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We present some new common fixed point theorems for a pair of nonlinear mappings defined on
an ordered Banach space. Our results extend several earlier works. An application is given to show
the usefulness and the applicability of the obtained results.

1. Introduction

The problem of existence of common fixed points to a pair of nonlinear mappings is now
a classical theme. The applications to differential and integral equations made it more
interesting. A considerable importance has been attached to common fixed point theorems in
ordered sets [1, 2]. In a recent paper, Dhage [3] proved some common fixed point theorems
for pairs of condensing mappings in an ordered Banach space. More recently, Hussain et
al. [4] extended the results of Dhage to 1-set contractive mappings. In the present paper
we pursue the investigations started in the aforementioned papers and prove some new
common fixed point theorems under weaker assumptions. Also we present some common
fixed point results using the weak topology of a Banach space. The use of the concepts of ws-
compactness and ww-compactness increases the usefulness of our results in many practical
situations especially when we work in nonreflexive Banach spaces. We will illustrate this fact
by proving the existence of nonnegative integrable solutions for an implicit integral equation.
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For the remainder of this section we gather some notations and preliminary facts. Let X be
a real Banach space, ordered by a coneK. A coneK is a closed convex subset of X with
λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual x ≤ y ⇔ y − x ∈ K.

Definition 1.1. LetX be an ordered Banach space with order ≤. A mapping T : D(T) ⊆ X → X
is said to be isotone increasing if for all x, y ∈ D(T), we have that x ≤ y implies Tx ≤ Ty.

Definition 1.2. LetM be a nonempty subset of an ordered Banach space X with order ≤. Two
mappings S, T :M → M are said to be weakly isotone increasing if Sx ≤ TSx and Tx ≤ STx
hold for all x ∈ M. Similarly, we say that S and T are weakly isotone decreasing if Tx ≥ STx
and Sx ≥ TSx hold for all x ∈M. The mappings S and T are said to be weakly isotone if they
are either weakly isotone increasing or weakly isotone decreasing.

In our considerations the following definition will play an important role. Let B(X)
denote the collection of all nonempty bounded subsets of X and W(X) the subset of B(X)
consisting of all weakly compact subsets of X. Also, let Br denote the closed ball centered at
0 with radius r.

Definition 1.3 (see [5]). A function ψ : B(X) → R+ is said to be a measure of weak noncom-
pactness if it satisfies the following conditions.

(1) The family ker(ψ) = {M ∈ B(X) : ψ(M) = 0} is nonempty and ker(ψ) is contained
in the set of relatively weakly compact sets of X.

(2) M1 ⊆M2 ⇒ ψ(M1) ≤ ψ(M2).

(3) ψ(co(M)) = ψ(M), where co(M) is the closed convex hull ofM.

(4) ψ(λM1 + (1 − λ)M2) ≤ λψ(M1) + (1 − λ)ψ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty weakly closed subsets ofXwithM1 bounded
andM1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · such that limn→∞ψ(Mn) = 0, thenM∞ :=

⋂∞
n=1Mn

is nonempty.

The family kerψ described in (1) is said to be the kernel of the measure of weak non-
compactness ψ. Note that the intersection set M∞ from (5) belongs to kerψ since ψ(M∞) ≤
ψ(Mn) for every n and limn→∞ψ(Mn) = 0. Also, it can be easily verified that the measure ψ
satisfies

ψ
(
Mw

)
= ψ(M), (1.1)

whereMw is the weak closure ofM.
A measure of weak noncompactness ψ is said to be regular if

ψ(M) = 0 iff M is relatively weakly compact, (1.2)

subadditive if

ψ(M1 +M2) ≤ ψ(M1) + ψ(M2), (1.3)
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homogeneous if

ψ(λM) = |λ|ψ(M), λ ∈ R, (1.4)

and set additive (or have the maximum property) if

ψ(M1 ∪M2) = max
(
ψ(M1), ψ(M2)

)
. (1.5)

The first important example of a measure of weak noncompactness has been defined
by De Blasi [6] as follows:

w(M) = inf{r > 0 : there exists W ∈ W(X) with M ⊆W + Br}, (1.6)

for eachM ∈ B(X).
Notice that w(·) is regular, homogeneous, subadditive, and set additive (see [6]).
By a measure of noncompactness on a Banach spaceX wemean a map ψ : B(X) → R+

which satisfies conditions (1)–(5) in Definition 1.3 relative to the strong topology instead
of the weak topology. The concept of a measure of noncompactness was initiated by the
fundamental papers of Kuratowski [7] and Darbo [8]. Measures of noncompactness are
very useful tools in nonlinear analysis [9] especially the so-called Kuratowski measure of
noncompactness [7] and Hausdorff (or ball) measure of noncompactness [10].

Definition 1.4. Let X be a Banach space and ψ a measure of (weak) noncompactness on X.
Let A : D(A) ⊆ X → X be a mapping. If A(D(A)) is bounded and for every nonempty
bounded subsetM of D(A)with ψ(M) > 0, we have, ψ(A(M))) < ψ(M), then A is called ψ-
condensing. If there exists k, 0 ≤ k ≤ 1, such thatA(D(A)) is bounded and for each nonempty
bounded subsetM of D(A), we have ψ(A(M)) ≤ kψ(M), then A is called k-ψ-contractive.

Remark 1.5. Clearly, every k-ψ-contractive map with k < 1 is ψ-condensing and every ψ-
condensing map is 1-ψ-contractive.

Definition 1.6 (see [11]). AmapA : D(A) → X is said to bews-compact if it is continuous and
for any weakly convergent sequence (xn)n∈N

in D(A) the sequence (Axn)n∈N
has a strongly

convergent subsequence in X.

Remark 1.7. The concept of ws-compact mappings arises naturally in the study of both
integral and partial differential equations (see [11–19]).

Definition 1.8. AmapA : D(A) → X is said to be ww-compact if it is continuous and for any
weakly convergent sequence (xn)n∈N

inD(A) the sequence (Axn)n∈N
has a weakly convergent

subsequence in X.

Definition 1.9. Let X be a Banach space. A mapping T : D(T) ⊆ X → X is called a nonlinear
contraction if there exists a continuous and nondecreasing function ϕ : R

+ → R
+ such that

∥
∥Tx − Ty∥∥ ≤ ϕ(∥∥x − y∥∥) (1.7)

for all x, y ∈ D(T), where ϕ(r) < r for r > 0.
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Remark 1.10. It is easy to prove that a nonlinear contraction mapping is a nonlinear set-
contraction with respect to the Kuratowskii measure of noncompactness. We will prove that
the same property holds for the De Blasi measure of weak noncompactness provided that the
nonlinear contraction mapping is ww-compact.

Lemma 1.11. Let T be a ww-compact nonlinear contraction mapping on a Banach X. Then for each
bounded subsetM of X one has

w(TM) ≤ φ(w(M)). (1.8)

Here, w is the De Blasi measure of weak noncompactness.

Proof. Let M be a bounded subset of X and r > w(M). There exist 0 ≤ r0 < r and a weakly
compact subsetW of X such thatM ⊆W + Br0 . Since T is a φ-nonlinear contraction, then

TM ⊆ TW + Bφ(r0) ⊆ TW
w
+ Bφ(r0). (1.9)

Moreover, since T is ww-compact, then TW
w
is weakly compact. Accordingly,

w(TM) ≤ φ(r0) ≤ φ(r). (1.10)

Letting r → w(M) and using the continuity of φ we deduce that

w(TM) ≤ φ(w(M)). (1.11)

The following theorem is a sharpening of [3, Theorem 2.1] and [4, Theorem 3.1].

Theorem 1.12. LetX be an ordered Banach space and ψ a set additive measure of noncompactness on
X. LetM be a nonempty closed convex subset of X and S, T :M → M be two continuous mappings
satisfying the following:

(i) T is 1-ψ-contractive,

(ii) S is ψ-condensing,

(iii) S and T are weakly isotone.

Then T and S have a common fixed point.

Proof. Let x ∈M be fixed. Consider the sequence {xn} defined by

x0 = x, x2n+1 = Sx2n, x2n+2 = Tx2n, n = 0, 1, 2, . . . . (1.12)

Suppose first that S and T are weakly isotone increasing on M. Then from (1.12) it follows
that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · . (1.13)
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Set A = {x1, x2, . . . , xn, . . .}, A1 = {x2, x4, . . . , x2n, . . .}, and A2 = {x1, x3, . . . , x2n+1, . . .}. Clearly

A = A1 ∪A2, A2 = S(A1) ∪ {x1}, A1 = T(A2). (1.14)

We show that A1 is relatively compact. Suppose the contrary, then ψ(A1) > 0. Since T is
1-ψ-contractive and S is ψ-condensing, it follows from (1.14) that

ψ(A2) = ψ(S(A1) ∪ {x1}) = ψ(S(A1)) < ψ(A1),

ψ(A1) = ψ(T(A2)) ≤ ψ(A2).
(1.15)

This is impossible. Thus A1 is relatively compact. The continuity of S implies that A2 =
S(A1) ∪ {x1} is relatively compact. Consequently A is relatively compact. Since {xn} is
monotone increasing in A, then it is convergent. Let x∗ be its limit. Using the continuity of S
and T we get

x∗ = lim
n→∞

x2n+1 = lim
n→∞

S(x2n) = S
(

lim
n→∞

x2n

)

= S(x∗),

x∗ = lim
n→∞

x2n+2 = lim
n→∞

T(x2n+1) = T
(

lim
n→∞

x2n+1

)

= T(x∗).

(1.16)

To complete the proof we consider the case where S and T are weakly isotone decreasing on
M. In this case, the sequence {xn} is monotone decreasing and then converges to a common
fixed point of S and T .

Remark 1.13. In [3, Theorem 2.1] T is assumed to be set condensing, while S is assumed to be
affine, X is assumed to be reflexive and I − T is demiclosed in [4, Theorem 3.1].

Remark 1.14. As an application of Theorem 1.12, the modified versions of Theorems 3.6–3.12
in [4] can be proved similarly.

As easy consequences of Theorem 1.12 we obtain the following results.

Corollary 1.15. LetM be a nonempty closed convex subset of a Banach space X and let S, T :M →
M be two completely continuous mappings. Also assume T and S are weakly isotone mappings. Then
T and S have a common fixed point.

Corollary 1.16. LetM be a nonempty closed convex subset of a Banach space X and S, T : X → X
be two continuous mappings. Assume T is nonexpansive, that is, ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ X,
and S is a nonlinear contraction. Also assume that S and T are weakly isotone mappings, T(M) ⊆M
and S(M) ⊆M. Then T and S have a common fixed point inM.

Corollary 1.17. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of noncompactness on X. Let S, T : X → X be two continuous mappings satisfying the
following:

(i) T(M) ⊆M and S(M) ⊆M,

(ii) T is a nonexpansive mapping,
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(iii) S is ψ-condensing,

(iv) T and S are weakly isotone.

Then S and T have a common fixed point inM.

Note that in Corollary 1.17 we do not have uniqueness. However, if we assume T is
shrinking, we obtain uniqueness. Recall that T : D(T) ⊆ X → X is shrinking if

∥
∥Tx − Ty∥∥ < ∥

∥x − y∥∥ whenever x, y ∈ D(T) with x /=y. (1.17)

Corollary 1.18. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of noncompactness on X. Let S, T : X → X be two continuous mappings satisfying the
following:

(i) T(M) ⊆M and S(M) ⊆M,

(ii) T is a shrinking mapping,

(iii) S is ψ-condensing,

(iv) T and S are weakly isotone.

Then S and T have a unique common fixed point inM.

Proof. From Corollary 1.17 it follows that there exists x ∈ M such that Sx = Tx = x. Now
from (1.17) we infer that T cannot have two different fixed points. This implies that S and T
have a unique common fixed point.

Corollary 1.19. LetM be a nonempty closed convex subset of a Banach space X and S, T : X → X
be two mappings satisfying the following:

(i) T(M) ⊆M and S(M) ⊆M,

(ii) T is a shrinking mapping,

(iii) S is a nonlinear contraction,

(iv) T and S are weakly isotone.

Then S and T have a unique common fixed point inM which is the unique fixed point of S.

Theorem 1.20. Let X be an ordered Banach space and ψ a set additive measure of weak noncompact-
ness on X. LetM be a nonempty closed convex subset of X and S, T : M → M be two sequentially
weakly continuous mappings satisfying the following:

(i) T is 1-ψ-contractive,

(ii) S is ψ-condensing,

(iii) S and T are weakly isotone.

Then T and S have a common fixed point inM.

Proof. Let x ∈M be fixed. Consider the sequence {xn} defined by

x0 = x, x2n+1 = Sx2n, x2n+2 = Tx2n, n = 0, 1, 2, . . . . (1.18)
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Suppose first that S and T are weakly isotone increasing on M. Then from (1.18) it follows
that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · . (1.19)

As in the proof of Theorem 1.12 we set A = {x1, x2, . . . , xn, . . .}, A1 = {x2, x4, . . . , x2n, . . .}, and
A2 = {x1, x3, . . . , x2n+1, . . .}. Clearly

A = A1 ∪A2, A2 = S(A1) ∪ {x1}, A1 = T(A2). (1.20)

We show that A1 is relatively weakly compact. Suppose the contrary, then ψ(A1) > 0. Since T
is 1-ψ-contractive and S is ψ-condensing, it follows from (1.20) that

ψ(A2) = ψ(S(A1) ∪ {x1}) = ψ(S(A1)) < ψ(A1),

ψ(A1) = ψ(T(A2)) ≤ ψ(A2).
(1.21)

This is impossible. Thus A1 is relatively weakly compact. The weak sequential continuity of
S implies that A2 = S(A1) ∪ {x1} is relatively weakly compact. The same reasoning as in the
proof of Theorem 1.12 gives the desired result.

As easy consequences of Theorem 1.20 we obtain the following results.

Corollary 1.21. LetM be a nonempty closed convex subset of a Banach space X and let S, T :M →
M be two weakly completely continuous mappings. Also assume T and S are weakly isotone mappings.
Then T and S have a common fixed point inM.

Corollary 1.22. LetM be a nonempty closed convex subset of a Banach spaceX and let S, T : X → X
be two sequentially weakly continuous mappings. Assume T is nonexpansive and S is a nonlinear
contraction. Also assume that S and T are weakly isotone mappings, T(M) ⊆ M and S(M) ⊆ M.
Then T and S have a common fixed point inM.

Corollary 1.23. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of weak noncompactness on X. Let S, T : X → X be two sequentially weakly continuous
mappings satisfying the following:

(i) T is a nonexpansive mapping,

(ii) S is ψ-condensing,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a common fixed point.

Proof. This follows from Theorem 1.20 on the basis of Lemma 1.11.
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Corollary 1.24. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of weak noncompactness on X. Let S, T : X → X be two sequentially weakly continuous
mappings satisfying the following:

(i) T is a shrinking mapping,

(ii) S is ψ-condensing,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a unique common fixed point inM.

Corollary 1.25. LetM be a nonempty closed convex subset of a Banach spaceX and let S, T : X → X
be two sequentially weakly continuous mappings satisfying the following:

(i) T is a shrinking mapping,

(ii) S is a nonlinear contraction,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a unique common fixed point inM which is the unique fixed point of S.

Remark 1.26. It is worth noting that, in some applications, the weak sequential continuity is
not easy to be verified. The ws-compactness seems to be a good alternative (see [16] and the
references therein). In the following we provide a version of Theorem 1.20 where the weak
sequential continuity is replaced with ws-compactness.

Theorem 1.27. Let X be an ordered Banach space and ψ a set additive measure of weak noncompact-
ness on X. Let M be a nonempty closed convex subset of X and S, T : M → M two continuous
mappings satisfying the following:

(i) T is 1-ψ-contractive,

(ii) S is ws-compact and ψ-condensing,

(iii) S and T are weakly isotone.

Then T and S have a common fixed point.

Proof. Let x ∈M be fixed. Consider the sequence {xn} defined by

x0 = x, x2n+1 = Sx2n, x2n+2 = Tx2n, n = 0, 1, 2, . . . . (1.22)

Suppose first that S and T are weakly isotone increasing on M. Then from (1.22) it follows
that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · . (1.23)

Set A = {x1, x2, . . . , xn, . . .}, A1 = {x2, x4, . . . , x2n, . . .}, and A2 = {x1, x3, . . . , x2n+1, . . .}. Clearly

A = A1 ∪A2, A2 = S(A1) ∪ {x1}, A1 = T(A2). (1.24)
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Similar reasoning as in Theorem 1.20 gives thatA1 is relatively weakly compact. From the ws-
compactness of S it follows that A2 = S(A1) ∪ {x1} is relatively compact. Now the continuity
of T yields that A1 = T(A2) is relatively compact. Consequently, A = A1 ∪ A2 is relatively
compact. The rest of the proof runs as in the proof of Theorem 1.12.

As easy consequences of Theorem 1.27 we obtain the following results.

Corollary 1.28. Let S, T : X → X be two continuous mappings. Assume T is nonexpansive and ww-
compact and S is a ws-compact nonlinear contraction. Also assume that S and T are weakly isotone
mappings. Then T and S have a common fixed point.

Proof. This follows from Theorem 1.27 on the basis of Lemma 1.11.

Corollary 1.29. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of weak noncompactness onX. Let S, T : X → X be two continuous mappings satisfying the
following the following:

(i) T is a ww-compact nonexpansive mapping,

(ii) S is ws-compact and ψ-condensing,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a common fixed point inM.

Proof. This follows From Theorem 1.27 on the basis of Lemma 1.11.

Corollary 1.30. LetM be a nonempty closed convex subset of a Banach space X and ψ a set additive
measure of weak noncompactness onX. Let S, T : X → X be two continuous mappings satisfying the
following:

(i) T is a ww-compact shrinking mapping,

(ii) S is ws-compact and ψ-condensing,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a unique common fixed point inM.

Corollary 1.31. LetM be a nonempty closed convex subset of a Banach spaceX and let S, T : X → X
two continuous mappings satisfying the following:

(i) T is a ww-compact and shrinking mapping,

(ii) S is a ws-compact nonlinear contraction,

(iii) T and S are weakly isotone,

(iv) T(M) ⊆M and S(M) ⊆M.

Then S and T have a unique common fixed point inM which is the unique fixed point of S.

Note that if X is a Banach Lattice, then the ws-compactness in Theorem 1.27 can be
removed, as it is shown in the following result.
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Theorem 1.32. Let X be a Banach lattice and ψ a set additive measure of weak noncompactness on
X. Let M be a nonempty closed convex subset of X and S, T : M → M two continuous mappings
satisfying the following:

(i) T is 1-ψ-contractive,

(ii) S is ψ-condensing,

(iii) S and T are weakly isotone.

Then T and S have a common fixed point inM.

Proof. Let x ∈M be fixed. Consider the sequence {xn} defined by

x0 = x, x2n+1 = Sx2n, x2n+2 = Tx2n, n = 0, 1, 2, . . . . (1.25)

Suppose first that S and T are weakly isotone increasing on M. Then from (1.25) it follows
that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · . (1.26)

Set A = {x1, x2, . . . , xn, . . .}, A1 = {x2, x4, . . . , x2n, . . .}, and A2 = {x1, x3, . . . , x2n+1, . . .}. Clearly

A = A1 ∪A2, A2 = S(A1) ∪ {x1}, A1 = T(A2). (1.27)

Similar reasoning as in Theorem 1.20 gives that A1 is relatively weakly compact. Thus {xn}
has a weakly convergent subsequence, say {xnk}. Since in a Banach lattice every weakly
convergent increasing sequence is norm-convergent we infer that {xnk} is norm-convergent.
Consequently A1 is relatively compact. Similar reasoning as in the proof of Theorem 1.12
gives the desired result.

2. Application to Implicit Integral Equations

The purpose of this section is to study the existence of integrable nonnegative solutions of
the integral equation given by

p(t, x(t)) =
∫1

0
ζ(t, s)f(s, x(s))ds, t ∈ [0, 1]. (2.1)

Integral equations like (2.1) were studied in [20] in L2[0, 1] and in [4] in Lp[0, 1] with
1 < p < +∞. In this section, we look for a nonnegative solution to (2.1) in L1[0, 1]. For the
remainder we gather some definitions and results from the literature which will be used in
the sequel. Recall that a function f : [0, 1] × R → R is said to be a Carathéodory function if

(i) for any fixed u ∈ R, the function t → f(t, u) is measurable from [0, 1] to R,

(ii) for almost any x ∈ [0, 1], the function f(t, ·) : R → R is continuous.

Letm[0, 1] be the set of all measurable functions x : [0, 1] → R. If f is a Carathéodory
function, then f defines a mapping Nf : m[0, 1] → m[0, 1] by Nf(x)(t) := f(t, x(t)). This
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mapping is called the superposition (or Nemytskii) operator generated by f . The next two
lemmas are of foremost importance for our subsequent analysis.

Lemma 2.1 (see [21, 22]). Let f : [0, 1]×R → R be a Carathéodory function. Then the superposition
operator Nf maps continuously L1[0, 1] into itself if and only if there exist a constant b ≥ 0 and a
function a(·) ∈ L1

+[0, 1] such that

∣
∣f(t, u)

∣
∣ ≤ a(t) + b|u|, (2.2)

where L1
+[0, 1] denotes the positive cone of the space L

1[0, 1].

Lemma 2.2 (see [14]). If f : [0, 1]×R → R is a Carathéodory function andNf maps continuously
L1[0, 1] into itself, thenNf is ww-compact.

Remark 2.3. Although the Nemytskii operator Nf is ww-compact, generally it is not weakly
continuous. In fact, only linear functions generate weakly continuous Nemytskii operators in
L1 spaces (see, for instance, [23, Theorem 2.6]).

The problem of existence of nonnegative integrable solutions to (2.1)will be discussed
under the following assumptions:

(a) ζ : [0, 1]×[0, 1] → R is stronglymeasurable and
∫1
0 ζ(·, s)y(s)ds ∈ L1[0, 1]whenever

y ∈ L1[0, 1] and there exists a function θ : [0, 1] → R belonging to L∞[0, 1] such
that 0 ≤ ζ(t, s) ≤ θ(t) for all (t, s) ∈ [0, 1]× [0, 1]. The function f : [0, 1]×R → R is a
Carathéodory function and there exist a constant b > 0 and a function a(·) ∈ L1

+[0, 1]
such that |f(t, u)| ≤ a(t) + b|u| for all t ∈ [0, 1] and u ∈ R. Moreover, f(t, x(t)) ≥ 0
whenever x ∈ L1

+[0, 1];

(b) the function p : [0, 1] ×R → R is nonexpansive with respect to the second variable,
that is, |p(t, u) − p(t, v)| ≤ |u − v| for all t ∈ [0, 1] and u, v ∈ R;

(c) for all r > 0 and for all x ∈ B+
r we have

0 ≤ θ(t)‖a‖ + bθ(t)
∫1

0
p(s, x(s))ds ≤ p(t, x(t)) ≤ x(t), (2.3)

where B+
r = {x ∈ L1[0, 1] : 0 ≤ x(t) ≤ r for all t ∈ [0, 1]},

(d) b‖θ‖∞ < 1.

Remark 2.4. If p(t, 0) = 0, then from assumption (b) it follows that p(t, x(t)) ≤ x(t) whenever
x ∈ L1

+[0, 1].

Remark 2.5. From assumption (b) it follows that

∣
∣p(t, x(t))

∣
∣ ≤ ∣

∣p(t, 0)
∣
∣ + |x(t)|. (2.4)

Using Lemma 2.2 together with Lemma 2.1 we infer that Np is ww-compact.

Theorem 2.6. Assume that the conditions (a–d) are satisfied. Then the implicit integral equation (2.1)
has at least one nonnegative solution in L1[0, 1].
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Proof. The problem (2.1)may be written in the shape:

Tx = Sx, (2.5)

where T and S are the nonlinear operators given by

(Tx)(t) = p(t, x(t)), (Sx)(t) =
∫1

0
ζ(t, s)f(s, x(s)). (2.6)

Note that T and Smay be written in the shape:

T = Np, S = KNf . (2.7)

Here Np and Nf are the superposition operators associated to the functions p and f ,
respectively, and K denotes the linear integral defined by

K : L1[0, 1] −→ L1[0, 1] : u(t) �−→ Ku(t) := μ
∫1

0
ζ(t, s)u(s)ds. (2.8)

Let r0 be the real defined by

r0 =
‖a‖ ‖θ‖
1 − b‖θ‖ (2.9)

andM be the closed convex subset of L1[0, 1] defined by

M = B+
r0 =

{
x ∈ L1[0, 1] : 0 ≤ x(t) ≤ r0 ∀t ∈ [0, 1]

}
. (2.10)

Note that, for any x ∈ L1[0, 1], the functions Tx and Sx belong to L1[0, 1] which is a
consequence of the assumptions (a, b). Moreover, from assumption (c) it follows that for each
x ∈M we have

0 ≤ p(t, x(t)) ≤ x(t) ≤ r0. (2.11)

This implies that T(M) ⊆ M. Also, in view of assumption (b) we have for all x ∈ M and for
all s ∈ [0, 1]

0 ≤ f(s, x(s)) ≤ a(s) + bx(s) ≤ a(s) + br0. (2.12)

Hence

0 ≤ ζ(t, s)f(s, x(s)) ≤ θ(t)(a(s) + br0). (2.13)
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Thus

0 ≤
∫1

0
ζ(t, s)f(s, x(s))ds ≤ θ(t)(‖a‖ + br0) ≤ ‖θ‖∞(‖a‖ + br0) = r0. (2.14)

Therefore, S(M) ⊆M.

Our strategy consists in applying Corollary 1.29 to find a nonnegative common fixed
point for S and T inM. For the sake of simplicity, the proof will be displayed into four steps.

Step 1. S and T are continuous. Indeed, the assumption (a) and Lemma 2.1 guarantee thatNp

and Nf map continuously L1[0, 1] into itself. To complete the proof it remains only to show
that K is continuous. This follows immediately from the hypothesis (b).

Step 2. S is ws-compact. Indeed, let (ρn) be a weakly convergent sequence of L1[0, 1]. Using
Lemma 2.2, the sequence (Nf(ρn)) has a weakly convergent subsequence, say (Nf(ρnk)).
Let ρ be the weak limit of (Nf(ρnk)). Accordingly, keeping in mind the boundedness of the
mapping ζ(t, ·)we get

∫1

0
ζ(t, s)f

(
s, ρnk(s)

)
ds −→

∫1

0
ζ(t, s)f

(
s, ρ(s)

)
ds. (2.15)

The use of the dominated convergence theorem allows us to conclude that the se-
quence (Sρnk) converges in L

1[0, 1].

Step 3. S maps bounded sets of L1[0, 1] into weakly compact sets. To see this, let O be a
bounded subset of L1[0, 1] and let C > 0 such that ‖x‖ ≤ C for all x ∈ O. For x ∈ O we have

|(Sx)(t)|dt ≤
∫1

0
|ζ(t, s)|∣∣f(s, x(s))∣∣ds

≤
∫1

0
θ(t)(a(s) + b|x(s)|)ds

≤ θ(t)(‖a‖ + bC).

(2.16)

Consequently,

∫

E

|(Sx)(t)|dt ≤ (‖a‖ + bC)
∫

E

θ(t)dt (2.17)

for all measurable subsets E of [0, 1]. Taking into account the fact that any set consisting
of one element is weakly compact and using Corollary 11 in [24, page 294] we get
lim|E|→ 0

∫
E |θ(t)|dt = 0, where |E| is the Lebesgue measure of E. Applying Corollary 11 in

[24, page 294] once again we infer that the set S(O) is weakly compact.
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Step 4. S and T are weakly isotone decreasing. Indeed, using assumption (c) we get

∫1

0
ζ(t, s)f(s, x(s))ds ≥ p

(

t,

∫1

0
ζ(t, s)f(s, x(s))ds

)

, (2.18)

and from our assumptions we have

∫1

0
ζ(t, s)f

(
s, p(s, x(s))

)
ds ≤

∫1

0
ζ(t, s)a(s)ds + b

∫1

0
ζ(t, s)p(s, x(s))ds

≤ θ(t)‖a‖ + bθ(t)
∫1

0
p(s, x(s))ds

≤ p(t, x(t)).

(2.19)

Hence Sx ≥ TSx and Tx ≥ STx and therefore S and T are weakly isotone decreasing.

Note that the Steps 1–4 show that the hypotheses of Corollary 1.29 are satisfied. Thus S
and T have a common fixed point and therefore the problem (2.1) has at least one nonnegative
solution inM.
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