
Rao et al. BMC Res Notes          (2020) 13:451  

https://doi.org/10.1186/s13104-020-05273-1

RESEARCH NOTE

Fixed point theorems for nonlinear 
contractive mappings in ordered b-metric space 
with auxiliary function
N. Seshagiri Rao1*, K. Kalyani2 and Belay Mitiku1

Abstract 

Objectives: In this paper we present some fixed point theorems for self mappings satisfying generalized (φ,ψ)-weak 
contraction condition in partially ordered complete b-metric spaces. The results presented over here generalize and 
extend some existing results in the literature. Finally, we illustrate two examples to support our results.

Result: We obtained a unique fixed point of a self mapping satisfying certain contraction condition which is involv-
ing an auxiliary function. Also, the results are presented for the existence of a common fixed point and a coincidence 
point for generalized (φ,ψ)-weak contraction mappings in partially ordered complete b-metric space.
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Introduction

Fixed points of mappings satisfying contractive condi-
tions in generalized metric spaces are highly useful in 
large number of mathematical problems of pure and 
applied mathematics. First, Ran and Reuings [1] have 
extended the result in this direction, discussed the exist-
ence of fixed points for certain maps in ordered metric 
space and also presented some applications to matrix 
linear equations. Afterwords, the result of [1] has been 
extended by Nieto et  al. [2, 3] involving nondecreasing 
mappings and used their results in obtaining an unique 
solution of a first order differential equation. At the same 
time, the results regarded to generalized contractions in 
ordered spaces were studied by Agarwal et  al. [4] and, 
O’Regan et  al. [5]. �e concept of coupled fixed points 
for certain mappings was first introduced by Bhaskar 

and Lakshmikantham [6] and then applied their results 
to a periodic boundary value problem in acquiring an 
unique solution. �ereafter, the concept of coupled coin-
cidence and common fixed point results was first initi-
ated by Lakshmikantham and Ćirić [7], which were the 
extensions of Bhaskar and Lakshmikantham [6] involv-
ing monotone property for a function in ordered metric 
spaces. More work relevant to coupled fixed point results 
under different contractive conditions in various spaces 
can be found from [8–15]. Later Singh et al. [16] obtained 
a coincidence and common fixed point theorems for 
Suzuki type hybrid contractions in ordered metric spaces 
and presented the corresponding applications to the 
results in their work. Mean while a new type of coinci-
dence and common fixed point theorems with applica-
tions was investigated by Singh et al. [17].

b-metric space is one of many generalizations to an 
usual metric, which was first introduced by Bakhtin 
[18] in his work and then extensively used by Czerwik 
in [19, 20]. �ereafter, lot of improvements have been 
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done in finding fixed points for single, multi-valued 
operator in that space, the readers may refer to [21–29].

In this paper, we introduce the class of generalized 
(φ,ψ)-weak contraction to establish an existence of a 
fixed point and its uniqueness of a self mapping and 
common fixed point, coincidence point for two self 
mappings in ordered complete b metric space. Our 
results generalize �eorem 2.1 and 2.2 of [38] and the 
Corollaries of [39] and several comparable results in 
the literature [32, 35–37].

Mathematical preliminaries

We start this section with the following definitions and 
results which are frequently used in the main results.

Definition 1 [20] A mapping d : P × P → [0,+∞) , 
where P is a non-empty set is said to be a b-metric, if it 
satisfies the properties given below for any ν, ξ ,µ,∈ P 
and for some s ≥ 1 , 

(a) d(ν, ξ) = 0 if and if ν = ξ,

(b) d(ν, ξ) = d(ξ , ν),

(c) d(ν, ξ) ≤ s(d(ν,µ) + d(µ, ξ)).

And then (P, d, s) is known as a b-metric space.
Definition 2 [20] Let (P, d, s) be a b-metric space. �en 

(1) a sequence {νn} is said to converge to ν if 

lim
n→+∞

d(νn, ν) = 0 and written as lim
n→+∞

νn = ν.

(2) {νn} is said to be a Cauchy sequence in P, if 

lim
n,m→+∞

d(νn, νm) = 0.

(3) (P,  d,  s) is said to be complete if every Cauchy 

sequence in P is convergent.

Definition 3 A metric d on P together with a partially 
ordered relation ≤ is called a partially ordered metric 
space. It is denoted by (P, d,≤).

Definition 4 If the metric d is complete then (P, d,≤) is 
called a complete partially ordered metric space.

Definition 5 Let (P,≤) be a partially ordered set. A 
map S : P → P is said to be monotone nondecreasing, if 
S(ν) ≤ S(ξ) for all ν, ξ ∈ P with ν ≤ ξ.

Definition 6 A point ν ∈ A , where A  = ∅ , a subset of 
(P, d) is called a common fixed (coincidence ) point for 
two self-mappings f and S, if ν = f ν = Sν (f ν = Sν).

Definition 7 Two self maps f and S defined over a sub-
set A of (P, d) are called commuting, if fSν = Sf ν , for all 
ν ∈ A.

Definition 8 Two self maps f and S defined over A  = ∅ , 
a subset of (P, d) are called compatible, if any sequence 
{νn} with lim

n→+∞
f νn = lim

n→+∞
Sνn = µ, for µ ∈ A then 

lim
n→+∞

d(Sf νn, fSνn) = 0.

Definition 9 A pair of self mappings (f,  S) on A  = ∅ , 
a subset of P is called weakly compatible, if Sf ν = fSν , 
when Sν = f ν for some ν ∈ A.

Definition 10 Let f and S be two self-mappings over 
(P,≤) . �en S is called monotone f nondecreasing, if

Definition 11 If very two elements of A  = ∅ , a sub set 
of (P,≤) are comparable then A is called well ordered set.

�e concept of acquiring fixed points in metric space 
using control functions was initiated by Khan et al. [30].

Definition 12 [30] A self map φ defined on [0,+∞) is 
said to be an altering distance function, if φ is continuous 
and monotone increasing with φ(t) = 0 iff t = 0.

Note 1

(1)  Let us denote the set of all altering distance func-

tions on [0,+∞) by �.
(2)  Similarly, � denoted by the set of lower semi-

continuous functions on [0,+∞) with ψ(t) = 0 iff 
t = 0.

Lemma 1 [31] Let P be a non-empty set and f : P → P 
be a mapping. �en there exists a subset E of P such that 
fE = fP and f : E → P is one-to-one.

In 1975, Dass and Gupta [32] proved the following 
fixed point result in a complete metric space.

�eorem  1 [32] Suppose (P,  d) is a complete metric 

space. Let S : P → P be a mapping such that there exist 
α,β ∈ [0, 1) with α + β < 1 satisfying

for any distinct ν, ξ ∈ P . �en S has a unique fixed point 

in P.

f ν ≤ f ξ ⇒ Sν ≤ Sξ , for any ν, ξ ∈ P.

(1)d(Sν, Sξ) ≤ α
d(ξ , Sξ)[1 + d(ν, Sν)]

1 + d(ν, ξ)
+ βd(ν, ξ)
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�e generalization of above result in partially ordered 
metric space was obtained by Cabrera et al. [33] in 2013. 
Later Chandok et al. [34] generalized the result of [33] by 
use of control functions in the space.

Again, �eorem 1 was generalized by Jaggi [35] in 1977 
and proved the following

�eorem  2 [35] Suppose (P,  d) is a complete metric 

space. A self map S on P such that

for all ν, ξ ∈ P with ν  = ξ , where α,β ∈ [0, 1) with 
α + β < 1 . �en S has a unique fixed point in P.

�is result was again proved by Harjani et  al. [36] in a 
complete metric space endowed with partial order relation. 
Later the result of [36] was generalized by Luong et al. [37] 
involving altering distance functions which satisfies a weak 
contractive condition of, rational type auxiliary functions in 
ordered metric space. �ereafter, the result [37] was gen-
eralized and extended by Chandok et  al. [38] in 2013 and 
obtained coupled, common fixed point results for weak con-
tractive mapping in partially ordered metric space. �ese 
results were again generalized by Hieu et al. [39] in partially 
order b-metric space by involving altering distance functions.

Main text

To begin this section with the following theorem.

�eorem  3 Let (P, d, s,≤) be a complete partially 

ordered b-metric space with parameter s ≥ 1 . Let 
S : P → P be a continuous, nondecreasing mapping with 

regards to ≤ such that there exists ν0 ∈ P with ν0 ≤ Sν0 . 
Suppose that

where φ ∈ �,ψ ∈ � , for any ν, ξ ∈ P with ν ≤ ξ and

�en S has a fixed point in P.

Proof

If for some ν0 ∈ P such that Sν0 = ν0 , then the proof is fin-

ished. Assume that ν0 < Sν0 , then construct a sequence 

{νn} ⊂ P by νn+1 = Sνn , for n ≥ 0 . But S is nondecreasing 

then, we get the following by using mathematical induction

(2)d(Sν, Sξ) ≤ α
d(ξ , Sξ) d(ν, Sν)

d(ν, ξ)
+ βd(ν, ξ)

(3)φ(sd(Sν, Sξ)) ≤ φ(M(ν, ξ)) − ψ(M(ν, ξ))

(4)

M(ν, ξ) =max

{

d(ξ , Sξ)[1 + d(ν, Sν)]

1 + d(ν, ξ)
,

d(ξ , Sν)[1 + d(ν, Sξ)]

1 + d(ν, ξ)
, d(ν, ξ)

}

.

If for some n0 ∈ N such that νn0 = νn0+1 then from (5), 
νn0

 is a fixed point of S and we have nothing to prove. 
Suppose that νn  = νn+1 , i.e., d(νn, νn+1) > 0 , for all n ≥ 1 . 
Since νn > νn−1 , for any n ≥ 1 and then by (3), we have

where

which implies that

If max{d(νn, νn+1), d(νn−1, νn)} = d(νn, νn+1) for some 
n ≥ 1 , then from (8), we get

which is a contradiction under (9). �us, max{d(νn, νn+1),

d(νn−1, νn)} = d(νn−1, νn) for n ≥ 1 and hence from (8) 
again we have

�erefore, the sequence {d(νn, νn−1)} for n ≥ 1 is a mono-
tone non-increasing and bounded. From a result, we have

Now, taking the upper limit on both sides of (6), we 
obtain

which is a contradiction under (12). �us, ρ = 0 . Hence, 
d(νn, νn−1) → 0 as n → +∞.

(5)

ν0 < Sν0 = ν1 ≤ Sν1 = ν2 ≤ ............. ≤ Sνn−1

= νn ≤ Sνn = νn+1 ≤ ........

(6)

φ(d(νn, νn+1)) = φ(d(Sνn−1, Sνn)) ≤ φ(sd(Sνn−1, Sνn))

≤ φ(M(νn−1, νn)) − ψ(M(νn−1, νn)),

(7)

M(νn−1, νn) = max

{

d(νn, Sνn)[1 + d(νn−1, Sνn−1)]

1 + d(νn−1, νn)
,

d(νn, Sνn−1)[1 + d(νn−1, Sνn)]

1 + d(νn−1, νn)
,

d(νn−1, νn)
}

= max{d(νn, νn+1), 0, d(νn−1, νn)}

= max{d(νn, νn+1), d(νn−1, νn)}

(8)

φ(d(νn, νn+1)) ≤φ(max{d(νn, νn+1), d(νn−1, νn)})

− ψ(max{d(νn, νn+1), d(νn−1, νn)}).

(9)

φ(d(νn, νn+1)) ≤φ(d(νn, νn+1))

− ψ(d(νn, νn+1)) < φ(d(νn, νn+1)),

(10)

φ(d(νn, νn+1)) ≤φ(d(νn, νn−1))

− ψ(d(νn, νn−1)) < φ(d(νn, νn−1)).

(11)lim
n→+∞

d(νn, νn−1) = ρ ≥ 0.

(12)

φ(ρ) ≤ φ(ρ) − lim
n→+∞

inf ψ(d(νn, νn−1))

≤ φ(ρ) − ψ(ρ) < φ(ρ)
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Next, we prove that {νn} is a Cauchy sequence in P. 
Assume opposite that {νn} is not a Cauchy sequence. 
�en for some ǫ > 0 , we can get two subsequences {νmj } 
and {νnj } of {νn} , where nj is the smallest index such that

and

Applying triangular inequality in (13), we get

Furthermore,

Letting j → +∞ in Eqs. (15), (16) and combining 
together, we obtain the following inequality

Similarly, we can get the following inequalities by using 
triangular inequality

and

Let

(13)nj > mj > j, d(νmj , νnj ) ≥ ǫ

(14)d(νmj , νnj−1) < ǫ.

(15)

ǫ ≤ d(νmj , νnj ) ≤ sd(νmj , νnj−1) + sd(νnj−1, νnj )

≤ s2d(νmj , νmj−1) + s2d(νmj−1, νnj−1) + sd(νnj−1, νnj )

(16)

d(νmj−1, νnj−1) ≤ sd(νmj−1, νmj )

+ sd(νmj , νnj−1) ≤ sd(νmj−1, νmj ) + sǫ

(17)
ǫ

s2
≤ lim

j→+∞

sup d(νmj−1, νnj−1) ≤ sǫ.

(18)
ǫ

s2
≤ lim

j→+∞

inf d(νmj−1, νnj−1) ≤ sǫ,

(19)
ǫ

s
≤ lim

j→+∞

sup d(νmj−1, νnj ) ≤ sǫ2.

(20)

M(νmj−1, νnj−1)

= max







d(νnj−1, Sνnj−1)

�

1 + d(νmj−1, Sνmj−1)

�

1 + d(νmj−1, νnj−1)
,

d(νnj−1, Sνmj−1)

�

1 + d(νmj−1, Sνnj−1)

�

1 + d(νmj−1, νnj−1)
, d(νmj−1, νnj−1)







= max







d(νnj−1, νnj )

�

1 + d(νmj−1, νmj )

�

1 + d(νmj−1, νnj−1)
,

d(νnj−1, νmj )

�

1 + d(νmj−1, νnj )

�

1 + d(νmj−1, νnj−1)
, d(νmj−1, νnj−1)







.

From (20), we obtain the following inequalities

and

Form (5), we have νmj−1 < νnj−1 , then

Now, letting j → +∞ and use of (21), (22), we obtain

this is a contradiction under (24). Hence, {νn} is a Cauchy 
sequence and converges to some µ ∈ P as P is complete. 
Also, the continuity of S implies that

�erefore, µ is a fixed point of S in P. �

By weakening the continuity property of a map S in 
�eorem 3, we have the following result.

�eorem 4 In �eorem 3, if P has a property that, the 

sequence {νn} is a nondecreasing such that νn → v , implies 

that νn ≤ v , for all n ∈ N , i.e., v = sup νn then a non con-

tinuous map S has a fixed point in P.

Proof

From �eorem 3, we take the same sequence {νn} in P such 

that ν0 ≤ ν1 ≤ ν2 ≤ ν3 ≤ ........ ≤ νn ≤ νn+1 ≤ .......... , i.e., 

the sequence {νn} is nondecreasing and converges to some 

v in P. �us, from the hypotheses we have νn ≤ v , for any 

n ∈ N , implies that v = sup νn.

Next, we prove that v is a fixed point of S in P, that is 
Sv = v . Suppose Sv  = v , that is d(Sv, v)  = 0 . Let

(21)
ǫ

s2
≤ lim

j→+∞

supM(νmj−1, νnj−1) ≤ sǫ.

(22)
ǫ

s2
≤ lim

j→+∞

inf M(νmj−1, νnj−1) ≤ sǫ.

(23)

φ(sd(νmj , νnj )) = φ(sd(Sνmj−1, Sνnj−1))

≤ φ(M(νmj−1, νnj−1)) − ψ(M(νmj−1, νnj−1)).

(24)

φ(sǫ) ≤ φ(s lim
j→+∞

d(νmj , νnj ))

≤ φ( lim
j→+∞

supM(νmj−1, νnj−1))

− lim
j→+∞

inf ψ(M(νmj−1, νnj−1))

≤ φ(sǫ) − ψ( lim
j→+∞

inf M(νmj−1, νnj−1))

< φ(sǫ)

(25)

Sµ = S( lim
n→+∞

νn) = lim
n→+∞

Sνn = lim
n→+∞

νn+1 = µ.
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Letting n → +∞ and from lim
n→+∞

νn = v , we get

We know that νn ≤ v , for all n then from contraction 
condition (3), we get

Letting n → +∞ and use of (27), we get

which is wrong under (29). �us, Sv = v , that is S has a 
fixed point v in P. �

�e uniqueness of, an existing fixed point in �eorems 
3 and 4 can get, if P has the following property:

For any ν , ξ ∈ P , there exists v ∈ P such that v ≤ ν and 
v ≤ ξ.

�eorem 5 If P satisfies the above mentioned condition 

in �eorem 3 (or �eorem 4) then S has a unique fixed 

point.

Proof

From �eorem 3 (or �eorem 4), we conclude that S has 

a nonempty set of fixed points. Suppose that ν∗ and ξ∗ be 

two fixed points of S then, we claim that ν∗
= ξ∗ . Suppose 

that ν∗ �= ξ∗ , then from the hypotheses we have

where

(26)

M(νn, v) = max

{

d(v, Sv)[1 + d(νn, Sνn)]

1 + d(νn, v)
,

d(v, Sνn)[1 + d(νn, Sv)]

1 + d(νn, v)
, d(νn, v)

}

= max

{

d(v, Sv)[1 + d(νn, νn+1)]

1 + d(νn, v)
,

d(v, νn+1)[1 + d(νn, Sv)]

1 + d(νn, v)
, d(νn, v)

}

(27)

lim
n→+∞

M(νn, v) = max{d(v, Sv), 0, 0} = d(v, Sv).

(28)

φ(d(νn+1, Sv)) = φ(d(Sνn, Sv)

≤ φ(sd(Sνn, Sv) ≤ φ(M(νn, v)) − ψ(M(νn, v))

(29)
φ(d(v, Sv)) ≤ φ(d(v, Sv)) − ψ(d(v, Sv)) < φ(d(v, Sv))

(30)

φ(d(Sν∗
, Sξ∗)) ≤ φ(sd(Sν∗

, Sξ∗))

≤ φ(M(ν∗
, ξ∗)) − ψ(M(ν∗

, ξ∗))

�en by Eq. (30), we have

which is a contradiction under (32). Hence, ν∗
= ξ∗.

�e proof is completed. �

Now, we have the results below, which are the gener-
alizations of Theorems-2.1 and 2.2 of [38] and the Cor-
ollaries-2.1 and 2.2 of [39] in the space.

Corollary 1 Let (P, d, s,≤) be a partially ordered b-met-

ric space with a parameter s. Suppose S, f : P → P are 

continuous mappings such that

(C1).  for some ψ ∈ � and φ ∈ � with

for any ν , ξ ∈ P such that f ν ≤ f ξ and

(C2)  SP ⊂ fP and fP is a complete subspace of P,
(C3)  S is a monotone f-non decreasing mapping,
(C4)  S and f are compatible.

 If for some ν0 ∈ P such that f ν0 ≤ Sν0 , then S and f have 

a coincidence point in P.

(31)

M(ν∗, ξ∗) = max

{

d(ξ∗, Sξ∗)[1 + d(ν∗, Sν∗)]

1 + d(ν∗, ξ∗)
,

d(ξ∗, Sν∗)[1 + d(ν∗, Sξ∗)]

1 + d(ν∗, ξ∗)
, d(ν∗, ξ∗)

}

= max

{

d(ξ∗, ξ∗)[1 + d(ν∗, ν∗)]

1 + d(ν∗, ξ∗)
,

d(ξ∗, ν∗)[1 + d(ν∗, ξ∗)]

1 + d(ν∗, ξ∗)
, d(ν∗, ξ∗)

}

= max{0, d(ξ∗, ν∗), d(ν∗, ξ∗)}

= d(ν∗, ξ∗).

(32)

φ(d(ν∗
, ξ∗)) = φ(d(Sν∗

, Sξ∗))

≤ φ(d(ν∗
, ξ∗)) − ψ(d(ν∗

, ξ∗))

< φ(d(ν∗
, ξ∗))

(33)φ(sd(Sν, Sξ)) ≤ φ(Mf (ν, ξ)) − ψ(Mf (ν, ξ))

(34)

Mf (ν, ξ) = max

{

d(f ξ , Sξ)[1 + d(f ν, Sν)]

1 + d(f ν, f ξ)
,

d(f ξ , Sν)[1 + d(f ν, Sξ)]

1 + d(f ν, f ξ)
, d(f ν, f ξ)

}

,
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Proof

By using lemma 1, we obtain a complete subspace fE of 

P, where E ⊂ P and f is one-to-one self mapping on P. By 

Corollary 2.1 of [39], we have a sequence {f νn} ⊂ fE for 

some ν0 ∈ E with f νn+1 = Sνn = g(f νn) , for n ≥ 0 , where 

g is a self-mapping on fE with g(f ν) = Sν , ν ∈ E . So, from 

the hypotheses we have

for all ν , ξ ∈ P with f ν ≤ f ξ and,

From the same argument in �eorem 3, {f νn} is a Cauchy 
sequence and which converges for some v ∈ fE . �us, by 
the compatibility of S and f, we obtain

Further, by use of triangular inequality,

Finally, we arrive at d(Sv, fv) = 0 as n → +∞ in (38). 
�erefore, v is a coincidence point for S and f in P. �

Replace the condition, weakly compatible instead of 
(C4) in Corollary 1, we obtain the following result.

Corollary 2 If P has the property in Corollary 1 instead 

of the compatibility for S and f that, for any nondecreasing 

sequence {f νn} ⊂ P such that lim
n→+∞

f νn = f ν implies that 

f νn ≤ f ν for all n ∈ N , that is f ν = sup f νn . �en S and f 
have a common fixed point in P, if for some coincidence 

point µ of S and f with f µ ≤ f (f µ) . Furthermore, the set 

of common fixed points of S and f is well ordered if and 

only if S and f have one and only one common fixed point.

Proof

It is obvious from Corollary 1 and �eorem 4 that S and 

f have a coincidence point in P, as f µ = g(f µ) = Sµ for 

some µ in P.

Next, assume that a pair of mappings (S,  f) is weakly 
compatible and let ϑ be an element in P such that 
ϑ = Sµ = f µ . �en, Sϑ = S(f µ) = f (Sµ) = f ϑ . Let

(35)
φ(sd(g(f ν), g(f ξ))) ≤ φ(Mf (ν, ξ)) − ψ(Mf (ν, ξ))

(36)

Mf (ν, ξ) = max

{

d(f ξ , g(f ξ))[1 + d(f ν, g(f ν))]

1 + d(f ν, f ξ)
,

d(f ξ , g(f ν))[1 + d(f ν, g(f ξ))]

1 + d(f ν, f ξ)
, d(f ν, f ξ)

}

.

(37)lim
n→+∞

d(f (Sνn), S(f νn)) = 0.

(38)

d(Sv, fv) ≤ sd(Sv, S(f νn)) + s2d(S(f νn), f (Sνn))

+ s2d(f (Sνn), fv).

then from contraction condition, we have

Hence, we get d(Sµ, Sϑ) = 0 by the property of ψ . �ere-
fore, Sϑ = f ϑ = ϑ.

Eventually, by following �eorem 5, we deduce that S and 
f have one and only one common fixed point if and only if 
the set of common fixed points of S and f is well ordered. 
�

We illustrate the usefulness of the obtained results in dif-
ferent cases such as continuity and discontinuity of a met-
ric d in a space P.

Example 1

Define a metric d : P → P as below and ≤ be an usual 

order in P, where P = {1, 2, 3, 4, 5}

Define a map S : P → P by S1 = S2 = S3 = S4 = 1, S5 = 3 
and let φ(t) =

t

2
 , ψ(t) =

t

3
 for t ∈ [0,+∞) . �en S has a 

fixed point in P.

Proof

It is apparent that, (P, d, s,≤) is a complete partially 

ordered b-metric space for s = 2 . Consider the possible 

cases for ν , ξ in P:

Case 1 Suppose ν, ξ ∈ {1, 2, 3, 4} and ν < ξ , thence,

Case 2 Suppose that ν ∈ {1, 2, 3, 4} and ξ = 5 , then 
d(Sν, Sξ) = d(1, 3) = 1 , M(4, 5) = 12 and M(ν, 5) = 6 , 
for ν ∈ {1, 2, 3} . �erefore, we have the following 
inequality,

(39)

M(µ,ϑ) = max

{

d(f ϑ , Sϑ)[1 + d(f µ, Sµ)]

1 + d(f µ, f ϑ)
,

d(f ϑ , Sµ)[1 + d(f µ, Sϑ)]

1 + d(f µ, f ϑ)
, d(f µ, f ϑ)

}

= max{0, d(Sµ, Sϑ)}

= d(Sµ, Sϑ).

(40)

φ(d(Sµ, Sϑ)) ≤ φ(M(µ,ϑ)) − ψ(M(µ,ϑ))

≤ φ(d(Sµ, Sϑ)) − ψ(d(Sµ, Sϑ)).

d(ν, ξ) = d(ξ , ν) = 0, if ν, ξ = 1, 2, 3, 4, 5 and ν = ξ .

d(ν, ξ) = d(ξ , ν) = 1, if ν, ξ = 1, 2, 3, 4 and ν �= ξ .

d(ν, ξ) = d(ξ , ν) = 6, if ν = 1, 2, 3 and ξ = 5.

d(ν, ξ) = d(ξ , ν) = 12, if ν = 4 and ξ = 5.

φ(2d(Sν, Sξ)) = 0 ≤ φ(M(ν, ξ)) − ψ(M(ν, ξ)).
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�us, condition (3) of �eorem  3 holds. Furthermore, 
the remaining assumptions in �eorem  3 are fulfilled. 
Hence, S has a fixed point in P as �eorem 3 is appropri-
ate to S,φ,ψ and (P, d, s,≤) . �

Example 2

A metric d : P → P , where P = {0, 1, 1
2
,
1

3
,
1

4
, ........

1

n
, .....} 

with usual order ≤ is defined as follows

A map S : P → P be such that S0 = 0, S
1

n
=

1

9n
 for all 

n ≥ 1 and let φ(t) = t , ψ(t) =
3t

4
 for t ∈ [0,+∞) . �en S 

has a fixed point in P.

Proof

It’s obvious that for s =
9

4
 , (P, d, s,≤) is a complete par-

tially ordered b-metric space and also by definition, d is 

discontinuous b-metric space. Now, for ν, ξ ∈ P with ν < ξ 

then consider the following cases:

Case 1 If ν = 0 and ξ =
1

n
 , n ≥ 1 , then d(Sν, Sξ) =

d(0, 1

9n
) =

1

9n
 and M(ν, ξ) =

1

n
 or M(υ, ξ) = {1, 5} . 

�erefore, we have

Case 2 If ν =
1

m
 and ξ =

1

n
 with m > n ≥ 1 , then

�erefore,

Hence, condition (3) of �eorem  3 and remaining 
assumptions are satisfied. �us, S has a fixed point in P. 
  �

φ(2d(Sν, Sξ)) ≤
M(ν, ξ)

6
= φ(M(ν, ξ)) − ψ(M(ν, ξ)).

d(ν, ξ) =















0 , if ν = ξ

1 , if ν �= ξ ∈ {0, 1}

|ν − ξ | , if ν, ξ ∈

�

0,
1
2n ,

1

2m : n �= m ≥ 1

�

5 , otherwise.

φ

(

9

4
d(Sν, Sξ)

)

≤
M(ν, ξ)

4
= φ(M(ν, ξ)) − ψ(M(ν, ξ)).

d(Sν, Sξ) = d

(

1

9m
,
1

9n

)

and

M(ν, ξ) ≥
1

n
−

1

m
orM(υ, ξ) = 5.

φ

(

9

4
d(Sν, Sξ)

)

≤
M(ν, ξ)

4
= φ(M(ν, ξ)) − ψ(M(ν, ξ)).

Limitations

In this manuscript, we obtained a fixed point for gener-
alized (φ,ψ)-weak contraction mapping in a complete 
partially ordered b-metric space. We establish that this 
mapping has a unique fixed point under ordered rela-
tion in a space. Also, we have investigated a common 
fixed point and a coincidence point for mappings satis-
fying generalized (φ,ψ)-weak contraction condition in 
the same space. �ese results generalize and extended 
some well known results in the literature. At the end 
some illustrations are given to support our results.
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