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1 Introduction

It is well known that the fixed point theorem of Banach, for contraction
mappings, is one of the pivotal result in analysis. It has been used in differ-
ent fields of mathematics. Fixed point problems involving different types of
contractive inequalities have been studied by many authors (see [1]-[18] and
references cited therein).

Ya. I. Alber and S. Guerre-Delabriere [1] introduced the concept of weakly
contractive mappings and proved the existence of fixed points for single-
valued weakly contractive mappings in Hilbert spaces. Thereafter, in 2001,
B. E. Rhoades [18] proved the fixed point theorem which is one of the gen-
eralizations of Banach’s Contraction Mapping Principle, because the weakly
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contractions contains contractions as a special case and he also showed that
some results of [1] are true for any Banach space. In fact, weakly contractive
mappings are closely related to the mappings of D. W. Boyd and T. S. W.
Wong [2] and of S. Reich types [17].

In [15], W. A. Kirk et al. introduced the following notion of cyclic repre-
sentation and characterized the Banach Contraction Principle in the context
of cyclic mapping.

Definition 1.1. [15] Let X be a non-empty set and T : X → X an operator.
By definition, X = ∪mi=1Xi is a cyclic representation of X with respect to T
if:

1. Xi with i = 1, . . . ,m are non-empty sets,

2. T (X1) ⊂ X2,. . . , T (Xm−1) ⊂ Xm, T (Xm) ⊂ X1.

M. Pacurar and I.A. Rus [16] proved the following important result o in
fixed point theory. We state an analogue of this result as follows.

Theorem 1.1. [16] Let (X, d) be a complete metric space, m ∈ N, A1, A2,
. . . , Am be non-empty closed subsets of X with , Am+1 = A1, Y = ∪mi=1Ai,
φ : [0,∞)→ [0,∞) be monotone increasing continuous functions with{

φ(t) > 0, if t > 0,
φ(0) = 0,

and T : Y → Y be an operator. Assume that:

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2. d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

for any x ∈ Ai, y ∈ Ai+1 with i = 1, 2, . . . ,m. Then T has a unique fixed
point z ∈ ∩ni=1Ai.

In 2013, S. Chandok and V. Popa [7] introduced the notion of cyclic
(µ, ψ, φ)-weakly contraction mappings and they also derived a fixed point
theorem for such cyclic contractions, in the framework of complete metric
spaces.

In this paper, we introduce a generalization of cyclic (µ, ψ, φ)-weakly
contraction and derive the existence of a fixed point for such mappings in
the setup of complete metric spaces. Our results extend and improve some
fixed point theorems in the literature.
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2 Background

Throughout this paper, N stands for the set of all positive integers and
N0 := N∪{0}. We introduce our notion of cyclic (µ, ψ, φ)-weakly contraction
mappings in metric space.

Let θ denote the set of all monotone increasing continuous functions
µ : [0,∞)→ [0,∞), with

µ(t) > 0, if t > 0,
µ(0) = 0,
µ(t1 + t2) ≤ µ(t1) + µ(t2), for all t1, t2 ∈ [0,∞).

Let Φ denote the set of all continuous functions φ : [0,∞)→ [0,∞) such that{
φ(t) > 0, if t > 0,
φ(0) ≥ 0.

Let C − class denote the set of all functions f : [0,∞)2 → [0,∞) such
that

1. f is continuous which is increasing in first variable,

2. for all t, s ∈ [0,∞), f(s, t, ) ≤ s,

3. f(s, t) = s =⇒ s = 0 or t = 0.

Let Ψ denote the set of all functions ψ : [0,∞)5 → [0,∞) such that

1. ψ is continuous,

2. ψ is strictly increasing in all the variables,

3. For all t ∈ (0,∞), we have ψ(t, t, t, 0, 2t) ≤ t, ψ(t, t, t, 2t, 0) ≤ t,
ψ(0, 0, t, t, 0) ≤ t, ψ(0, t, 0, 0, t) ≤ t and ψ(t, 0, 0, t, t) ≤ t.

Example 2.1. Let s, t ∈ [0,∞), then the following functions are of C−class:

1. f(s, t) = s− t, f(s, t) = s ⇒ t = 0,

2. f(s, t) = s−t
1+t

, f(s, t) = s ⇒ t = 0,

3. f(s, t) = s
1+t

, f(s, t) = s ⇒ s = 0 or t = 0,

4. f(s, t) = s− t
1+t

, f(s, t) = s ⇒ t = 0,

5. f(s, t) = s loga+t a, a ∈ (1,∞), f(s, t) = s ⇒ s = 0 or t = 0,
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6. f(s, t) = s− s
1+t

, f(s, t) = s ⇒ s = 0.

Definition 2.1. Let (X, d) be a metric space, m be a natural number, A1, A2 . . . , Am
be non-empty subsets of X and Y = ∪mi=1Ai. An operator T : Y → Y is called
a cyclic (µ, ψ, φ)-f-weakly contraction if

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2.

µ
(
d(Tx, Ty)

)
≤ f

(
ψ
(
µ
(
d(x, y)

)
, µ
(
d(x, Tx)

)
, µ
(
d(y, Ty)

)
, µ
(
d(x, Ty)

)
, µ
(
d(y, Tx)

))
, φ
(
M(x, y)

))
,

for all x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ θ, φ ∈ Φ,
ψ ∈ Ψ and M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Definition 2.2. Let (X, d) be a metric space, m be a natural number, A1, A2 . . . , Am
be non-empty subsets of X and Y = ∪mi=1Ai. An operator T : Y → Y is called
a cyclic (µ, ψ, φ)-raitional-weakly contraction if

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2.

µ
(
d(Tx, Ty)

)
≤

ψ
(
µ
(
d(x, y)

)
, µ
(
d(x, Tx)

)
, µ
(
d(y, Ty)

)
, µ
(
d(x, Ty)

)
, µ
(
d(y, Tx)

))
1 + φ

(
M(x, y)

)
for all x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ θ, φ ∈ Φ,
ψ ∈ Ψ and M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

3 Main results

To state and prove our main results, we need the following lemma in the
sequel.

Lemma 3.1. For every positive real number ε, there exists a natural number
n such that if r, q ≥ n with r − q ≡ 1 (modm), then d(xr, xq) < ε.
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Proof. Assume the contrary. Thus there exists ε > 0 such that for any n ∈ N,
we can find rn > qn ≥ n with rn− qn ≡ 1 (modm) satisfying d(xrn , xqn) ≥ ε.

Now, we take n > 2m. Then, corresponding to qn ≥ n, we can choose rn
in such that it is a smallest integer with rn > qn satisfying rn−qn ≡ 1 (modm)
and d(xrn , xqn) ≥ ε. Therefore, d(xrn−m , xqn) < ε. By using the triangular
inequality, we have

ε ≤ d(xqn , xrn)

≤ d(xqn , xrn−m) +
m∑
i=1

d(xrn−i
, xrn−i+1

)

< ε+
m∑
i=1

d(xrn−i
, xrn−i+1

).

Letting n→∞ and using d(xn+1, xn)→ 0, we obtain

lim d(xqn , xrn) = ε. (3.1)

Again, by the triangular inequality,

ε ≤ d(xqn , xrn)

≤ d(xqn , xqn+1) + d(xqn+1 , xrn+1) + d(xrn+1 , xrn)

≤ d(xqn , xqn+1) + d(xqn+1 , xqn) + d(xqn , xrn) + d(xrn , xrn+1) + d(xrn+1 , xrn).

Letting n→∞ and using d(xn+1, xn)→ 0, we get

lim d(xqn+1 , xrn+1) = ε. (3.2)

Consider

d(xqn , Txrn) = d(xqn , xrn+1)

≤ d(xqn , xrn) + d(xrn , xrn+1), (3.3)

and

d(xrn , Txqn) = d(xrn , xqn+1)

≤ d(xrn , xqn) + d(xqn , xqn+1). (3.4)

Taking n→∞ in the inequalities (3.3) and (3.4), we have

lim
n→∞

d(xqn , Txrn) = ε, (3.5)

and
lim
n→∞

d(xrn , Txqn) = ε. (3.6)
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As xqn and xrn lie in different adjacently labeled sets Ai and Ai+1 for
certain 1 ≤ i ≤ m, using the fact T is a cyclic (µ, ψ, φ)-weakly contraction,
we obtain

µ(ε) ≤ µ
(
d(xqn+1 , xrn+1)

)
= µ

(
d(Txqn , Txrn)

)
≤ f

(
ψ
(
µ
(
d(xqn , xrn)

)
, µ
(
d(xqn , Txqn)

)
, µ
(
d(xrn , Txrn)

)
, µ
(
d(xqn , Txrn)

)
, µ
(
d(xrn , Txqn)

))
, φ
(
M(xqn , xrn)

))
= f

(
ψ
(
µ
(
d(xqn , xrn)

)
, µ
(
d(xqn , xqn+1)

)
, µ
(
d(xrn , xrn+1)

)
, µ
(
d(xqn , xrn+1)

)
, µ
(
d(xrn , xqn+1)

))
, φ
(
M(xqn , xrn)

))
,

where M(xqn , xrn) = max
{
d(xqn , xrn), d(xqn , Txqn), d(xrn , Txrn)

}
Letting n→∞ in the last inequality, by using (3.5), (3.6), the continuity

of µ and φ and the property of ψ, we get that

µ(ε) ≤ f
(
ψ
(
µ(ε), µ(0), µ(0), µ(ε), µ(ε)

)
, φ(ε)

)
≤ f

(
µ(ε), φ(ε)

)
.

Consequently, we obtain that µ(ε) = 0 and φ(ε) = 0 which is a contradiction
with ε > 0. Hence, the result is proved.

Theorem 3.2. Let (X, d) be a complete metric space, f : [0,∞)2 −→ R be a
function of C-class, m ∈ N, A1, A2, . . . , Am be non-empty closed subsets of
X and Y = ∪mi=1Ai. Suppose that T is a cyclic (µ, ψ, φ)-f-weakly contraction.
Then T has a fixed point z ∈ ∩ni=1Ai.

Proof. We can construct a sequence xn+1 = Txn with n ∈ N0. If there exists
n0 ∈ N such that xn0+1 = xn0 , hence the result. Indeed, we can see that
Txn0 = xn0+1 = xn0 . Now, we assume that xn+1 6= xn for any n ∈ N0.
As X = ∪mi=1Ai, for any n > 0, there exists in ∈ {1, 2, . . . ,m} such that
xn−1 ∈ Ain and xn ∈ Ain+1 . Since T is a cyclic (µ, ψ, φ)-weakly contraction,
we have

µ
(
d(xn+1, xn)

)
= µ

(
d(Txn, Txn−1)

)
≤ f

(
ψ
(
µ
(
d(xn, xn−1)

)
, µ
(
d(xn, Txn)

)
, µ
(
d(xn−1, Txn−1)

)
, µ
(
d(xn, Txn−1)

)
, µ
(
d(xn−1, Txn)

))
, φ
(
M(xn, xn−1)

))
= f

(
ψ
(
µ
(
d(xn, xn−1)

)
, µ
(
d(xn, xn+1)

)
, µ
(
d(xn−1, xn)

)
, µ
(
d(xn, xn)

)
, µ
(
d(xn−1, xn+1)

))
, φ
(
M(xn, xn−1)

))
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where M(xn, xn−1) = max
{
d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)

}
.

If M(xn, xn−1) = d(xn, xn+1), then

µ
(
d(xn+1, xn)

)
≤ f

(
ψ
(
µ
(
d(xn, xn+1)

)
, µ
(
d(xn, xn+1)

)
, µ
(
d(xn, xn+1)

)
, 0,

2µ
(
d(xn, xn+1)

))
, φ
(
d(xn, xn+1)

))
≤ f

(
µ
(
d(xn, xn+1)

)
, φ
(
d(xn, xn+1)

))
≤ µ

(
d(xn, xn+1)

)
,

which is a contradiction. Hence,

µ
(
d(xn+1, xn)

)
≤ f

(
µ
(
d(xn, xn−1)

)
, φ
(
d(xn, xn−1)

))
(3.7)

and
d(xn+1, xn) ≤ d(xn, xn−1).

Thus, {d(xn+1, xn)} is a monotone decreasing sequence of non-negative real
numbers and hence is convergent. Therefore, there exists r ≥ 0 such that
d(xn+1, xn)→ r.

Letting n → ∞ in (3.7) and using the continuity of µ and φ, we obtain
that

µ(r) ≤ f
(
µ(r), φ(r)

)
.

This implies that φ(r) = 0 and r = 0. Thus, we have

d(xn+1, xn)→ 0. (3.8)

To prove that {xn} is a Cauchy sequence, we use Lemma 3.1. Indeed, we
show that {xn} is a Cauchy sequence in Y . Fix ε > 0. By Lemma 3.1, we
can find n0 ∈ N such that r, q ≥ n0 with r − q ≡ 1 (modm)

d(xr, xq) ≤
ε

2
. (3.9)

Since lim d(xn, xn+1) = 0, we can also find n1 ∈ N such that

d(xn, xn+1) ≤
ε

2m
, (3.10)

for any n ≥ n1.
Assume that r, s ≥ max{n0, n1} and s > r. Then there exists k ∈

{1, 2, . . . ,m} such that s − r ≡ k (modm). Hence, s − r + t = 1 (modm),
for t = m− k + 1. So, we have

d(xr, xs) ≤ d(xr, xs+j) + d(xs+j, xs+j−1) + . . .+ d(xs+1, xs). (3.11)
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Using (3.9), (3.10) and (3.11), we obtain

d(xr, xs) ≤
ε

2
+ j × ε

2m
≤ ε

2
+m× ε

2m
= ε. (3.12)

Therefore, {xn} is a Cauchy sequence in Y . Since Y is closed in X, then Y
is also complete space and there exists x ∈ Y such that lim xn = x.

Next, we prove that x is a fixed point of T . For this purpose, we have
Y = ∪mi=1Ai is a cyclic representation of Y with respect to T . So, the sequence
{xn} has infinite terms in each Ai for i = {1, 2, . . . ,m}. Suppose that x ∈ Ai,
Tx ∈ Ai+1 and take a subsequence {xnk

} of {xn} with xnk
∈ Ai. By using

the contractive condition, we obtain that

µ
(
d(xnk+1, Tx)

)
= µ

(
d(Txnk

, Tx)
)

≤ f
(
ψ
(
µ
(
d(xnk

, x)
)
, µ
(
d(xnk

, Txnk
)
)
, µ
(
d(x, Tx)

)
, µ
(
d(xnk

, Tx)
)
, µ
(
d(x, Txnk

)
))
, φ
(
M(xnk

, x)
))

= f
(
ψ
(
µ
(
d(xnk

, x)
)
, µ
(
d(xnk

, xnk+1)
)
, µ
(
d(x, Tx)

)
, µ(d(xnk

, Tx)
)
, µ
(
d(x, xnk+1)

))
, φ
(
M(xnk

, x)
))
,

where M(xnk
, x) = max

{
d(xnk

, x), d(xnk
, xnk+1), d(x, Tx)

}
. Letting n → ∞

and using continuity of µ and φ, we have

µ
(
d(x, Tx)

)
≤ f

(
ψ
(
µ(0), µ(0), µ

(
d(x, Tx)

)
, µ
(
d(x, Tx)

)
, µ(0)

)
, φ
(
d(x, Tx)

))
≤ f

(
µ
(
d(x, Tx)

)
, φ
(
d(x, Tx)

))
,

which is a contradiction unless d(x, Tx) = 0. Thus, x is a fixed point of T .
For the uniqueness of the fixed point, we suppose that x1 and x2 (x1 6= x2)

are two fixed points of T . Using the contractive condition and the continuity
of µ and ψ, we get

µ
(
d(x1, x2)

)
= µ

(
d(Tx1, Tx2)

)
≤ f

(
ψ
(
µ
(
d(x1, x2)

)
, µ
(
d(x1, Tx1)

)
, µ
(
d(x2, Tx2)

)
, µ
(
d(x1, Tx2)

)
, µ
(
d(x2, Tx1)

))
, φ
(
M(x1, x2)

))
= f

(
ψ
(
µ
(
d(x1, x2)

)
, µ
(
d(x1, x1)

)
, µ
(
d(x2, x2)

)
, µ
(
d(x1, x2)

)
, µ
(
d(x2, x1)

))
, φ
(
M(x1, x2)

))
= f

(
ψ
(
µ
(
d(x1, x2)

)
, µ(0), µ(0), µ

(
d(x1, x2)

)
, µ
(
d(x2, x1)

))
, φ
(
M(x1, x2)

))
,
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where M(x1, x2) = max
{
d(x1, x2), d(x1, x1), d(x2, x2)

}
.

Therefore, we deduce that

µ
(
d(x1, x2)

)
≤ f

(
ψ
(
µ
(
d(x1, x2)

)
, 0, 0, µ

(
d(x1, x2)

)
, µ
(
d(x2, x1)

))
, φ
(
d(x1, x2)

))
≤ f

(
µ
(
d(x1, x2)

)
, φ
(
d(x1, x2)

))
which is a contradiction unless x1 = x2.

4 Applications

Form Theorem 3.2, we can obtain the following corollaries as natural results.

Corollary 4.1. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . ,
Am be non-empty closed subsets of X and Y = ∪mi=1Ai. Suppose that T
is a cyclic (µ, ψ, φ)-rational-weakly contraction. Then T has a fixed point
z ∈ ∩ni=1Ai.

Proof. Taking

f(s, t) =
s

1 + t

for all s, t ∈ [0,∞) in Theorem 3.2, we get the desired result.

Corollary 4.2. [[7] Theorem 2.2] Let (X, d) be a complete metric space,
m ∈ N, A1, A2, . . . , Am be non-empty closed subsets of X and Y = ∪mi=1Ai.
Suppose that T is a cyclic (µ, ψ, φ)-weakly contraction. Then T has a fixed
point z ∈ ∩ni=1Ai.

Proof. The proof follows from Theorem 3.2 by taking

f(s, t) = s− t

for all s, t ∈ [0,∞) and we get the desired result.

By similar method, we can prove the following consequences.

Corollary 4.3. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . ,
Am be non-empty closed subsets of X and Y = ∪mi=1Ai. Suppose that T : Y →
Y is an operator such that

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,
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2.

µ
(
d(Tx, Ty)

)
≤ ψ

(
µ
(
d(x, y)

)
, µ
(
d(x, Tx)

)
, µ
(
d(y, Ty)

)
, µ
(
d(x, Ty)

)
, µ
(
d(y, Tx)

))
× log

a+φ
(
M(x,y)

) a,
for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ θ, φ ∈ Φ,
ψ ∈ Ψ and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty)

}
.

Then T has a fixed point z ∈ ∩ni=1Ai.

Corollary 4.4. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . ,
Am be non-empty closed subsets of X and Y = ∪mi=1Ai. Suppose that T : Y →
Y is an operator such that

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2. µ
(
d(Tx, Ty)

)
≤

ψ
(
µ
(
d(x, y)

)
, µ
(
d(x, Tx)

)
, µ
(
d(y, Ty)

)
, µ
(
d(x, Ty)

)
, µ
(
d(y, Tx)

))

−
ψ
(
µ
(
d(x, y)

)
, µ
(
d(x, Tx)

)
, µ
(
d(y, Ty)

)
, µ
(
d(x, Ty)

)
, µ
(
d(y, Tx)

))
1 + φ

(
M(x, y)

) ,

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, µ ∈ θ, φ ∈ Φ,
ψ ∈ Ψ and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty)

}
.

Then T has a fixed point z ∈ ∩ni=1Ai.

If µ(a) = a in Corollary 4.2, then we have the following corollary.

Corollary 4.5. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . ,
Am be non-empty closed subsets of X and Y = ∪mi=1Ai. Suppose that T : Y →
Y is an operator such that

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2. d(Tx, Ty) ≤ ψ
(
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
−φ
(
M(x, y)

)
,
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for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, φ ∈ Φ, ψ ∈ Ψ
and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty)

}
.

Then T has a fixed point z ∈ ∩ni=1Ai.

If µ(a) = a in Theorem 3.2, then we have the following corollary.

Corollary 4.6. Let (X, d) be a complete metric space, m ∈ N, A1, A2, . . . ,
Am be non-empty closed subsets of X and Y = ∪mi=1Ai. Suppose that T : Y →
Y is an operator such that

1. ∪mi=1Ai is a cyclic representation of Y with respect to T ,

2. d(Tx, Ty) ≤ f
(
ψ
(
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
, φ
(
M(x, y)

))
for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m where Am+1 = A1, φ ∈ Φ, ψ ∈ Ψ
and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty)

}
.

Then T has a fixed point z ∈ ∩ni=1Ai.
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