a FP of ψ,
R(υ, υ, λ) � 1, S(υ, υ, λ) � 0, and T(υ, υ, λ) � 0 for all
λ> 0. □

Corollary 3. Let (E, R, S, T, ∗,Δ, ⊥ ) be a O-complete NMS
and ψ: E⟶ E satisfy
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1

R ψnβ,ψnδ, λ( ) − 1≤ θ 1

R(β, δ, λ)
− 1[ ],

S ψnβ,ψnδ, λ( )≤ θS(β, δ, λ),
T ψnβ,ψnδ, λ( )≤ θT(β, δ, λ),

(72)

for all n ∈ N, β, δ ∈ E, λ> 0, where 0< θ< 1. Ben, ψ has a FP.

Proof. υ ∈ E is the unique FP of ψn by using,eorem 3, and
R(υ, υ, λ) � 1, S(υ, υ, λ) � 0, T(υ, υ, λ),∀λ> 0, ψυ is also a FP
of ψn as ψn(ψυ) � ψυ. From,eorem 3, ψυ � υ, where υ is a
FP since the FP of ψ is also a FP of ψn. □

Example 6. Let E � [− 1, 2] and define a binary relation ⊥ by
β ⊥ δ⟺ β + δ ≥ 0. (73)

Define R, S, T by

R(β, δ, λ) �

1, if β � δ,

λ

λ +max β, δ{ }, if otherwise,



S(β, δ, λ) �

0, if β � δ,

1 −
λ

λ +max β, δ{ }, if otherwise,



T(β, δ, λ) �

0, if β � δ,

max β, δ{ }
λ

, if otherwise.



(74)

With CTN a∗ b � a · b and CTCN aΔb � max a, b{ },
(E, R, S, T, ∗,Δ, ⊥ ) is an O-complete NMS. Also, observe
that limλ⟶∞R(β, δ, λ) � 1, limλ⟶∞S(β, δ, λ) � 0, and
limλ⟶∞T(β, δ, λ) � 0, ∀ β, δ ∈ E.

Define ψ: E⟶ E by

ψβ �
2 − β, β ∈ [− 1, 1),
1, β ∈ [1, 2].

{ (75)

,erefore, it will satisfy the following cases:

(1) If β, δ ∈ [− 1, 1), then ψβ � 2 − β and ψδ � 2 − δ

(2) If β, δ ∈ [1, 2], then ψβ � ψδ � 1

(3) If β ∈ [− 1, 1) and δ ∈ [1, 2], then ψβ � 2 − β and
ψδ � 1

(4) If β ∈ [1, 2] and δ ∈ [− 1, 1), then ψβ � 1 and
ψδ � 2 − δ

Because β⊥ δ⟺ β + δ ≥ 0, it clearly implies that
ψβ + ψδ ≥ 0. Hence, ψ is ⊥-preserving. Let βn{ } be an ar-
bitrary O-sequence in E that βn{ } converges to β ∈ E.

lim
n⟶∞

R βn, β, λ( ) � 1,

lim
n⟶∞

S βn, β, λ( ) � 0,

lim
n⟶∞

T βn, β, λ( ) � 0,

(76)

as βn{ } converges to β. We can easily see that if
limn⟶∞R(βn, β, λ) � 1, limn⟶∞S(βn, β, λ) � 0, and
limn⟶∞T(βn, β, λ) � 0, then clearly limn⟶∞R(ψβn,
ψβ, λ) � 1, limn⟶∞S(ψβn,ψβ, λ) � 0, and limn⟶∞T(ψβn,
ψβ, λ) � 0 for all β ∈ E and λ> 0. Hence, ψ is orthogonal
continuous. Also, above all cases satisfied NS ⊥-contractive
mapping

1

R(ψβ,ψδ, λ)
− 1≤ θ 1

R(β, δ, λ)
− 1[ ],

S(ψβ,ψδ, λ)≤ θS(β, δ, λ),

T(ψβ,ψδ, λ)≤ θT(β, δ, λ).

(77)

All conditions of ,eorem 3 are satisfied and 1 is a FP
of ψ.

4. Conclusion

Herein, we have introduced the notion of orthogonal
neutrosophic metric space and investigated some new type
fixed point theorems in this new setting. Moreover, we have
provided nontrivial examples to demonstrate the viability of
the proposed methods. Since our structure is more general
than the class of neutrosophic metric spaces, our results and
notions expand and generalize a number of previously
published results. ,is study can be easily extended in the
structure of orthogonal neutrosophic cone metric spaces,
orthogonal neutrosophic triple partial metric spaces, or-
thogonal neutrosophic triple V-generalized metric spaces,
orthogonal neutrosophic triple partial bipolar metric spaces,
and orthogonal neutrosophic triple partial g-metric spaces.

Appendix

Definition A.1 (See [11]). A binary operation ∗: [0, 1]× [0,
1]⟶ [0, 1] is called a CTN if

π ∗µ � µ ∗π, (∀) π, µ ∈ [0, 1]. (A.1)

(1) ∗ is continuous;

π ∗1 � π, (∀) π ∈ [0, 1],
π ∗µ( ) ∗ρ � π ∗ µ ∗ρ( ), (∀) π, µ, ρ ∈ [0, 1].

(A.2)

(2) If π ≤ ρ and µ≤ σ, with π, µ, ρ, σ ∈ [0, 1], then
π ∗µ≤ ρ ∗σ.

Example A.1 (See [11]). Some fundamental examples of
CTNs are π ∗µ � π · µ, π ∗µ � min π, µ{ } and
π ∗µ � max π + µ − 1, 0{ }.
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Definition A.2 (See [11]). A binary operation ○: [0, 1]× [0,
1]⟶ [0, 1] is called a CTCN if it meets the following
assertions:

π○ µ � µ○ π, for all π, µ ∈ [0, 1]. (A.3)

(a) ○ is continuous;

π○ 0
(π○ µ)○ ρ � π○ (µ○ ρ), for all π, µ, ρ ∈ [0, 1].

(A.4)

(b) If π ≤ ρ and µ≤ σ, with π, µ, ρ, σ ∈ [0, 1], then
π○ µ≤ ρ○ σ.

Example A.2 (See [11]). π○ µ � max π, µ{ } and π○ µ �
min π + µ, 1{ } are examples of CTCNs.

Definition A.3 (See [1]). A fuzzy set is a pair (E, f), where E
is a nonempty set, f: E⟶ [0, 1] is a membership function,
and for each β ∈ E, f(β) is called the grade of membership of
β in (E, f).

Definition A.4 (See [18]). Let E≠∅ and z∈ E. A neu-
trosophic set G in E is categorized by a truth-membership
function, RG(z), an indeterminacy-membership function
S(z) and a falsity membership function TG(z). ,e func-
tions RG(z), SG(z), and TG(z) are real standard or non-
standard subsets of ]0− , 1+[, that is, RG(z): X⟶ ]0− , 1+[,
SG(z): X⟶ ]0− , 1+[ and TG(z): X⟶ ]0− , 1+[. So,

0− ≤ supRG(z) + supSG(z) + supTG(z)≤ 3+. (A.5)

Proof. of Corollary 1. We can similarly derive as in the
proof of ,eorem 1 that βn{ } is a Cauchy O-sequence, and
so, it converges to β∗ ∈ E. Hence, β∗ ⊥ βn for all n ∈ N. From
(8), we can get

R ψβ∗, βn+1, λ( ) � R ψβ∗,ψβn, λ( )
≥R ψβ∗,ψβn, λθ( )≥R β∗, βn, λ( )

lim
n⟶∞

R ψβ∗, βn+1, λ( ) � 1.

(A.6)
,en, we can write

R β∗,ψβ∗, λ( )≥R β∗, βn+1,
λ

2
( )∗R βn+1,ψβ∗,

λ

2
( ). (A.7)

Taking limit as n⟶ +∞, we get
R(β∗,ψβ∗, λ) � 1∗ 1 � 1, and from (9), we can get

S ψβ∗, βn+1, λ( ) � S ψβ∗,ψβn, λ( )≤ S ψβ∗,ψβn, λθ( )
≤ S β∗, βn, λ( )

lim
n⟶∞

S ψβ∗, βn+1, λ( ) � 0.

(A.8)
,en, we can write

S β∗,ψβ∗, λ( )≤ S β∗, βn+1,
λ

2
( )ΔS βn+1,ψβ∗,

λ

2
( ). (A.9)

Taking limit as n⟶ +∞, we get

S β∗,ψβ∗, λ( ) � 0Δ0 � 0, (A.10)

and from (10), we can get

T ψβ∗, βn+1, λ( ) � T ψβ∗,ψβn, λ( )
≤T ψβ∗,ψβn, λθ( )≤T β∗, βn, λ( )

lim
n⟶∞

T ψβ∗, βn+1, λ( ) � 0.

(A.11)
,en, we can write

T β∗,ψβ∗, λ( )≤T β∗, βn+1,
λ

2
( )ΔT βn+1,ψβ∗,

λ

2
( ). (A.12)

Taking limit as n⟶ +∞, we get

T β∗,ψβ∗, λ( ) � 0Δ0 � 0, (A.13)

so ψβ∗ � β∗. Next proof is similar as in ,eorem 1. □

Proof. of ,eorem 2. Since (E, R, S, T, ∗,Δ, ⊥ ) is an
O-complete NMS, there exists β0 ∈ E, such that

β0 ⊥ δ,
∀δ ∈ E.

(A.14)

,us, β0 ⊥ψ. Consider
βn � ψ

nβ0 � ψβn− 1, ∀n ∈ S. (A.15)

Since ψ is ⊥-preserving, βn{ } is an O-sequence. We can
get

R βn+1, βn, λ( )≥R βn+1, βn, θλ( ) � R ψβn,ψβn− 1, θλ( )
≥min R ψβn, βn, λ( ), R ψβn− 1, βn− 1, λ( ){ },

S βn+1, βn, λ( )≤ S βn+1, βn, θλ( ) � S ψβn,ψβn− 1, θλ( )
≤min S ψβn, βn, λ( ), S ψβn− 1, βn− 1, λ( ){ },

T βn+1, βn, λ( )≤T βn+1, βn, θλ( ) � T ψβn,ψβn− 1, θλ( )
≤min T ψβn, βn, λ( ), T ψβn− 1, βn− 1, λ( ){ }.

(A.16)

Two cases arise.

Case 1: if R(βn+1, βn, λ)≥R(ψβn, βn, λ), then

R βn+1, βn, λ( )≥R βn+1, βn, θλ( )
≥R ψβn, βn, λ( ) � R βn+1, βn, λ( )

S βn+1, βn, λ( )≤ S ψβn, βn, λ( ).
(A.17)

,en,
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S βn+1, βn, λ( )≤ S βn+1, βn, θλ( )
≤ S ψβn, βn, λ( ) � S βn+1, βn, λ( )

T βn+1, βn, λ( )≤T ψβn, βn, λ( ).
(A.18)

,en,

T βn+1, βn, λ( )≤T βn+1, βn, θλ( )
≤T ψβn, βn, λ( ) � T βn+1, βn, λ( ).

(A.19)

,en by Lemma 1, βn � βn+1 for all n ∈ N.
Case 2: if R(βn+1, βn, λ)≥R(ψβn− 1, βn− 1, λ), then

R βn+1, βn, λ( )≥R βn+1, βn, θλ( )
≥R ψβn− 1, βn− 1, λ( )≥R βn, βn− 1, λ( ),

S βn+1, βn, λ( )≤ S ψβn− 1, βn− 1, λ( ).
(A.20)

,en,

S βn+1, βn, λ( )≤ S βn+1, βn, θλ( )
≤ S ψβn− 1, βn− 1, λ( )≤ S βn, βn− 1, λ( )

T βn+1, βn, λ( )≤T ψβn− 1, βn− 1, λ( ).
(A.21)

,en,

T βn+1, βn, λ( )≤T βn+1, βn, θλ( )≤T ψβn− 1, βn− 1, λ( )
≤T βn, βn− 1, λ( ),

(A.22)
for all n ∈ N and λ> 0.,en by,eorem 1, we have a Cauchy
O-sequence. By completeness of (E, R, S, T, ∗ ,Δ, ⊥ ), there
exists β∗ ∈ E, such that

lim
n⟶∞

R βn, β∗, λ( ) � 1,

lim
n⟶∞

S βn, β∗, λ( ) � 0,

lim
n⟶∞

T βn, β∗, λ( ) � 0,

for all λ > 0.

(A.23)

We know that ψ is an ⊥ -continuous mapping, then

lim
n⟶∞

R βn+1, ψβ∗, λ( ) � lim
n⟶∞

R ψβn, ψβ∗, λ( ) � 1,

lim
n⟶∞

S βn+1, ψβ∗, λ( ) � lim
n⟶∞

S ψβn, ψβ∗, λ( ) � 0,

lim
n⟶∞

T βn+1, ψβ∗, λ( ) � lim
n⟶∞

T ψβn, ψβ∗, λ( ) � 0.

(A.24)
Now, we prove that β∗ is a FP of ψ. Let λ1 ∈ (θ, 1) and

λ2 � 1 − λ1. ,en,

R ψβ∗, β∗, λ( )≥R ψβ∗, βn+1,
λλ1
2

( )∗R βn+1, β∗,
λλ2
2

( )

� R ψβ∗, ψβn,
λλ1
2

( )∗R βn+1, β∗,
λλ2
2

( )

≥min R ψβ∗, β∗,
λλ1
2θ

( ), R ψβn, βn,
λλ1
2θ

( ){ }

∗R βn+1, β∗,
λλ2
2

( )

� min R ψβ∗, β∗,
λλ1
2θ

( ), R βn+1, βn,
λλ1
2θ

( ){ }∗R βn+1, β∗,
λλ2
2

( ).

(A.25)

Taking n⟶∞, we get
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R ψβ∗, β∗, λ( )≥min R ψβ∗, β∗,
λλ1
2θ

( ), 1{ }∗ 1,

R ψβ∗, β∗, λ( )≥R ψβ∗, β∗,
λ

v
( ), λ> 0,

S ψβ∗, β∗, λ( )≤ S ψβ∗, βn+1,
λλ1
2

( )ΔS βn+1, β∗,
λλ2
2

( )

� S ψβ∗,ψβn,
λλ1
2

( )ΔS βn+1, β∗,
λλ2
2

( )

≤min S ψβ∗, β∗,
λλ1
2θ

( ), S ψβn, βn,
λλ1
2θ

( ){ }ΔS βn+1, β∗,
λλ2
2

( )

� min S ψβ∗, β∗,
λλ1
2θ

( ), S βn+1, βn,
λλ1
2θ

( ){ }ΔS βn+1, β∗,
λλ2
2

( ).

(A.26)

Taking n⟶∞, we get

S ψβ∗, β∗, λ( )≤min S ψβ∗, β∗,
λλ1
2θ

( ), 0{ }Δ0,

S ψβ∗, β∗, λ( )≤ S ψβ∗, β∗,
λ

v
( ), λ> 0,

T ψβ∗, β∗, λ( )≤T ψβ∗, βn+1,
λλ1
2

( )ΔT βn+1, β∗,
λλ2
2

( )

� T ψβ∗,ψβn,
λλ1
2

( )ΔT βn+1, β∗,
λλ2
2

( )

≤min T ψβ∗, β∗,
λλ1
2θ

( ), T ψβn, βn,
λλ1
2θ

( ){ }ΔT βn+1, β∗,
λλ2
2

( )

� min T ψβ∗, β∗,
λλ1
2θ

( ), T βn+1, βn,
λλ1
2θ

( ){ }ΔT βn+1, β∗,
λλ2
2

( ).

(A.27)

Taking n⟶∞, we get

T ψβ∗, β∗, λ( )≤min T ψβ∗, β∗,
λλ1
2θ

( ), 0{ }Δ0,
T ψβ∗, β∗, λ( )≤T ψβ∗, β∗,

λ

v
( ), λ> 0.

(A.28)

Here, v � (2θ/λ1) ∈ (0, 1); from Lemma 1, we have
ψβ∗ � β∗.

Take β∗ and δ∗ to be two different FPs of ψ to prove the
uniqueness. We have

β0 ⊥ β∗,
β0 ⊥ δ∗.

(A.29)

Because ψ is an ⊥ -preserving, so we can write

ψnβ0 ⊥ ψnβ∗,

ψnβ0 ⊥ ψnδ∗,

for all n ∈ N.

(A.30)

We can write
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R ψnβ0, ψ
nβ∗, λ( )≥ R ψnβ0,ψ

nβ∗, θλ( )≥min R ψnβ0, β0, λ( ), R ψnβ∗, β∗, λ( ){ },
R ψnβ0, ψ

nδ∗, λ( )≥ R ψnβ0,ψ
nδ∗, θλ( )≥min R ψnβ0, β0, λ( ), R ψnδ∗, δ∗, λ( ){ }. (A.31)

Hence, we write that

R β∗, δ∗, λ( ) � R ψnβ∗,ψ
nδ∗, λ( )≥min R ψnβ∗, β∗,

λ

θ
( ), R ψnδ∗δ∗,

λ

θ
( ){ } � min 1, 1{ } � 1,

S ψnβ0,ψ
nβ∗, λ( )≤ S ψnβ0,ψnβ∗, θλ( )≤min S ψnβ0, β0, λ( ), S ψnβ∗, β∗, λ( ){ },

S ψnβ0,ψ
nδ∗, λ( )≤ S ψnβ0,ψnδ∗, θλ( )≤min S ψnβ0, β0, λ( ), S ψnδ∗, δ∗, λ( ){ }.

(A.32)

Hence, we write that

S β∗, δ∗, λ( ) � S ψnβ∗,ψnδ∗, λ( )≤min S ψnβ∗, β∗,
λ

θ
( ), S ψnδ∗, δ∗,

λ

θ
( ){ } � min 0, 0{ } � 0,

T ψnβ0,ψ
nβ∗, λ( )≤ T ψnβ0,ψ

nβ∗, θλ( )≤min T ψnβ0, β0, λ( ), T ψnβ∗, β∗, λ( ){ },
T ψnβ0,ψ

nδ∗, λ( )≤T ψnβ0,ψ
nδ∗, θλ( )≤min T ψnβ0, β0, λ( ), T ψnδ∗, δ∗, λ( ){ }.

(A.33)

Hence, we write that

T β∗, δ∗, λ( ) � T ψnβ∗,ψ
nδ∗, λ( )≤min T ψnβ∗, β∗,

λ

θ
( ), T ψnδ∗, δ∗,

λ

θ
( ){ } � min 0, 0{ } � 0, (A.34)

for all λ> 0. Hence, β∗ � δ∗. □
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[12] M. Kirişci and N. Simsek, “Neutrosophic metric spaces,”
Mathematical Sciences, vol. 14, pp. 241–248, 2020.
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