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FIXED POINT THEOREMS FOR MAPPINGS

SATISFYING INWARDNESS CONDITIONS

BY

JAMES CARISTI

ABSTRACT.   Let A" be a normed linear space and let K be a convex sub-

set of X.   The inward set, I¡((x), of x relative to K is defined as follows: I^(x) =

{x + c(u - x):c > 1, u e K).   A mapping T:K —► X is said to be inward if Tx S

I/ç(x) for each x e K, and weakly inward if Tx belongs to the closure of If¿(x)

for each x e K.   In this paper a characterization of weakly inward mappings is

given in terms of a condition arising in the study of ordinary differential equa-

tions.   A general fixed point theorem is proved and applied to derive a general-

ization of the Contraction Mapping Principle in a complete metric space, and

then applied together with the characterization of weakly inward mappings to

obtain some fixed point theorems in Banach spaces.

0. Introduction. Let X be a topological vector space, KG X, and T a map-

ping of K into X.  An inwardness condition on T is one which asserts that, in

some sense, T maps points x of K "toward" K, or more precisely into the set gen-

erated by rays emanating from jc and passing through other points of K.   Such

conditions are always weaker than the assumption that T map the boundary of K,

dK, into K.   They have been formulated in a variety of ways and imposed by sev-

eral authors recently in connection with studies both in fixed point theory and in

certain differential equations.  Our purpose in this paper is to illustrate how differ-

ent types of inwardness assumptions are related, and to prove several new fixed

point theorems in which these concepts play a role.

Before stating precise definitions we give a brief review of some of the pre-

vious work in this area.

The study of inward mappings originated with the investigations of B. Hal-

pern in his 1965 doctoral thesis [7] where he obtained a generalization of the

Schauder-Tychonov Theorem, a result he and Bergman further generalized in 1968

[9]. Since then many results have appeared in the literature concerning inward

and weakly inward mappings in Halpern's sense, for both single and multivalued

mappings (cf. [3], [6], [8], [9], [14], [16]-[19]).

Another type of inwardness assumption was used by H. Brezis [1] in
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242 JAMES CARISTI

connection with his study of the differential equation

(0.1) x' = /(x)

where x : [0, °°) —> R" and the mapping /: K C R" —*■ R" is locally lipschitzian.

Brezis proved that the condition

(0.2) Urn  A" xd(x + hf(x), K) = 0   for all x G K
h-*0 +

(where d(x, K) = inf {d(x, y) :y E K}) is equivalent to the flow invariance of K

in the sense that if <x> is a solution of (0.1) and <p(t0) E K for some i0, then

tp(t) E K for all t > t0 in the interval of solution. Some of the work related to

this result can be found in [5], [13], [15], [20]-[22]. We remark that a map-

ping satisfying (0.2) with "lim" replaced by "lim inf is called positively subtan-

gential in [22].

Before turning to our principal fixed point theorem and its applications we

give precise definitions of the inwardness assumptions used here and we show how

our concepts are related to those of Brezis.  Our first observation, in fact, shows

that if F is a convex subset of a normed linear space X, then T : K —> X is weakly

inward in Halpern's sense if and only if / = / + T satisfies Brezis' condition (0.2).

(Here / denotes the identity mapping.) This connection yields as a consequence

the fact that two of our principal fixed point results overlap known results of

Martin [13] and Vidossich [21], a fact we comment upon in later remarks.

1.  Characterization of weakly inward mappings.  Let X be a topological

linear space and K a subset of X.  If x G K we define the inward set, I^(x), of

x with respect to K as follows:

(1.1) /K(x) = {x + c(ix-x):t! G F and c>l}.

We say that a mapping T : K —*■ X is inward in case Tx E IK(x) for each x G K.

We say that T is weakly inward in case Tx belongs to the closure of I¡r(x) for

each x EK.

Note that in the usual definition of IK(x) as in [9], the numbers c were

taken as simply nonnegative. However, in previous work K has always been as-

sumed to be convex, an assumption we will not always make, although (1.1) is

equivalent to the usual definition of IK(x) in case K is convex.  We choose to re-

quire c > 1 for technical reasons which arise later. The following theorem is an

essential tool in dealing with weakly inward mappings, and relates their study to

the work of Brezis and others.

Theorem 1.2. Let K be a convex subset of a normed linear space X and

let f:K—*X.   Then for each xEK
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(1.3) lim    h~ xd(x - hf(x), K) = 0
h-*0 +

if and only if I -fis weakly inward.

Proof.  Suppose (1.3) holds and let x G K.  Let e > 0 be given.  Then

there is a number hQ such that 0 < h0 < 1 and h^xd(x - h ¡fix), K) < e/2. By

definition of distance there exists uGK such that

||x - hj(x) - u||< d(x - h0f(x), K) + Kh0e.

Notice that x + /iq x(u - x) belongs to IK(x). Since

II [x + h~x (u - x)] -[x- f(x)] II = /IÔx II« - (x - h0f(x))\\

< hö ' [d(x - h0f(x), K) + Kh0e] < e,

(I -f)(x) is in the closure of IK(x) and hence I-fis weakly inward.

Now suppose I -fis weakly inward and let x G K.   Let e > 0 be given.

Since (I-f)(x) is in the closure of IK(x), choose a sequence {xn} in IK(x) such

that xn —*• (I -f)(x). Then there exists N such that for all n > N,

\\xn-(x-f(x))\\<e.

Notice that

h~xd(x-hf(x),K)

< ft"Ml\x - hf(x)] -[x + h(xN - x)] || + h~xd(x + h(xN - x), K).

Since xN G IK(x) and K is convex, there exists hQ > 0 such that x + hQ(xN -x)

G K.  Thus if 0 < h < h0, h~xd(x + h(xN -x),K) = 0 and

A" xd(x - hf(x), K) < h~x || [x - hf(x)) -[x + h(xN - x)] ||

= \\x-f(x)-xN\\<e,

proving Hm/I_>0+ h ~ xd(x - hf(x), K) = 0.   Q. E. D.

Corollary 1.4. Iff, K, and X are as in Theorem 1.2, then fis weakly in-

ward if and only if

lim   h~ xd((l - h)x + hf(x), K) = 0   for all xGK.
h-*0 +

Observe that the convexity of K was only used in the second half of Theo-

rem 1.2, and in fact, without convexity the same proof can be used to obtain

Proposition 1.5. If X is a normed linear space with K G X, and iff:

K-* X has the property that I -fis weakly inward, then

inf {h~xd(x-hf(x),K)) = 0   for all x G K.
h>0

Proposition 1.6. If X is a normed linear space with K C X, and iff:

K —* X satisfies condition (1.3), then I -fis weakly inward.
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Finally we remark that when K is convex, condition (0.2) is equivalent to

the assumption that the mapping / + / is weakly inward.

2.  Fixed point theorems. Much of the recent work in fixed point theory

has been directed toward determining when a mapping F : K —► X for K C X

has a fixed point. It is not necessary always to assume that T:K —* K, but

rather T:dK —> Kis often a sufficient assumption for existence of fixed points

(e.g. [2]). A weaker assumption for convex K, the Leray-Schauder boundary con-

dition, has been used by many authors in obtaining their results (e.g. [4], [12]).

As previously mentioned, the Schauder-Tychonov Theorem is true for weakly in-

ward mappings [9]. We are interested in generalizing two important theorems to

weakly inward mappings: the Contraction Mapping Principle and Kirk's theorem

for nonexpansive self-mappings of a bounded, closed, convex set with normal

structure [11].  In the case of inward mappings, an extension of Kirk's theorem

was obtained by S. Reich [17] by showing first [18] that an inward "condensing"

mapping with bounded range defined on a closed, convex subset of a Banach space

has a fixed point.  His technique, however, apparently does not work for weakly

inward mappings.  We will prove first that a weakly inward contraction mapping

always has a fixed point, and apply this to Reich's argument in [17] to reach our

improvement of his extension of Kirk's theorem.

The important tool for all that follows is the next theorem, which will also

give us a generalization of the Contraction Mapping Principle.

Theorem 2.1. Let (X, d) be a complete metric space, K a closed subset of

X. Suppose f:K—*Kis an arbitrary function and T: K —*■ X is continuous. If

there exists a real number r < 0 such that

d(f(x), Tf(x)) < d(x, Tx) + rd(x, f(x))   for all xEK,

then f has a fixed point.

Proof.  Let Y be the collection of ordinals strictly less than Í2, the first

uncountable ordinal.  Let 70 be the first element of T.  Let x0 G K and set

x7   = x0.  For fixed a G T suppose that for all y E V with y < a we have de-

fined x7 G K in such a way that (i) if y = y + 1 then x7 = f(xy,) and (ii) if

7„-* 7 then xy   —*■ xy. To complete the induction we must define xa.

Suppose a = a' + 1. Since a cannot be the successor of anything but a

we can define xa = /(xa»).

Suppose a„^a. To define xa we must show that if ßn * a. then there is

xEK such that xa   —> x and Xß   —* x.   By the well-ordering of T we can de-

fine a sequence {7n} consisting of all of the elements of {a„} U {ßn} and which

is nondecreasing.

Claim 1.  If |0<£<athen
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d(xv Txf) < d(x%    Tx.) + r    £     d(xr xy+x).
£o<7<£

The proof of Claim 1 is by transfinite induction on %.  If % = £0 + 1 we

have

d(x%, Txf) = d(f(xio), Tf(xio)) < d(xio, TxÍQ) + rd(xso, x£).

If % = r\ + 1, and we know 2{()<7<r} d(xy, xy+ x)<°° and

d(x , Txn) < cZ(x£    Txt) + r    £     d(xy, xy+x),
£o<t<t)

then

d(xv Txf) = d(f(xn), Tf(xv)) < <*(*„, Txn) + rd(xn, xf)

< \d(xtf., Txt) + r     £     ¿(*r *7+i)    + rd(xn> xi)
L      ü       °        ïo<7<ti J

= d(x%Q, Tx%0) + r    E   ¿(*r*7+1).

Finally, if £„ -» £ and we know 2£0<7<£n tf(*7. *7+1) < °°. and

d(xtn, Txin) < d(xÍQ, Txt(f) + r    £      d(xy, xy+x)

for all n, then let sn = 2fo<7<£n <Z(xr *7+1) and s = 2to<7<t ¿(*r xy+l).

Since 0 < ¿(*{0. 7*£0) + ran> we see tnat (sn} is bounded. Clearly {sn} is non-

decreasing and sn < s for each n.  Hence lim^^^ s„ < s.  If {5,} is  an enumera-

tion of {7 : £0 < 7 < £}, then s = lim,,.^ 2JL, d(xs., xs + j).  For each « choose

m so large that %m > maxiSp . . . , S„}. Thus sm > SJLj <Z(x6., x6.+ f) and

hence s < sup{sm} = limm_„ sm < s.   Therefore, s is finite and sn —*■ s as n —►

°°.  By the continuity of T we obtain

d(xv Txf) < d(xÍQ, Txh) + r    £     d(xy, xy+x),

proving the claim.

Claim 2.  If £n < a for n = 0, 1, . . . and {£„} is nondecreasing, and if we

define

^n=d(xinl,Tx%n_f)-d(x%n,Tx%n),

then 2 en <<*>.

For the proof of this claim observe that for each n, Claim 1 gives

*n > d(xin_x, Tx^fi-Ux^, Tx,n_f) +r      £      <*(*r*7+1)l >0.
L ï«-i<7<£„ J

Hence {d(x^ , 7x£ )} is a nonincreasing sequence. Since 2" e¡ = d(x$ , 7*$..) ~

d(xifj, Txif¡), we get

ge/. = ^to,r^0)-iim^ïn,^n)

which proves the claim.
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The following claim involves the sequence {7^} defined earlier.

Claim 3. d(Xyn, x7/j+j) < 27„<7<7„+, d(xy, xy+x).

We proceed by transfinite induction on 7„+,.  If 7„+, = 7„ + 1» then

d(Xyn,   Xyn+l)   =  d(Xyn,   Xyn+X).      If 7„ + ,    =   Î?   +    1    ̂ d

d(xy,xn)<    £     d(xy,xy+x),

then

d{x-rn> xvn+i>< d(-xyn' xn)+ d(xv> xfn+i>

<     X    d(xrXy+x) + d(xTt,Xy      )

Z      d(*r *7+i)-
7n<7<7n+l

Finally, suppose %i -* 7n+, as i —► °°, and that for each i,

d(*7„> *Ü <     Z     d(xrx +,).
7„<7<£/

Let e > 0. Then there exists a number A such that for all i >N, d(x£ , x7 .    )

< e. Hence

d(Xyn, Xyn+l)<d(Xyn,  X^)  + d(X^, Xyn+i)

< Z      d(Xy,xy+x) + e
7«<7<EXV

< Z        d(Xy,xy+l) + e,
7„<7<7„+i

which completes the proof of Claim 3.

Now by Claims 3 and 1,

d(xyn> Xyn+l) <       Z       d(x   x +,) < - r xen,
"        "+1        7„<7<7„+l

where en = ¿(*v 7x7n) -<*(x7jl+1, Z*7f|+1).

By Claim 2, {x7 } is a Cauchy sequence, so there exists x G K such that

xy   —>-x; hence x„    —>-x andx» —>-x. Therefore by transfinite induction we
'n un Pn

have defined a subset Kx of F as F, = {x7 : y E T}. Let m = inf {d(x, Tx) :

xGF,}.

Choose a sequence {x7 } in Kx such that {7,} is increasing and d(x7 , Fx7.)

—► m.  Since {7,} is countable, it cannot converge to Í2, or else Q, would be a

countable ordinal. Since {7,.} is increasing, it must converge to its least upper

bound, say 7 < Í2. Hence d(xy, Fx7) = m.  But 7 +1 G T and

d(Xy+X,       TXy+X)     =     d(f(Xy),      Tf(Xy))<d(Xy,       TX y)     "T"     r^,     ̂ X^,
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implying that d(xy, f(xy)) = 0 by the minimality of m.    Q. E. D.

Let AT be a complete metric space and K G X.  We say that a mapping T :

K —*■ X is metrically inward if for each x G K there exists an element u of K such

that
d(x, u) + d(u, Tx) = d(x, Tx)

where u = x if and only if x = Tx.   For X a normed linear space this assumption

is weaker than the definition of inward given in § 1.

Theorem 2.2. Suppose (X, d) is a complete metric space, K a closed sub-

set of X, and T:K —* X a metrically inward contraction mapping with Lipschitz

constant k < 1.  Then T has a fixed point.

Proof.  Suppose T has no fixed point. Then it is possible to define /:

K —► K as follows: f(x) = u where u i^x is any element of K such that d(x, u) +

d(u, Tx) = d(x, Tx). YorxGK then

d(f(x), Tf(x)) < d(f(x), Tx) + d(Tx, Tf(x))

= d(x, Tx) - d(x, f(x)) + d(Tx, Tf(x))

<d(x,Tx) + (k-l)d(x,f(x)).

Since k - 1 < 0 we can apply Theorem 2.1 to obtain a fixed point for /, thus

contradicting the definition of/    Q.E.D.

In a normed linear space, if a mapping is inward, then it is metrically inward.

Thus we observe that if jf is a Banach space, K a closed subset of X, and T:

K —► X an inward contraction mapping, then T has a fixed point.

There is a rather natural way of defining weakly inward mappings in a met-

ric sense. It is still unknown whether Theorem 2.2 remains true under such a

weaker assumption.  As another application of Theorem 2.1, however, we will

prove that Theorem 2.2 is true for a weakly inward contraction mapping defined

on a closed, convex subset of a Banach space.  In view of Theorem 1.2 this result

is actually included in an observation by Martin [13, Proposition 3]. However,

Martin derives his result from the theory of ordinary differential equations, a

technique totally unlike our approach.

Theorem 2.3. Let X be a Banach space and K a closed, convex subset of

X.  Let T:K —*■ X be a weakly inward contraction mapping with Lipschitz con-

stant k < 1.  77ien T has a fixed point.

Proof.  Suppose T has no fixed point. Choose e > 0 so small that k <

(1 - e)/(l 4- e). We will define a function f:K—+K such that for every x G K

and for fixed r < 0

\\f(x) - Tf(x)\\ < \\x -Tx\\+ r\\x - f(x)\\.
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By Theorem 2.1 such a function /has a fixed point, and the resulting contradic-

tion completes the proof. In order to define / it suffices to show that given x G K

there exists y E K such that

\\y - Ty\\< ||x - Fx|| + (k - y^} ||x -y\\.

Given x EK, use Corollary 1.4 to obtain « G (0, 1) such that

h~xd((l -h)x +hTx,K)< e||x - Fx||.

By the definition of distance, there exists an element y of K such that

(2.4) ||x -j>||<«e||x-7x||,   where x = (1 - «)x + hTx.

Observe also that ||x -x|| = «||x - 7x||, and (2.4) yields

llx-y|| ^Hx-x|| + ||x-j||      ,  , Hx -y\\   ^ ,  ,
__-^-_-= 1 + —-< 1 + e.
II*-jell Hx -x|| ||x-x||

Thus

(2.5) ||x-x||>(l+e)-1||x-7ll.

Using (2.4), (2.5), and the fact that e - 1 < 0,

\\y - Ty\\ < \\y-x\\ + Hx - Fx|| + HFx - 7>||

<\\y-x\\ + \\x-Tx\\ + k\\x-y\\

= ILv -x|| + ||x - 2x|| - ||x -x|| + fc||x -y\\

< e||x -x|| + ||x - Fx|| - ||x -x|| + fc||x -y\\

= ||x-x||(e-l) + ||x-7x||+A:||x->'||

Hx -y\\
< -JT7 (« - O + H* - 7*n + *n* -y\\

= ||x-Fx|| + ^--—-)||x-j||.   Q.E.D.

A mapping F: K —*■ X is said to be pseudo-contractive if for all x, y E K

and all r > 0,

Hx -y\\ < ||(1 +r)(x-y)- r(Tx - Ty)\\.

T is said to be nonexpansive if for all x, y E K,

\\Tx-Ty\\<\\x-y\\.

The class of pseudo-contractive mappings is easily seen to include the nonexpan-

sive mappings. Interest in the study of pseudo-contractive mappings stems from

the fact that the mapping T is pseudo-contractive if and only if / - T is accretive

[10].
The next theorem extends Kirk's theorem [11] to weakly inward mappings.
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In this theorem we assume that K has the fixed point property for nonexpansive

self-maps, i.e., that every nonexpansive mapping T:K —*K has a fixed point.

This is the case, for instance, if K is weakly compact and has normal structure [11].

We should also remark that G. Vidossich has claimed a theorem [21, Theo-

rem 5 (ii)] which, again in view of Theorem 1.2, is equivalent to Theorem 2.6 be-

low. He uses differential equations techniques also.

Theorem 2.6. Let X be a Banach space, K a closed, convex subset of X

which possesses the fixed point property for nonexpansive self-maps, and suppose

T:K —> X is a lipschitzian, pseudo-contractive mapping which is weakly inward.

Then T has a fixed point in K.

Proof.  Choose r > 0 so small that kT is a contraction mapping where

k = r/(r + 1). Define B = [I + r(I- T)]~x. B is single-valued and nonexpan-

sive, for

||[I + r(I-T)]u-[I + r(I- T)] v\\ = ||(1 + r)(u -v) -r(Tu - Tv)\\ >\\u-u||.

The range of B must be contained in K.  We will show that the domain of B con-

tains K.  Let z G K be fixed and define T: K —*■ X by Tx = kTx + (1 - k)z.

T is easily seen to be a contraction mapping. Notice further that for each x G K,

IK(x) is a convex set containing K, hence so is the closure of IK(x). Therefore

Tx is a convex combination of elements of the closure of IK(x) and thus T is

weakly inward.  By Theorem 2.3 there exists x* G K such that Tx* - x*. Hence

x* = kTx* + (1 - k)z = r(r + l)-xTx* + (r + l)~xz.

This implies z = (r + l)x* - rTx* = x* + r(I - T)x*. Hence z is in the range of

I + r(I - T), so the domain of B contains K.  Therefore B restricted to K is a non-

expansive self-mapping of K, which must have a fixed point, say x.  Then

x + r(x - Tx) = x and thus x = Tx.    Q.E.D.

3.  Remarks.  After this paper was written the following more general form-

ulation of Theorem 2.1 was suggested by Felix Browder (see James Caristi and

W. A. Kirk, Geometric fixed point theory and inwardness conditions (to appear

in Proc. Conference on the Geometry of Metric and Linear Spaces, Mich. State

Univ., 1974)).

Theorem (2.1)'. Let (M, d) be a complete metric space and f:M^*M.

If there exists a lower semicontinuous function ip mapping M into the nonnegative

real numbers such that

d(x, f(x)) < tfx) - tf/(x)),     x G M,

then f has a fixed point.

The proof given for Theorem 2.1 establishes the above version upon replac-
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ing d(x, Tx) with - <¿>(x)/r and making obvious modifications.

We very recently discovered that a theorem announced by I. Ekeland [C. R.

Acad. Sei. Paris Ser. A-B 275 (1972), 1057-1059 (Théorème 1)] is equivalent to

Theorem (2.1)'. Ekeland's result (which is not formulated as a fixed point theo-

rem) is an abstraction of a lemma due to Bishop and Phelps.  Earlier Felix Brow-

der had suggested a possible connection between Theorem (2.1)' and the Bishop-

Phelps approach and devised a simpler proof.  Subsequently Chi Song Wong sim-

plified our transfinite induction approach and W. A. Kirk observed that a proof

of Theorem (2.1)' is implicit in a recent paper of A. Br^nsted [Pacific J. Math.

55 (1974), 335—341]. Finally we remark that further applications of Theorem

(2.1)' have been given by Kirk and Caristi [Bull. Acad. Polon. Sei. 32 (1975)]

and by Kirk [Proc. Seminar on Fixed Point Theory and its Applications, Dal-

housie University, 1975 (to appear)].

The author is greatly indebted to Professor W. A. Kirk for his valuable

assistance.  The results of this paper comprise a portion of the author's University

of Iowa doctoral dissertation.
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