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FIXED POINT THEOREMS AND CHARACTERIZATIONS
OF METRIC COMPLETENESS

Tomonari Suzuki — Wataru Takahashi

1. Introduction

Let X be a metric space with metric d. A mapping T from X into itself is
called contractive if there exists a real number r ∈ [0, 1) such that d(Tx, Ty) ≤
rd(x, y) for every x, y ∈ X. It is well know that if X is a complete metric space,
then every contractive mapping from X into itself has a unique fixed point in X.
However, we exhibit a metric space X such that X is not complete and every
contractive mapping from X into itself has a fixed point in X; see Section 4.
On the other hand, in [1], Caristi proved the following theorem: Let X be a
complete metric space and let φ : X → (−∞,∞) be a lower semicontinuous
function, bounded from below. Let T : X → X be a mapping satisfying

d(x, Tx) ≤ φ(x)− φ(Tx)

for every x ∈ X. Then T has a fixed point in X. Later, characterizations of
metric completeness have been discussed by Weston [8], Takahashi [7], Park and
Kang [6] and others. For example, Park and Kang [6] proved the following: Let
X be a metric space. Then X is complete if and only if for every selfmap T of
X with a uniformly continuous function φ : X → [0,∞) such that

d(x, Tx) ≤ φ(x)− φ(Tx)
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for every x ∈ X, T has a fixed point in X. Recently, Kada, Suzuki and Takahashi
[4] introduced the concept of w-distance on a metric space X (see Section 2) and
improved Caristi’s fixed point theorem [1], Ekeland’s variational principle [3],
and the nonconvex minimization theorem according to Takahashi [7].

In this paper, using the concept of w-distance, we first establish fixed point
theorems for set-valued mappings on complete metric spaces which are connected
with Nadler’s fixed point theorem [5] and Edelstein’s fixed point theorem [2].
Next, we give characterizations of metric completeness. One of them is as follows:
A convex subset D of a normed linear space is complete if and only if every
contractive mapping from D into itself has a fixed point in D.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R
the set of real numbers. Let X be a metric space with metric d. Then a function
p : X ×X → [0,∞) is called a w-distance on X if the following are satisfied:

(1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(2) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semicontinuous;
(3) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ

imply d(x, y) ≤ ε.

The metric d is a w-distance on X. Some other examples of w-distances are
given in [4]. We have the following lemmas regarding w-distance.

Lemma 1. Let X be a metric space with metric d, let p be a w-distance on
X, and let q be a function from X × X into [0,∞) satisfying (1), (2) in the
definition of w-distance. Suppose that q(x, y) ≥ p(x, y) for every x, y ∈ X. Then
q is also a w-distance on X. In particular, if q satisfies (1), (2) in the definition
of w-distance and q(x, y) ≥ d(x, y) for every x, y ∈ X, then q is a w-distance
on X.

Proof. We show that q satisfies (3). Let ε > 0. Since p is a w-distance,
there exists a positive number δ such that p(z, x) ≤ δ and p(z, y) ≤ δ imply
d(x, y) ≤ ε. Then q(z, x) ≤ δ and q(z, y) ≤ δ imply d(x, y) ≤ ε. �

Lemma 2. Let F be a bounded and closed subset of a metric space X. As-
sume that F contains at least two points and c is a constant with c ≥ δ(F ), where
δ(F ) is the diameter of F . Then the function p : X ×X → [0,∞) defined by

p(x, y) =

{
d(x, y) if x, y ∈ F,

c if x 6∈ F or y 6∈ F,

is a w-distance on X.
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Proof. If x, y, z ∈ F , we have

p(x, z) = d(x, z) ≤ d(x, y) + d(y, z) = p(x, y) + p(y, z).

In the other case, we have

p(x, z) ≤ c ≤ p(x, y) + p(y, z).

Let x ∈ X. If α ≥ c, we have {y ∈ X : p(x, y) ≤ α} = X. Let α < c. If x ∈ F ,
then p(x, y) ≤ α implies y ∈ F . So, we have

{y ∈ X : p(x, y) ≤ α} = {y ∈ X : d(x, y) ≤ α} ∩ F.

If x 6∈ F , we have {y ∈ X : p(x, y) ≤ α} = ∅. In each case, the set {y ∈ X :
p(x, y) ≤ α} is closed. Therefore p(x, · ) : X → [0,∞) is lower semicontinuous.
Let ε > 0. Then there exists n0 ∈ N such that 0 < ε/n0 < c. Let δ = ε/(2n0).
Then p(z, x) ≤ δ and p(z, y) ≤ δ imply x, y, z ∈ F . So, we have

d(x, y) ≤ d(x, z) + d(y, z) = p(z, x) + p(z, y) ≤ ε

2n0
+

ε

2n0
=

ε

n0
≤ ε. �

Let ε ∈ (0,∞]. A metric space X with metric d is called ε-chainable [2] if
for every x, y ∈ X there exists a finite sequence {u0, u1, . . . , uk} in X such that
u0 = x, uk = y and d(ui, ui+1) < ε for i = 0, 1, . . . , k − 1. Such a sequence is
called an ε-chain in X linking x and y.

Lemma 3. Let ε ∈ (0,∞] and let X be an ε-chainable metric space with
metric d. Then the function p : X ×X → [0,∞) defined by

p(x, y) = inf
{ k−1∑

i=0

d(ui, ui+1) : {u0, u1, . . . , uk} is an ε-chain linking x and y

}
is a w-distance on X.

Proof. Note that p is well-defined because X is ε-chainable. Let x, y, z ∈ X

and let η > 0 be arbitrary. Then there exist ε-chains {u0, u1, . . . , uk} linking x

and y and {v0, v1, . . . , vl} linking y and z such that

k−1∑
i=0

d(ui, ui+1) ≤ p(x, y) + η and
l−1∑
i=0

d(vi, vi+1) ≤ p(y, z) + η.

Since {u0, u1, . . . , uk, v1, v2, . . . , vl} is an ε-chain linking x and z, we have

p(x, z) ≤
k−1∑
i=0

d(ui, ui+1) +
l−1∑
i=0

d(vi, vi+1) ≤ p(x, y) + p(y, z) + 2η.

Since η > 0 is arbitrary, we have p(x, z) ≤ p(x, y) + p(y, z).
Let us prove (2). Let x, y ∈ X and let {yn} be a sequence in X with yn → y.

Choose n0 ∈ N such that d(y, yn) < ε for every n ≥ n0. Let η > 0 be arbitrary



374 T. Suzuki — W. Takahashi

and let n ≥ n0. Then there exists an ε-chain {u0, u1, . . . , uk} linking x and yn

such that
k−1∑
i=0

d(ui, ui+1) ≤ p(x, yn) + η.

Since d(y, yn) < ε, {u0, u1, . . . , uk, y} is an ε-chain linking x and y. So, we have

p(x, y) ≤
k−1∑
i=0

d(ui, ui+1) + d(yn, y) ≤ p(x, yn) + η + d(yn, y)

and hence
p(x, y) ≤ lim inf

n→∞
p(x, yn) + η.

Since η > 0 is arbitrary, we have

p(x, y) ≤ lim inf
n→∞

p(x, yn).

This implies that p(x, ·) is lower semicontinuous. Since p(x, y) ≥ d(x, y) for every
x, y ∈ X, by Lemma 1, p is a w-distance. �

The following lemma was proved in [4].

Lemma 4 ([4]). Let X be a metric space with metric d and let p be a w-
distance on X. Let {xn} and {yn} be sequences in X, let {αn} and {βn} be
sequences in [0,∞) converging to 0, and let x, y, z ∈ X. Then the following
hold:

(1) if p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z; in
particular, if p(x, y) = 0 and p(x, z) = 0, then y = z;

(2) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then {yn} converges
to z;

(3) if p(xn, xm) ≤ αn for any n, m ∈ N with m > n, then {xn} is a Cauchy
sequence;

(4) if p(y, xn) ≤ αn for any n ∈ N, then {xn} is a Cauchy sequence.

3. Fixed point theorems

Let X be a metric space with metric d. A set-valued mapping T from X into
itself is called weakly contractive or p-contractive if there exist a w-distance p on
X and r ∈ [0, 1) such that for any x1, x2 ∈ X and y1 ∈ Tx1 there is y2 ∈ Tx2

with p(y1, y2) ≤ rp(x1, x2).

Theorem 1. Let X be a complete metric space and let T be a set-valued
p-contractive mapping from X into itself such that for any x ∈ X, Tx is a
nonempty closed subset of X. Then there exists x0 ∈ X such that x0 ∈ Tx0 and
p(x0, x0) = 0.
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Proof. Let p be a w-distance on X and let r ∈ [0, 1) be such that for any
x1, x2 ∈ X and y1 ∈ Tx1, there exists y2 ∈ Tx2 with p(y1, y2) ≤ rp(x1, x2).
Fix u0 ∈ X and u1 ∈ Tu0. Then there exists u2 ∈ Tu1 such that p(u1, u2) ≤
rp(u0, u1). Thus, we have a sequence {un} in X such that un+1 ∈ Tun and
p(un, un+1) ≤ rp(un−1, un) for every n ∈ N. For any n ∈ N, we have

p(un, un+1) ≤ rp(un−1, un) ≤ r2p(un−2, un−1) ≤ . . . ≤ rnp(u0, u1)

and hence, for any n, m ∈ N with m > n,

p(un, um) ≤ p(un, un+1) + p(un+1, un+2) + · · ·+ p(um−1, um)

≤ rnp(u0, u1) + rn+1p(u0, u1) + · · ·+ rm−1p(u0, u1)

≤ rn

1− r
p(u0, u1).

By Lemma 4, {un} is a Cauchy sequence. Hence {un} converges to a point v0 ∈
X. Fix n ∈ N. Since {um} converges to v0 and p(un, · ) is lower semicontinuous,
we have

(∗) p(un, v0) ≤ lim inf
m→∞

p(un, um) ≤ rn

1− r
p(u0, u1).

By hypothesis, we also have wn ∈ Tv0 such that p(un, wn) ≤ rp(un−1, v0). So,
for any n ∈ N,

p(un, wn) ≤ rp(un−1, v0) ≤
rn

1− r
p(u0, u1).

By Lemma 4, {wn} converges to v0. Since Tv0 is closed, we have v0 ∈ Tv0. For
such v0, there exists v1 ∈ Tv0 such that p(v0, v1) ≤ rp(v0, v0). Thus, we also
have a sequence {vn} in X such that vn+1 ∈ Tvn and p(v0, vn+1) ≤ rp(v0, vn)
for every n ∈ N. So, we have

p(v0, vn) ≤ rp(v0, vn−1) ≤ . . . ≤ rnp(v0, v0).

By Lemma 4, {vn} is a Cauchy sequence. Hence {vn} converges to a point
x0 ∈ X. Since p(v0, · ) is lower semicontinuous, p(v0, x0) ≤ lim infn→∞ p(v0, vn)
≤ 0 and hence p(v0, x0) = 0. Then, for any n ∈ N,

p(un, x0) ≤ p(un, v0) + p(v0, x0) ≤
rn

1− r
p(u0, u1).

So, using (∗) and Lemma 4, we obtain v0 = x0 and hence p(v0, v0) = 0. �

Let X be a metric space with metric d and let T be a mapping from X into
itself. Then T is called weakly contractive or p-contractive if there exist a w-
distance p on X and r ∈ [0, 1) such that p(Tx, Ty) ≤ rp(x, y) for every x, y ∈ X.
In the case of p = d, T is called contractive.
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Theorem 2. Let X be a complete metric space. If a mapping T from X

into itself is p-contractive, then T has a unique fixed point x0 ∈ X. Further the
x0 satisfies p(x0, x0) = 0.

Proof. Let p be a w-distance and let r ∈ [0, 1) be such that p(Tx, Ty) ≤
rp(x, y) for every x, y ∈ X. Then from Theorem 1, there exists x0 ∈ X with
Tx0 = x0 and p(x0, x0) = 0. If y0 = Ty0, then

p(x0, y0) = p(Tx0, T y0) ≤ rp(x0, y0)

and hence p(x0, y0) = 0. So, by p(x0, x0) = 0 and Lemma 4, we have x0 = y0.�

Using Theorem 1, we will prove a fixed point theorem which generalizes
Nadler’s fixed point theorem for set-valued mappings and Edelstein’s fixed point
theorem on an ε-chainable metric space. Before proving it, we give some defi-
nitions and notations. Let X be a metric space with metric d. For x ∈ X and
A ⊂ X, set d(x, A) = inf{d(x, y) : y ∈ A}. Denote by CB(X) the class of all
nonempty bounded closed subsets of X. Let H be the Hausdorff metric with
respect to d, i.e.,

H(A,B) = max{sup
u∈A

d(u, B), sup
v∈B

d(v,A)}

for every A,B ∈ CB(X). Let ε ∈ (0,∞]. A mapping T from X into CB(X) is
said to be (ε, σ)-uniformly locally contractive [2] if there exists σ ∈ [0, 1) such
that H(Tx, Ty) ≤ σd(x, y) for every x, y ∈ X with d(x, y) < ε. In particular, T

is said to be contractive when ε = ∞.

Theorem 3. Let ε ∈ (0,∞] and let X be a complete and ε-chainable metric
space with metric d. Suppose that a mapping T from X into CB(X) is (ε, σ)-
uniformly locally contractive. Then there exists x0 ∈ X with x0 ∈ Tx0.

Proof. Define a function p from X ×X into [0,∞) as follows:

p(x, y) = inf
{ k−1∑

i=0

d(ui, ui+1) : {u0, u1, . . . , uk} is an ε-chain linking x and y

}
.

From Lemma 3, p is a w-distance on X. We prove that T is p-contractive.
Choose a real number r such that σ < r < 1. Let x1, x2 ∈ X, y1 ∈ Tx1 and
η > 0. Then there exists an ε-chain {u0, u1, . . . , uk} linking x1 and x2 such that

k−1∑
i=0

d(ui, ui+1) ≤ p(x1, x2) + η.

Put v0 = y1. Since T is (ε, σ)-uniformly locally contractive, there exists v1 ∈ Tu1

such that
d(v0, v1) ≤ rd(u0, u1) < rε ≤ ε.
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In a similar way, we define an ε-chain {v0, v1, . . . , vk} linking y1 and vk such that
vi ∈ Tui for every i = 0, 1, . . . , k and

d(vi, vi+1) ≤ rd(ui, ui+1) < ε

for every i = 0, 1, . . . , k− 1. Putting y2 = vk, since y2 ∈ Tx2 and {v0, v1, . . . , vk}
is an ε-chain linking y1 and y2, we have

p(y1, y2) ≤
k−1∑
i=0

d(vi, vi+1) ≤
k−1∑
i=0

rd(ui, ui+1) ≤ rp(x1, x2) + rη < rp(x1, x2) + η.

Since η > 0 is arbitrary, we have p(y1, y2) ≤ rp(x1, x2). So, T is a p-contractive
set-valued mapping from X into itself. Theorem 1 now gives the desired result.�

As direct consequences of Theorem 3, we obtain the following.

Corollary 1 (Nadler [5]). Let X be a complete metric space and let T be
a contractive set-valued mapping from X into CB(X). Then there exists x0 ∈ X

with x0 ∈ Tx0.

Proof. We may assume that there exists σ ∈ [0, 1) such that H(Tx, Ty) ≤
σd(x, y) for every x, y ∈ X. Since T is (∞, σ)-uniformly locally contractive and
X is ∞-chainable, using Theorem 3, we obtain the desired result. �

Corollary 2 (Edelstein [2]). Let ε ∈ (0,∞] and let X be a complete and
ε-chainable metric space with metric d. Suppose that a mapping T from X into
itself is (ε, σ)-uniformly locally contractive. Then T has a unique fixed point.

4. Characterizations of metric completeness

In this section, we discuss characterizations of metric completeness. We first
give the following example.

Example. Define subsets of R2 as follows:

An = {(t, t/n) : t ∈ (0, 1]} for every n ∈ N, S =
⋃
n∈N

An ∪ {0}.

Then S is not complete and every continuous mapping on S has a fixed point
in S.

Proof. It is clear that S is not complete. Let T be a continuous mapping
from S into itself. If T0 = 0, then 0 is a fixed point of T . Assume that T0 ∈ Aj

for some j ∈ N and define a mapping U on Aj ∪ {0} as follows:

Ux =

{
Tx if Tx ∈ Aj ,

0 if Tx 6∈ Aj .

Then U is continuous. In fact, let {xn} be a sequence in Aj∪{0} which converges
to x0. Then {Txn} converges to Tx0. If Tx0 ∈ Aj , then {Uxn} also converges
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to Tx0 = Ux0. Otherwise {Uxn} converges to 0 and Ux0 = 0. Hence U is
continuous. On the other hand, Aj ∪ {0} is compact and convex. So, U has a
fixed point z0 in Aj ∪ {0}. It is clear that z0 6= 0 and z0 is a fixed point of T .�

Motivated by this example, we obtain the following.

Theorem 4. Let X be a metric space. Then X is complete if and only if
every weakly contractive mapping from X into itself has a fixed point in X.

Proof. Since the “only if” part is proved in Theorem 2, we need only prove
the “if” part. Assume that X is not complete. Then there exists a sequence {xn}
in X which is Cauchy and does not converge. So, we have limm→∞ d(xn, xm) > 0
for any n ∈ N and also limn→∞ limm→∞ d(xn, xm) = 0. Then, for any c > 0, we
can choose a subsequence {xni} ⊂ {xn} such that, for any i ∈ N,

lim
m→∞

d(xni
, xm) > c lim

m→∞
d(xni+1 , xm)

and hence

lim
j→∞

d(xni
, xnj

) > c lim
j→∞

d(xni+1 , xnj
).

So, we may assume that there exists a sequence {xn} in X satisfying the following
conditions:

(1) {xn} is Cauchy;
(2) {xn} does not converge;
(3) limn→∞ d(xi, xn) > 3 limn→∞ d(xi+1, xn) for any i ∈ N.

Put F = {xn : n ∈ N}. Then F is bounded and closed. So, the function
p : X ×X → [0,∞) defined by

p(x, y) =

{
d(x, y) if x, y ∈ F,

2δ(F ) if x 6∈ F or y 6∈ F,

is a w-distance on X by Lemma 2. Further, p(x, y) = p(y, x) for any x, y ∈ X.
Define a mapping T from X into itself as follows:

Tx =

{
x1 if x 6∈ F,

xi+1 if x = xi.

Then it is clear that T has no fixed point in X. To complete the proof, it is
sufficient to show that T is p-contractive. If x 6∈ F or y 6∈ F , then

p(Tx, Ty) ≤ δ(F ) =
1
2
· 2δ(F ) =

1
2
p(x, y) ≤ 2

3
p(x, y).
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Let x, y ∈ F . Then, without loss of generality, we may assume that x = xi, y = xj

and i < j. We have

d(xi, xj) ≥ lim
n→∞

d(xi, xn)− lim
n→∞

d(xj , xn)

≥ lim
n→∞

d(xi, xn)− lim
n→∞

d(xi+1, xn)

≥ 2 lim
n→∞

d(xi+1, xn).

On the other hand,

d(xi+1, xj+1) ≤ lim
n→∞

d(xi+1, xn) + lim
n→∞

d(xj+1, xn)

≤ lim
n→∞

d(xi+1, xn) + lim
n→∞

d(xi+2, xn)

≤ 4
3

lim
n→∞

d(xi+1, xn).

Therefore we have

p(Tx, Ty) = p(Txi, Txj) = d(xi+1, xj+1) ≤
4
3

lim
n→∞

d(xi+1, xn)

≤ 4
3
· 1
2
d(xi, xj) =

2
3
d(xi, xj) =

2
3
p(xi, xj) =

2
3
p(x, y). �

Theorem 5. Let X be a normed linear space and let D be a convex subset
of X. Then D is complete if and only if every contractive mapping from D into
itself has a fixed point in D.

Before proving Theorem 5, we need two lemmas.

Lemma 5. Let X be a normed linear space and let D be a convex subset of
X with 0 ∈ D, where D is the closure of D. Then for any x ∈ D \ {0}, there
exists y ∈ D such that 2‖y‖ = ‖x‖ and ‖x− y‖ ≤ 2‖x‖ − 2‖y‖.

Proof. Let x ∈ D \ {0}. Then, since 0 ∈ D, we obtain an element z ∈ D

with ‖z‖ ≤ ‖x‖/3. So, there exist y ∈ D and t ∈ [0, 1] such that y = tz +(1− t)x
and ‖y‖ = ‖x‖/2. From

‖x‖
2

= ‖y‖ ≤ t‖z‖+ (1− t)‖x‖ ≤ t
‖x‖
3

+ (1− t)‖x‖,

we have 1/2 ≤ t/3 + (1− t) and hence t ≤ 3/4. Then we obtain
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‖x− y‖ = t‖x− z‖ ≤ 3
4
‖x− z‖ ≤ 3

4
‖x‖+

3
4
‖z‖

≤ 3
4
‖x‖+

1
4
‖x‖ = ‖x‖ = ‖x‖+ (‖x‖ − 2‖y‖) = 2‖x‖ − 2‖y‖. �

Lemma 6. Let X be a normed linear space and let D be a convex subset of
X with 0 ∈ D \ D. Then there exist a sequence {vn} in D and a mapping w

from (0,∞) into D satisfying the following conditions:

(1) ‖vn‖ = ‖v1‖/2n−1 for every n ∈ N;
(2) w(‖vn‖) = vn for every n ∈ N;
(3) ‖w(s)− w(t)‖ ≤ 2|s− t| for every s, t ∈ (0,∞);
(4) ‖w(t)‖ ≤ t for every t ∈ (0,∞).

Proof. Let v1 ∈ D. Then from v1 6= 0 and Lemma 5 there exists v2 ∈ D

such that 2‖v2‖ = ‖v1‖ and ‖v1 − v2‖ ≤ 2‖v1‖ − 2‖v2‖. Thus, we can find a
sequence {vn} in D such that

‖vn‖ =
1

2n−1
‖v1‖ and ‖vn−1 − vn‖ ≤ 2‖vn−1‖ − 2‖vn‖.

Note that ‖vn‖ → 0 and ‖vn+1‖ < ‖vn‖ for every n ∈ N. Define a mapping w

from (0,∞) into D as follows:

w(t) =


v1 if ‖v1‖ < t,

t− ‖vn+1‖
‖vn‖ − ‖vn+1‖

vn +
‖vn‖ − t

‖vn‖ − ‖vn+1‖
vn+1 if ‖vn+1‖ < t ≤ ‖vn‖

for some n ∈ N.

Then it is clear that w(‖vn‖) = vn for every n ∈ N. We shall show (3). In fact,
if ‖v1‖ ≤ s ≤ t, it is obvious that ‖w(t)− w(s)‖ ≤ 2(t− s) and if ‖vn+1‖ ≤ s ≤
t ≤ ‖vn‖ for some n ∈ N, we have

‖w(s)− w(t)‖ =
t− s

‖vn‖ − ‖vn+1‖
‖vn − vn+1‖ ≤ 2(t− s).

Further, if ‖vm+1‖ < s ≤ ‖vm‖ ≤ ‖vn‖ ≤ t < ‖vn−1‖ for some m,n ∈ N with
m ≥ n ≥ 1, where ‖v0‖ = ∞, we have

‖w(s)− w(t)‖ ≤‖w(s)− w(‖vm‖)‖

+
m−1∑
i=n

‖w(‖vi+1‖)− w(‖vi‖)‖+ ‖w(‖vn‖)− w(t)‖

≤ 2(‖vm‖ − s) +
m−1∑
i=n

2(‖vi‖ − ‖vi+1‖) + 2(t− ‖vn‖) = 2(t− s).
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We shall show (4). In fact, if ‖v1‖ < t, it is obvious that ‖w(t)‖ = ‖v1‖ ≤ t.
And if ‖vn+1‖ < t ≤ ‖vn‖ for some n ∈ N, we have

‖w(t)‖ ≤ t− ‖vn+1‖
‖vn‖ − ‖vn+1‖

‖vn‖+
‖vn‖ − t

‖vn‖ − ‖vn+1‖
‖vn+1‖ = t. �

Proof of Theorem 5. Since the “only if” part is well known, we need only
prove the “if” part. Suppose that D is not complete. We denote the completion
of X by X̂ and the closure of D in X̂ by D̂. Since D is not complete, we obtain
z0 ∈ D̂ \D. Since D− z0 is convex in X̂ and the closure of D− z0 in X̂ includes
0, there exists a mapping w from (0,∞) into D − z0 satisfying (3) and (4) of
Lemma 6. Now, define a mapping T from D into itself as follows:

T (x) = w

(
‖x− z0‖

4

)
+ z0 for every x ∈ D.

Then we have, for any x, y ∈ D,

‖Tx− Ty‖ =
∥∥∥∥w

(
‖x− z0‖

4

)
− w

(
‖y − z0‖

4

)∥∥∥∥
≤ 2

∣∣∣∣‖x− z0‖
4

− ‖y − z0‖
4

∣∣∣∣ ≤ 1
2
‖x− y‖.

Further, we have, for every x ∈ D,

‖Tx− z0‖ =
∥∥∥∥w

(
‖x− z0‖

4

)∥∥∥∥ ≤ ‖x− z0‖
4

< ‖x− z0‖.

So, T has no fixed point in D. �

As a direct consequence of Theorem 5, we obtain the following.

Corollary 3. Let X be a normed linear space. Then X is a Banach space
if and only if every contractive mapping from X into itself has a fixed point in X.
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