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ABSTRACT. Let X be a real Banach space, D a bounded open subset of
X,and D the closure of D. In §1 of this paper we establish a general fixed
point theorem (see Theorem 1 below) for 1-set-contractions and 1-ball-contrac-
tions T: D — X under very mild conditions on T. In addition to classical
fixed point theorems of Schauder, Leray and Schauder, Rothe, Kransnoselsky,
Altman, and others for T compact, Theorem 1 includes as special cases the
eatlier theorem of Darbo as well as the more recent theorems of Sadovsky, Nussbaum,
Petryshyn, and others (see §1 for further contributions and details) for T k-set-contrac-
tive with k£ <1, condensing, and 1-set-contractive. In §§2, 3, 4, and 5 of this
paper Theorem 1 is used to deduce a number of known, as well as some new,
fixed point theorems for various special classes of mappings (e.g. mappings of
contractive type with compact or completely continuous perwrbations, mappings
of semicontractive type introduced by Browder, mappings of pseudo-contractive
type, etc.) which have been recently extensively studied by a number of authors
and, in particular, by Browder, Krasnoselsky, Kirk, and others (see §1 for details),

Introduction. Let X be a real Banach space, D a bounded open subset of X,
D and 9D the closure and the boundary of D, respectively. The object of this
paper is two-fold.

First, in $1 we extend our main fixed point result (see Theorem 7' in
Petryshyn [34]) by proving (see Theorem 1 below) that if T: D — X is either a l-set
or 1-ball contraction which satisfies the Leray-Schauder condition on dD, then T
has a fixed point in D if and only if T satisfies condition (c). As will be seen,
Theorem 1 unifies and extends in some cases to nonconvex domains and/or to

more general boundary conditions a number of known, as well as some new, fixed

Received by the editors October 4, 1971 and, in revised form, November 2, 1972,

AMS (MOS) subject classifications (1970). Primary 47H10; Secondary 47H99.

Key words and phrases. Fixed point theorems, topological degree, k-set-contractions,
k-ball-contractions, set-condensing and ball-condensing mappings, mappings of contractive,
semicontractive, and pseudo-contractive type.

(1) Supported in pare by NSF Grant GP-20228 and in part by the Research Council of
Rutgers University while the author was on the faculty research fellowship during the
academic year 1970-1971.

Copyright © 1973, American Mathematical Society
323

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 W. V. PETRYSHYN

point theorems for special classes of mappings. In addition to fixed point theorems
of [40], {38], [27], [1] and others ([20], [48]) for T compact, Theorem 1 includes as
special cases the earlier result of Darbo [9] for k-set-contractions with £ <1 as
well as the more recent theorems of Sadovsky [39], Furi and Vignoli [17] and
Nussbaum [31] for T ball-condensing and set-condensing and D also convex.
The result of Browder [7) for T: D — D a l-set-contraction with D convex and
(I-TXD) closed, and a theorem of Edmunds and Webb [11] for X a Hilbert space
and T: X — X either 1-ball or 1-set contractive with (I — T}B (0, 7)) closed for
each 7 > 0 follow also from Theorem 1.

Second, in §$2 to 5 we apply Theorem 1 to the derivation of fixed point
theorems (some new and some old) for various special classes of maps that have
been recently studied by a number of authors and which, as will be seen, are
either 1-set or 1-ball contractive. Our discussion in these sections underlines,
in addition to generality, the unifying aspect of Theorem 1. We remark specifi-
cally that, even for these special cases, some of our results are more general
than those obtained by other authors, usually by different methods.

In $2, we use Theorem 1 to deduce a number of fixed point results for con-
tractive, nonexpansive, and generalized contractive maps with compact and/or
completely continuous perturbations. Some of the results in this section have
been obtained earlier by other authors (see Remarks), and are in fact special
cases of certain results deduced in $3 for mappings of semicontractive type. We
specifically include them in this section to indicate the history and the way the
classical fixed point principles of Banach and Schauder have been extended
recently to more general classes of mappings.

In $3 we obtain a number of results for semicontractive maps introduced by
Browder {4] and further studied by Browder, Kirk, Petryshyn, Webb, Nussbaum,
and others (see Remarks). In $4 we discuss further generalizations of Theorem 1
and apply these results to pseudo-contractive maps introduced by Browder and
Petryshyn [8] in case of Hilbert spaces and by Browder [5) in case of Banach
spaces. It will be seen in $4 that when X is a Hilbert space the definitions
used in {8} and in [5], although seemingly different, are equivalent. In §5 we use
Theorem 1 to deduce fixed point theorems for maps satisfying suitable growth
conditions. When X is a Hilbert space our results include certain existence
theorems for Hammerstein equations.

Finally we add that in our discussion of special cases of Theorem 1, we
include a short survey of contributions by various authors which shows a step-by-
step development of the fixed point theory for various special classes of mappings.

The outline of results presented in this paper has appeared in our note A new
fixed point theorem and its application, Bull. Amer. Math. Soc. 72 (1972), 225-229,
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FIXED POINT THEOREMS 325

where a degree theory for 1-set and 1-ball contractive maps has been used to

indicate the proof of Theorem 1 below.

1. Definitions and the main fixed point theorem. Let X be a real Banach
space and D a bounded subset of X. Following (28] we define y (D), the set-
measure of noncompactness of D, to be inf{d > 0| D can be covered by a finite
number of sets of diameter < d}. It follows that (D) = y(5), y(AD) = |Ay(D),
y(D) < y(Q) whenever D CQ with Q bounded, y(D U Q) = max {y (D), y(Q)}, and
y(D) =0 if and only if D is compact. Further, if ¢o(D) denotes the convex
closure of D and D +Q ={x +y| x €D, y € Q}, then y(D) = y(c5 (D)) and
y(D + Q)< (D) + y(Q) (see [9)).

Closely associated with y is the concept of a k-set-contraction T: G — X
defined to be a bounded continuous map such that y(T (D)) < ky (D) for each
bounded D C G and some constant & > 0. It follows that C: G — X is compact if
and only if C is O-set-contractive, and that every Lipschitzian map S: G — X
with constant [ >0 is l-set-contractive. Clearly the map T =S +C: G — X is
also l-set-contractive. We shall also need the concept of a condensing map intro-
duced first by Sadowsky {39] for ball-measure of noncompactness (see the defini-
tion below) and later by Furi and Vignoli [16] for the set-measure y. A bounded
continuous map T of G into X is sef-condensing (ot densifying by [16]) if
y(T(D)) < y (D) for each bounded D C G with y(D) £ 0. It follows that every k-
set-contractive map with k£ <1 is set-condensing and that every set-condensing
map is l-set-contractive but the reverse implications do not hold (see [31]).

In [39] Sadovsky used the ball-measure of noncompactness of D defined by
x (D) = inf{r > 0| D can be covered by a finite number of balls with centers in X
and radius 7}. It is known ([17], [31]) that the measures y and x are different
although they have a good deal in common. We add that the above mentioned
properties of y are also valid for x. As in the case of y, corresponding to x we
have k-ball-contractions and ball-condensing maps. In general one cannot say
much about the precise relationship between maps defined in terms of y and x.
But, in case T is a bounded linear map of X to X, a number of results concern-
ing this relationship has been recently obtained in 301, 1361, [471. The reason
for introducing here k-ball-contractive and ball-condensing maps is that for the
fixed point theory the same argument works for maps T: D — X defined either in
terms of y or in terms of ¥. Furthermore, as we shall see, there are maps T:

D — X which are set-condensing but it is unknown whether they are also ball-
condensing and vice versa,

In what follows we shall need the following fixed point theorem which we

state here as a lemma.

Lemma 1 (Petryshyn [34]). Let D be a bounded open set in X and let T:
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326 W. V. PETRYSHYN

D — X be a 1-set-contractive mapping for which the following holds:

(a) There exists x, €D such that if T (x) - Xy = alx — xo) for some x in
dD, then a <1.

(b) (I = T)D) is closed.
Then T has a fixed point in D.

Remark 1.1. The arguments of {34] together with the degree theory for ball-
‘condensing mappings in [40] show the validity of Lemma 1 for the case when T:
D — X is 1-ball-contractive.

Using Lemma 1 and Remark 1.1 we now give a simple proof of the following
fixed point theorem for l-set and 1-ball contractions which, as will be seen in §§2

to 5, unifies and extends most of the known fixed point theorems.

Theorem 1. Let X be a real Banach space, D a bounded open subset of X,
and T either a 1-set-contractive or a 1-ball-contractive map of D into X for
which condition (a) of Lemma 1 bholds, Then T has a fixed point in D if and
only if T satisfies the following condition:

(c) If Ix,} is any sequence in D such that x, ~T(x,) >0 as n— e,

then there exists x' €D with x' = T(x"} = 0.

Proof. It is clear that condition (c) holds if T has a fixed point in D.

We will prove the converse. For each ¢ , with 0 <tz <1 and {, — 1 as
n — oo, consider the mapping T : D — X defined by T (x) =1 T(x)+(1 -t )x,.
The properties of the measures y and x imply that, for each fixed », T, is
either { -set-contraction or ¢ -ball-contraction, depending on T. Hence, for each
fixed n, (I - Tﬂ)(E) is a closed set since, as was shown in [29], 1 - T_ is
proper; moreover, if T (x)-x,=A(x — x,) for some x in 9D, then T(x) - x4 =
)\t;l(x - xo) and therefore condition (a) implies that )\t;l <1, t.e,, A< t, < 1
for n > 1. Hence, by Lemma 1 and Remark 1.1, for each 7 there exists an ele-
ment X, in D such that Tn(xn) =x,. Consequently, since T and ix } are
bounded and ¢, — 1 as n — o, x - T(xn) = (tn - l)T(xn) +Q + t")xo — 0 as
n — o, This and condition (¢) imply the existence an x'in D such that x’' -
T(")=0. Q.E.D.

It is obvious that condition (b) of Lemma 1 implies condition (c) of Theorem
1 but an example will show in $2 that if D is also convex and T is a generalized
contraction of D into D in the sense of Belluce and Kirk {2], then T satisfies
condition (c) but it is unknown whether condition (b) holds for this class of map-
pings. In case T is a set-condensing or ball-condensing (and, in particular, k-set or k-
ball contractions with 0 < k < 1), the sufficency part of Theorem 1 remains valid without
the assumption of condition (c) for the latter is always true for this class of mappings.
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Note that condition (a) is implied by the assumption

(al) I7G) ~ x| > ITG) = xg}% = flx = x| for x € 9D

used in [1]for the case when D = B(0, ) and x, =0 and in [20] for the case
when D = B(x, 7). In case 0 €D, then

(a2) (T(x), J(x)) < (x, J(x)) for x € oD

also implies (a), where | is a duality map of X — 2X* cotrresponding to a
given gauge function p, ie., J(x) = tw € X*| (w, x) = | |=[|, llw]l = p(fi=[)},
where p: R* — RY is a strictly increasing function with 1 (0) =0 and (1) — oo

as f — oo, If in Theorem 1, D is convex, then (a) is implied by
(a3) T(0D) C D and, in particular, by T(D)C D.

The above remarks justify our assertion in the introduction that the classi-
cal fixed point theorems for T compact, and the more recent theorems for T set-

condensing or ball-condensing, are special cases of Theorem 1.

2. Applications to contractive type maps with perturbations. In this sec-
tion we indicate the generality of Theorem 1 and its unifying aspect by using it
to deduce a number of fixed point theorems for operators of contractive type and
their perturbations by compact and/or completely continuous maps. Some of the
theorems mentioned in this section were obtained earlier by other authors, but
usually by methods which are different from ours and sometimes under conditions
which are more restrictive than those imposed here (see Remarks). Although a
few fixed point theorems stated in this section are special cases of some results
which will be deduced in $3 for maps of semicontractive type, we specifically
include them in this section to indicate their chronological development by vari-
ous authors and the way the classical fixed point principles of Banach and
Schauder have been extended step by step to more general classes of mappings.

Let D be a subset of X and let S be a map of D into X such that
2.1 18Gx) = SO <allx =yl for x, y in D and some a > 0.

Then § is called contractive if a <1 and nonexpansive if a =1. We shall also
be concerned with a class of the so-called generalized contractive mappings S:
D — X introduced by Belluce and Kirk [2] and defined to be such that to each x
in D there exists a number a(x) <1 with

(2.2) 1SCG) = SO < alx)fx ~ y|| for each y in D.

It was noted in [2] that generalized contractions provide an example of a class of

mappings of ‘‘diminishing orbital diameters’’ and thus that the fixed point theorem
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328 W. V. PETRYSHYN

obtained for mappings of this latter type applies to generalized contractions. We
show in this section that the fixed point theorem of Belluce and Kirk for general-
ized contraction is also deducible from Theorem 1. We add that the main motiva-
tion for the study of generalized contractions stems from the fact (see [25]) that
if D is a bounded open convex subset of X and T: D~ X is continuously F-
differentiable on D, then T is a generalized contraction on D if and only if
IT ) <1 for each x in D, where T is the Fréchet derivative of T at x in D.
The first consequence of Theorem 1 is the following result which is new in

the sense that, unlike other authors (see Remark 2.1), we do not require D to be

convex. Recall that P: G CX — X is compact if P is continuous and P(A)

is compact if A C G is bounded.

Theorem 2.1. Let D C X be bounded and open, S: D — X contractive, and
C: D — X compact. If for some xy €D the map T =S + C satisfies the condition

(LS) T(x)—xoiéh(x—xo) for x € D and X > 1,
then T bhas a fixed point in D.

Proof. It follows from our discussion in 1 that T =S + C: D — X is k-set-
contractive with £ = @ <1 and thus 1-set-contractive. Furthermore, T satisfies
conditions (a) ahd (c) since (a) is equivalent to condition (LS) while (c) follows
immediately from the structure of T. Hence, by Theotem 1, T has a fixed point.

Remark 2.1. Theorem 2.1 was established first in [26] under the additional

hypothesis that D is convex and that
(K) S(x)+ Cy) €D for x and y in D.

In case X is a Hilbert space and D is also convex, Theorem 2.1 has been con-
structively established in [32] for X separable and T satisfying (a) on 9D, and
independently in {50] for X nonseparable and T(D)CD. Incase D is a ball

B(0, r), Theorem 2.1 has been established independently in [49] for a general
Banach space with T (D) CD and in [32] for a Banach = -space with a weakly con-
tinuous duality map. Further studies have been made in [14], 39], [7], [37], and
others (see [15]). It should be added that since T =S+ C is k-set-contractive
with k<1, Theorem 2.1 for the case when D is convex and T (D) C D is deducible
from the theorem of Darbo [9] proved in 1955 which has unfortunately escaped the

notice of researchers in this field until 1969 (see [29]):

Theorem 2.2. Let D C X be bounded and open, S: D — X nonexpansive, and
C:D— X compact., If T =S + C satisfies conditions (a) and (c) of Theorem 1,
then T bhas a [ixed point.
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Proof. Since S: D — X is nonexpansive and C is compact, T =5 + C:
D — X is 1-set-contractive and hence Theorem 2.2 follows from Theorem 1.

We say that a map P: G — X is demiclosed if {xn} C G is such that x — X
€G and P(x )— [ in X, thea P(x,) = [, where.— and — denote the weak
and the strong convegence in X, respectively. It was shown by Browder [6] that
if X is uniformly convex, D convex and T: D — X nonexpansive, then P=1-T
is demiclosed and in particular, condition (c) holds. Hence, an immediate conse-

quence of Theorem 2.2 is the following corollary.

Corollary 2.1. If X is uniformly convex, D a bounded open convex subset of
X, and T:D — X a nonexpansive map which satisfies condition (a) on oD, then

T bas a fixed point.

Remark 2.2. In case T (D) C D, Corollary 2.1 has been first established inde-
pendently in [3], [22], [19). In its present form Corollary 2.1 has been obtained
by Browder [6] as a special case of a more general theorem for maps of semicon-
tractive type which we shall discuss in $3. We add in passing that the arguments
of Browder are not only different from ours but are also lengthy and quite com-
plicated.

If in Theorem 2.2 we omit the requirement that T satisfy condition (c), then
T may not have a fixed point in D. In fact, it was shown in [4] that if X = [, and
D=B(0,1)CL, then S: B — [, and C: B — I, given by

SG)= (0, xp, %, x,,+0),  Clx)= (- |x]1%, 0,0,0,...)

e
is nonexpansive and compact, respectively; T = § + C maps B into B (i.e., T is
1-set-contractive and satisfies condition (a)) but T has no fixed points in B. Con-
sequently, some additional condition has to be imposed for T = S + C to have a
fixed point. Condition (c) is the weakest such condition.

However, the following theorem is valid for uniformly convex Banach spaces
and completely continuous perturbations, where C: G — X is said to be completely
continuous (or strongly continuous) if for any {x } C G such that x_ — x, in G,

C(xn)—’C(xO) in X as n — oo,

Theorem 2.3. Let X be a uniformly convex Banach space, D a bounded open
convex subset of X, S a nonexpansive map of D into X, and C a completely con-
tinuous map of D into X. If the mapping T =S + C: D — X satisfies condition
(a) of Theorem 1, then T has a fixed point in D.

Proof. Since X is uniformly convex (and thus reflexive) and C is completely
coatinuous on D, y(C(A)) = 0 for each subset A of D. Hence T =S+ C is a 1-

set-contractive map of D into X. Furthermore, T satisfies condition (c) on D.
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Indeed, if {x } is any sequence in D such that x_ - T (x,) — 0, then assuming
without loss of generality that x, — x, in D and using the complete continuity
of C we see that C(xn) — C(xy) as n — o and, therefore, x, - Sx =x, -
T(xn) + Clx_ ) = Clx)) as n — co. Since I-§ is demiclosed, it follows that
X~ 'S(xo) = C(xo), ie, xg-T (xo) =0 and T satisfies condition {c). Hence
Theorem 2.3 follows from Theorem 1. Q.E.D. ]

Remark 2.3. In case X is a reflexive Banach space with a single-valued
weakly continuous duality mapping and T is semicontractive (and thus includes
maps of the form § + C; see $3), Theorem 2.3 has been first established by
Browder [4] but under the condition that T is defined on all of X and that T
satisfies condition (K) on D. Independently of [4], Edmunds [12] has proved
Theorem 2.3 for Hilbert spaces under condition (K). In case D is a ball B(0, r)
in a reflexive 7,-space X such that X has a single-valued weakly continuous
duality mapping and Property (H) (i.e., if x,— x in X and [x || — ||x|| as
n — oo, then % — x in X), Theorem 2.3 has been established by Petryshyn [32].
In case X is a Hilbert space and T (D) C D, Theorem 2.3 has also been proved in
{50] by rather simple arguments (see also [37], [21], [10], {11]). The subsequent
generalizations of the resules of [4], [12], {32], [50] which include Theorem 2.3 in
its present form have since been obtained by various authors. The more general
latter results will be discussed in the succeeding sections.

Next we show that the condition on X in Corollary 2.1 can be relaxed if we

strengthen the condition on T.

Corollary 2.2. Let X be a reflexive Banach space and D a bounded open
convex subset of X. If T is a generalized contraction of D into D, then T bas

a (unique) fixed point in D.

Proof. Since T is obviously 1-set-contractive and the condition T (D) C D
implies the condition (a) of Theorem 1 for any x, in D, to prove Corollary 2.2 it
suffices to show that T satisfies condition (¢) of Theorem 1. This we prove in
the lemma below using a variant of the technique first employed by Kirk [23] under

the assumption that T is defined on all of X (see also Fitzpatrick [13]).

Lemma 2.1. If X is a reflexive Banach space, D an open boundéd convex
subset of X, and T a generalized contraction of D into D, then T satisfies con-
dition (c) on D.

Proof. Let Ix}cC D be a sequence such that x;=T(x)—0as j— o
Since X is reflexive, D a bounded closed convex subset of X, and {x]} CD, we
may assume that X; =X in D. We claim that {xji converges strongly (neces-

sarily to x,) so that x; - T(xo) =0, i.e., T satisfies condition (c).
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Let R = {r > 0| there exists an integer n > 1 such that D N {annB (x, )}
£ @}, Note that R # & since D is bounded and {x].§ lies in D. Thus, we may
define 7, = inf{r| 7 € R} and note that for each ¢ > 0, there exists a k = kl¢) such that

CZ=5ﬁzn B(x]., ro+e)$;é¢.

izk
Since, for fixed e, {CZ} is a monotonically increasing sequence of bounded,
closed, convex, and nonempty subsets of D we see that
cc=yy |pn) N B(xl., x0+e)i
k=1 jzk

is a nonempty closed convex subsert of D with the property that the family
F = {C¢| €> 0} is a collection of nonempty weakly compact subsets of D having
the finite intersection property. Hence, by the reflexivity of X, ﬂpo C‘#4 g and
therefore there exists an element x € ﬂpoc‘ CD.

Let = "xj - T(x]-)|| for each j and note that since a(X) <1 we can choose
€>0 and 8 >0 such that B = alx)ry + €) + 8 <ry. Now, since 7, — 0 as

j — o, we can choose N, so large that 7, < 8 and x €B ("j’ 7o+ €) for j> N,
Therefore, for all j > N, we have

TG = x| < NTGY = TGN + TG ) - %]
<ax - xfl 47 < a@)ry+ )+ r. < B

Hence, T() B (xl., B) and T (x) also lies in D, by the assumption that
T(D)CD. Thus DN {n].ZNOB (s B # @ with B <7, in violation of the defini-
tion of r,. Hence, ry =0 and thus for each ¢ >0 there exists k(e) >1 such that
||xl. - x|l <2¢ for i, j > k(e), i.e., {x].} is a Cauchy sequence which necessarily
converges (strongly) to x,. This and the continuity of T imply that x — T (x,)

= 0. This completes the proof of Lemma 2.1 and of Corollary 2.2, Q.E.D.

Remark 2.4. Corollary 2.2 has been first obtained in [2] as a consequence of
a fixed point theorem for mappings of ‘'diminishing orbital diameters’’.

Remark 2.5. Since it is unknown whether for T satisfying the conditions of
Corollary 2.2 the set (I ~ T)(D) is closed, we see that Theorem 1 is indeed a
generalization of Theorem 7' in [34] even for 1-set-contractions.

Remark 2.6. Since for any given f in X the map T,=T+f: D — X is also
a generalized contraction, Lemma 2.1 implies that T, satisfies condition (c) pro-
vided [ is such that T/(x) €D for each x in D. Moreover, it follows from the
proof of Lemma 2.1 that we have not only verified condition (c) for T, but in fact

have also shown that if T(D)CD and {x_} is any sequence in D such that
)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



332 W. V. PETRYSHYN
%p. = %o in D and i T(xnj) — [ as j — oo, then x"i — x; as j — oo and
xq = T(xo) =/

In view of Remark 2.6, the following results are also valid for certain per-

turbed generalized contractions.

Theorem 2.4. Let X be a reflexive Banach space, D a bounded open convex
subset of X, S a generalized contraction of D into X, and C a completely con-

tinuous mapping of D into X. If T satisfies the condition
(K) S(x)+ CG) €D for x, y in D,

then T has a fixed point in D.

Proof. Since T =S$ + C is l1-set-contractive on D and T (D) C D, by Theorem
1 for x =0, it suffices to show that T satisfies condition (c) on D. Let {xn}
be any sequence in D such that x - T(xn) — 0 as n — oo, Assuming that
x —xg in D and using the complete continuity of C we see that C(xn) -
C(x,) and x, -~ S(x )= %, =T (x,) + C(xn)_-' C(x,) as 7 — co. Since, by condi-
tion (K), (S(x) + C(x)) €D for each x in D, Remark 2.6 implies that x; - S (x)
=Clxy) or xy— T(xy) =0, i.e., T satisfies condition (c). Hence T has a fixed
point in D. Q.E.D.

If in Theorem 2.4 we assume that D = B(0, ), then condition (K) could be

somewhat relaxed (see [25] for the case when C = 0).

Theorem 2.5. Let X be a reflexive Banach space, D = B(0, r), and let S:
B — X and C: B — X be as in Theorem 2.4. Af T =S5 + C satisfies the condition

(K1) S(x)+C(y) €B for x in OB and y in B,
then T has a fixed point in B.

Proof. Let T'(x) = $'(x) + C'(x) for x in B, where S$'(x) = (x + S(x))/2 and

C'(x) = C(x)/2 for x in B. It is easy to show that S": B— X isa generalized
contraction, C’ is completely continuous, and T'and T have the same fixed

points in B. Furthermore, T'(B) C B. To verify the last assertion, set X = rx/|x||
for x in B with x £ 0. Since S is a generalized contraction on B and (K1)

holds, we have

I5'G) + C'G| < e + G2 = SE)/2 + SE)/2 + Cl)/2|
<Hlxll + % ]15G) - sG)| + B IISG) + CO)
SHlxl + % lx =3l + Yr = Blixll + %@~ = IDIx/Ax )] + Y%7

=r, forall y in 8 and all x in B with x £ 0.
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On the other hand, let x' be any point in 9B. Then, by (2.2) and (K1), for any y

in B we have

[5(0) + C'() || = %15(0) + CH|
< YIS0 = SG + %SG + COI < BalO)r + Yr <.

Hence, $' + C' satisfies condition (K) and therefore, by Theorem 2.4, T has a
fixed point in B. Q.E.D.
Remark 2.7. In case C =0, then condition (K1) reduces to the assumption
that S(dB) C B. For the latter case Theorem 2.5 has been established in [25].
Let us continue this section by observing that if in Theorem 2.4 the condi-
tion on § is somewhat strengthened, then the assertion of Theorem 2.4 is valid
even for compact C and without the stringent condition (K). Thus we get the

following interesting result.

Theorem 2.6. Let X be a reflexive Banach space, D a bounded open convex
subset of X, C a compact mapping of D into X, and S a uniformly strictly con-
tractive on D relative to X (see [23]), i.e., the map S: X — X bas the property

that for each x in X there exists a number a(x) <1 such that

(2.3) [SG) = SO < ale)x = y|| for each y in D.

If T=5+C:D — X satisfies condition (a) of Theorem 1 on dD, then T bhas a
fixed point in D.

Proof. Since T = 5§+ C is 1-set-contractive and T satisfies condition (a) of
Theorem 1, to prove Theorem 2.6 it suffices to show that T satisfies condition
(c)on D. Let {x_} be any sequence in D such that x, =T )—0as n — oo,
Since {x } is bounded and C: D — X is compact we may assume that C(x )— f
in X forsome fin X. Butthen x_ - Sx )—x -Tx )+ Clx L) — [ or x -
F(x )= 0 as n — o, where F: X-—»X is defmed by F(x) S(x)+/ for x in X
w1th F uniformly strictly contractive on D relative to X. Since X is reflexive
and D a bounded closed convex subset of X, there exists a subsequence fx, 1=
{x } for each j and an element xy in D such that x; — %, and % - F(x )—»’O as
] — eo. It was shown by Kirk [23] that, under the above conditions on F, {x }is
necessarily a Cauchy sequence which converges strongly (necessarily to xo) so
that x4 - Fx ) =0, i.e. xg~5(xo) = /. But then C(x)—tC(x o)=/as j— oo

Hence Xg— T (x )_ 0, i.e. T satisfies condition (c) of Theorem 1 and so, by
Theorem 2 -2 or Theorem 1, T has a fixed point in D. Q.E.D.
Remark 2.8.

It is interesting to compare Theorem 2.6 to Theorems 2.1 and 2.3,
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3. Applications to mappings of semicontractive type. The object of this sec-
tion is to deduce from Theorem 1 various fixed point theorems for mappings of
semicontractive type introduced by Browder [6] and later also studied under vari-
ous conditions by Kirk [23], Webb [45], [46], Browder (7], Petryshyn [32],
Nussbaum [29], and others.

These mappings are the generalizations of the mappings studied in $2 and
they are obtained by intertwining mappings of contractive type and of compact or
completely continuous type. It is in the first part of this section that the useful-
ness of the validity of Theorem 1 for 1-ball-contractions will be apparent. We
will deal with mappings for which it is easy to verify that they are 1-ball-contrac-
tions but for which it is unknown whether they are 1-set-contractions.

To fix our terminology we consider the following definitions [4] (see also [45]).

Let X be a Banach space, D a bounded open subset of X, and T a continu-
ous map of D into X. Suppose there exists a continuous mapping V of X x X
into X such that T(x)= V(x, x) for x in D. Then

(ID) T is strictly semicontractive if, for each fixed x in X, V(.,x) is
Lipschitzianwith constant k£ <1 and V (x,.) is compact.

(2D) T is weakly semicontractive if, for each x in X, V(.,x) is nonexpan-
sive and V(x, .) is compact.

(3D) T is semicontractive if, for each fixed x in X, V(.,x) is nonexpansive

and V(x,.) is completely continuous.
Using the arguments analogous to those in [45) we now prove the following

lemma.

Lemma 3.1. Let X be a Banach space, D a bounded open subset of X, and
T a continuous map of D into X which is either strictly or weakly semicontrac-
tive. Then T is A-ball-contractive, where A =k or 1 depending on whether T is

strictly or weakly semicontractive.

Proof. Let A be any subset of D and suppose that X (4) =7 >0. Then given
any € >0 we cover A by a finite number of balls of radius r + ¢ with centers in X;
say Blx, r+¢), 1 <j<k ie, AC U;;lB (x;, 7+ ¢). For each fixed x in X,
V(x, A) is a precompact set in X and so U:zl V(xn, A) is also precompact.

Therefore, for the given € > 0, there exist points  z,,---, z, in X such that

k 14
U V(x", A)c Uy B(z]., €).
n=1 =1

Now, given any x in A we choose 7 such that |lx — x_ || <7+ ¢, and observe that

Vi, x) - V(xn, )| < )\Hxn -x|| <Ar + 6,
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where A equals either k& or 1 depending on T. Moreover, we may choose j such
thae ||V (x_, x) ~ z| <e Thus,

||T(x) —sz = |Vix, x) —zjn
SV ) =V, 0| + IV, 2) -2 )l < Mr+ 6+ €< M+ 2

It follows from this that T(A) C U;’zl B (zj, A7 + 2¢). In other words, x (T (A)) <
A7+ 2¢ for any given € > 0. Hence x(T(A))<Ax(A) with A=k if T is strictly
semicontractive and A =1 if T is weakly semicontractive. Q.E.D.

In view of Lemma 3.1, Theorem 1 implies the validity of the following new
fixed point theorem under the general boundary condition (a) of Theorem 1 with D

not necessarily convex.

Theorem 3.1. Let X be a Banach space, D a bounded open subset of X,
and T a continuous map of D into X such that condition (a) of Theorem 1 bolds.
Suppose further that T satisfies any one of the following two conditions:

(i) T: D —X is strictly semicontractive,

(ii) T: D — X is weakly semicontractive and T satisfies condition (c) of
Theorem 1 on D.

Then, in either case, T has a fixed point in D.

Proof. (i) Since T: D — X is strictly semicontractive, Lemma 3.1 implies
that T is k-ball-contractive with & <1 and, in particular, 1-ball-contractive.
Thus, in view of Theorem 1, it suffices to show that T satisfies condition (c).
Let {x_ | be any sequence in D suchthat g_=x, -T(x)—0as n— o
Since x =g +T(x), x dg, 1) =0, and T is k-ball-contractive with k<1, it
follows that x({xn }) = 0. Hence there exists a subsequence {x".} and an x; in
D such that xnj — xy as j — oo This and the continuity of T imply that
&n; xg~-T (xo) = 0, i.e., condition (c) holds.

(ii) If T satisfies condition (ii), then by Lemma 3.1 the map T is l-ball-
contractive and T satisfies condition (c) by hypothesis. Hence Theorem 3.1 for
T satisfying either (i) or (ii) follows from Theorem 1. Q.E.D.

If in (ii) we do not assume that T satisfies condition (c), then for T to
have a fixed point in D we need to strengthen the conditions on X, D and V(., x).

Indeed, using Theorem 1, Lemma 3.1, and the arguments of [4]. we have the

following result.

Theorem 3.2. Let X be a reflexive Banach space for which there exists a
single-valued weakly continuous duality mapping ] of X into X* with respect
to some gauge [unction p. Let D be a bounded open convex subset of X and
T- D — X a semicontractive mapping such that condition (a) of Theorem 1 holds

on dD. Then T bas a [ixed point in D.
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Proof. Since X is reflexive and, for each fixed x in X, the map V (x, ) is
completely continuous, it follows thar V (x, -) is also compact. Hence, by Lemma
3.1, T is 1-ball-contractive of D into X. To show that T satisfies condition
(c) of Theorem 1, let {xn} be any sequence in D such that x, = T(xn) — 0 as
n — oo, .We may assume that x, — x in D. Forall x and y in D let VI(X, y)
=x - V(x, y), where V(x, x) = T(x) for x in D. Since V is nonexpansive in

the first variable, it follows that, for every y in X,
v,b, %)~ Vil o x ), Jl —x )
= -x, Jo-x N-(h, x ) -Vl , x ), Jly ~x ) >0.

Since V,(x ,x )=x - Tk )— 0,V x,)— V,(y, xy) by the complete
continuity of V(y, -),and J(y - x,) — J{y — x;) by the weak continuity of ],
the passage to the limit in the above inequality implies that

Wil x ) Jo -2 D= -V, x), J& -x )20 forally in X.

We now let z be an arbitrary element of X and for each t > 0 we set Y, =%g +
tz. As t — 0,y, — %, and therefore from the inequality (y, - V(y, x,), J (tz))
> 0 and the fact that [ (tz) = £ ()] (z) with £,(¢) > 0 it follows that (y, -

V{y, x4), ] (z)) > 0. Passing to the limit in the last inequality as ¢ — 0 we get
the relation

(xo - V(xo, xo), JEN >0 forall z in X.

Since, by the results in [7], R(J) = X* it follows that T(xo) =x,, l.e., T satis-
fies condition (c). Q.E.D.

Remarks 3.1. If in Theorem 3.1 we assume that D is also convex, then con-
dition (a) is implied by the assumption that T (D) C D and, in particular, by the
condition that T (D) C D. Thus, Theorem 3.1 for T satisfying condition (i) con-
tains Theorem 2 of Webb [45] who generalized the results of (4] for the case when
D is also convex and T (D) C D.

3.2, Theorem 3.1 for T satisfying condition (ii) contains Theorem 2 of
Browder [4] which requires the additional hypotheses that X be a reflexive
Banach space with a weakly continuous duality mapping, that T (D) C D, and that
(I - T)(D) be closed.

3.3. Theorem 3.2, for the case when T (dD) C D, contains Theorem 1 of
Browder (4] which requires the additional hypothesis that V map X x X into D.
Theorem 3.2 contains also Theorem 3 of Webb [45] established by him for the case
when T (D) CD. Theorem 4 in [45] follows also from our Theorems 3.1 or 3.2.

Note that, since the semicontractive and weakly semicontractive mappings

studied by the author in [32] were assumed to be defined only on a given ball
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B, r)* in X (and not on all of X as in [4]), Theorems 6 and 7 in {321 cannot be
deduced from Theorems 3.1 or 3.2 above for, in view of Lemma 3.1, the latter
theorems were obtained under the essential assumptions that the given mappings
were defined on all of X.

We now show that if we strengthen the compactness assumptions in the
second variable of V, then the fixed point results analogous to Theorems 3.1 and
3.2 are also valid without the assumption that T is defined on all of X, that X
has a weakly continuous duality mapping, or that T (x) = V (x, x) satisfies condi-
tion (c) on D. From our results we deduce as special cases the fixed point
theorems of Browder [6] and Kirk [23].

We start with the following definitions due to Browder [6]. Let D be a
bounded open subset of a Banach space X and T a continuous map of D into X.
Suppose there exists a continuous map V: D x D — X such that T (x) =V (x, x)
for x € D. Then

(4D) T is of strictly semicontractive type if, for each x in 5, V(,x)is
Lipschitzian for some constant & <1 independent of X, and the map x — V (., x)
is compact from D into the space of continuous mappings of D into X with the
uniform metric.

(5D) T is of weakly semicontractive type if, for each x in D, V(., x) is a
nonexpansive map of D into X and the map x — V (., x) of D into the space of
continuous mappings of D into X is compact.

(6D) T is of semicontractive type if, for each x in D, V(.,x) is a nonexpan-
sive map of D into X and V (%, .) is completely continuous from D to X, uni-

formly for x in D.

We start with the following lemma whose simple proof is given in [29] and
which we include here for the sake of completeness.

Lemma3.2. Let D be a bounded open subset of a Banach space X and T:
D — X a continuous mapping which is either of strictly or of weakly semicontrac-
tive type. Then T is A-set-contractive with A=k or A =1 depending on whether
T is of strictly or of weakly semicontractive type.

Proof. Let A be any subset of D. Since the map x — V{., x) is compact
from D to C(D, X), the space of continuous mappings of D into X with the uni-
form metric, it follows that the set V (., A) C C(D, X) is compact, where V (., A) =
{V(,x) eC, X)|x €A}. Hence V(.,A) is totally bounded in C (D, X), i.e., to
each ¢> 0 there corresponds a finite set of points x

p»° "+ %, in A such that for
every x in A there exists some X, 1 <7 <m, such that

(., x)-v(, x].)H = sup [V, ©) = V(y, x )] <e

veDn
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Hence sup_, 4 Wiy, )=V, x )| <e Since V4, x)=V(A, x].) + V(A x) -
V(A, x].), it follows that

n
T(4) = V{4, A C Y NV(4, =)

=1
and therefore y (T (A)< max 1S].Sn{y(v (A, x].))+ 2¢}. But since V (., xi) is a A-
set-contraction with A=k or A =1, y(V(4, xi)) < Ay(4). Consequently,
y(T(A)) < Ay(A) + 2¢ for each given ¢ >0. Hence T is A-set-contractive on D
with A=k or A =1 depending on T. Q.E.D.

In view of Lemma 3.2, Theorem 1 implies the validity of the following new

fixed point theorem.

Theorem 3.3. Let D be a bounded open subset of the Banach space X and
T a continuous mapping of D into X such that condition (a) of Theorem 1 holds.
Suppose further that T satisfies any one of the following two conditions:

(i) T is of strictly semicontractive type.

(ii) T is of weakly semicontractive type and T satisfies also condition (c)
of Theorem 1.

Then, in either case, T has a fixed point in D.

Remark 3.4. Theorem 3.3 includes Theorem S of Browder [6] which requires
the additional hypotheses that D be also convex, 0 €D, and that (I — TID) be
also closed when T is assumed to be only of weakly semicontractive type. We
add in passing that Browder’s method is different from the method used here.
Theorem 3.3, although not explicitly stated, has been obtained in Petryshyn (see
Theorem 7' in [34]) under the stronger assumption that (I — TXD) is also closed
in case T is of weakly semicontractive type.

Now, if we assume that X is also reflexive and D is also convex, then every
mapping T: D — X of semicontractive type is also of weakly semicontractive
type. To see the latter, it suffices to show that the map x — V (., x) of D into
cD, X) is compact, i.e., every sequence of elements in V (., A) has a sub-
sequence which converges to an element in C(D, X). Let {V(., ¥;)} be any
sequence in V (., A). Since {y }CA and A is a bounded set in a convex subset
D of a reflexive Banach space X there exists a subsequence, which we again
denote by {y }, and an element y, in D such that Y; — ¥q as j —oo. Hence, since

T: D — X is of semicontractive type, to each € > 0 the:e exists an N >1 such
that

|vix, y,.) ~Vix, yo)" <e¢ forall x in D and j>AN.

This shows that V (-, y.) converges to a mapping V (-, yo) in C(D, X). Conse-
quently, T is of weakly semicontractive type.
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Now, it has been shown by Browder [6] that if we additionally assume that X
is uniformly convex, then (I - T)(D) is a closed set in X. Since the latter fact
implies condition {c), the preceding discussion shows that the following fixed
point theorem of Browder (see Theorem 1 in [6]) follows as a special case of our

Theorem 1.

Corollary 3.1. Let X be a uniformly convex Banach space, D a bounded
open convex subset of X, and T: D — X a map of semicontractive type which

satisfies condition (a) of Theorem 1 on dD. Then T has a fixed point in D.

In [23] Kirk extended the results of Browder [6] for semicontractive mappings
to mappings of strongly semicontractive type. This extension, from the class of
uniformly convex spaces to a much wider class of reflexive Banach spaces,
requires the stronger version of semicontractiveness defined as follows:

(7D) A continuous mapping T of D into X is said to be of strongly semi-
contractive type relative to X if there exists a mapping V: X x D — X with
T(x) = V(x, x} for x in D such that fc;r each x in D the mapping Vi, x) is
uniformly strictly contractive on D relative to X (i.e., for each x in X there
exists 0< alx) <1 such that ||V (x, y) - V(z, y)]| < alx)]|x - z|| for each z and
y in D) and V(x, .) is completely continuous from D to X, uniformly for x in D.

This class of mappings generalizes mappings of the form § + C with § uni-
formly strictly contractive on D relative to X and C completely continuous on
D. As another consequence of Theorem 1 we deduce the following fixed point
theorem obtained by Kirk [23] (for the case when 0 € D).

Corollary 3.2. Let X be a reflexive Banach space, D a bounded open con-
vex subset of X, and T: D — X of strongly semicontractive type relative to X
such that condition (a) of Theorem 1 holds on dD. Then T bas a fixed point in D.

Proof. Since every T: D — X of strongly semicontractive type relative to
X is necessarily of semicontractive type and since X is reflexive and D is also
convex, the discussion preceding the statement of Corollary 3.1 and Lemma 3.2
show that T is l-set-contractive. Moreover, the fact that T satisfies condition
(c) of Theorem 1 on D follows from Theorem 2 in [23]. Hence Corollary 3.2 fol-
lows from Theorem 1. Q.E.D.

Remark 3.5. We observe in passing that Corollary 3.2 is not an extension of
Theorem 2.6.

We also note that if in definition (7D) we assume that V: D x D — D and
that T(x) = V(x, x) forex in D, then the same arguments as those used in the
proof of Lemma 2.1 show that T satisfies condition (c) on D. Hence in this

case the assertion of Corollary 3.2 remains valid for T: D — D of a strongly
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semicontractive type (relative to D) (i.e., without the assumption that for y in
D the map V(., y) is defined on all X).

We complete this section with the following discussion. In [29] Nussbaum
generalized the fixed point theorem of Browder-Kirk-Géhde for nonexpansive
mappings as well as a fixed point theorem of Browder {6] for maps of semicon-
tractive type to locally almost nonexpansive mappings (lane mappings), where
the latter is defined to be a continuous mapping T of D into X such that, given
any x in D and €> 0, there exists a weak neighborhood N_ of x in D (depend-

ing also on ¢) for which

ITC) - TG <llx =yl + € forall x, y in N .

It was shown in [29] that if X is a reflexive Banach space, D a bounded open
convex subset of X, and T a lane mapping of D into X, then T is l-set-con-
tractive; moreover, if X is also uniformly convex, then I — T is a demiclosed
mapping of D into X.

In view of the above mentioned results, Theorem 1 implies the validity of
the following generalization of a fixed point theorem for lane mappings obtained

in [29].

Theorem 3.4. Let X be a uniformly convex Banach space, D a bounded
open convex subset of X, L a lane mapping of D into X, and C a completely
continuous mapping of D into X. If the map T =L + C: D — X satisfies (a)
of Theorem 1 on 3D, then T has a fixed point in D.

Proof. Note first that since X is reflexive, C: D — X is completely con-
tinuous, and L: D — X is a lane mapping, T = L + C is l-set-contractive.
Furthermore, T satisfies condition (c) on D. Indeed, let {xni C D be such that
x -T (xn) — 0. Since D is a bounded convex subset of a reflexive Banach
space X and C is completely continuous, we may assume that x — x, in D
and C (x ) — C(xy) in X. Hence x_~L (x )=x_-Tl )+ Clx ) — Clx))
whence, since x, = X, and I — L is demiclosed whenever X is uniformly con-
vex [29], we get x - L(xo) = C(xo) or x, —~ T(x,) =0, i.e., T satisfies (c) on
D. Hence, Theorem 3.4 follows from Theorem 1.

Remark 3.6. For C =0 and T(3D)C D, Theorem 3.4 has been proved
in [29].

Remark 3.7. It was observed by the referee that one can show that T = L
+ C is also a lane map and so Theorem 3.4 can be deduced from the results on
lane maps in [29] at least when T(dD) C D. Although this observation is cor-
rect, the proof that L + C is a lane map is not as easy as the referee seems to
imply. On the other hand, our verification of condition (c) for perturbed map

T =L + C is straightforward.
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4. Further generalizations with applications to pseudo-contractive mappings.
In §1 we are concerned with the existence of fixed points for 1-set-contractive
or 1-ball-contractive mappings T of D into X, that is, with the solvability of

the equation
(4.1 T(x)-x.=0 (x eD).

In this section we discuss the solvability of the equation
(4.2) Flx)-A(x)=0 (x eD),

where F and A are suitable continuous mappings from a subset D of a real
Banach space X to another real Banach space Y. To obtain the solvability

of equation (4.2), we first establish a slight generalization of Theorem 1 and
then apply it to the solvability of equations involving various types of pseudo-
contractive mappings introduced by Browder and Petryshyn [8] for Hilbert spaces
and later by Browder [5] for Banach spaces and further studied by Browder [7],
Kirk [24], Petryshyn [36], Gatica and Kirk [18], and others.

Theorem 1. Let X and Y be real Banach spaces, G a bounded open sub-
set of X, and A a one-to-one continuous mapping of G into Y such that A(G)
is bounded and open, A(G) is closed in Y, and A=Y is a continuous mapping of
A(G) into X. Let F be a continuous mapping of G into Y such that the map-
ping FA-! of AGYC Y into Y is either 1-set-contractive or 1-ball-contractive
on A(G). Suppose further that the [ollowing two conditions hold:

(@') There exists yo in G such that if F(y)-A (yo) =alAy)-A (yo))
holds for some y in JG, then a <1,

(" If ty } is any sequence in G such that Fly )-Aly )= 0 as n — o,
then there exists y' in G such that F(y') - A (') = 0.

Then, in either case, the equation (4.2) has a solution in G.

Proof. If we set D = A(G), then it follows from our conditions on A and F
that A(G) is aclosed set in Y, D = A(G), and the mapping T=FA~™': D — Y
satisfies all the conditions of Theorem 1. Indeed, since FA~! is either 1-set-
contractive or 1-ball-contractive, it suffices to verify that T = FA™! satisfies
conditions (a) and (c) of Theorem 1.

Since y, lies in G, the point x, = A (yo) lies in the open set D and (a')
implies that T satisfies condition (a) on dD. In fact, if T(x) - Xy = alx ~ xo)
for some x in 9D, then, by our conditions on A, x = A(y) for some y in 9G and
consequently we have the relation F (y) - 4 (y,) = a(A(y) - A(y)) for some y in
dG. Hence, condition (a') implies that a <1, i.e., T satisfies (a) of Theorem 1.

Suppose now that ﬁxni is a sequence in D such that x = T(xn) — 0 in

Y as n — c. Since for each n there corresponds a unique y in G such that
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x,=A (yn) or y, = A-I(Xn), it follows that % -~ T(xn) =A (yn) ~F (y") —0 or
F (yn) ~A (yn) — 0 as n — . Hence, condition (c’) implies the existence of a
point y'in G such that F(y)=A(y')=00or x' = T(x")=0 with x'= A(y") €D,
i.e., condition (c) holds.

Since T = FA=1: D — Y satisfies all the conditions of Theorem 1, there
exists a point x in D suchthat T(X)=% or FG)-A(G) =0 with y =
A-1(x) €G. Q.E.D.

Remark 4.1. In the case when Y = X and A = I, Theorem 1’ reduces to
Theorem 1 for T = F.

Remark 4.2. The hypothesis that FA~!: D = A(G) — Y is either l-set-con-
tractive or l-ball-contractive holds, in particular, when F and A are assumed

to be such that any one of the following two conditions holds:

(4.3) HFQ) < H4©@) or x(F)) < x(A(@)), ©QCG.

To see this suppose that V is any subset in D. Since D = 4(G), 0 = A~ NV) is

a subset of G. Hence, by the first inequality in (4.3), we have

AFA=IW)) = p(F(A~ 1)) < A4~ 1)) = y(vV),

i.e., FA~! is l-set-contractive. A similar argument also shows that FA~! is 1-
ball-contractive if the second inequality holds in (4.3).

Remark 4.3. If G is also convex and the mapping A: G — Y is such that
AMx + (1 =A) =M (x) + Q1 = NA(y) for all x and y in G and any A in [0, 1],
then condition (a’) of Theorem 1’ is implied by the requirement that F (dG) C
A(G). Indeed, let y, be any poim in G and suppose that F(y)-A (yo) =
alA(y) — Aly,)) for some y in 9G. Then by our assumption, Fly)= aA (y) +(1 - a)Aly,)
lies in D. Since D is an open convex set, A(y,) €D, Aly) €dD, and a may be
assumed to be nonnegative, the fact that @A (y) + (1 - @)A (y,) € D implies that
a<l.

In what follows we shall deduce from Theorems 1 and 1’ a number of fixed
point theorems for the class of pseudo-contractive mappings which for the case of

Banach spaces have been defined in [5] to be mappings U: G C X — X such that
(4.4) Jlx =yl < Q1 + & = y) = r(UK) = UQ))|| forall x, y €G and all r > 0.

This class of maps is more general than the class of nonexpansive maps and, as
has been observed in [5], it has the useful property that U is pseudo-contractive
if and only if I — U is accretive, i.e., ((I - UNx) = (I = U)y), ] (x — ¥)) > 0 for all
x, y €G, where ] is a normalized duality map of X into X* (i.e., ] corresponds
to the gauge function p(t) = ¢).

We add that when X is a Hilbert space the notion of a pseudo-contractive
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mapping has been first introduced by Browder and Petryshyn |8] by defining it to
be a mapping U: G — X such that

(4.5) UG =UG2 < lx = ylI2 + U = U)x) = U = UX? for all %, y €G.

It was shown in [8] that U is pseudo-contractive (i.e., (4.5) holds) if and only if
I - U is monotone on G (i.e., I -~ U is accretive with | =I). Since I - U is
also monotone if and only if (4.4) holds we see that in the case of Hilbert spaces
the definitions (4.4) and (4.5) are equivalent.

We note in passing that if we sec A = r/(1 +7), then (4.4) is equivalent to

the requirement that

(4.6) (1= A)|x -yl < = AUNx) - (I = AUNy)| for x, y €G and X €(0, 1).

Now, the first consequence of Theorem 1’ is the following generalization of
Theorem 1 in [18].

Theorem 4.1. Let X be a Banach space, G a bounded open subset of X
with 0 in D, and let U be a map of G into X such that
(i) U is k-set-contractive on G for some k& > 0.
(ii) U is pseudo-contractive on G.

(iii) U satisfies condition (a) of Theorem 1 for x 0.

O =
(iv) U satisfies condition (c) of Theorem 1 on G.

Then U has a [ixed point in G.

Proof. To see that Theorem 4.1 follows from Theorem 1°, define the map-
pings F=(1 =A: G — X and A =1-A;U: G — X, where A, € E, =
fA €(0, 1)|Ak <1} Since A U: G — X is ky-set-contractive with k= Ak <1
and I - AU satisfies the inequality (4.6), it follows that A =1~ AU satisfies
all the conditions of Theorem 1'. Indeed, the fact that A is a continuous one-
to-one map of G into X such that A(G) = D is bounded, A (G) is closed, and
A=! is a continuous map of A(G) into X follows from (4.6) while the fact that
A(G) is open follows from the invariance of domain theorem established in {29].
Furthermore, (4.6) implies that ||F (x) = F (y)|| < ||A(x) = A(y)|| for x, y €G and
therefore the map T = FA-1:D — X is nonexpansive and, in particular, 1-set-
contractive. We shall now show that T = FA~! satisfies conditions (a"y and
(c') of Theorem 1°,

To see that (a’) holds for some ¥ in. G note first that since /\ U satisfies
condmons (a) and (c) of Theorem 1 for x5 =0, it follows that )t U has a fixed
point % in G (i.e., A(x)=0) with % lying in G because Ao hes in (0, 1) and
U satisfies (iii). Hence 0 lies in D = A (G). We choose % for Yo in condition
(a') of Theorem 1’ and observe that if F(y) - A(x) = a(A () - A &) (i.e.,
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F(y) = aA (y)), for some y in 9G, then U(y) = ((a + Ay —1)/aA,)y and, there-
fore, (@ + Ay ~1)/aly <1 by condition (iii). Since A, lies in (0, 1), the lacter
inequality implies that a <1, i.e., (a’) of Theorem 1’ holds. Now, condition (c’)
follows from (iv) and the fact that F — A = /\O(U -DN.

Thus, by Theorem 1’, there exists x in G such that F(x) - A(x) =0 or,
equivalendly, x - U{x}) = 0. Q.E.D.

Remark 4.4. Since every Lipschitzian map U: G — X is k-set-contractive
for k equal to the Lipschitz constant and since the hypothesis that (I - UXD) is
closed implies our condition (iv), Theorem 1 in [18] is a special case of our
Theorem 4.1. We add in passing that the results in [18] were also deduced from
the author’s Theorem 7 in [34].

To obtain a result analogous to Theorem 4.1 but without the assumption (iv)

we first establish the following lemma.

Lemma 4.1. Let X be a Banach space, D a bounded open subset of X with
0 in D, and U a k-set-contractive map of D into X for some k>0 with

Gii) (U), T < &, Jx)) for x in oD,

Then there exists an r >0 such that (I - AUYD) DB (0, (1 — A)r) for any
fixed A in E,,.

Proof. First note that since D is open and 0 € D there exists a number
r > 0 such that B(0, r) CD. We shall show that Lemma 4.1 is valid for this
particular 7. Let A be any fixed number in (0, 1) such that AU is k,-set-con-
tractive with ko = Ak <1, and let { be any point in B(0, (1 — A)y). Note that the
mapping U/ =AU +f:D— X is ko-set-contractive and thus, in particular, U, is
l-set-contractive and satisfies condition (c) of Theorem 1. Furthermore, U/
satisfies condition (a) of Theorem 1. Indeed, if U/(x) = ax for some x in 9D,
then condition (iii) and the definition of 7 imply that for all x in dD we have

alx, J(x)) = (U/(x), JG)) = MU, JG)) + (f, JO) < A, J &) + || LT &)
S, JGN + (1 - )\)rl]](x)ﬂ <Mx, J6)) + (1 = MG = G, JON.

Thus, @ <1 and so, by Theorem 1 for x, =0, U/ has a fixed point in D, ie.,
(1 - A)D) DB, (1 = A)r). Q.E.D.

Now, if in Theorem 4.1 we strengthen the hypotheses on X, G, and/or U,
then the condition (iv) in Theorem 4.1 can be omitted. To accomplish this we
start with the following definitions.

Following [18] we say that U: X — X is strongly pseudo-contractive on X
relative to G C X if for each x in X and 7 >0 there exists a number a (x) <1

such that
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(4.7 fx =yl <a, G +x =y} =rUG) - UGN, ¥ €G, x €X

If in the above definition it is assumed that U is defined only on G and
that (4.7) holds only for x in G, then we shall say that U: G — X is strongly

pseudo-contractive on G.

Theorem 4.2. Let X be a Banach space and U a k-set-contractive (for

some k >0) map of B0, q) into X such that

Gjj) (U), JaN < (x, J(x)) for x in dB(0, ¢).

Then U has a fixed point in B0, q) provided any one of the following two
conditions bold:
(A) X is reflexive and U: B— X is strongly pseudo-contractive on B.

(B) X is uniformly convex and U: B — X is pseudo-contractive on B.

Proof. It follows from Lemma 4.1 for D = B(0, ¢) and for 7 = ¢ that
(I-AUXB(0, g) DB, (1 -A)y) = l_ix for every A in E). Now, let A; be a
fixed number in E,, let 7, > 0 be such that A= ro/(L + ro), and for each x in
B(0, g) lec a,5(x) = alx) be a number in (0, 1) such that

(1 -2px -yl < a(x)HUAO(x) - UAo(y)“, y € B(0, q),

with a(x) <1 for each x in B(0, q) when U is strongly pseudo-contractive on
B, and with a(x) =1 forall x in B(0, ¢) when U is pseudo-contractive on B,
where Uy, =1~ AgU. It follows that u;l exists, U;;(EAO)CE(O, ) and the

mapping T, A =1 - )\)U“1 B)‘ — BA is such that

(4.8) "T;‘O(x) =T, O(y)” <al)x -=y|| for x, y in E"o'

Now, it follows from (4.8) that when U is strongly pseudo-contractive on
B(0, g), then T,‘ is a generalized contraction of B,\ into BA and therefore,
since X is reflexxve Theorem 2.5 implies the existence of a (umque) X in B;‘O
such that T}‘ (x} = x. On the other hand, when U is pseudo-contractive on B,
then it follows from (4.8) that T)\ is a nonexpansive map of BA into B,\ and
therefore, since X is uniformly convex, Theorem 2.2 implies the existence of an
X in BAO such that T}‘O(x) =x. In exther case we see that U,‘ l(x) = x/(l -2y
from whence on setting x| = (1 = A ) x we find that U(x!) = x! with x! in
B(0, ). Q.E.D.

Remark 4.5. In case U is Lipschitzian, Theorem 4.2 has first been proved
by Browder and Petryshyn [8] for the case when X is a Hilbert space and U
pseudo-contractive and then extended by Kirk [24] to the case when X is
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uniformly convex and U pseudo-contractive with U(dB) C B. In its present form
Theorem 2.4 has been proved in [36] for the case when X and U satisfy condi-
tion (B). Theorem 4.2 for X and U satisfying condition (A) appears to be new.
If in Theorem 4.2 we assume that U is defined on all of X, then the follow-
ing result holds, which for Lipschitzian mappings is due to Gatica and Kirk [18].

Theorem 4.3. Let X be a Banach space, D a bounded open convex subset of
X with 0 in D, and U a mapping of X into X such that

(a,) If Ulx) = ax for some x in dD, then a <1.
Then U bas a fixed point in D provided any one of the following two conditions
bold:

(Ag) X isreflexive and U is Lipschitzian and strongly pseudo-contractive
on X relative to D.

(By) X and X* are uniformly convex and U is a map which is both k-set-con-

tractive for some k >0 and pseudo-contractive.

Proof. In view of Theorem 4.1 we need only show that in both cases U sat-
isfies condition (iv) of Theorem 4.1, i.e., that if {x } is a sequence in D such
that x - U(xn) — 0 as n — oo, then there exists an x in D such that x -

U(x) = 0. Since X is reflexive and D is convex, the map U will, of course, have
the above property if in both cases we show that I — U is demiclosed. The latter
fact has been established by Browder [6] for the case when X, X* and U satisfy
condition (B,) and by Gatica and Kirk [18] for the case when X and U satisfy
condition (A,). Q.E.D.

We complete this section with the following result which is related to
Theorem 4.3 (BO) and whose proof is based on Theorem 8 in (36] and Corollary
2.1,

Theorem 4.4. Let X be a uniformly convex Banach space and let U be a
mapping of X into X which is both k-set-contractive for some k>0 and pseudo-
contractive, lf there exists a bounded open convex subset D of X with 0 in D

such that
(a,) Ux) £ A for x in D and A> 1,

then U bhas a fixed point in X.

Proof. Let E, ={A €(0, 1)| Ak <1} and let A, be any fixed number in E,.
Then AU is a ky-set-contraction of X into X with ky = Agk <1 and since U is
also pseudo-contractive on X it follows from (4.6) that for Uy =1-A,U we have

4.9) HU)‘O(x) - Uxo(y)n 2@ -Alx —yll forall x, y in X.

Hence, by the author’s Theorem 8 in [36], U,‘0 is a continuous one-to-one
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mapping of X onto X with the continuous inverse U;(l) . Furthermore, it follows
from (4.9) that if we set T"o =1 - /\O)U}‘(I), then T"o is a nonexpansive mapping
of X into X. Since X is uniformly convex and D is a bounded open convex sub-
set of X with 0 in D, to prove that T"o has a fixed point in D, by Corollary 2.1
it suffices to show that T, satisfies c_ondition (a) of Theorem l_on dD. Now,
since U"O is a one-to-one mapping of D into X such that Uy 0(D) is open,
Uy,(D) = Uy (D), and QU (D) = Uy (D), it follows that if T, (x)= ax for some
x in 9D, then U;l(x) = ax/(1 —= A) with ax/(1 —A) lying in dD. Consequently,
Ufax/(1 =A) = ((a+A-1)/AQ - 1)) = (a + A -1)ax/ar(l - A) from which, in
view of (ag), it follows that a <1. Hence, by Corollary 2.1, there exists % in D
such that T)(x) =x or U(x")=x" with x' =(1 -2)~!x. QE.D.

5. Application to maps satisfying suitable growth conditions. In this section
Theorem 1 is applied to equations involving linear adjoint abelian mappings A:

X — X and nonlinear mappings T: X — X which satisfy certain growth conditions.
For the study of such equations in case X is a Hilbert space and T satisfies a
compactness or a P-compactness condition (see [27], [33], [43]). These equations
are related to abstract Hammerstein equations ([33], [43]).

Let X be a Banach space and let J: X — 2X* be a normalized duality map-
ping. Following Stampli [42] we say that a bounded linear mapping A of X into
X is adjoint abelian if A*] = JA. Clearly, if X is a Hilbert space, then the
adjoint abelian operators are precisely the selfadjoint ones. It has been shown in
[42] that adjoint abelian operators possess many properties of selfadjoint opera-
tors. Thus, for example, if A: X — X is adjoint abelian, then its spectrum o(A)
is real, its spectral radius p(A4) = ||A]}, and |A"| = |A||” for n=1,2,3,... (see
[42] for further properties).

The basic result of this section is the following fixed point theorem.

Theorem 5.1. Let X be a Banach space, A a bounded linear and adjoint

abelian mapping of X into X, and T a nonlinear mapping of X into X such that,
forall y in X,

61 (TOL IO < ayfyll? + a,lyl?" (e, >0, 0 <5 <1, a,||B| <1 if a,>0),

where B = A%, If, for each r >0, the mapping ATA: B0, r) — X is either 1-set-
contractive or 1-ball-contractive and if ATA satisfies condition (c) on B, 1),
then BT has a fixed point in X,

Proof. Since A: X — X is adjoint abelian and (5.1) holds for all y in X, it
follows that for all x in X

(ATA(x), ] (x)) = (TA (x), A*] (x)) = (TA (x), JA(2))< a,||Ax]|? + a,||Ax[{?7.
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This and the equality |A||? = |A?|| imply the inequality

(ATAG), J&) <a |BIIxI12 +a,|B] "Ix]?" for x in X.

1 2
Since a,||B| <1 if a; >0,and 1 —> 0, i is easy to see that there exists a ball

B(0, r) such that
alllBHr2 + aZHBHnr2n <r? for x in OBIO, ).

Indeed, any fixed 7 > 0 satisfying the inequality
(5.2) r>¥a2||3||’7/(1—alllBll)}”(z‘Z’”

has this property. Hence for any fixed r > 0 satisfying the inequality (5.2) we
have the relation (ATA (x), J (x)) < |ix}|% for x in 9B (0, r). This implies that
the mapping ATA: B (0, r) — X satisfies condition (a) of Theorem 1 for x5 =0.
Since, by our assumption, ATA: B (0, r) — X is either 1-set-contractive or 1-ball-
contractive which satisfies condition (c) of Theorem 1 on B (0, 7), it follows
from Theorem 1 that there exists a point in x in B (0, 7) such that x — ATA (x)
=0, i.e., 2z - BT(z) =0, where z = A(x). Q.E.D.

Remark 5.1. In case X is a Hilbert space Petryshyn and Tucker [33]
obtained an analogous theorem for P-compact operators satisfying (5.1).

As consequences we deduce from Theorem 5.1 the following two useful

resules.

Theorem 5.2. Let X be a Banach space, A a bounded linear and adjoint
abelian mapping of X into X, and S a mapping of X into X such that

(5.3) IS = SOGN < lllx—yl|  forx,y in X and some I>0.

(a) If C is a compact mapping of X into X, ||Bl|I<1, and T =5 + C:
X — X satisfies the inequality (5.1) of Theorem 5.1, then the mapping BT bas
a fixed point in X.

(b) If X is uniformly convex, C: X — X completely continuous, ||B||l<1,
and T =S + C satisfies the inequality (5.1), then BT bhas a fixed point in X.

Proof. In view of Theorem 5.1, to prove Theorem 5.2 it suffices to show
that in both cases, for each r > 0, the map ATA: B(0, r) = X is either l-set-
contractive or l-ball-contractive and condition (c) of Theorem 1 holds on B (0, r).

(a) Suppose first that C: X — X is compact and ||B||/ <1. Since ATA =
ASA + ACA and A is a bounded linear mapping such that ||A]|2 = |4?%| = ||B||
with ||B||/<1, it follows that ACA is compact and ASA is contractive with its
Lipschitz constant k& = ||B||Z. Hence ATA is k-set-contractive with k£ <1. This
implies that for each r >0 the mapping ATA: B (0, r}) — X is l-set-contractive
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and that ATA satisfies condition (c) on B 0, 7) for each r > 0.

(b) Since X is uniformly convex and C is completely continuous, to prove
assertion (b) it suffices to consider the case when ||B||/ =1 because the case
when ||B]|/ <1 follows from (a). Now, if ||B||/ =1, then ATA = ASA + ACA:
B(0, r) = X is clearly 1-set-contractive for each 7 >0 and therefore it suffices
to show that ATA satisfies condition (c) of Theorem 1 on B (D, r) for each r>0.

Let r >0 be any fixed number and let {x } be any sequence in B, r)
such that x, - ATA(x,) — 0. Since X is uniformly convex and {x,}C B(0, r)
we may assume that X, — x; in B(0, r). The fact that A is a bounded linear
mapping of X into X and that C is completely continuous imply that ACA (x")
— ACA (xo) as n — oo, Hence x - ASA (x") — ACA (xo) as n — o, Since
x, — x, in B, r), X is uniformly convex, and ATA: B(0, r) — X is nonexpan-
sive, a result of Browder [6] implies that %y — ASA (x) = ACA (xg) or x( -
ATA(xy) = 0, i.e., condition (c) holds on B(0, 7). Q.E.D.

Remark 5.2. In case X is a Hilbert space, then the identity I is the unique
normalized duality mapping of X into X (= X*) and every adjoint abelian opera-
tor A is a selfadjoint mapping of X into X with B = A? obviously selfadjoint
and positive. For the latter case our Theorem 5.1 yields the results of
Krasnoselsky [27] and Vainberg {43] for certain Hammerstein equations for the

case when A is compact.

Theorem 5.3. Let X be a reflexive Banach space, A a bounded linear and
adjoint abelian mapping of X into X, and S a mapping of X into X such that to
each x in X and 1> 0 there corresponds a number a (x) >0 such that

(5.4) SG) = s < a |x - yl| for y in B(o, r).

If C is a compact mapping of X into X, ||Blla,(x) <1 for each x in X and
r>0,and T =S + C: X — X satisfies the inequality (5.1) of Theorem 5.1, then
BT bhas a fixed point in X.

Proof. In view of Theorem 5.1, it suffices to show that for each 7 >0 the
mapping ATA: B (0, 7) — X is l-set-contractive and satisfies condition (c) on
B (0, r). First, since ACA is compact, ATA will be 1-set-contractive if ASA:
B(0, r) — X is l-set-contractive for each r > 0. Now, it follows from the

linearity and boundedness of A and from (5.4) that for each x in X and 7 >0
[4SAG) — ASAG)| < [|ANISAG) = SAW)|| < fAla (Ax)Ax - Ay

<s &x -yl for y in B(0, 1),

where s (x) = IBlla (Ax) <1 for each x in X and 7> 0. Hence ASA: X — X is
uniformly strictly contractive on E(O, r) relative to X. Consequently,
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ASA: B(0, r) — X is l-set-contractive and so is ATA. Now, to show that ATA:
B(0, 1) — X satisfies condition (c) on B (0, ), let {x_} be a sequence in B (0, 7)
such that xn-ATA(x") — 0 as 7 — o, Since A is bounded and linear, C is
compact, {x } CB(0, r),and X is reflexive we may assume x, — %, in B ©, r),
ACA (xn) — A(y)in X for some y in X, and x -ASA (xn) — A(y) in X as

n — oo, This and the arguments of Kirk [23] imply that X, — Xyas n = o0 S0
that x,-ASA (x;) = A (y). But then ACA(x ) — ACA(x,) = A (y) and, therefore,
xo-ATA(xy) = 0, i.e., ATA satisfies condition (c) on B 0, r). Q.E.D.
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