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Abstract

DEA is the way of evaluating the performance of decision-making units on the basis of the degree of efficiency. Unfortunately, 

congestion has been known as a technical inefficiency for at least three decades just because of the lack of determining the 

congestion border. In this article, we have introduced the concept of the congestion hyperplane without considering the 

efficiency value. This has considerably reduced the calculation, and the congestion border has been determined. In addition, 

the existence of this hyperplane is ascertained. For this purpose, we determine the BCC-efficient DMUs. The normal vector 

of the hyperplane is denoted by these values. This hyperplane can pass from any of the BCC-efficient DMUs. Next, we have 

shown that the previous congestion methods are covered and improved by this hyperplane.

Keywords Data envelopment analysis (DEA) · Congestion · Hyperplane · Linear programming · Decision-making units 

(DMU)

Introduction

DEA is a nonparametric mathematical method that is used 

to evaluate the performance of a set of decision-making 

units. Congestion occurs when one or more input(s) is/are 

increased to reduce one or more output(s) without making 

changes in the other inputs and outputs. Grosskopf and Fare 

[8] proposed an executable form and studied the related 

DEA models (Model: FGL) to evaluate the performance of 

the product. Later, Cooper, Tomston, and Trall (CTT) intro-

duced another model for the study of congestion. Cooper 

[6] compared these two models using numerical examples. 

Cooper [4] proposed another theory in which the two-step 

calculation is combined in CTT. Brackets [2] suggested CTT 

models to examine the relationship between employment 

and output in order to increase employment in the manufac-

turing industries of China [7]. Cooper [3] studied the con-

gestion management in Chinese industry and showed how 

evaluating managerial inefficiency caused an increase in the 

output size without reducing employment in the textile and 

automobile industry. The congestion in the Chinese industry 

was re-examined by Jahanshahloo and Khodabakhshi [9]; 

the proposed models create the evaluation principles for 

the DMUs .Tons and Saho [12] proposed a nonparametric 

process in order to measure the scale of production–con-

gestion [5]. Cooper examined congestion under a stochastic 

DEA using chance programming. Odeck [11] discussed the 

impact of congestion on inputs, such as fuel consumption, 

along with the impact of the number of workers in the bus 

industry in Norway. In his article [13] such congestion is 

investigated with constant returns to scale output-oriented 

models. Nora et al. [10] presented a new method for calculat-

ing the amount of congestion.

So far, conceptual congestion has been localized so that 

each unit should be examined separately, which is very time-

consuming and requires solving programming models. But 

the introduction of the congestion hyperplane is a linear 

criterion that calculates the congestion of each unit without 

solving any model. Since efficient units are the basis for intro-

ducing this hyperplane, it can always be introduced without 

using any loops. So the process of finding the hyperplane 

will be a linear and always convergent approach. There was 

no way to determine the congestion border until now. This 

congestion border makes it possible to recognize congestion 

from technical inefficiency. While congestion border helps to 

comprehensively identify congestion units and their amounts, 

previous methods could recognize congestion in evaluating 
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congestion units. Sometimes, the amount of congestion in 

such units has been found to be zero because of noncon-

sideration of the convexity condition. For solving all these 

problems and reducing computation, the congestion hyper-

plane is introduced and hence congestion is not recognized 

as a technical inefficiency anymore. The congestion amount 

of congestion units is determined by the distance between 

points on the right-hand side of the hyperplane (right points) 

and the hyperplane, while threshold congestion is defined by 

the distance between left points and the hyperplane.

In this paper, we first introduce the methods of Cooper 

et al. [3] and Nora et al. [10] in “Background” section. The 

existence of the congestion hyperplane is ascertained by 

some theorems in “Proposed method” section. In “Numeri-

cal example” section, we propose a congestion hyperplane 

based on a linear method by using efficient units, which can 

separate congestion units from other DMUs. This hyper-

plane improves the model developed by Nora et al. [10], and 

the results are similar to those derived from the model of 

Cooper et al. [3]. Different numerical examples are selected 

out of two articles [3, 10] and then solved with the proposed 

method. Then, these values are compared with the previous 

methods. In the end, the results of this study are presented 

in “Conclusions” section.

Background

Basic concepts

BCC model

If Tv = {(x, y)�x ≥
∑n

i=0
�jxj, y ≤

∑n

j=1
�jyj,

∑n

j=1
�j = 1, �j ≥

0, j = 1,… , n} , then to measure the relative efficiency of 

each DMU in the output oriented, the following model 

should be solved:

BCC model (1) is:

Max �

s.t.
(

xo,�yo

)

∈ TV

(1)

�∗
= Max � + �

(

s
∑

r=1

s+
r
+

m
∑

i=1

s−
i

)

s.t

n
∑

j=1

xij�j + s−
io
= xio, i = 1, 2,…m

n
∑

j=1

yrj�j − s+
ro
= �oyro, r = 1, 2,… , s

n
∑

j=1

�j = 1

(

�j, s−
io

, s+
ro

)

≥ 0, j = 1, 2,… , n, i = 1, 2,… , m, r = 1, 2,… , s

Hyperplane

The result of solving the multiplicative models is to find 

the weights such as (U∗
, V

∗) for the inputs and outputs of 

the unit. Given the constraints, we have a multiplicative 

form UtYj − V tXj ≤ 0;j = 1, 2,… , n . In other words, the n 

hyperplanes are available with 1 gradient vector (U, V).

Congestion

There is a congestion if the decrease in one or more inputs 

is accompanied by an increase in one or more outputs 

(congestion in the input), without the other inputs and 

outputs getting worse or vice versa, if the increase in one 

or more inputs along with a decrease in one or multiple 

outputs without getting worse in other inputs and outputs.

Introducing the Cooper’s method

In this section, the method of Cooper et al. [3] and their 

definition of congestion will be explained. Consider that 

there are n DMUs that they have m inputs and s outputs. 

The xj =

(

x1j, x2j,… , xmj

)T
 and yj =

(

y1j, y2j,… , ysj

)T
 

are the input and output vectors of DMUj j = 1, 2,… , n , 

respectively.

First, they solved the output-oriented BCC (Banker, 

Charnes, Cooper) [1] model and then the efficiency of each 

DMU was obtained by solving BCC model (1).

In the above method, inefficiency is a necessary condi-

tion for the presence of congestion, and they first deter-

mined inefficient units with Model (1) and finally pre-

sented the following model to calculate the amount of 

congestion:

Model (1) is solved for all units to identify inefficient DMUs, 

but Model (2) is used to determine the congestion of inef-

ficient units. Pay attention to the input slack. In practice, the 

calculations should be conducted in three stages and three 

models must be solved to get the optimal solution as well as 

to determine the amount of congestion.

(2)

�∗
= max � + �

(

s
∑

r=1

s+
r
− �

m
∑

i=1

s−c
i

)

s.t

n
∑

j=1

xij�j + s−c
io

= xio, i = 1, 2,…m

n
∑

j=1

yrj�j − s+
ro
= �oyro, r = 1, 2,… , s

n
∑

j=1

�j = 1

(

�j, s−c
io

, s+
ro

)

≥ 0, j = 1, 2,… , n, i = 1, 2,… , m, r = 1, 2,… , s
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Cooper et al. [3] expressed the following definition to deter-

mine congestion in a DMU.

De�nition 1 A DMU has congestion if and only if in an 

optimal solution 
(

�∗
, �∗, S

+∗
, S

−c∗
)

 of Model (2), at least one 

of the following two conditions is occurred:

1. �∗ > 1 , and there exists at least one s−c∗
i

> 0(1 ≤ i ≤ m).

2. There should be at least one s+∗
r

> 0 (1 ≤ r ≤ s) and at 

least one s−c∗
i

> 0 (1 ≤ i ≤ m).

Introducing Nora’s method

First, they solved Model (1) for all DMUs and denoted the 

optimal solution 
(

�∗
, �∗, S

+∗
, S

−∗
)

 each DMU; then, they 

defined Set EF as follows:

There exists at least one DMU, says DMUl in EF set, that 

has the highest value in its first input component compared 

to the first input component of the remaining DMUs of Set 

EF. That is to say:

They delineated x
1K

 by x∗
1
 . For all input components (i = 1, 

…, m), they introduced a DMU in EF that ith input is higher 

than those of all other DMUs in the set and shown by 

x
∗

i
, i = 1, 2,… , m similarly. Then, the defined congestion is 

as follows:

Definition 2 ADMU has congestion if and only if, in 

an optimal solution 
(

�∗
, �∗, S

+∗
, S

−∗
)

 of Model (1) for 

this DMU, at least one of the following two conditions is 

occurred:

1. �∗ > 1 , and there exists at least one x
io
> x

∗
i
(1 ≤ i ≤ m).

2. There is at least one s+∗
r

> 0(1 ≤ r ≤ s) and at least one 

x
io
> x

∗
i
(1 ≤ i ≤ m). □

where x
io
> x

∗

i
 ; they show the amount of congestion in the 

ith input of DMUo by sc
′

i
 and it is defined as follows:

A DMU has no congestion when x
io
≤ x

∗

i
 and sc

�

i
= 0.

Proposed method

In this section, we prove the existence of the conges-

tion hyperplane. In other words, there is a boundary that 

divides the possible production set (PPS) units into two 

EF = {j|�∗ = 1} or EF = {BCC efficient units}

∃(K ∈ EF)s.t ∶ ∀j(j ∈ EF) → x
1K > x

1j

s
c
�

i
= x

io
− x

∗

i

sections: congestion units and units without congestion 

(noncongestion units). These two sets have no intersection. 

Assume that T is the set of congestion units defined by 

Cooper et al. [3] and T ′ is the set of noncongestion units, 

according to this definition.

Theorem 1 T and T ′ sets are convex, T is the set of conges-

tion units, and T ′ is the set of noncongestion units defined 

by Cooper et al. [3].

Proof We consider two arbitrary units to prove that Set T 

is convex:

1. If both these DMUs are efficient.

Now, we show that any convex combination of these two 

members of Set T will belong to T. It means:

suppose that:

According to Definition 1 of congestion, if a DMU is effi-

cient, then there is a component greater than zero in conges-

tion slack and excess slack vectors. Thus, we consider that 

these components for DMU
1
 are s−c∗

1i1
> 0, s

+∗

1r1

> 0 , while the 

components for DMU
2
 are s−c∗

2i2
> 0, s

+∗

2r2

> 0 . Now, we show 

any convex combination of these two DMUs has congestion. 

In other words, there is a component greater than zero in 

congestion slack and the excess vectors corresponding to the 

convex combination of these two DMUs. The excess vectors 

s
+∗

1
 , s+∗

2
 are introduced as follows:

Then, one of these two cases will occur:

(a) If the same components of excess vectors in these 

DMUs are greater than zero, then r
1
= r

2
= r  . 

Since s
+∗

2r
> 0 , s

+∗

1r
> 0 and � > 0 so we have 

�s
+∗

1r
+ (1 − �)s+∗

1r
> 0 and �s

+∗

1
+ (1 − �)s+∗

2
> 0.

(b) If the nonzero components of excess vectors in these 

DMUs are different, then r
1
≠ r

2
 : 

∀
(

x1, y1

)

,
(

x2, y2

)

∈ T ,
(

�x1 + (1 − �)x2, �y1 + (1 − �)y2

)

∈ T ,

DMU1 =

(

x1, y1

)

=

(

x11, x12,… , x1m
, y11, y12,… , y1s

)

DMU2 =

(

x2, y2

)

=

(

x21, x22,… , x2m
, y21, y22,… , y2s

)

s
+∗

1
=

(

s
+∗

11
,… , s

+∗

1r1

,… , s
+∗

1s

)

and s
+∗

2
=

(

s
+∗

21
,… , s

+∗

2r2

,… , s
+∗

2s

)
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So if s+∗
2r

2

> 0 , s+∗
1r

2

> 0 , then �s
+∗

1
+ (1 − �)s+∗

2
 should be 

greater than zero. As the same way, we can prove that if 

s
−c∗

1i1
, s

−c∗

2i2
> 0

(

1 ≤ i1, i2 ≤ m
)

 , then �s
−∗
1

+ (1 − �)s−∗
2

 should 

be greater than zero. Therefore, if both of these DMUs will 

be efficient, then T is convex. So:

2. If both these DMUs are inefficient, then they have a 

nonzero component in their congestion slack vectors. In 

this case (according to the previous section), the conges-

tion slack of a convex combination of these DMUs has at 

least a nonzero component and hence this combination 

will be in Set T.

2. If DMU
1
 is efficient and DMU

2
 is inefficient, then their 

convex combination will be inefficient, while the con-

gestion slack and excess slack vectors of DMU
2
 will 

have at least a nonzero component like s−∗
2i2

> 0, s
+∗

2r2

> 0 

and the congestion slack vector of DMU
1
 has s−∗

1i
1

> 0 . 

Thus, based on the above proof �s
−∗
1

+ (1 − �)s−∗
2

 will be 

greater than zero.

So in per case, 
(

�x1 + (1 − �)x2, �y1 + (1 − �)y2

)

 has con-

gestion and T will be convex. Similarly, it can be shown that 

T
′ is convex. □

Theorem 2 T and T ′ sets have no intersection where T is 

the set of congestion units and T ′ is the set of noncongestion 

units defined by Cooper et al. [3].

Proof Suppose T ∩ T
� ≠ � . Thus, there is DMU

o
 as a mem-

ber of T and T ′ . According to the assumption, if DMU
o
 is 

an efficient congestion unit, then the congestion slack and 

excess slack vectors have components greater than zero and 

this is in contradiction with DMU
o
∈ T

� . And also if DMU
o
 

is inefficient, we will reach a contradiction and hence this 

assumption is false. □

Theorem 3 If T and T ′ are convex and T ∩ T
� = � , then 

there is a hyperplane that divides PPS into these sets.

Proof Assume Set S is the difference between T and T ′ as 

follows:

We first show the Set S is convex. According to the defini-

tion of the S:

�s
+∗

1
+ (1 − �)s+∗

2
= �

(

0,… ., s
+∗

1r1

, 0,… ..0

)

+ (1 − �)

(

0,… ., s
+∗

2r2

, 0,… ..0

)

=

(

0,… , �s
+∗

1r1

, 0,… , (1 − �)s+∗
2r2

, 0,… ., 0

)

> 0.

So:

According to Theorem 1, T and T ′ are convex so every com-

bination of their members will be in Set S. Namely,

(

�t1 + (1 − �)z1, �t2 + (1 − �)z2

)

∈ S and S is a convex set 

and (0, 0) ∉ S because of T ∩ T
� = � . Therefore, there is a 

hyperplane relying on a convex set:

Therefore, the existence of the congestion hyperplane was 

proven.

The presentation of congestion hyperplane

In this section, we introduce the congestion hyperplane. For 

this purpose, we determine the BCC-efficient DMUs and then 

define the maximum value of the input components among 

these DMUs. The normal vector of the hyperplane is denoted 

by these values. This hyperplane can pass from any of the 

BCC-efficient DMUs.

First we solve Model (1) for DMUj (j = 1, 2,… , n) and 

determine the optimal solution 
(

�∗
, �∗, S

+∗
, S

−∗
)

 . Then, Set 

EF is defined as follows:

There is a DMU in Set EF (that is called DMUI), and this 

DMU in the first component has the highest amount than 

other efficient DMUs in Set EF. It is shown as follows:

Then, we determine x
1l

 with x∗
1
 . Now we solve Model (3) to 

find all x∗
i
, i = 1, 2,… , m . We introduce E∗ as follows:

In other words, a BCC-efficient DMU is the ith compo-

nent of EF
∗ , and its ith input is higher than other efficient 

DMUs. We show this DMU as DMU
∗

i
 . Now, suppose 

⎧⎪⎨⎪⎩

�
t1, t2

�
∈ S →

�
t1, t2

�
=

�
X1 − X2, Y1 − Y2

�
→

��
X1, Y1

�
∈ T�

X2, Y2

�
∈ T �

�
z1, z2

�
∈ S →

�
z1, z2

�
=

�
X3 − X4, Y3 − Y4

�
→

��
X3, Y3

�
∈ T�

X4, Y4

�
∈ T �

(

�t1 + (1 − �)z1, �t2 + (1 − �)z2

)

=
(

�
(

X1 − X2

)

+ (1 − �)(X3 − X4),

�
(

Y1 − Y2

)

+ (1 − �)
(

Y3 − Y4

))

,

{

�
(

X
1
− Y

1

)

+ (1 − �)(X
3
− Y

3
) ∈ T

�(X
2
− Y

2
) + (1 − �)

(

X
4
− Y

4

)

∈ T
�

∃0 ≠ P =
(

P
t

1
, P

t

2

)

∶
(

P
t

1
, P

t

2

)

(X, Y) = 0

EF = {j|�∗ = 1} or EF = {BCC efficient units}

(3)∃(l ∈ EF)s.t ∀j(j ∈ EF) → x
1l > x

1j

(4)

∀1 ≤ i ≤ m, ∃(l ∈ EF)s.t ∶ ∀j (j ∈ EF) → xil > xij → l ∈ EF
∗
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DMUk ∈ EF
∗ has the highest amount in the kth input 

component in Set EF and its input and output vectors are 

Xk =

(

x1k, x2k,… , x∗
k
,… , xmk

)

and Yk =

(

y1k, y2k,… , ysk

)

 , 

respectively. There is a hyperplane parallel to axis out-

puts that passes through DMUk. The normal vector of 

this hyperplane will be obtained by solving the following 

system of m + 2 equations and m unknowns. Consider that 

the input vector of DMU with the highest value of a first 

input component (DMU
∗

1
) is X∗

1
=

(

x
∗

1
, x12,… , x1m

)

, , while 

X
∗

2
=

(

x21, x
∗

2
… , x2m

)

 is input vector of a DMU with the 

highest value in the second input component DMU
∗

2
 . Simi-

larly, X∗

m
=

(

x
m1, x

m2,… , x
∗

m

)

 is the input vector of a DMU 

with the highest value of the mth input’s component, that is 

called DMU
∗

m
.

Suppose that the hyperplane passes through DMU
∗

k
∈ EF

∗ . 

By using the values obtained from Model (5), this conges-

tion hyperplane is:

(5)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N
�
X
∗

1
− X

∗

k

�
= 0

N
�
X
∗

2
− X

∗

k

�
= 0

⋮

N
�
X
∗

k−1
− X

∗

k

�
= 0

⋮

N
�
X
∗

m
− X

∗

k

�
= 0

N.1 = 1

N > 0

(6)
H =

{(
x

y

)
|n

1

(
x

1j − x
1k

)
+⋯ + nm

(
xmj − xmk

)
+ 0

(
y

1j − y
1k

)
+⋯ + 0

(
ysj − ysk

)
= 0

}

Proof We consider  DMUo as a congestion unit. Suppose that 

the kth congestion slack component of DMUo is greater than 

zero (s−c

i
> 0) . Hence, based on the method of Cooper et al. 

[3], there is a Constraint (a) as well:

Nora et al. [10] proved that x∗
i
=

∑m

j=1
�
∗

j
xij, i = 1, .., m . So 

we have:

The hyperplane normal vector is greater than zero, so all of 

its components are positive. As a result, we have:

(a)

n
∑

j=1

�
∗

j
xkj < xko

(b)

xko − x∗
k
>

m
∑

j=1

�
∗

j
xkj −

m
∑

j=1

�
∗

j
xkj = 0 → xko − x∗

k
> 0, i = k.

(c)
xio − x∗

i
≥

m
∑

j=1

�
∗

j
xij −

m
∑

j=1

�
∗

j
xij = 0 → xio − x∗

i
≥ 0,

i = 1, 2,… , m, i ≠ k.

m
∑

i = 1

i ≠ k

n
i

(

x
io
− x

ik

)

+ n
k

(

x
ko
− x

∗

k

)

> 0

In other words, hyperplane equation will be as follows:

Now, with a proposition we show a congestion unit based on 

Definition 1 (Cooper et al. [3]) will satisfy Constraint (8). In 

fact, a congestion unit at the method of Cooper et al. [3] will 

have congestion with the proposed model.

Theorem 4 If the following condition is satisfied, then 

DMUj(j = 1, 2,… , n) has congestion:

(7)H =

⎧
⎪⎪⎨⎪⎪⎩

�
x

y

�
�

m�

i = 1

i ≠ k

ni

�
xij − xik

�
+ nk

�
xkj − x∗

k

�
+

s�
r=1

0
�
yrj − yrk

�
= 0

⎫⎪⎪⎬⎪⎪⎭

(8)

m
∑

i = 1

i ≠ k

ni

(

xij − xik

)

+ nk

(

xkj − x∗
k

)

> 0

� □

Note that if the hyperplane passes from each efficient 

units of EF
∗ , the distance of DMU from the congestion 

hyperplane will not be changed.

De�nition 3 The congestion amount on each DMU is the 

distance from the congestion hyperplane to this DMU. In 

other words, if the congestion’s amount of DMUj in ith input 

component is shown as s′′
i
 , then xij − s��

i
 must be on the con-

gestion hyperplane. □
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If all X∗
i
(i = 1, 2,… , m) should not be exclusive, then we 

select among them m, different DMUs . If there are not m 

different DMU
∗

i
(i = 1, 2,… , m) , then there exist more than 

one congestion hyperplane.

Numerical example

In this section, the proposed model will test with selected 

numerical examples that had been studied by other papers.

Explaining example

(a) Consider eight DMUs with one input and one output as 

A, B, C, D, E, F, G and H. These DMUs are shown in 

Fig. 1. The horizontal axis identifies the input and the 

vertical axis of the output.

(b) This example was solved by Cooper et al. [3] using 

Model (2), the results of which are provided in Table 1. 

  We now apply our proposed method to solve the 

same problem. Considering the efficiency of DMUs, 

we have Set EF = {A, B, C} , where (2) becomes: 

X∗ = Xc = 3 > xj(∀j ∶ (j ∈ EF)) → c ∈ EF
∗

. According to the proposed model, the congestion 

hyperplane is Xj − X∗
= 0 . We examine the condition 

of each DMU to the congestion hyperplane: 

. According to the results and Definition 2, the D, E, F, 

G units are congestion DMUs because Xj − X∗
> 0 and 

Xj − X∗ in other DMUs is less than or equal to zero and 

hence these DMUs have no congestion. In addition, as 

Table 1 shows, the points D, E, F and G in Cooper et al. 

[3] are also congestion DMUs. The congestion amounts 

are shown in Table 2.

(c) Consider the six DMUs as A, B, C, D, G and R, in 

Fig. 2. Each DMU has two inputs and one output. The 

value of output for R is y = 10, and the output of other 

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

A ∶ 1 − 3 = −2 < 0

B ∶ 2 − 3 = −1 < 0

C ∶ 3 − 3 = 0

D ∶ 5 − 3 = 2 > 0

E ∶ 4 − 3 = 1 > 0

F ∶ 4 − 3 = 1 > 0

G = 4.5 − 3 = 1.5 > 0

H ∶ 3 − 3 = 0

Fig. 1  Numerical example (a). 

Source: Cooper et al. [3]
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Table 1  The results of the 

Cooper’s method [3]
DMU A B C D E F G H

�
∗. 1 1 1 2 2 1.667 1.667 2

S
+∗. 0 0 0 0 0 0 0 0

S
−∗ 0 0 0 2 1 1 1.5 0

Table 2  The results of the 

proposed model
DMU A B C D E F G H

s
′′c 0 0 0 2 1 1 1.5 0
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DMUs is y = 1. The horizontal axis identifies the first 

input and the vertical axis of the second input.

The efficiency and congestion of these DMUs in accord-

ance with the model of Cooper et al. [3] are shown in Table 3. 

According to this table, EF = {A, B, R} and with Model (3):

However, all x∗
i
, i = 1, 2,… , m are not exclusive so x∗

1
= x

1R
 

and x∗
2
= x

2B
 . Therefore, the normal vector is n1 =

1

2
, n2 =

1

2
 . 

According to Model (6), DMUR has the highest amount of 

output. Therefore, the congestion hyperplane will be pass-

ing through R point. The equation of congestion hyperplane 

will be as follows:

The situation of all DMUs to the hyperplane is:

{

∀j(j ∈ A)x1R = x
1A = 5 > x

1j

∀j(j ∈ A)x2R = x
2B = 5 > x

2j

1

2

(

x
1j − 5

)

+
1

2

(

x
2j − 5

)

= 0

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

A ∶ −2 < 0

B ∶ −2 < 0

C ∶
5

2
> 0

D ∶
5

2
> 0

G ∶
5

2
> 0

R ∶ 0

As can be seen, the points C, D and G have congestion that 

corresponds to the results of the model developed by Cooper 

et al. [3]. This result is presented in Table 3.

The congestion value of Definition 3 in these DMUs 

states is given in Table 4:

As can be seen, the results are similar to Cooper et al. [3].

Applied example

In Table 5, data set for the Chinese automobile and textile 

industries during the period 1981–1997 is listed that is used 

by Cooper et al. [3]. The outputs and inputs are defined as 

follows:

Y is the output measured in units of one million Ren-

minbi, in 1991 prices; K is capital calculated in units of 

one million Renminbi, also in 1991 prices; and L is labor 

measured in units of 1000 persons.

All results obtained by using Model (1) are shown in 

Table 6. Now we solve this example by using our proposed 

method. For the textile industry, we have:

Fig. 2  Numerical example 2. 

Source: Cooper et al. [3]

A(5,1)

B(1,5)

C(5,10)

G(7.5,7.5)

D(10,5)
R(5,5)

0
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0 2 4 6 8 10 12

CHART TITLE

conges�on 

hyperplane

Table 3  The result of Cooper’s 

method [3]
DMU A B C D G R

�
∗ 1 1 10 10 10 1

S
+∗ 0 0 0 5 2.5 0

S
−∗ 0 0 5 0 2.5 0

Table 4  The result of the 

proposed model
DMU A B C D G R

s
′′

1
0 0 0 5 2.5 0

s
′′

2
0 0 5 0 2.5 0
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By comparing the efficiency score of DMUs in the textile 

industry, we find that DMU
11

 and DMU
14

 have the maximum 

input at the first and second components, respectively. Thus,

For the automobile industry, we have:

EFtextile =

{

DMU1, DMU3, DMU4, DMU5, DMU11, DMU14, DMU16, DMU17

}

x
∗

1
= x1,11 = 756 and x

∗

2
= x2,14 = 25.45

The results obtained from the proposed model and Nora 

et al. [10] and the congestion amounts obtained based on 

Definition 3, s′′c , are shown in Table 7. As can be seen, 

the distance of congestion DMUs from the hyperplane is 

x
∗

1
= x1,17 = 197.8 and x

∗

2
= x2,17 = 253.96

Table 5  Input and output data 

from the textile and automobile 

industries of China (1981–

1997) [3]

DMU Textile L Textile K Textile Y Auto L Auto K Auto Y

DMU
1
= 1981 389.00 19.86 856.02 90.43 3.81 70.47

DMU
2
= 1982 412.30 21.16 866.85 94.28 4.13 82.07+

DMU
3
= 1983 423.50 17.08 956.04 104.66 5.56 117.78

DMU
4
= 1984 417.30 18.10 1082.94 121.24 9.50 168.29

DMU
5
= 1985 570.00 12.61 1273.20 140.72 21.44 273.99

DMU
6
= 1986 600.50 13.45 1230.72 129.08 20.95 212.89

DMU
7
= 1987 641.10 15.91 1410.66 134.83 30.99 273.19

DMU
8
= 1988 715.30 23.72 1728.16 150.58 41.29 407.29

DMU
9
= 1989 736.00 25.97 2109.57 157.07 37.88 481.02

DMU
10

= 1990 745.00 18.24 2291.08 156.53 41.30 492.49

DMU
11

= 1991 756.00 14.40 2533.27 170.39 58.93 704.48

DMU
12

= 1992 743.00 17.50 2899.16 184.87 102.75 1191.05

DMU
13

= 1993 684.00 25.08 3520.74 193.26 164.27 1792.00

DMU
14

= 1994 691.00 25.45 4949.93 196.88 198.77 2183.10

DMU
15

= 1995 673.00 29.35 4604.00 195.25 231.34 2530.87

DMU
16

= 1996 634.00 23.05 4722.29 195.06 194.90 2399.09

DMU
17

= 1997 596.00 25.02 4760.28 197.81 203.96 2668.69

Table 6  DEA results using 

Model (1) for the textile (T) 

and automobile (A) industries 

in China

DMU T�∗ TS
−∗

1
TS

−∗

2
TS

+∗ A�∗ AS
−∗

1
AS

−∗

1
AS

+∗

DMU
1
= 1981 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

DMU
2
= 1982 1.49 0.00 0.72 0.00 1.00 0.00 0.00 0.00

DMU
3
= 1983 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

DMU
4
= 1984 1.00 0.00 0.00 0.00 1.00 14.73 0.00 0.00

DMU
5
= 1985 1.00 0.00 0.00 0.00 1.18 28.60 0.00 0.00

DMU
6
= 1986 1.34 0.00 0.00 0.00 1.48 17.19 0.00 0.00

DMU
7
= 1987 1.81 0.00 0.00 0.00 1.63 18.23 0.00 0.00

DMU
8
= 1988 2.77 65.39 0.00 0.00 1.42 1.42 0.00 0.00

DMU
9
= 1989 2.35 45.00 0.00 0.00 1.11 1.11 0.00 0.00

DMU
10

= 1990 1.53 43.16 0.00 0.00 1.17 1.17 0.00 0.00

DMU
11

= 1991 1.00 0.00 0.00 0.00 1.14 1.14 0.00 0.00

DMU
12

= 1992 1.14 30.72 0.00 0.00 1.15 1.15 0.00 0.00

DMU
13

= 1993 1.40 1.79 0.00 0.00 1.20 1.20 0.00 0.00

DMU
14

= 1994 1.00 0.00 0.00 0.00 1.19 1.19 0.00 0.00

DMU
15

= 1995 1.07 0.00 3.98 0.00 1.03 1.03 32.15 0.00

DMU
16

= 1996 1.00 0.00 0.00 0.00 1.06 1.06 0.00 0.00

DMU
17

= 1997 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
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positive, while this amount is less than or equal to zero 

for efficient or technically inefficient DMUs. The distance 

between DMU and the hyperplane with P value will be 

shown in the following table.

Discussions

The comparison between the methods of Cooper et al. [3] 

and Nora et  al. [10] shows the many advantages of the 

proposed model that should be discussed individually. 

According to Definition 1, congestion will occur, while 

increases in one or more input(s) would cause reduction 

in one or more output(s) without making changes in the 

other inputs and outputs. In other words, if we have one 

input and one output, the congestion can be achieved, while 

increases in this input cannot gain more output. Consider 

Unit 2 and Unit 13 in the automotive industry (Table 5). 

In this example, the congestion hyperplane is defined in 

passing from  DMU14. Based on Table 3, it is clear that 

the input and output vectors of  DMU2 are smaller than 

the input and output vectors of  DMU14. In fact,  DMU14 

has been able to obtain more output by consuming more 

input than  DMU2. Therefore, any decrease in the output 

of Unit 2 depends on inefficiency rather than congestion. 

In other words, by comparing the inputs of Unit 2 (21.16, 

412.3) to those of Unit 14, we have (21.16, 412.3) < (691, 

25.45). In addition, comparing  DMU14 with  DMU2 shows 

that o
DMU14

= 4949.93 > 866.85 = O
DMU2

 . Similarly, in 

Unit 13, IDMU13
= (684, 25.08) < (691, 25.45) = IDMU14

 and 

O
DMU13

= 3250.74 < 4949.93 = O
DMU14

.

The congestion observed in Units 2 and 13, based on the 

model of Cooper et al. [3], is the type of inefficiency that 

is wrongly considered as congestion. Owing to Table 7, the 

results in the textile industry, and the model of Cooper et al. 

[3] model, DMU
15

 has congestion. And also, based on the 

model of Nora et al. [10], this unit has no congestion. But it 

is shown that the input vector of Unit 15 has a larger com-

ponent rather than the input vector of Unit 17. Notice that 

the congestion hyperplane is considered passing from Unit 

17. It means that the congestion of this unit cannot be con-

sidered as technically inefficient. The model of Nora et al. 

[10] has considered zero congestion amount for a conges-

tion unit (Unit 15) by ignoring the convexity condition. The 

model of Cooper et al. [3] introduces 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14 units as congestion units. But by comparing the 

input and output vectors of these units with those of Unit 17, 

we find that the input and output components of these units 

are less than those of Unit 17. Thus, based on the model of 

Cooper et al. [3], the inefficiency of these units is consid-

ered wrongly as the congestion. The congestion is known 

as a type of inefficiency, but the model of Cooper et al. [3] 

measured the amount of congestion in four efficient units 

in such a way that the proposed model solved this problem. 

Therefore, in some cases, the proposed model corrects the 

models of Nora et al. [10] and Cooper et al. [3].

Conclusions

In this paper, we have shown the existence of the congestion 

hyperplane by expressing some propositions. This hyper-

plane can make a complete separation between congestion 

units and efficient and technically inefficient units. Also, the 

normal vector has been introduced by using BCC-efficient 

Table 7  Congestion results 

of Cooper [3] and Noura [10] 

and the proposed method for 

textile (T) and automobile (A) 

industries

DMU TS
C∗

1
TS

C∗

2
TS

C
′

1
TS

C
′

2
T (P) TS

′′C AS
C∗

1
AS

C∗

2
AS

C
′

1
AS

C
′

2
A (P) AS

′′C

DMU
1
= 1981 0.00 0.00 0.00 0.00 − 48.56 0.00 0.00 0.00 0.00 0.00 − 200.15 0.00

DMU
2
= 1982 0.00 0.72 0.00 0.00 − 44.16 0.00 0.00 0.00 0.00 0.00 − 199.83 0.00

DMU
3
= 1983 0.00 0.00 0.00 0.00 − 46.02 0.00 0.00 0.00 0.00 0.00 − 198.40 0.00

DMU
4
= 1984 0.00 0.00 0.00 0.00 − 46.05 0.00 14.73 0.00 0.00 0.00 − 194.46 0.00

DMU
5
= 1985 0.00 0.00 0.00 0.00 − 28.55 0.00 28.60 0.00 0.00 0.00 − 182.52 0.00

DMU
6
= 1986 0.00 0.00 0.00 0.00 − 23.40 0.00 17.19 0.00 0.00 0.00 − 183.01 0.00

DMU
7
= 1987 0.00 0.00 0.00 0.00 − 15.40 0.00 18.23 0.00 0.00 0.00 − 172.97 0.00

DMU
8
= 1988 65.39 0.00 0.00 0.00 2.05 3.025 29.14 0.00 0.00 0.00 − 162.67 0.00

DMU
9
= 1989 45.00 0.00 0.00 0.00 6.98 9.85 37.24 0.00 0.00 0.00 − 166.08 0.00

DMU
10

= 1990 43.16 0.00 0.00 0.00 1.68 2.87 34.34 0.00 0.00 0.00 − 162.66 0.00

DMU
11

= 1991 0.00 0.00 0.00 0.00 0 0.00 40.67 0.00 0.00 0.00 − 145.03 0.00

DMU
12

= 1992 30.72 0.00 0.00 0.00 0.76 1.62 34.58 0.00 0.00 0.00 − 101.21 0.00

DMU
13

= 1993 1.79 0.00 0.00 0.00 − 1.33 0.00 14.08 0.00 0.00 0.00 − 39.69 0.00

DMU
14

= 1994 0.00 0.00 0.00 0.00 0 0.00 1.51 0.00 0.00 0.00 − 5.19 0.00

DMU
15

= 1995 0.00 3.98 0.00 3.90 0.71 0.75 0.00 32.15 0.00 0.00 27.38 27.38

DMU
16

= 1996 0.00 0.00 0.00 0.00 − 10.33 0.00 0.00 0.00 0.00 0.00 − 9.06 0.00

DMU
17

= 1997 0.00 0.00 0.00 0.00 − 14.17 0.00 0.00 0.00 0.00 0.00 0 0.00
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units and the highest consumption input components. The 

congestion hyperplane not only confirms the previous 

models, but in some cases corrects the models incapacity 

to introduce the congestion border, inability to distinguish 

among the congestion units of technical inefficient units and 

disregard of the congestion units due to the lack of consid-

eration of the convexity condition. The advantages of this 

proposed method are the determination of congestion units, 

estimation of the congestion amount by using the distance 

of the congestion border per unit and the specification of 

congestion units based on the convexity condition and con-

siderable reduction of computation. Future research could 

study the creation of the hyperplane on fuzzy data and inte-

ger data.
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