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Abstract. The fixed point theorem of cone expansion and compression of norm type is
generalized by replacing the norms with two functionals satisfying certain conditions to
produce a fixed point theorem of cone expansion and compression of functional type. We
conclude with an application verifying the existence of a positive solution to a discrete
second-order conjugate boundary value problem.

Dedicated to Allan Peterson on the occasion of his 60th birthday.

1. Preliminaries

There are many fixed point theorems. See [7] for an introduction to the study and
applications of fixed point theorems. In this paper we will generalize the fixed point theorem
of cone expansion and compression of norm type. The generalization allows the user to
choose two functionals that satisfy certain conditions which are used in place of the norm.
In applications to boundary value problems the functionals will typically be the minimum
or maximum of the function over a specific interval. Hence in boundary value problem
applications the functionals usually do not satisfy the triangle inequality property of a
norm. The flexibility of using functionals instead of norms allows the theorem to be used
in a wider variety of situations. In particular, in applications to boundary value problems
it allows for improved sufficiency conditions for the existence of a positive solution.
In this section we will state the definitions that are used in the remainder of the paper.

Definition 1. Let E be a real Banach space. A nonempty closed convex set P ⊂ E is
called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.
Definition 2. An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

Definition 3. A map α is said to be a nonnegative continuous functional on a cone P of
a real Banach space E if

α : P → [0,∞)
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is continuous.

Let α and γ be nonnegative continuous functionals on P ; then, for positive real numbers r
and R, we define the following sets:

(1) P (γ,R) = {x ∈ P : γ(x) < R}
and

(2) P (γ, α, r,R) = {x ∈ P : r < α(x) and γ(x) < R}.

Definition 4. Let D be a subset of a real Banach space E. If r : E → D is continuous
with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is a retraction. The
convex hull of a subset D of a real Banach space X is given by

conv(D) =

{
n∑
i=1

λixi : xi ∈ D, λi ∈ [0, 1],
n∑
i=1

λi = 1, and n ∈ N
}
.

The following theorem is due to Dugundji and a proof can be found in [4, p44].

Theorem 1. For Banach spaces X and Y , let D ⊂ X be closed and let

F : D → Y

be continuous. Then F has a continuous extension

F̃ : X → Y

such that
F̃ (X) ⊂ conv(F (D)).

Corollary 2. Every closed convex set of a Banach space is a retract of the Banach space.

Note that it follows from Corollary 1 that a cone P of a real Banach space E is a retract of
E.

2. Fixed Point Index

The following theorem, which establishes the existence and uniqueness of the fixed point
index, is from [5, p82-86]; an elementary proof can be found in [4, p58&238]. The proof of
the generalization of the fixed point theorem of norm type in the next section will invoke
the properties of the fixed point index.

Theorem 3. Let X be a retract of a real Banach space E. Then, for every bounded relatively
open subset U of X and every completely continuous operator A : U → X which has no
fixed points on ∂U (relative to X), there exists an integer i(A,U,X) satisfying the following
conditions:

(G1) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;
(G2) Additivity: i(A,U,X) = i(A,U1, X) + i(A,U2, X) whenever U1 and U2 are disjoint

open subsets of U such that A has no fixed points on U − (U1 ∪ U2);
(G3) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever

H : [0, 1]×U → X is completely continuous and H(t, x) 6= x for any (t, x) ∈ [0, 1] × ∂ U ;
(G4) Permanence: i(A,U,X) = i(A,U ∩ Y, Y ) if Y is a retract of X and A(U) ⊂ Y ;
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(G5) Excision: i(A,U,X) = i(A,U0, X) whenever U0 is an open subset of U such that A
has no fixed points in U − U0;

(G6) Solution: If i(A,U,X) 6= 0, then A has at least one fixed point in U .
Moreover, i(A,U,X) is uniquely defined.

3. Fixed Point Theorems

The proof of the following fixed point results can be found in [5, p88-89].

Lemma 4. Let P be a cone in a real Banach space E, Ω a bounded open subset of E with
0 ∈ Ω, and A : P ∩ Ω → P a completely continuous operator. If

Ax 6= µx

for all x ∈ P ∩ ∂Ω and µ ≥ 1, then

i(A,P ∩ Ω, P ) = 1.

Lemma 5. Let P be a cone in a real Banach space E, Ω a bounded open subset of E, and
A : P ∩ Ω → P a completely continuous operator. If

(i) inf
P∩∂Ω

‖Ax‖ > 0

and
(ii) Ax 6= µx for all x ∈ P ∩ ∂Ω and µ ∈ (0, 1],

then
i(A,P ∩ Ω, P ) = 0.

The following theorem is a generalization of the fixed point theorem of cone expansion and
compression of norm type.

Theorem 6. Let P be a cone in a real Banach space E, and let α and γ be nonnegative
continuous functionals on P . Assume P (γ, α, r,R) as in (2) is a nonempty bounded subset
of P ,

A : P (γ, α, r,R) → P

is a completely continuous operator with

inf
x∈∂P (γ,α,r,R)

‖Ax‖ > 0,

and
P (α, r) ⊆ P (γ,R)

for these sets as in (1). If one of the two conditions
(H1) α(Ax) ≤ r for all x ∈ ∂P (α, r), γ(Ax) ≥ R for all x ∈ ∂P (γ,R), and for all

y ∈ ∂P (α, r), z ∈ ∂P (γ,R), λ ≥ 1, and µ ∈ (0, 1] the functionals satisfy the
properties

α(λy) ≥ λα(y), γ(µz) ≤ µγ(z), and α(0) = 0
or

(H2) α(Ax) ≥ r for all x ∈ ∂P (α, r), γ(Ax) ≤ R for all x ∈ ∂P (γ,R), and for all y ∈
∂P (α, r), z ∈ ∂P (γ,R), λ ∈ (0, 1] and µ ≥ 1 the functionals satisfy the properties

α(λy) ≤ λα(y), γ(µz) ≥ µγ(z), and γ(0) = 0
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is satisfied, then A has at least one positive fixed point x∗ such that

r ≤ α(x∗) and γ(x∗) ≤ R.

Proof. If there exists an x ∈ ∂P (γ, α, r,R) such that Ax = x, then there is nothing to prove;
thus suppose that Ax 6= x for all x ∈ ∂P (γ, α, r,R). By Dugundji’s Theorem (Theorem 1),
A has a completely continuous extension

A : P (γ,R) → P.

Suppose condition (H1) is satisfied; the proof when (H2) is satisfied is nearly identical and
will be omitted.

Claim 1: Ay 6= λy for all y ∈ ∂P (α, r) and λ ≥ 1.
To the contrary, suppose there exists a y0 ∈ ∂P (α, r) and λ0 > 1 (since A has no fixed
points on the boundary) such that

Ay0 = λ0y0.

Then
α(Ay0) = α(λ0y0) ≥ λ0α(y0) > α(y0) = r,

which is a contradiction of the first part of (H1).

Note that 0 ∈ P (α, r) by assumption, hence by Lemma 3

i(A,P (α, r), P ) = 1.

Claim 2: Az 6= µz for all z ∈ ∂P (γ,R) and µ ∈ (0, 1].
Suppose to the contrary that there exists a z0 ∈ ∂P (γ,R) and µ0 ∈ (0, 1] such that

Az0 = µ0z0.

Then
γ(Az0) = γ(µ0z0) ≤ µ0γ(z0) < γ(z0) = R,

which is a contradiction of the second part of (H1).

Hence by Lemma 4
i(A,P (γ,R), P ) = 0

since we have assumed that
inf

x∈∂P (γ,R)
‖Ax‖ > 0.

Thus by the additivity (G2) of the fixed point index

i(A,P (γ, α, r,R), P ) = i(A,P (γ,R), P )− i(A,P (α, r), P ) = −1 6= 0,

and by the solution property (G6) of the fixed point index the operator A has a fixed point
x∗ ∈ P (γ, α, r,R). Thus in any event the operator A has a fixed point x∗ such that

r ≤ α(x∗) and γ(x∗) ≤ R.

�
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4. Application

Throughout the remainder of this paper we apply the above result to a second-order differ-
ence equation; see [6] for an introduction to the general subject, and [1, 2, 3] for represen-
tative examples of applying fixed point theorems to difference equations.
Consider the discrete second-order nonlinear conjugate boundary value problem,

∆2x(t− 1) + f(x(t)) = 0 for all t ∈ [a+ 1, b+ 1](3)

x(a) = 0 = x(b+ 2)(4)

where f : R → R is continuous and f is nonnegative for x ≥ 0; R denotes the real numbers.
Here we assume a and b are integers with b > a + 2, and we define the discrete interval
[a, b+ 2] by

[a, b+ 2] := {a, a+ 1, ..., b+ 1, b+ 2}.
(Other intervals may be discrete or continuous; the type of interval will be obvious by
context.) Define the Banach space (with sup norm)

E = {x | x : [a, b+ 2] → R}
and the corresponding cone

P =

x ∈ E
∣∣∣∣∣∣
x is concave, symmetric,
x(t) ≥ 0 for all t ∈ [a, b+ 2] and
x(t) ≥ t−a

τ−a‖x‖ for all t ∈ [a, τ ]


where

τ :=
⌊
b+ 2 + a

2

⌋
.

The solutions of (3), (4) are the fixed points of the operator A defined on E by

Ax(t) =
b+1∑

s=a+1

G(t, s)f(x(s))

for t ∈ [a, b+ 2], where

G(t, s) =


(t− a)(b+ 2− s)

b+ 2− a
if t ≤ s

(s− a)(b+ 2− t)
b+ 2− a

if s ≤ t

is the Greens function on [a, b+ 2]× [a+ 1, b+ 1] for the operator L defined by

Lx(t) = −∆2x(t− 1)

with boundary conditions
x(a) = 0 = x(b+ 2).

A key property of this Greens function is that if a ≤ t ≤ τ and s ∈ [a+ 1, b+ 1], then

G(t, s)
G(τ, s)

≥ t− a

τ − a
.
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Let

τ1 := a+
⌈
τ − a

2

⌉
and τ2 := b+ 2−

⌈
τ − a

2

⌉
;

thus τ1 < τ < τ2, and
τ1 − a

τ − a
≥ 1

2
.

Define the constants

M :=
b+1∑

s=a+1

G(τ, s),

ml :=
τ2∑
s=τ1

G(τ1, s),

and

mu :=
τ2∑
s=τ1

G(τ, s);

also define the nonnegative continuous functionals

α(x) := max
t∈[a,b+2]

x(t),

ψ(x) := min
t∈[τ1,τ2]

x(t),

and
γ(x) := eψ(x) − 1.

We now prove our main existence theorem for the discrete conjugate boundary value prob-
lem.

Theorem 7. Suppose there exist positive real numbers r and R, where er − 1 < R, and
continuous f : R → R, where f(x) ≥ 0 for x ≥ 0, such that the following conditions are
met:

(i) f(r) 6= 0,
(ii) f(w) ≤ r

M for w ∈ [0, r],
(iii) f(w) ≥ 1

ml
ln (Jw) for w ∈ [ln(R+ 1), 2 ln(R+ 1)]

where J := R+1
ln(R+1) . Then, the discrete second-order conjugate boundary value problem (3),

(4) has at least one positive solution x∗ such that

r ≤ α(x∗) and γ(x∗) ≤ R.

Proof. We will invoke the fixed point theorem of cone compression and expansion of func-
tional type (Theorem 5) once we have shown that the hypotheses (H1) have been satisfied.
We have that P is a cone in the Banach space E with the sup norm and A : P → P
since G(t, s) is nonnegative on its domain, f(x) ≥ 0 on [0,∞), −∆2Ax(t − 1) = f(x(t)),
Ax(t) = Ax(b+ 2 + a− t) for all t ∈ [a, b+ 2], and Ax(t) ≥ t−a

τ−aAx(τ) for t ∈ [a, τ ].

Using elementary calculus techniques one can show that for µ ∈ (0, 1] and w = ln(R+ 1)

eµw − 1 ≤ µ(ew − 1);
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thus if z ∈ ∂P (γ,R), then ψ(z) = ln(R+ 1) and

γ(µz) = eψ(µz) − 1 = eµψ(z) − 1 ≤ µ(eψ(z) − 1) = µγ(z)

for µ ∈ (0, 1]. Also for y ∈ ∂P (α, r) and λ ≥ 1,

α(λy) = λα(y)

with α(0) = 0.

If x ∈ P (α, r), then
γ(x) = eψ(x) − 1 ≤ er − 1 < R,

so that x ∈ P (γ,R) and P (α, r) ⊆ P (γ,R).

If x ∈ ∂P (γ, α, r,R) then

‖Ax‖ = max
t∈[a,b+2]

b+1∑
s=a+1

G(t, s)f(x(s))

=
b+1∑

s=a+1

G(τ, s)f(x(s))

≥ G(τ, τ)f(x(τ))
≥ G(τ, τ) min{f(r), f(ln(R+ 1))}

since ln(R+ 1) ≤ x(τ) ≤ r; hence

inf
x∈∂P (γ,α,r,R)

‖Ax‖ > 0.

If x ∈ ∂P (α, r) then α(Ax) ≤ r, since

α(Ax) = max
t∈[a,b+2]

b+1∑
s=a+1

G(t, s)f(x(s))

=
b+1∑

s=a+1

G(τ, s)f(x(s))

≤ r

M

b+1∑
s=a+1

G(τ, s)

= r

using (ii). Let x ∈ ∂P (γ,R). By (1) and the symmetry of x,

x(τ1) = ln(R+ 1) ≤ x(t)
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for all t ∈ [τ1, τ2]. Since x ∈ P ,

x(t) ≤ ||x|| ≤ τ − a

t− a
x(t);

in particular, for t = τ1, so that

ln(R+ 1) ≤ x(t) ≤ 2 ln(R+ 1)

for all t ∈ [τ1, τ2]. It follows that

γ(Ax) = exp

(
min

t∈[τ1,τ2]

b+1∑
s=a+1

G(t, s)f(x(s))

)
− 1

= exp

(
b+1∑

s=a+1

G(τ1, s)f(x(s))

)
− 1

≥ exp

(
τ2∑
s=τ1

G(τ1, s)f(x(s))

)
− 1

=
τ2∏
s=τ1

(exp f(x(s)))G(τ1,s) − 1

≥
τ2∏
s=τ1

(Jx(s))
G(τ1,s)

ml − 1

≥
τ2∏
s=τ1

(Jx(τ1))
G(τ1,s)

ml − 1

= (Jx(τ1))

τ2∑
s=τ1

G(τ1, s)
ml − 1

= Jx(τ1)− 1
= J ln(R+ 1)− 1
= R.

Therefore γ(Ax) ≥ R, and the hypotheses of the fixed point theorem of cone compression
and expansion of functional type are satisfied. Thus the discrete second-order conjugate
problem has a positive solution x∗ such that

r ≤ α(x∗) and γ(x∗) ≤ R.

Moreover, by the choice of our functionals, we have

r ≤ max
t∈[a,b+2]

x∗(t) and min
t∈[τ1,τ2]

x∗(t) ≤ ln(R+ 1).

�

Note, this is an improvement over the standard application of the fixed point theorem of
cone compression and expansion of norm type to this boundary value problem whenever R
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satisfies the inequality

ln(R+ 1) ≥ mu ln(2)
2ml −mu

> 0.
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